单片机外文文献翻译

合集下载

单片机 外文翻译 外文文献 英文文献 51系列单片机的结构和功能

单片机 外文翻译 外文文献 英文文献 51系列单片机的结构和功能

单片机外文翻译外文文献英文文献 51系列单片机的结构和功能Structure and function of the MCS-51Structure and function of the MCS-51 series one-chip computer MCS-51 is a name of a piece of one-chip computer series which Intel Company produces. This company introduced 8 top-grade one-chip computers of MCS-51 series in 1980 after introducing 8 one-chip computers of MCS-48series in 1976. It belong to a lot of kinds this line of one-chip computer the chips have,such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc., their basic composition, basic performance and instruction system areall the same. 8051 daily representatives- 51 serial one-chip computers .An one-chip computer system is made up of several following parts: ( 1) One microprocessor of 8 (CPU). ( 2) At slice data memory RAM(128B/256B),it use not depositting not can reading /data that write,such as result not middle of operation, final result and data wanted to show, etc. ( 3) Procedure memory ROM/EPROM (4KB/8KB ), is used to preserve the procedure , some initial data and form in slice. But does not take ROM/EPROM within some one-chip computers, such as 8031 , 8032, 80C ,etc.. ( 4) Four 8 run side by side I/O interface P0 four P3, each mouth can use as introduction , may use as exporting too. ( 5) Two timer / counter, each timer / counter may set up and count in the way, used to count to the external incident, can set up into a timing way too, andcan according to count or result of timing realize the control of thecomputer. ( 6) Five cut off cutting off the control system of thesource . ( 7) One all duplexing serial I/O mouth of UART (universal asynchronous receiver/transmitter (UART) ), is it realize one-chip computer or one-chip computer and serial communication of computer to use for. ( 8) Stretch oscillator and clock produce circuit, quartz crystal finely tune electric capacity need outer. Allow oscillation frequency as 12 megahertas now at most. Every the above-mentioned part was joined through the inside data bus .Among them, CPU is a core of the one-chip computer, it is the control of the computer and command centre, made up of such parts as arithmetic unit and controller , etc.. The arithmetic unit can carry on 8 persons of arithmetic operation and unit ALU of logic operation while including one, the 1 storing device temporarilies of 8, storing device 2 temporarily, 8's accumulation device ACC, register B and procedure state register PSW, etc. Person who accumulate ACC count by 2 input ends entered of checking etc. temporarily as one operation often, come from person who store 1 operation is it is it make operation to go on to count temporarily , operation result and loopback ACC with another one. In addition, ACC is often regarded as the transfer station of data transmission on 8051 inside . The same as general microprocessor, it is the busiest register. Helpremembering that agreeing with A expresses in the order. The controller includes the procedure counter , the order is depositted, the order decipher, the oscillator and timing circuit, etc. The procedurecounter is made up of counter of 8 for two, amounts to 16. It is a byte address counter of the procedure in fact, the content is the next IAthat will carried out in PC. The content which changes it can change the direction that the procedure carries out . Shake the circuit in 8051one-chip computers, only need outer quartz crystal and frequency to finely tune the electric capacity, its frequency range is its 12MHZ of 1.2MHZ. This pulse signal, as 8051 basic beats of working, namely the minimum unit of time. 8051 is the same as other computers, the work in harmony under the control of the basic beat, just like an orchestra according to the beat play that is commanded.There are ROM (procedure memory , can only read ) and RAM in 8051 slices (data memory, can is it can write ) two to read, they have each independent memory address space, dispose way to be the same with general memory of computer. Procedure 8051 memory and 8751 slice procedure memory capacity 4KB, address begin from 0000H, used for preserving the procedure and form constant. Data 8051- 8751 8031 of memory data memory 128B, address false 00FH, use for middle result to deposit operation, the data are stored temporarily and the data are buffered etc.. In RAM of this 128B, there is unit of 32 byteses that can be appointed as the job register, this and general microprocessor is different, 8051 slice RAM and job register rank one formation the same to arrange the location. It is not very the same that the memory of MCS-51 series one-chip computer and general computer disposes the way in addition. General computer for first address space, ROM and RAM canarrange in different space within the range of this address at will, namely the addresses of ROM and RAM, with distributing different address space in a formation. While visiting the memory, corresponding and only an address Memory unit, can ROM, it can be RAM too, and by visiting the order similarly. This kind of memory structure is called the structure of Princeton. 8051 memories are divided into procedure memory space and data memory space on the physics structure, there are four memory spaces in all: The procedure stores in one and data memory space outside data memory and one in procedure memory space and one outside one, the structure forms of this kind of procedure device and data memory separated form data memory, called Harvard structure. But use the angle from users, 8051 memory address space is divided into three kinds: (1) In the slice, arrange blocks of FFFFH , 0000H of location , in unison outside the slice (use 16 addresses). (2) The data memory address space outside one of 64KB, the address isarranged from 0000H 64KB FFFFH (with 16 addresses ) too to the location. (3) Data memory address space of 256B (use 8 addresses). Three above-mentioned memory space addresses overlap, for distinguishing and designing the order symbol of different data transmission in the instruction system of 8051: CPU visit slice, ROM order spend MOVC ,visit block RAM order uses MOVX outside the slice, RAM order uses MOV to visit in slice.8051 one-chip computer have four 8 walk abreast I/O port, call P0,P1, P2 and P3. Each port is 8 accurate two-way mouths, accounts for 32pins altogether. Every one I/O line can be used as introduction and exported independently. Each port includes a latch (namely special function register ), one exports the driver and a introduction buffer . Make data can latch when outputting, data can buffer when making introduction , but four function of passway these self-same. Expand among the system of memory outside having slice, four port these may serve as accurate two-way mouth of I/O in common use. Expand among the system of memory outside having slice, P2 mouth see high 8 address off; P0 mouth is a two-way bus, send the introduction of 8 low addresses and data / export in timesharingOutput grade , P3 of mouth , P1 of P1 , connect with inside haveload resistance of drawing , every one of they can drive 4 Model LS TTL load to output. As while inputting the mouth, any TTL or NMOS circuit can drive P1 of 8051 one-chip computers as P3 mouth in a normal way . Because draw resistance on output grade of them have, can open a way collector too or drain-source resistance is it urge to open a way, do not need to have the resistance of drawing outerly . Mouths are all accurate two-way mouths too. When the conduct is input, must write the corresponding port latch with 1 first . As to 80C51 one-chip computer, port can only offer milliampere of output electric currents, is it output mouth go when urging one ordinary basing of transistor to regard as, should contact a resistance among the port and transistor base , in order to the electricity while restraining the high level from exporting P1~P3 Being restored to the throne is the operation of initializing ofan one-chip computer. Its main function is to turn PC into 0000Hinitially , make the one-chip computer begin to hold the conduct procedure from unit 0000H. Except that the ones that enter the system are initialized normally,as because procedure operate it make mistakes or operate there aren't mistake, in order to extricate oneself from a predicament , need to be pressed and restored to the throne the key restarting too. It is an input end which is restored to the throne the signal in 8051 China RST pin. Restore to the throne signal high level effective , should sustain 24 shake cycle (namely 2 machine cycles ) the above its effective times. If 6 of frequency ofutilization brilliant to shake, restore to the throne signalduration should exceed 4 delicate to finish restoring to the throne and operating. Produce the logic picture of circuit which is restored to the throne the signal:Restore to the throne the circuit and include two parts outside in the chip entirely. Outside that circuit produce to restore to the throne signal (RST ) hand over to Schmitt's trigger, restore to the throne circuit sample to output , Schmitt of trigger constantly in each S5P2 , machine of cycle in having one more , then just got and restored to the throne and operated the necessary signal insidly. Restore to the throne resistance of circuit generally, electric capacity parameter suitablefor 6 brilliant to shake, can is it restore to the throne signal high level duration greater than 2 machine cycles to guarantee. Being restored to the throne in the circuit is simple, its function is veryimportant. Pieces of one-chip computer system could normalrunning,should first check it can restore to the throne not succeeding. Checking and can pop one's head and monitor the pin with theoscillograph tentatively, push and is restored to the throne the key, the wave form that observes and has enough range is exported (instantaneous), can also through is it restore to the throne circuit group holding value carry on the experiment to change.Another name of MCS is embedded micro-controller, because it can be embedded into any micro-or small-scale equipment or equipment. At present, the single-chip embedded systems and Internet connectivity is a trend. However, Internet has been used as a fat server, thin machine technology users. This technology on the Internet to store and access large amounts of data is appropriate, but for control of embedded devices has become the "sledgehammer cracking a nut," the. Embedded devices to achieve and Int ernet connection, we need the Internet to the traditional theory and practice of embedded devices are reversed. In order to make complex or simple embedded devices, such as single-chip microcomputer-controlled machine tools, single-chip microcomputer-controlled door locks, can be practical and Internet connection, requires specialized equipment for the embedded microcontroller design a web server to embed devices can be connected to Internet, and through a standard Web browser to process control.At present, in order to single-chip microcomputer as the core of embedded systems and Internet connected companies, there are many morestudies in this area. More typical in this regard have emWare and TASKING company. Embedded systems companies EmWare network program - EMIT technology. This technology consists of three main parts: the emMicro, emGateway and web browser. Which, emMicroembedded devices is a 1K-byte memory capacity accounted for only a very small web servers; emGateway stronger as a function of the user or server, and it is used to achieve more than the management of embedded devices, as well as standard access the Internet communications, as well as the support of a web browser. Web browsers use to display and embedded emObjicts data transmission between devices. If sufficient resources embedded devices, while at the same time emMicro and emGateway into embedded devices, to achieve direct access to the Inter net. Otherwise, it will require a web browser emGateway and each other. EmWare's EMIT software technology using standard Internet protocol for 8-bit and 16-bit embedded devices to manage, but costs much less traditional. At present, single-chip applications, a new problem: This is how to make the 8-bit, 16-bit single-chip microcomputer to control the product, or embedded products or equipment to achieve the interconnection and the Internet? TASKING is now to solve this problem means. The company has emWare of EMIT software packages and related supporting integration, the formation of an integrated development environment, to provide users with convenient development. Embedded Internet Union ETI (embed the Internet Consortium) is to work closelywith the development of embedded Internet solutions. Results in the near future there will be published.中文译文51系列单片机的结构和功能51系列单片机是英特尔公司生产的具有一定结构和功能的单片机产品。

单片机 英文参考文献 翻译

单片机 英文参考文献 翻译

天津科技大学毕业生外文资料翻译姓名:学院:电子信息与自动化学院专业:测控技术与仪器一.英文原文Progress in ComputersPrestige Lecture delivered to IEE, Cambridge, on 5 February 2009Maurice WilkesThe first stored program computers began to work around 1950. The one we built in Cambridge, the EDSAC was first used in the summer of 1949.These early experimental computers were built by people like myself with varying backgrounds. We all had extensive experience in electronic engineering and were confident that that experience would stand us in good stead. This proved true, although we had some new things to learn. The most important of these was that transients must be treated correctly; what would cause a harmless flash on the screen of a television set could lead to a serious error in a computer.As far as computing circuits were concerned, we found ourselves with an embarass de richess. For example, we could use vacuum tube diodes for gates as we did in the EDSAC or pentodes with control signals on both grids, a system widely used elsewhere. This sort of choice persisted and the term families of logic came into use. Those who have worked in the computer field will remember TTL, ECL and CMOS. Of these, CMOS has now become dominant.In those early years, the IEE was still dominated by power engineering and we had to fight a number of major battles in order to get radio engineering along with the rapidly developing subject of electronics.dubbed in the IEE light current electrical engineering.properly recognised as an activity in its own right. I remember that we had some difficulty in organising a conference because the power engineers’ ways of doing things were not our ways. A minor source of irritation was that all IEE published papers were expected to start with a lengthy statement of earlier practice, something difficult to do when there was no earlier practice Consolidation in the 1960sBy the late 50s or early 1960s, the heroic pioneering stage was over and the computer field was starting up in real earnest. The number of computers in the world had increased and they were much more reliable than the very early ones . To those years we can ascribe the first steps in high level languages and the firstoperating systems. Experimental time-sharing was beginning, and ultimately computer graphics was to come along.Above all, transistors began to replace vacuum tubes. This change presented a formidable challenge to the engineers of the day. They had to forget what they knew about circuits and start again. It can only be said that they measured up superbly well to the challenge and that the change could not have gone more smoothly.Soon it was found possible to put more than one transistor on the same bit of silicon, and this was the beginning of integrated circuits. As time went on, a sufficient level of integration was reached for one chip to accommodate enough transistors for a small number of gates or flip flops. This led to a range of chips known as the 7400 series. The gates and flip flops were independent of one another and each had its own pins. They could be connected by off-chip wiring to make a computer or anything else.These chips made a new kind of computer possible. It was called a minicomputer. It was something less that a mainframe, but still very powerful, and much more affordable. Instead of having one expensive mainframe for the whole organisation, a business or a university was able to have a minicomputer for each major department.Before long minicomputers began to spread and become more powerful. The world was hungry for computing power and it had been very frustrating for industry not to be able to supply it on the scale required and at a reasonable cost. Minicomputers transformed the situation.The fall in the cost of computing did not start with the minicomputer; it had always been that way. This was what I meant when I referred in my abstract to inflation in the computer industry ‘going the other way’. As time goes on people get more for their money, not less.Research in Computer Hardware.The time that I am describing was a wonderful one for research in computer hardware. The user of the 7400 series could work at the gate and flip-flop level and yet the overall level of integration was sufficient to give a degree of reliability far above that of discreet transistors. The researcher, in a university or elsewhere, could build any digital device that a fertile imagination could conjure up. In the Computer Laboratory we built the Cambridge CAP, a full-scale minicomputer with fancy capability logic.The 7400 series was still going strong in the mid 1970s and was used for the Cambridge Ring, a pioneering wide-band local area network. Publication of the design study for the Ring came just before the announcement of the Ethernet. Until these two systems appeared, users had mostly been content with teletype-based local area networks.Rings need high reliability because, as the pulses go repeatedly round the ring, they must be continually amplified and regenerated. It was the high reliability provided by the 7400 series of chips that gave us the courage needed to embark on the project for the Cambridge Ring.The RISC Movement and Its AftermathEarly computers had simple instruction sets. As time went on designers of commercially available machines added additional features which they thought would improve performance. Few comparative measurements were done and on the whole the choice of features depended upon the designer’s intuition.In 1980, the RISC movement that was to change all this broke on the world. The movement opened with a paper by Patterson and Ditzel entitled The Case for the Reduced Instructions Set Computer.Apart from leading to a striking acronym, this title conveys little of the insights into instruction set design which went with the RISC movement, in particular the way it facilitated pipelining, a system whereby several instructions may be in different stages of execution within the processor at the same time. Pipelining was not new, but it was new for small computers The RISC movement benefited greatly from methods which had recently become available for estimating the performance to be expected from a computer design without actually implementing it. I refer to the use of a powerful existing computer to simulate the new design. By the use of simulation, RISC advocates were able to predict with some confidence that a good RISC design would be able to out-perform the best conventional computers using the same circuit technology. This prediction was ultimately born out in practice.Simulation made rapid progress and soon came into universal use by computer designers. In consequence, computer design has become more of a science and less of an art. Today, designers expect to have a roomful of, computers available to do their simulations, not just one. They refer to such a roomful by the attractive name of computer farm.The x86 Instruction SetLittle is now heard of pre-RISC instruction sets with one major exception, namely that of the Intel 8086 and its progeny, collectively referred to as x86. This has become the dominant instruction set and the RISC instruction sets that originally had a considerable measure of success are having to put up a hard fight for survival.This dominance of x86 disappoints people like myself who come from the research wings.both academic and industrial.of the computer field. No doubt, business considerations have a lot to do with the survival of x86, but there are other reasons as well. However much we research oriented people would like to think otherwise. high level languages have not yet eliminated the use of machine code altogether. We need to keep reminding ourselves that there is much to be said for strict binary compatibility with previous usage when that can be attained. Nevertheless, things might have been different if Intel’s major attempt to produce a good RISC chip had been more successful. I am referring to the i860 (not the i960, which was something different). In many ways the i860 was an excellent chip, but its software interface did not fit it to be used in a workstation.There is an interesting sting in the tail of this apparently easy triumph of the x86 instruction set. It proved impossible to match the steadily increasing speed of RISC processors by direct implementation of the x86 instruction set as had been done in the past. Instead, designers took a leaf out of the RISC book; although it is not obvious, on the surface, a modern x86 processor chip contains hidden within it a RISC-style processor with its own internal RISC coding. The incoming x86 code is, after suitable massaging, converted into this internal code and handed over to the RISC processor where the critical execution is performed.In this summing up of the RISC movement, I rely heavily on the latest edition of Hennessy and Patterson’s books on computer design as my supporting authority; see in particular Computer Architecture, third edition, 2003, pp 146, 151-4, 157-8.The IA-64 instruction set.Some time ago, Intel and Hewlett-Packard introduced the IA-64 instruction set. This was primarily intended to meet a generally recognised need for a 64 bit address space. In this, it followed the lead of the designers of the MIPS R4000 and Alpha. However one would have thought that Intel would have stressed compatibility with the x86; the puzzle is that they did the exact opposite.Moreover, built into the design of IA-64 is a feature known as predicationwhich makes it incompatible in a major way with all other instruction sets. In particular, it needs 6 extra bits with each instruction. This upsets the traditional balance between instruction word length and information content, and it changes significantly the brief of the compiler writer.In spite of having an entirely new instruction set, Intel made the puzzling claim that chips based on IA-64 would be compatible with earlier x86 chips. It was hard to see exactly what was meant.Chips for the latest IA-64 processor, namely, the Itanium, appear to have special hardware for compatibility. Even so, x86 code runs very slowly.Because of the above complications, implementation of IA-64 requires a larger chip than is required for more conventional instruction sets. This in turn implies a higher cost. Such at any rate, is the received wisdom, and, as a general principle, it was repeated as such by Gordon Moore when he visited Cambridge recently to open the Betty and Gordon Moore Library. I have, however, heard it said that the matter appears differently from within Intel. This I do not understand. But I am very ready to admit that I am completely out of my depth as regards the economics of the semiconductor industry.AMD have defined a 64 bit instruction set that is more compatible with x86 and they appear to be making headway with it. The chip is not a particularly large one. Some people think that this is what Intel should have done. [Since the lecture was delivered, Intel have announced that they will market a range of chips essentially compatible with those offered by AMD.]The Relentless Drive towards Smaller TransistorsThe scale of integration continued to increase. This was achieved by shrinking the original transistors so that more could be put on a chip. Moreover, the laws of physics were on the side of the manufacturers. The transistors also got faster, simply by getting smaller. It was therefore possible to have, at the same time, both high density and high speed.There was a further advantage. Chips are made on discs of silicon, known as wafers. Each wafer has on it a large number of individual chips, which are processed together and later separated. Since shrinkage makes it possible to get more chips on a wafer, the cost per chip goes down.Falling unit cost was important to the industry because, if the latest chips are cheaper to make as well as faster, there is no reason to go on offering the old ones, at least not indefinitely. There can thus be one product for the entiremarket.However, detailed cost calculations showed that, in order to maintain this advantage as shrinkage proceeded beyond a certain point, it would be necessary to move to larger wafers. The increase in the size of wafers was no small matter. Originally, wafers were one or two inches in diameter, and by 2000 they were as much as twelve inches. At first, it puzzled me that, when shrinkage presented so many other problems, the industry should make things harder for itself by going to larger wafers. I now see that reducing unit cost was just as important to the industry as increasing the number of transistors on a chip, and that this justified the additional investment in foundries and the increased risk.The degree of integration is measured by the feature size, which, for a given technology, is best defined as the half the distance between wires in the densest chips made in that technology. At the present time, production of 90 nm chips is still building upSuspension of LawIn March 1997, Gordon Moore was a guest speaker at the celebrations of the centenary of the discovery of the electron held at the Cavendish Laboratory. It was during the course of his lecture that I first heard the fact that you can have silicon chips that are both fast and low in cost described as a violation of Murphy’s law.or Sod’s law as it is usually called in the UK. Moore said that experience in other fields would lead you to expect to have to choose between speed and cost, or to compromise between them. In fact, in the case of silicon chips, it is possible to have both.In a reference book available on the web, Murphy is identified as an engineer working on human acceleration tests for the US Air Force in 1949. However, we were perfectly familiar with the law in my student days, when we called it by a much more prosaic name than either of those mentioned above, namely, the Law of General Cussedness. We even had a mock examination question in which the law featured. It was the type of question in which the first part asks for a definition of some law or principle and the second part contains a problem to be solved with the aid of it. In our case the first part was to define the Law of General Cussedness and the second was the problem;A cyclist sets out on a circular cycling tour. Derive an equation giving the direction of the wind at any time.The single-chip computerAt each shrinkage the number of chips was reduced and there were fewer wiresgoing from one chip to another. This led to an additional increment in overall speed, since the transmission of signals from one chip to another takes a long time.Eventually, shrinkage proceeded to the point at which the whole processor except for the caches could be put on one chip. This enabled a workstation to be built that out-performed the fastest minicomputer of the day, and the result was to kill the minicomputer stone dead. As we all know, this had severe consequences for the computer industry and for the people working in it.From the above time the high density CMOS silicon chip was Cock of the Roost. Shrinkage went on until millions of transistors could be put on a single chip and the speed went up in proportion.Processor designers began to experiment with new architectural features designed to give extra speed. One very successful experiment concerned methods for predicting the way program branches would go. It was a surprise to me how successful this was. It led to a significant speeding up of program execution and other forms of prediction followedEqually surprising is what it has been found possible to put on a single chip computer by way of advanced features. For example, features that had been developed for the IBM Model 91.the giant computer at the top of the System 360 range.are now to be found on microcomputersMurphy’s Law remained in a state of suspension. No longer did it make sense to build experimental computers out of chips with a small scale of integration, such as that provided by the 7400 series. People who wanted to do hardware research at the circuit level had no option but to design chips and seek for ways to get them made. For a time, this was possible, if not easyUnfortunately, there has since been a dramatic increase in the cost of making chips, mainly because of the increased cost of making masks for lithography, a photographic process used in the manufacture of chips. It has, in consequence, again become very difficult to finance the making of research chips, and this is a currently cause for some concern.The Semiconductor Road MapThe extensive research and development work underlying the above advances has been made possible by a remarkable cooperative effort on the part of the international semiconductor industry.At one time US monopoly laws would probably have made it illegal for UScompanies to participate in such an effort. However about 1980 significant and far reaching changes took place in the laws. The concept of pre-competitive research was introduced. Companies can now collaborate at the pre-competitive stage and later go on to develop products of their own in the regular competitive manner.The agent by which the pre-competitive research in the semi-conductor industry is managed is known as the Semiconductor Industry Association (SIA). This has been active as a US organisation since 1992 and it became international in 1998. Membership is open to any organisation that can contribute to the research effort.Every two years SIA produces a new version of a document known as the International Technological Roadmap for Semiconductors (ITRS), with an update in the intermediate years. The first volume bearing the title ‘Roadmap’ was issued in 1994 but two reports, written in 1992 and distributed in 1993, are regarded as the true beginning of the series.Successive roadmaps aim at providing the best available industrial consensus on the way that the industry should move forward. They set out in great detail.over a 15 year horizon. the targets that must be achieved if the number of components on a chip is to be doubled every eighteen months.that is, if Moore’s law is to be maintained.-and if the cost per chip is to fall.In the case of some items, the way ahead is clear. In others, manufacturing problems are foreseen and solutions to them are known, although not yet fully worked out; these areas are coloured yellow in the tables. Areas for which problems are foreseen, but for which no manufacturable solutions are known, are coloured red. Red areas are referred to as Red Brick Walls.The targets set out in the Roadmaps have proved realistic as well as challenging, and the progress of the industry as a whole has followed the Roadmaps closely. This is a remarkable achievement and it may be said that the merits of cooperation and competition have been combined in an admirable manner.It is to be noted that the major strategic decisions affecting the progress of the industry have been taken at the pre-competitive level in relative openness, rather than behind closed doors. These include the progression to larger wafers.By 1995, I had begun to wonder exactly what would happen when the inevitable point was reached at which it became impossible to make transistors any smaller. My enquiries led me to visit ARPA headquarters in Washington DC, where I was given a copy of the recently produced Roadmap for 1994. This made it plain that seriousproblems would arise when a feature size of 100 nm was reached, an event projected to happen in 2007, with 70 nm following in 2010. The year for which the coming of 100 nm (or rather 90 nm) was projected was in later Roadmaps moved forward to 2004 and in the event the industry got there a little sooner.I presented the above information from the 1994 Roadmap, along with such other information that I could obtain, in a lecture to the IEE in London, entitled The CMOS end-point and related topics in Computing and delivered on 8 February 1996.The idea that I then had was that the end would be a direct consequence of the number of electrons available to represent a one being reduced from thousands to a few hundred. At this point statistical fluctuations would become troublesome, and thereafter the circuits would either fail to work, or if they did work would not be any faster. In fact the physical limitations that are now beginning to make themselves felt do not arise through shortage of electrons, but because the insulating layers on the chip have become so thin that leakage due to quantum mechanical tunnelling has become troublesome.There are many problems facing the chip manufacturer other than those that arise from fundamental physics, especially problems with lithography. In an update to the 2001 Roadmap published in 2002, it was stated that the continuation of progress at present rate will be at risk as we approach 2005 when the roadmap projects that progress will stall without research break-throughs in most technical areas “. This was the most specific statement about the Red Brick Wall, that had so far come from the SIA and it was a strong one. The 2003 Roadmap reinforces this statement by showing many areas marked red, indicating the existence of problems for which no manufacturable solutions are known.It is satisfactory to report that, so far, timely solutions have been found to all the problems encountered. The Roadmap is a remarkable document and, for all its frankness about the problems looming above, it radiates immense confidence. Prevailing opinion reflects that confidence and there is a general expectation that, by one means or another, shrinkage will continue, perhaps down to 45 nm or even less.However, costs will rise steeply and at an increasing rate. It is cost that will ultimately be seen as the reason for calling a halt. The exact point at which an industrial consensus is reached that the escalating costs can no longer be met will depend on the general economic climate as well as on the financial strength of the semiconductor industry itself.。

单片机英文文献资料及翻译

单片机英文文献资料及翻译

单片机英文文献资料及翻译单片机(英文:Microcontroller)Microcontroller is a small computer on a single integrated circuit that contains a processor core, memory, and programmable input/output peripherals. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications.A microcontroller's processor core is typically a small, low-power computer dedicated to controlling the operation of the device in which it is embedded. It is often designed to provide efficient and reliable control of simple and repetitive tasks, such as switching on and off lights, or monitoring temperature or pressure sensors.MEMORYMicrocontrollers typically have a limited amount of memory, divided into program memory and data memory. The program memory is where the software that controls the device is stored, and is often a type of Read-Only Memory (ROM). The data memory, on the other hand, is used to store data that is used by the program, and is often volatile, meaning that it loses its contents when power is removed.INPUT/OUTPUTMicrocontrollers typically have a number of programmable input/output (I/O) pins that can be used to interface with external sensors, switches, actuators, and other devices. These pins can be programmed to perform specific functions,such as reading a sensor value, controlling a motor, or generating a signal. Many microcontrollers also support communication protocols like serial, parallel, and USB, allowing them to interface with other devices, including other microcontrollers, computers, and smartphones.APPLICATIONSMicrocontrollers are widely used in a variety of applications, including:- Home automation systems- Automotive electronics- Medical devices- Industrial control systems- Consumer electronics- RoboticsCONCLUSIONIn conclusion, microcontrollers are powerful and versatile devices that have become an essential component in many embedded systems. With their small size, low power consumption, and high level of integration, microcontrollers offer an effective and cost-efficient solution for controlling a wide range of devices and applications.。

单片机英文文献及翻译)

单片机英文文献及翻译)

Validation and Testing of Design Hardening for Single Event Effects Using the 8051 MicrocontrollerAbstractWith the dearth of dedicated radiation hardened foundries, new and novel techniques are being developed for hardening designs using non-dedicated foundry services. In this paper, we will discuss the implications of validating these methods for the single event effects (SEE) in the space environment. Topics include the types of tests that are required and the design coverage (i.e., design libraries: do they need validating for each application?). Finally, an 8051 microcontroller core from NASA Institute of Advanced Microelectronics (IAμE) CMOS Ultra Low Power Radiation Tolerant (CULPRiT) design is evaluated for SEE mitigative techniques against two commercial 8051 devices.Index TermsSingle Event Effects, Hardened-By-Design, microcontroller, radiation effects.I. INTRODUCTIONNASA constantly strives to provide the best capture of science while operating in a space radiation environment using a minimum of resources [1,2]. With a relatively limited selection of radiation-hardened microelectronic devices that are often two or more generations of performance behind commercialstate-ofthe-art technologies, NASA’s performance of this task is quite challenging. One method of alleviating this is by the use of commercial foundry alternatives with no or minimally invasive design techniques for hardening. This is often called hardened-by-design (HBD).Building custom-type HBD devices using design libraries and automated design tools may provide NASA the solution it needs to meet stringent science performance specifications in a timely,cost-effective, and reliable manner.However, one question still exists: traditional radiation-hardened devices have lot and/or wafer radiation qualification tests performed; what types of tests are required for HBD validation?II. TESTING HBD DEVICES CONSIDERATIONSTest methodologies in the United States exist to qualify individual devices through standards and organizations such as ASTM, JEDEC, and MIL-STD- 883. Typically, TID (Co-60) and SEE (heavy ion and/or proton) are required for device validation. So what is unique to HBD devices?As opposed to a “regular” commercial-off-the-shelf (COTS) device or application specific integrated circuit (ASIC) where no hardening has been performed, one needs to determine how validated is the design library as opposed to determining the device hardness. That is, by using test chips, can we “qualify” a future device using the same library?Consider if Vendor A has designed a new HBD library portable to foundries B and C. A test chip is designed, tested, and deemed acceptable. Nine months later a NASA flight project enters the mix by designing a new device using Vendor A’s library. Does this device require complete radiation qualification testing? To answer this, other questions must be asked.How complete was the test chip? Was there sufficient statistical coverage of all library elements to validate each cell? If the new NASA design uses a partially or insufficiently characterized portion of the design library, full testing might be required. Of course, if part of the HBD was relying on inherent radiation hardness of a process, some of the tests (like SEL in the earlier example) may be waived.Other considerations include speed of operation and operating voltage. For example, if the test chip was tested statically for SEE at a power supply voltage of 3.3V, is the data applicable to a 100 MHz operating frequency at 2.5V? Dynamic considerations (i.e., nonstatic operation) include the propagated effects of Single Event Transients (SETs). These can be a greater concern at higher frequencies.The point of the considerations is that the design library must be known, the coverage used during testing is known, the test application must be thoroughly understood and the characteristics of the foundry must be known. If all these are applicable or have been validated by the test chip, then no testing may be necessary. A task within NASA’s Electronic Parts and Packaging (NEPP) Program was performed to explore these types of considerations.III. HBD TECHNOLOGY EVALUATION USING THE 8051 MICROCONTROLLERWith their increasing capabilities and lower power consumption, microcontrollers are increasingly being used in NASA and DOD system designs. There are existing NASA and DoD programs that are doing technology development to provide HBD. Microcontrollers are one such vehicle that is being investigated to quantify the radiation hardness improvement. Examples of these programs are the 8051 microcontroller being developed by Mission Research Corporation (MRC) and the IAμE (the focus of this study). As these HBD technologies become available, validation of the technology, in the natural space radiation environment, for NASA’s use in spaceflight systems is required.The 8051 microcontroller is an industry standard architecture that has broad acceptance, wide-ranging applications and development tools available. There are numerous commercial vendors that supply this controller or have it integrated into some type of system-on-a-chip structure. Both MRC and IAμE chose this device to demonstrate two distinctly different technologies for hardening. The MRC example of this is to use temporal latches that require specific timing to ensure that single event effects are minimized. The IAμE technology uses ultra low power, and layout and architecture HBD design rules to achieve their results. These are fundamentally different than the approach by Aeroflex-United Technologies Microelectronics Center (UTMC), the commercial vendor of a radiation–hardened 8051, that built their 8051 microcontroller using radiationhardened processes. This broad range of technology within one device structure makes the 8051an ideal vehicle for performing this technology evaluation.The objective of this work is the technology evaluation of the CULPRiT process [3] from IAμE. The process has been baselined against two other processes, the standard 8051 commercial device from Intel and a version using state-of-the-art processing from Dallas Semiconductor. By performing this side-by-side comparison, the cost benefit, performance, and reliability trade study can be done.In the performance of the technology evaluation, this task developed hardware and software for testing microcontrollers. A thorough process was done to optimize the test process to obtain as complete an evaluation as possible. This included taking advantage of the available hardware and writing software that exercised the microcontroller such that all substructures of the processor were evaluated. This process is also leading to a more complete understanding of how to test complex structures, such as microcontrollers, and how to more efficiently test these structures in the future.IV. TEST DEVICESThree devices were used in this test evaluation. The first is the NASA CULPRiT device, which is the primary device to be evaluated. The other two devices are two versions of a commercial 8051, manufactured by Intel and Dallas Semiconductor, respectively.The Intel devices are the ROMless, CMOS version of the classic 8052 MCS-51 microcontroller. They are rated for operation at +5V, over a temperature range of 0 to 70 °C and at a clock speeds of 3.5 MHz to 24 MHz. They are manufactured in Intel’s P629.0 CHMOS III-E process.The Dallas Semiconductor devices are similar in that they are ROMless 8052 microcontrollers, but they are enhanced in various ways. They are rated for operation from 4.25 to 5.5 Volts over 0 to 70 °C at clock speeds up to 25 MHz. They have a second full serial port built in, seven additional interrupts, a watchdog timer, a power fail reset, dual data pointers and variable speed peripheral access. In addition, the core is redesigned so that the machine cycle is shortened for most instructions, resulting in an effective processing ability that is roughly 2.5 times greater (faster) than the standard 8052 device. None of these features, other than those inherent in the device operation, were utilized in order to maximize the similarity between the Dallas and Intel test codes.The CULPRiT technology device is a version of the MSC-51 family compatible C8051 HDL core licensed from the Ultra Low Power (ULP) process foundry. The CULPRiT technology C8051 device is designed to operate at a supply voltage of 500 mV and includes an on-chip input/output signal level-shifting interface with conventional higher voltage parts. The CULPRiT C8051 device requires two separate supply voltages; the 500 mV and the desired interface voltage. The CULPRiT C8051 is ROMless and is intended to be instruction set compatible with the MSC-51 family.V. TEST HARDWAREThe 8051 Device Under Test (DUT) was tested as a component of a functional computer. Aside from DUT itself, the other componentsof the DUT computer were removed from the immediate area of the irradiation beam.A small card (one per DUT package type) with a unique hard-wired identifier byte contained the DUT, its crystal, and bypass capacitors (and voltage level shifters for the CULPRiT DUTs). This "DUT Board" was connected to the "Main Board" by a short 60-conductor ribbon cable. The Main Board had all other components required to complete the DUT Computer, including some which nominally are not necessary in some designs (such as external RAM, external ROM and address latch). The DUT Computer and the Test Control Computer were connected via a serial cable and communications were established between the two by the Controller (that runs custom designed serial interface software). This Controller software allowed for commanding of the DUT, downloading DUT Code to the DUT, and real-time error collection from the DUT during and post irradiation. A 1 Hz signal source provided an external watchdog timing signal to the DUT, whose watchdog output was monitored via an oscilloscope. The power supply was monitored to provide indication of latchup.VI. TEST SOFTWAREThe 8051 test software concept is straightforward. It was designed to be a modular series of small test programs each exercising a specific part of the DUT. Since each test was stand alone, they were loaded independently of each other for execution on the DUT. This ensured that only the desired portion of the 8051 DUT was exercised during the test and helped pinpoint location of errors that occur during testing. All test programs resided on the controller PC until loaded via the serial interface to the DUT computer. In this way, individual tests could have been modified at any time without the necessity of burning PROMs. Additional tests could have also been developed and added without impacting the overall test design. The only permanent code, which was resident on the DUT, was the boot code and serial code loader routines that established communications between the controller PC and the DUT.All test programs implemented:• An external Universal Asynchronous Receive and Transmit device (UART) for transmission of error information and communication to controller computer.• An external real-time clock for data error tag.•A watchdog routine designed to provide visual verification of 8051 health and restart test code if necessary.• A "foul-up" routine to reset program counter if it wanders out of code space.• An external telemetry data storage memory to provide backup of data in the event of an interruption in data transmission.The brief description of each of the software tests used is given below. It should be noted that for each test, the returned telemetry (including time tag) was sent to both the test controller and the telemetry memory, giving the highest reliability that all data is captured.Interrupt –This test used 4 of 6 available interrupt vectors (Serial, External, Timer0 Overflow, and Timer1 Overflow) to trigger routines that sequentially modified a value in the accumulator which was periodically compared to a known value. Unexpected values were transmitted with register information.Logic –This test performed a series of logic and math computations and provided three types of error identifications: 1) addition/subtraction, 2) logic and 3) multiplication/division. All miscompares of computations and expected results were transmitted with other relevant register information.Memory – This test loaded internal data memory at locations D:0x20 through D:0xff (or D:0x20 through D:0x080 for the CULPRiT DUT), indirectly, with an 0x55 pattern. Compares were performed continuously and miscompares were corrected while error information and register values were transmitted.Program Counter -The program counter was used to continuously fetch constants at various offsets in the code. Constants were compared with known values and miscompares were transmitted along with relevant register information. Registers – This test loaded each of four (0,1,2,3) banks of general-purpose registers with either 0xAA (for banks 0 and 2) or 0x55 (for banks 1 and 3). The pattern was alternated in order to test the Program Status Word (PSW) special function register, which controls general-purpose register bank selection. General-purpose register banks were then compared with their expected values. All miscompares were corrected and error information was transmitted.Special Function Registers (SFR) – This test used learned static values of 12 out 21 available SFRs and then constantly compared the learned value with the current one. Miscompares were reloaded with learned value and error information was transmitted.Stack – This test performed arithmetic by pushing and popping operands on the stack. Unexpected results were attributed to errors on the stack or to the stack pointer itself and were transmitted with relevant register information.VII. TEST METHODOLOGYThe DUT Computer booted by executing the instruction code located at address 0x0000. Initially, the device at this location was an EPROM previously loaded with "Boot/Serial Loader" code. This code initialized the DUT Computer and interface through a serial connection to the controlling computer, the "Test Controller". The DUT Computer downloaded Test Code and put it into Program Code RAM (located on the Main Board of the DUT Computer). It then activated a circuit which simultaneously performed two functions: held the DUT reset line active for some time (~10 ms); and, remapped the Test Code residing in the Program Code RAM to locate it to address 0x0000 (the EPROM will no longer be accessible in the DUT Computer's memory space). Upon awaking from the reset, the DUT computer again booted by executing the instruction code at address 0x0000, except this time that code was not be the Boot/Serial Loader code but the Test Code.The Test Control Computer always retained the ability to force the reset/remap function, regardless of the DUT Computer's functionality. Thus, if the test ran without a Single Event Functional Interrupt (SEFI) either the DUT Computer itselfor the Test Controller could have terminated the test and allowed the post-test functions to be executed. If a SEFI occurred, the Test Controller forced a reboot into Boot/Serial Loader code and then executed the post-test functions. During any test of the DUT, the DUT exercised a portion of its functionality (e.g., Register operations or Internal RAM check, or Timer operations) at the highest utilization possible, while making a minimal periodic report to the Test Control Computer to convey that the DUT Computer was still functional. If this reportceased, the Test Controller knew that a SEFI had occurred. This periodic data was called "telemetry". If the DUT encountered an error that was not interrupting the functionality (e.g., a data register miscompare) it sent a more lengthy report through the serial port describing that error, and continued with the test.VIII.DISCUSSIONA. Single Event LatchupThe main argument for why latchup is not an issue for the CULPRiT devices is that the operating voltage of 0.5 volts should be below the holding voltage required for latchup to occur. In addition to this, the cell library used also incorporates the heavy dual guard-barring scheme [4]. This scheme has been demonstrated multiple times to be very effective in rendering CMOS circuits completely immune to SEL up to test limits of 120 MeV-cm2/mg. This is true in circuits operating at 5, 3.3, and 2.5 Volts, as well as the 0.5 Volt CULPRiT circuits. In one case, a 5 Volt circuit fabricated on noncircuits wafers even exhibited such SEL immunity.B. Single Event UpsetThe primary structure of the storage unit used in the CULPRiT devices is the Single Event Resistant Topology (SERT) [5]. Given the SERT cell topology and a single upset node assumption, it is expected that the SERT cell will be completely immune to SEUs occurring internal to the memory cell itself. Obviously there are other things going on. The CULPRiT 8051 results reported here are quite similar to some resultsobtained with a CULPRiT CCSDS lossless compression chip (USES) [6]. The CULPRiT USES was synthesized using exactly the same tools and library as the CULPRiT 8051.With the CULPRiT USES, the SEU cross section data [7] was taken as a function of frequency at two LET values, 37.6 and 58.5 MeV-cm2/mg. In both cases the data fit well to a linear model where cross section is proportional to clock. In the LET 37.6 case, the zero frequency intercept occurred essentially at the zero cross section point, indicating that virtually all of these SEUs are captured SETs from the combinational logic. The LET 58.5 data indicated that the SET (frequency dependent) component is sitting on top of a "dc-bias" component –presumably a second upset mechanism is occurring internal to the SERT cells only at a second, higher LET threshold.The SET mitigation scheme used in the CULPRiT devices is based on the SERT cell's fault tolerant input property when redundant input data is provided to separate storage nodes. The idea is that the redundant input data is provided through a total duplication of combinational logic (referred to as “dual rail design”) such that a simple SET on one rail cannot produce an upset. Therefore, some other upset mechanism must be happening. It is possible that a single particle strike is placing an SET on both halves of the logic streams, allowing an SET to produce an upset. Care was taken to separate the dual sensitive nodes in the SERT cell layouts but the automated place-and-route of the combinatorial logic paths may have placed dual sensitive nodes close enough.At this point, the theory for the CULPRiT SEU response is that at about an LET of 20, the energy deposition is sufficiently wide enough (and in the right locations) to produce an SET in both halves of the combinatorial logic streams. Increasing LET allows for more regions to be sensitive to this effect, yielding a larger cross section. Further, the second SEU mechanism that starts at an LET of about 40-60 has to do with when the charge collection disturbance cloud gets large enough to effectively upset multiples of the redundant storage nodes within the SERT cell itself. In this 0.35 μm library, the node separation is several microns. However, since it takes less charge to upset a node operating at 0.5 Volts, with transistors having effective thresholds around 70 mV, this is likely the effect being observed. Also the fact that the per-bit memory upset cross section for the CULPRiT devices and the commercial technologies are approximately equal, as shown in Figure 9, indicates that the cell itself has become sensitive to upset.IX. SUMMARYA detailed comparison of the SEE sensitivity of a HBD technology (CULPRiT) utilizing the 8051 microcontroller as a test vehicle has been completed. This paper discusses the test methodology used and presents a comparison of the commercial versus CULPRiT technologies based on the data taken. The CULPRiT devices consistently show significantly higher threshold LETs and an immunity to latchup. In all but the memory test at the highest LETs, the cross section curves for all upset events is one to two orders of magnitude lower than the commercial devices. Additionally, theory is presented, based on the CULPRiT technology, that explain these results.This paper also demonstrates the test methodology for quantifying the level of hardness designed into a HBD technology. By using the HBD technology in a real-world device structure (i.e., not just a test chip), and comparing results to equivalent commercial devices, one can have confidence in the level of hardness that would be available from that HBD technology in any circuit application.ACKNOWLEDGEMENTSThe authors of this paper would like to acknowledge the sponsors of this work. These are the NASA Electronic Parts and Packaging Program (NEPP), NASA Flight Programs, and the Defense Threat Reduction Agency (DTRA).。

单片机英文参考文献

单片机英文参考文献

单片机英文参考文献篇一:5-单片机+外文文献+英文文献+外文翻译中英对照AT89C51的介绍(原文出处:http:///resource/)描述AT89C51是一个低电压,高性能CMOS8位单片机带有4K字节的可反复擦写的程序存储器(PENROM)。

和128字节的存取数据存储器(RAM),这种器件采用ATMEL公司的高密度、不容易丢失存储技术生产,并且能够与MCS-51系列的单片机兼容。

片内含有8位中央处理器和闪烁存储单元,有较强的功能的AT89C51单片机能够被应用到控制领域中。

功能特性AT89C51提供以下的功能标准:4K字节闪烁存储器,128字节随机存取数据存储器,32个I/O口,2个16位定时/计数器,1个5向量两级中断结构,1个串行通信口,片内震荡器和时钟电路。

另外,AT89C51还可以进行0HZ的静态逻辑操作,并支持两种软件的节电模式。

闲散方式停止中央处理器的工作,能够允许随机存取数据存储器、定时/计数器、串行通信口及中断系统继续工作。

掉电方式保存随机存取数据存储器中的内容,但震荡器停止工作并禁止其它所有部件的工作直到下一个复位。

引脚描述VCC:电源电压 GND:地 P0口:P0口是一组8位漏极开路双向I/O口,即地址/数据总线复用口。

作为输出口时,每一个管脚都能够驱动8个TTL电路。

当“1”被写入P0口时,每个管脚都能够作为高阻抗输入端。

P0口还能够在访问外部数据存储器或程序存储器时,转换地址和数据总线复用,并在这时激活内部的上拉电阻。

P0口在闪烁编程时,P0口接收指令,在程序校验时,输出指令,需要接电阻。

沈阳航空工业学院电子工程系毕业设计(外文翻译)P1口:P1口一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动4个TTL电路。

对端口写“1”,通过内部的电阻把端口拉到高电平,此时可作为输入口。

因为内部有电阻,某个引脚被外部信号拉低时输出一个电流。

闪烁编程时和程序校验时,P1口接收低8位地址。

单片机英文文献及翻译

单片机英文文献及翻译

附录A英文文献翻译原文Temperature Control Using a Microcontroller:An Interdisciplinary Undergraduate Engineering Design ProjectJames S. McDonaldDepartment of Engineering ScienceTrinity UniversitySan Antonio, TX 78212AbstractThis paper describes an interdisc iplinary design project which was done under the author’s supervision by a group of four senior students in the Department of Engineering Science at Trinity University. The objective of the project was to develop a temperature control system for an air-filled chamber. The system was to allow entry of a desired chamber temperature in a prescribed range and to exhibit overshoot and steady-state temperature error of less than 1 degree Kelvin in the actual chamber temperature step response. The details of the design developed by this group of students, based on a Motorola MC68HC05 family microcontroller, are described. The pedagogical value of the problem is also discussed through a description of some of the key steps in the design process. It is shown that the solution requires broad knowledge drawn from several engineering disciplines including electrical, mechanical, and control systems engineering.1 IntroductionThe design project which is the subject of this paper originated from a real-world application.A prototype of a microscope slide dryer had been developed around an OmegaTM modelCN-390 temperature controller, and the objective was to develop a custom temperature control system to replace the Omega system. The motivation was that a custom controller targeted specifically for the application should be able to achieve the same functionality at a much lower cost, as the Omega system is unnecessarily versatile and equipped to handle a wide variety of applications.The mechanical layout of the slide dryer prototype is shown in Figure 1. The main element of the dryer is a large, insulated, air-filled chamber in which microscope slides, each with a tissue sample encased in paraffin, can be set on caddies. In order that the paraffin maintain the proper consistency, the temperature in the slide chamber must be maintained at a desired (constant) temperature. A second chamber (the electronics enclosure) houses a resistive heater and the temperature controller, and a fan mounted on the end of the dryer blows air across theheater, carrying heat into the slide chamber. This design project was carried out during academic year 1996–97 by four students under the author’s supervision as a Senior Design project in the Department of Engineering Science at Trinity University. The purpose of this paper isto describe the problem and the students’ solution in some detail, and to discuss some of the pedagogical opportunities offered by an interdisciplinary design project of this type. The students’ own report was presented a t the 1997 National Conference on Undergraduate Research [1]. Section 2 gives a more detailed statement of the problem, including performance specifications, and Section 3 describes the students’ design. Section 4 makes up the bulk of the paper, and discusses in some detail several aspects of the design process which offer unique pedagogical opportunities. Finally, Section 5 offers some conclusions.2 Problem StatementThe basic idea of the project is to replace the relevant parts of the functionality of an Omega CN-390 temperature controller using a custom-designed system. The application dictates that temperature settings are usually kept constant for long periods of time, but it’s nonetheless important that step changes be tracked in a “reasonable” manner. Thus the main requirements boil down to·allowing a chamber temperature set-point to be entered,·displaying both set-point and actual temperatures, and·tracking step changes in set-point temperature with acceptable rise time, steady-state error, and overshoot.Although not explicitly a part of the specifications in Table 1, it was clear that the customer desired digital displays of set-point and actual temperatures, and that set-point temperature entry should be digital as well (as opposed to, say, through a potentiometer setting).3 System DesignThe requirements for digital temperature displays and setpoint entry alone are enough to dictate that a microcontrollerbased design is likely the most appropriate. Figure 2 shows a block diagram of the stude nts’ design.The microcontroller, a MotorolaMC68HC705B16 (6805 for short), is the heart of the system. It accepts inputs from a simple four-key keypad which allow specification of the set-point temperature, and it displays both set-point and measured chamber temperatures using two-digit seven-segment LED displays controlled by a display driver. All these inputs and outputs are accommodated by parallel ports on the 6805. Chamber temperature is sensed using apre-calibrated thermistor and input via one of the 6805’s analog-to-digital inputs. Finally, a pulse-width modulation (PWM) output on the 6805 is used to drive a relay which switches line power to the resistive heater off and on.Figure 3 shows a more detailed schematic of the electronics and their interfacing to the 6805. The keypad, a Storm 3K041103, has four keys which are interfaced to pins PA0{ PA3 of Port A, configured as inputs. One key functions as a mode switch. Two modes are supported: set mode and run mode. In set mode two of the other keys are used to specify the set-point temperature: one increments it and one decrements. The fourth key is unused at present. The LED displays are driven by a Harris Semiconductor ICM7212 display driver interfaced to pins PB0{PB6 of Port B, configured as outputs. The temperature-sensing thermistor drives, through a voltage divider, pin AN0 (one of eight analog inputs). Finally, pin PLMA (one of two PWM outputs) drives the heater relay.Software on the 6805 implements the temperature control algorithm, maintains the temperature displays, and alters the set-point in response to keypad inputs. Because it is not complete at this writing, software will not be discussed in detail in this paper. The control algorithm in particular has not been determined, but it is likely to be a simple proportional controller and certainly not more complex than a PID. Some control design issues will be discussed in Section 4, however.4 The Design ProcessAlthough essentially the project is just to build a thermostat, it presents many nice pedagogical opportunities. The knowledge and experience base of a senior engineering undergraduate are just enough to bring him or her to the brink of a solution to various aspects of the problem. Yet, in each case, realworld considerations complicate the situation significantly.Fortunately these complications are not insurmountable, and the result is a very beneficial design experience. The remainder of this section looks at a few aspects of the problem which present the type of learning opportunity just described. Section 4.1 discusses some of the features of a simplified mathematical model of the thermal properties of the system and how it can beeasily validated experimentally. Section 4.2 describes how realistic control algorithm designs can be arrived at using introductory concepts in control design. Section 4.3 points out some important deficiencies of such a simplified modeling/control design process and how they can be overcome through simulation. Finally, Section 4.4 gives an overview of some of the microcontroller-related design issues which arise and learning opportunities offered.4.1 MathematicalModelLumped-element thermal systems are described in almost any introductory linear control systems text, and just this sort of model is applicable to the slide dryer problem. Figure 4 shows a second-order lumped-element thermal model of the slide dryer. The state variables are the temperatures Ta of the air in the box and Tb of the box itself. The inputs to the system are the power output q(t) of the heater and the ambient temperature T¥. ma and mb are the masses of the air and the box, respectively, and Ca and Cb their specific heats. μ1 and μ2 are heat transfer coefficients from the air to the box and from the box to the external world, respectively.It’s not hard to show that the (linearized) state equationscorresponding to Figure 4 areTaking Laplace transforms of (1) and (2) and solving for Ta(s), which is the output of interest, gives the following open-loop model of the thermal system:where K is a constant and D(s) is a second-order polynomial.K, tz, and the coefficients ofD(s) are functions of the variousparameters appearing in (1) and (2).Of course the various parameters in (1) and (2) are completely unknown, but it’s not hard to show that, regardless of their values, D(s) has two real zeros. Therefore the main transfer function of interest (which isthe one from Q(s), since we’ll assume constant ambient temperature) can be writtenMoreover, it’s not too hard to show that 1=tp1 <1=tz <1=tp2, i.e., that the zero lies between the two poles. Both of these are excellent exercises for the student, and the result is the openloop pole-zero diagram of Figure 5.Obtaining a complete thermal model, then, is reduced to identifying the constant K and the three unknown time constants in (3). Four unknown parameters is quite a few, but simple experiments show that 1=tp1 _ 1=tz;1=tp2 so that tz;tp2 _ 0 are good approximations. Thus the open-loop system is essentially first-order and can therefore be written(where the subscript p1 has been dropped).Simple open-loop step response experiments show that,for a wide range of initial temperatures and heat inputs, K _0:14 _=W and t _ 295 s.14.2 Control System DesignUsing the first-order model of (4) for the open-loop transfer function Gaq(s) and assuming for the moment that linear control of the heater power output q(t) is possible, the block diagram of Figure 6 represents the closed-loop system. Td(s) is the desired, or set-point, temperature,C(s) is the compensator transfer function, and Q(s) is the heater output in watts.Given this simple situation, introductory linear control design tools such as the root locus method can be used to arrive at a C(s) which meets the step response requirements on rise time, steady-state error, and overshoot specified in Table 1. The upshot, of course, is that a proportional controller with sufficient gain can meet all specifications. Overshoot is impossible, and increasing gains decreases both steady-state error and rise time.Unfortunately, sufficient gain to meet the specifications may require larger heat outputs than the heater is capable of producing. This was indeed the case for this system, and the result is that the rise time specification cannot be met. It is quite revealing to the student how useful such an oversimplified model, carefully arrived at, can be in determining overall performance limitations.4.3 Simulation ModelGross performance and its limitations can be determined using the simplified model of Figure 6, but there are a number of other aspects of the closed-loop system whose effects on performance are not so simply modeled. Chief among these are·quantization error in analog-to-digital conversion of the measured temperature and· the use of PWM to control the heater.Both of these are nonlinear and time-varying effects, and the only practical way to study them is through simulation (or experiment, of course).Figure 7 shows a SimulinkTM block diagram of the closed-loop system which incorporates these effects. A/D converter quantization and saturation are modeled using standard Simulink quantizer and saturation blocks. Modeling PWM is more complicated and requires a customS-function to represent it.This simulation model has proven particularly useful in gauging the effects of varying thebasic PWM parameters and hence selecting them appropriately. (I.e., the longer the period, the larger the temperature error PWM introduces. On the other hand, a long period is desirable to avoid excessiv e relay “chatter,” among other things.) PWM is often difficult for students to grasp, and the simulation model allows an exploration of its operation and effects which is quite revealing.4.4 The MicrocontrollerSimple closed-loop control, keypad reading, and display control are some of the classic applications of microcontrollers, and this project incorporates all three. It is therefore an excellent all-around exercise in microcontroller applications. In addition, because the project isto produce an actua l packaged prototype, it won’t do to use a simple evaluation board with theI/O pins jumpered to the target system. Instead, it’s necessary to develop a complete embedded application. This entails the choice of an appropriate part from the broad range offered in a typical microcontroller family and learning to use a fairly sophisticated development environment. Finally, a custom printed-circuit board for the microcontroller and peripherals must be designed and fabricated.Microcontroller Selection. In view of existing local expertise, the Motorola line of microcontrollers was chosen for this project. Still, this does not narrow the choice down much. A fairly disciplined study of system requirements is necessary to specify which microcontroller, out of scores of variants, is required for the job. This is difficult for students, as they generally lack the experience and intuition needed as well as the perseverance to wade through manufacturers’ selection guides.Part of the problem is in choosing methods for interfacing the various peripherals (e.g., what kind of display driver should be used?). A study of relevant Motorola application notes [2, 3, 4] proved very helpful in understandingwhat basic approaches are available, and what microcontroller/peripheral combinations should be considered.The MC68HC705B16 was finally chosen on the basis of its availableA/D inputs and PWMoutputs as well as 24 digital I/O lines. In retrospect this is probably overkill, as only oneA/D channel, one PWM channel, and 11 I/O pins are actually required (see Figure 3). The decision was made to err on the safe side because a complete development system specific to the chosen part was necessary, and the project budget did not permit a second such system to be purchased should the firstprove inadequate.Microcontroller Application Development. Breadboarding of the peripheral hardware, development of microcontroller software, and final debugging and testing of a customprinted-circuit board for the microcontroller and peripherals all require a development environment of some kind. The choice of a development environment, like that of themicrocontroller itself, can be bewildering and requires some faculty expertise. Motorola makes three grades of development environment ranging from simple evaluation boards (at around $100) to full-blown real-time in-circuit emulators (at more like $7500). The middle option was chosen for this project: the MMEVS, which consists of _ a platform board (which supports all 6805-family parts), _ an emulator module (specific to B-series parts), and _ a cable and target head adapter (package-specific). Overall, the system costs about $900 and provides, with some limitations, in-circuit emulation capability. It also comes with the simple but sufficient software development environment RAPID [5].Students find learning to use this type of system challenging, but the experience they gain in real-world microcontroller application development greatly exceeds the typical first-course experience using simple evaluation boards.Printed-Circuit Board. The layout of a simple (though definitely not trivial) printed-circuit board is another practical learning opportunity presented by this project. The final board layout, with package outlines, is shown (at 50% of actual size) in Figure 8. The relative simplicity of the circuit makes manual placement and routing practical—in fact, it likely gives better results than automatic in an application like this—and the student is therefore exposed to fundamental issues of printed-circuit layout and basic design rules. The layout software used was the very nice package pcb,2 and the board was fabricated in-house with the aid of our staff electronics technician.5 ConclusionThe aim of this paper has been to describe an interdisciplinary, undergraduate engineering design project: a microcontroller- based temperature control system with digital set-point entry and set-point/actual temperature display. A particular design of such a system has been described, and a number of design issues which arise—from a variety of engineering disciplines—have been discussed. Resolution of these issues generally requires knowledge beyond that acquired in introductory courses, but realistically accessible to advance undergraduate students, especiallywith the advice and supervision of faculty.Desirable features of the problem, from a pedagogical viewpoint, include the use of a microcontroller with simple peripherals, the opportunity to usefully apply introductorylevel modeling of physical systems and design of closed-loop controls, and the need for relatively simple experimentation (for model validation) and simulation (for detailed performance prediction). Also desirable are some of the technologyrelated aspects of the problem including practical use of resistive heaters and temperature sensors (requiring knowledge of PWM and calibration techniques, respectively), microcontroller selection and use of development systems, and printedcircuit design.AcknowledgementsThe author would like to acknowledge the hard work, dedication, and ability shown by the students involved in this project: Mark Langsdorf, Matt Rall, PamRinehart, and David Schuchmann. It is their project, and credit for its success belongs to them.References[1] M. Langsdorf, M. Rall, D. Schuchmann, and P. Rinehart,“Temperature control of a microscope slide dryer,” in1997 National Conference on Undergraduate Research,(Austin, TX), April 1997. Poster presentation.[2] Motorola, Inc., Phoenix, AZ, Temperature Measurementand Display Using the MC68HC05B4 and the MC14489,1990. Motorola SemiconductorApplicationNote AN431.[3] Motorola, Inc., Phoenix, AZ, HC05 MCU LED DriveTechniques Using the MC68HC705J1A, 1995. MotorolaSemiconductor Application Note AN1238.[4] Motorola, Inc., Phoenix, AZ, HC05MCU Keypad DecodingTechniques Using the MC68HC705J1A, 1995. MotorolaSemiconductor Application Note AN1239.[5] Motorola, Inc., Phoenix, AZ, RAPID Integrated DevelopmentEnvironment User’s Manual, 1993. (RAPID wasdeveloped by P & E Microcomputer Systems, Inc.).附录B英文文献翻译中文单片机温度控制:一个跨学科的本科生工程设计项目JamesS.McDonald工程科学系三一大学德克萨斯州圣安东尼奥市78212摘要本文所描述的是作者领导由四个三一大学高年级学生组成的团队进行的一个跨学科工程项目的设计。

单片机-毕业论文外文文献翻译

单片机-毕业论文外文文献翻译

单片机单片机也被称为微控制器(Microcontroller Unit),常用英文字母的缩写MCU 表示单片机,它最早是被用在工业控制领域。

单片机由芯片内仅有CPU的专用处理器发展而来。

最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。

INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。

早期的单片机都是8位或4位的。

其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。

此后在8031上发展出了MCS51系列单片机系统。

基于这一系统的单片机系统直到现在还在广泛使用。

随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。

90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。

随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。

而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。

目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端的型号也只有10美元。

当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。

而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。

单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。

事实上单片机是世界上数量最多的计算机。

现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。

手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。

而个人电脑中也会有为数不少的单片机在工作。

汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多。

单片机外文文献翻译(2024)

单片机外文文献翻译(2024)

引言:单片机(Microcontroller)是一种广泛应用于嵌入式系统中的小型计算机芯片。

它集成了处理器核心、存储器、外设接口和时钟电路等核心部件,可以独立运行。

随着全球化的发展,外文文献对于学习和研究单片机领域来说至关重要。

本文翻译的外文文献《MicrocontrollerbasedTrafficLightControlSystem》详细介绍了基于单片机的交通信号灯控制系统。

概述:交通信号灯控制是现代都市交通系统中至关重要的一环。

传统的交通信号灯控制系统通常由定时器控制,不能根据实际交通情况动态调整信号灯的时间。

而基于单片机的交通信号灯控制系统可以实现根据实时交通流量来动态调整信号灯的时间,优化交通效率。

本文将详细介绍该系统的设计和实现。

正文:一、单片机选型1.1.CPU性能:本文选择了一款高性能的32位单片机作为控制核心,它具有较高的处理能力和较大的存储器容量,可以同时处理多条交通路口的信号控制。

1.2.外设接口:该单片机具有丰富的外设接口,可以与交通信号灯、传感器和通信设备等进行连接,实现信号控制和数据交互。

1.3.低功耗设计:为了节约能源和延长系统寿命,在单片机选型时考虑了低功耗设计,降低系统运行的能耗。

二、硬件设计2.1.交通信号灯:在设计交通信号灯时,考虑了日夜可见性和能耗。

采用了高亮度LED作为信号灯光源,同时添加了光敏传感器控制信号灯的亮度,以满足不同时间段的亮度需求。

2.2.传感器:通过安装车辆感应器和行人感应器等传感器,可以在实时监测交通流量的基础上,智能调整信号灯时间,提高路口的交通效率。

2.3.通信设备:在交通信号灯控制系统中引入了通信设备,可以实现各交通路口之间的信息交互和协调控制,提高整体交通系统的效率。

三、软件设计3.1.程序架构:采用了多任务的实时操作系统,将交通信号灯控制、传感器数据处理和通信设备控制等功能分别封装成不同的任务,实现了系统的高效运行和任务调度。

单片机设计外文文献翻译(含中英文)

单片机设计外文文献翻译(含中英文)

附录A 外文翻译——AT89S52/AT89S51技术手册AT89S52译文主要性能与MCS-51单片机产品兼容8K字节在系统可编程Flash存储器1000次擦写周期全静态操作:0Hz~33Hz三级加密程序存储器32个可编程I/O口线三个16位定时器/计数器八个中断源全双工UART串行通道低功耗空闲和掉电模式掉电后中断可唤醒看门狗定时器双数据指针掉电标识符功能特性描述AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K在系统可编程Flash 存储器。

使用Atmel公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。

片上Flash 允许程序存储器在系统可编程,亦适于常规编程器。

在单芯片上,拥有灵巧的8位CPU和在系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。

AT89S52具有以下标准功能:8k字节Flash,256字节RAM,32位I/O口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。

另外,AT89S52可降至0Hz静态逻辑操作,支持2种软件可选择节电模式。

空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。

掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。

引脚结构方框图VCC : 电源GND :地P0口:P0口是一个8位漏极开路的双向I/O口。

作为输出口,每位能驱动8个TTL逻辑电平。

对P0端口写“1”时,引脚用作高阻抗输入。

当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。

在这种模式下,P0具有内部上拉电阻。

在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。

程序校验时,需要外部上拉电阻。

P1口:P1 口是一个具有内部上拉电阻的8位双向I/O 口,p1 输出缓冲器能驱动4个TTL 逻辑电平。

单片机外文翻译外文文献英文文献单片机的发展与应用

单片机外文翻译外文文献英文文献单片机的发展与应用

单片机外文翻译外文文献英文文献单片机的发展与应用THE Application and Development ofMicrocontroller UnitMonolithic integrated circuits are a computer chip. It uses tec hnology will have a data processing ability of the microprocessor (cpu), storage in rom (program memory and data storage ram ), the input, output interfaces circuit (I/O) integration interface i tu rned around with a chip in that small, constitutes a very good and the computer hardware system, where the application under the c ontrol of a monolithic integrated circuits can be accurate, fast and efficient procedures provided in advance to complete the task. So, a monolithic integrated circuits will have a computer chip of all t he functions.Thus, the microprocessor (monolithic integrated circuits has generally cpu )chips are not functional, it can independently com plete modern industrial control required for intelligent control func tions, it is monolithic integrated circuits of the biggest characteristi c.Monolithic integrated circuits, however, and different from mac hines ( a microprocessor chips, the memory chip and input and o utput interfaces chip in with a piece of printed circuit board of a microcomputer ), Monolithic integrated circuits chip in developing ago, it is only a function vlsi will have a strong, If of application development, it is a small microcomputer control system, but it m achine or a personal computer (pc is essential. the difference betw een).Monolithic integrated circuits of the application of chips at the level of application, the user (monolithic integrated circuits lear ners with users understand the structure of the chip )monolithic integrated circuits and instruction system, and the integrated use o f technology and system design to the theory and techniques, in th is particular chip design application, thereby, the chip with a parti cular function.Different monolithic integrated circuits have different hardware and software, or the technical features are different, Character de pends on a hardware chip monolithic integrated circuits the intern al structure of the user to use some monolithic integrated circuits, we must know this type of product whether to meet the needs of the facilities and application of the indicators required. The tech nical features include functional characteristics, control and electric al attributes, These information to manufacturers in the technical manual. Software features refers to an instruction system and devel opment support of the environment, the quality of instruction or monolithic integrated circuits for reference, data processing and log ical processing, output characteristics and to the power input requi rements, etc. Development support of the environment, including th e instructions of compatible and portable. support software (contai ns can support the development and application software and hard ware resources. resources). To take advantage of the model of deve lopment of a monolithic integrated circuits application systems, lea rn its structural features and technological characteristic is require d.Monolithic integrated circuits to control system will ever use o f sophisticated electronic circuit or circuit, a control system to achi eve the software controls and enable intelligent, It is monolithic in tegrated circuits to control areas, such as communications products and household appliances, the instruments and processes to contr ol and control devices, theapplication of more monolithic integrate d circuits sector.Monolithic integrated circuits, of course, the application is not limited to the application or the category of the economic perfor mance is more important it is a fundamental change in the traditi onal methods designed to control and mind control techniques. it i s a revolution is an important milestone.Can say now is the policy, a hundred schools of thought conte nd "monolithic integrated circuits, World chip all the company unv eiled his monolithic integrated circuits, from 8, 16 to 32 bits, and,with mainstream c51 series of, and there is not compatible with e ach other, but they, as complementary to monolithic integrated circ uits, the application of the world provide a broad.Throughout monolithic integrated circuits of the development p rocess, the trend of a monolithic integrated circuits, has :1.the low TDP COMSMcs -51 8031 a series of TDP for 630mw, and now a monolit hic integrated circuits, and generally in 100mw. As to ask for lowe r TDP monolithic integrated circuits, and now each monolithic inte grated circuits are used in the basic cmos (complementary metal o xides semiconductor technology). Like 80c51 adopt a hmos (the hig h density metal oxides semiconductor technology) and chmos (com plementary high density metal oxides semiconductor technology). C mos although TDP low, but owing to their physical characteristics to their work at a speed isn't high enough, but it has a high-spee d chmos TDP and low, these features are more appropriate to ask for lower TDP in a battery operated applications. so this process will be for a period of development. the main way to monolithic i ntegrated circuits。

单片机的外文文献及中文翻译

单片机的外文文献及中文翻译

SCM is an integrated circuit chip,is the use of large scale integrated circuit technology to a data processing capability of CPU CPU random access memory RAM,read—only memory ROM,a variety of I / O port and interrupt system, timers / timer functions (which may also include display driver circuitry,pulse width modulation circuit,analog multiplexer, A / D converter circuit) integrated into a silicon constitute a small and complete computer systems。

SCM is also known as micro—controller (Microcontroller),because it is the first to be used in industrial control. Only a single chip by the CPU chip developed from a dedicated processor。

The first design is by a large number of peripherals and CPU on a chip in the computer system,smaller, more easily integrated into a complex and demanding on the volume control device which. The Z80 INTEL is the first designed in accordance with this idea processor, then on the development of microcontroller and dedicated processors will be parting ways。

单片机STM32外文文献翻译、中英文翻译

单片机STM32外文文献翻译、中英文翻译

外文译英文原文:STM32 MicrocontrollerIntroductionRequirements based STM32 family is designed for high-performance, low-cost, low-power embedded applications designed specifically for ARM Cortex-M3 core. According to the performance into two different series: STM32F103 "Enhanced〞 series and STM32F101 "Basic" series. Enhanced Series clock frequency of 72MHz, the highest performance of similar products product; basic clock frequency of 36MHz, 16-bit product prices get more than 16 products significantly enhance the performance and is 16 product users the best choice. Both series have built-in 32K to 128K of flash memory, the difference is the maximum capacity of the SRAM and peripheral combinations. At 72MHz, executing from Flash, STM32 power consumption 36mA, are 32 products on the market s lowest power, the equivalent of 0.5niA/MHz.STM32F103 Performance Characteristics1)Kernel. ARM32 bit CPU, the maximum operating frequency of 72MHz,1.25DMIPS/MHz. Single-cycle multiply and hardware divide.2)Memory. Integrated on-chip 32-512KB of Flash memory. 6-64KB SRAM memory.3)Clock, reset, and power management. 2.0-3.6V power supply and I/O interface, the drive voltage. POR, PDR and programmable voltage detector. 4-16MHz crystal. Embedded factory tuned 8MHz RC oscillator circuit. 40 kHz internal RC oscillator circuit. CPU clock for the PLL. With calibration for the RTC 32kHz crystal.4)Low power consumption. Three kinds of low-power mode. Sleep, stop, standby mode. For RTC and backup registers supply VBAT.5)Debug mode. Serial debugging and JTAG interface.6)Direct data storage. 12-channel direct data storage controller. Supported peripherals: timers, ADC, DAC, SPI, IIC and USART.7)Up to a maximum of 112 fast I / O ports. Depending on the modeL there are 26,37,51,80, and 112 I/O ports, all ports can be mapped to 16 external interrupt vectors. In addition to the analog input, all of them can accept the input of 5V or less.8)Up to a maximum of 11 timers. Four 16-bit timers, each with 4 IC / OC / PWM orpulse counter. 2 16 6-channel advanced control timer: up to 6 channels can be used for PWM output. 2 watchdog timer. Systick tinier: 24 down counter. Two 16-bit basic timer for driving DAC.9)Up to a maximum of 13 communication interfaces. 2 IIC interface. 5 USART interfaces. 3 SPI interface, two and IIS reuse. CAN interface. USB 2.0 full-speed interface. SDIO interface.System Function1)Integration of embedded Flash and SRAM memory ARM Cortex-M3 core. And 8/16 equipment compared, ARM Cortex-M3 32-bit RISC processor provides a higher code efficiency. STM32F103xx microcontrollers with an embedded ARM core, so it can be compatible with all ARM tools and software.2)Embedded Flash memory and RAM memory. Built up to 512KB embedded Flash, can be used to store programs and data. Up to 64KB of embedded SRAM clock speed of the CPU can read and write.3)Variable static memory. Variable static memory with 4 chip selects, supports four modes: Flash, RAM, PSRAM, NOR and NAND. After three FSMC interrupt lines connected to the OR after the nested vector interrupt controller. No read / write FIFO, except PCCARD, the code is executed from external memory is not supported Boot, the target frequency is equal to SYSCLK / 2, so the time when the system clock is 72MHz, 36MHz conducted in accordance with external access.4)Nested Vectored Internipt Controller. Can handle 43 maskable interrupt channels, providing 16 interrupt priority levels. Tightly coupled nested vectored intenupt controller to achieve lower latency interrupt handling directly passed to the kernel interrupt vector table entry address, tightly coupled nested vectored interrupt controller kernel interface, allowing early treatment interruption, the latter to be more high-priority interrupt processing, support tail chain, auto-save processor state terrupts automatically restored on interrupt exit, no instructions intervention.5)External internipt / event controller. External interrupt / event controller consists for 19 to generate interrupt / event requests edge detector lines. Each line can be individually configured to select the trigger event, it can be individually masked. There is a pending interrupt request registers to maintain state. When an external line appear longer than the internal APB2 clock-cycle pulse, the external interrupt / event controller is able to detect. Up to 112 GPIO connected to the 16 external internipt lines.6)Clocks and startup. At boot time or to the system clock selection, but the reset whenthe internal 8MHz crystal oscillator is selected as the CPU clock. Can choose a 4-16MHz external clock, and will be monitored to determine the success. During this time, the interrupt controller is disabled and the software management is subsequently disabled. Also, if there is a need, PLL clock internipt management fully available. Comparator can be used more pre-configuration of the AHB frequency, including high-speed and low-speed APB APB, APB highest frequency of high-speed 72MHz, low-speed APB highest frequency of 36MHz.Architectural AdvantagesIn addition to the new features Enhanced peripheral interfaces, STM32 series also interconnect with other STM32 microcontrollers offer the same standard interface, such sharing of peripherals to enhance the entire product family, application flexibility, so that developers can a plurality of design reuse the same software. New STM32 standard peripherals include 10 timers, two 12-bit ADC, two 12-bit DAC, two I2C interfaces, five USART interfaces and three SPI ports. There are 12 new products peripherals direct data storage channel, there is a CRC calculation unit, like other STM32 microcontrollers, the supports 96 unique identifier.New series also has followed the STM32 microcontroller family of products low voltage and energy saving are two advantages. 2.0V to 3.6V operating voltage range compatible with the mainstream of battery technologies such as lithium batteries and nickel-metal hydride batteries, the package also features a battery operation mode dedicated pin Vbat. 72MHz frequency to execute code from flash consumes only 27mA current. There are four low-power mode, the current consumption can be reduced to two microamps. Quick Start from low power mode to save energy too; starting circuit using STM32 internally generated 8MHz signal, the microcontroller from stop mode when you wake up with less than 6 microseconds.中文译:单片机STM321STM32的介绍STM32系列基于专为要求高性能、低本钱、低功耗的嵌入式应用专门设计的ARMCortex-M3内核.按性能分成两个不同的系列:STM32F103 “增强型〞系列和STM32F101 “根本型〞系列.增强型系列时钟频率到达72MHz,是同类产品中性能最高的产品;根本型时钟频率为36MHz,以16位产品的价格得到比16位产品大幅提升的性能,是16位产品用户的最正确选择.两个系列都内置32K 到128K 的闪存,不同的是SRAM的最大容量和外设接口的组合.时钟频率72MHz时,从闪存执行代码,STM32功耗36mA,是32位市场上功耗最低的产品,相当于0.5mA/MHz.2STM32F103性能特点1〕内核.ARM32位CPU,最高工作频率72MHz, 1.25DMIPS/MHzo单周期乘法和硬件除法.2〕存储器.片上集成32-512KB的Flash存储器.6-64KB的SRAM存储器.3〕时钟、复位和电源治理.2.0-3.6V的电源供电和I/O接口的驱动电压. POR、PDR和可编程的电压探测器.4-16MHZ的晶振.内嵌出厂前调校的8MHz RC振荡电路.内部40 kHz的RC振荡电路.用于CPU时钟的PLL.带校准用于RTC的32kHz的晶振.4〕低功耗.3种低功耗模式:休眠,停止,待机模式.为RTC和备份存放器供电的VBAT.5〕调试模式.串行调试和JTAG接口.6〕直接数据存储.12通道直接数据存储限制器.支持的外设:定时器,ADC, DAC, SPI, IIC 和USART.7〕最多高达112个的快速I/O端口.根据型号的不同,有26, 37, 51, 80, 和112的I/O端口,所有的端口都可以映射到16个外部中断向量.除了模拟输入,所有的都可以接受5V以内的输入.8〕最多多达11个定时器.4个16位定时器,每个定时器有4个IC/OC/PWM 或者脉冲计数器.2个16位的6通道高级限制定时器:最多6个通道可用于PWM 输出.2个看门狗定时器.Systick定时器:24位倒计数器.2个16位根本定时器用于驱动DACo9〕最多多达13个通信接口.2个HC接口.5个USART接口.3个SPI接口,两个和IIS复用.CAN接口.USB 2.0全速接口.SDIO接口.3系统作用1〕集成嵌入式Hash和SRAM存储器的ARM Cortex-M3内核.和8/16位设备相比,ARM Cortex-M3 32位RISC处理器提供了更高的代码效率. STM32F103xx微限制器带有一个嵌入式的ARM核,所以可以兼容所有的ARM 工具和软件.2〕嵌入式Flash存储器和RAM存储器.内置多达512KB的嵌入式Flash, 可用于存储程序和数据.多达64KB的嵌入式SRAM可以以CPU的时钟速度进行读写.3〕可变静态存储器.可变静态存储器带有4个片选,支持四种模式:Flash, RAM, PSRAM, NOR和NANDo 3个FSMC中断线经过OR后连接到嵌套矢量中断限制器.没有读/写FIFO,除PCCARD之外,代码都是从外部存储器执行, 不支持Boot,目标频率等于SYSCLK/2,所以当系统时钟是72MHz时' 外部访问根据36MHz进行.4〕嵌套矢量中断限制器.可以处理43个可屏蔽中断通道,提供16个中断优先级.紧密耦合的嵌套矢量中断限制器实现了更低的中断处理延迟,直接向内核传递中断入口向量表地址,紧密耦合的嵌套矢量中断限制器内核接口,允许中断提前处理,对后到的更高优先级的中断进行处理,支持尾链,自动保存处理器状态,中断入口在中断退出时自动恢复,不需要指令干预.5〕外部中断/事件限制器.外部中断/事件限制器由用于19条产生中断/事件请求的边沿探测器线组成.每条线可以被单独配置用于选择触发事件,也可以被单独屏蔽.有一个挂起存放器来维护中断请求的状态.当外部线上出现长度超过内部APB2时钟周期的脉冲时,外部中断/事件限制器能够探测到.多达112个GPIO连接到16个外部中断线.6〕时钟和启动.在启动的时候还是要进行系统时钟选择,但复位的时候内部8MHz的晶振被选用作CPU时钟.可以选择一个外部的4-16MHZ的时钟,并且会被监视来判定是否成功.在这期间,限制器被禁止并且软件中断治理也随后被禁止.同时,如果有需要,PLL时钟的中断治理完全可用.多个预比拟器可以用于配置AHB频率,包括高速APB和低速APB,高速APB最高的频率为72MHz, 低速APB最高的频率为36MHzo4架构优势除新增的功能强化型外设接口外,STM32互连系列还提供与其它STM32微限制器相同的标准接口,这种外设共用性提升了整个产品家族的应用灵活性,使开发人员可以在多个设计中重复使用同一个软件.新STM32的标准外设包括10 个定时器、两个12位模数转换器、两个12位数模转换器、两个12c接口、五个USART接口和三个SPI端口.新产品外设共有12条直接数据存储通道,还有一个CRC计算单元,像其它STM32微限制器一样,支持96位唯一标识码.新系列微限制器还沿续了STM32产品家族的低电压和节能两大优点.2.0V 到3.6V的工作电压范围兼容主流的电池技术,如锂电池和银氢电池,封装还设有一个电池工作模式专用引脚Vbato以72MHz频率从闪存执行代码,仅消耗27mA 电流.低功耗模式共有四种,可将电流消耗降至两微安.从低功耗模式快速启动也同样节省电能;启动电路使用STM32内部生成的8MHz信号,将微控制器从停止模式唤醒用时小于6微秒.。

单片机和keil 毕业论文外文翻译

单片机和keil  毕业论文外文翻译

单片机和keil 毕业论文外文翻译附录A 外文文献The SCM and µVision2一、Principle of MCUSingle-chip is an integrated on a single chip a complete computer system. Even though most of his features in a small chip, but it has a need to complete the majority of computer components: CPU, memory, internal and external bus system, most will have the Core. At the same time, such as integrated communication interfaces, timers, real-time clock and other peripheral equipment. And now the most powerful single-chip microcomputer system can even voice, image, networking, input and output complex system integration on a single chip.Also known as single-chip MCU (Microcontroller), because it wasfirst used in the field of industrial control. Only by the single-chip CPU chip developed from the dedicated processor. The design concept is the first by a large number of peripherals and CPU in a single chip, the computer system so that smaller, more easily integrated into the complex and demanding on the volume control devices. INTEL the Z80 is one of the first design in accordance with the idea of the processor, From then on, the MCU and the development of a dedicated processor parted ways.Early single-chip 8-bit or all of the four. One of the most successful is INTEL's 8031, because the performance of a simple and reliable access to a lot of good praise. Since then in 8031 to develop asingle-chip microcomputer system MCS51 series. Based on single-chip microcomputer system of the system is still widely used until now. Asthe field of industrial control requirements increase in the beginningof a 16-bit single-chip, but not ideal because the price has not been very widely used. After the 90's with the big consumer electronics product development, single-chip technology is a huge improvement. INTEL i960 Series with subsequent ARM in particular, a broad range of applications, quickly replaced by 32-bit single-chip 16-bit single-chip high-end status, and enter the mainstream market. Traditional 8-bitsingle-chip performance has been the rapid increase in processing power compared to the 80's to raise a few hundred times. At present, the high-end 32-bit single-chip frequency over 300MHz, the performance of themid-90's close on the heels of a special processor, while the ordinary price of the model dropped to one U.S. dollars, the most high-end models, only 10 U.S. dollars. Contemporary single-chip microcomputer system isno longer only the bare-metal environment in the development and use ofa large number of dedicated embedded operating system is widely used in the full range of single-chip microcomputer. In PDAs and cell phones as the core processing of high-end single-chip or even a dedicated direct access to Windows and Linux operating systems.More than a dedicated single-chip processor suitable for embedded systems, so it was up to the application. In fact the number of single-chip is the world's largest computer. Modern human life used in almost every piece of electronic and mechanical products will have a single-chip integration. Phone, telephone, calculator, home appliances, electronic toys, handheld computers and computer accessories such as a mouse in the Department are equipped with 1-2 single chip. And personal computers also have a large number of single-chip microcomputer in the workplace. Vehicles equipped with more than 40 Department of the general single-chip, complex industrial control systems and even single-chip may have hundreds of work at the same time! SCM is not only far exceeds the number of PC and other integrated computing, evenmore than the number of human beings.Hardwave introductionThe 8051 family of micro controllers is based on an architecture which is highly optimized for embedded control systems. It is used in a wide variety of applications from military equipment to automobiles to the keyboard on your PC. Second only to the Motorola 68HC11 in eight bit processors sales, the 8051 family of microcontrollers is available in a wide array of variations from manufacturers such as Intel, Philips, and Siemens. These manufacturers have added numerous features and peripherals to the 8051 such as I2C interfaces, analog to digital converters, watchdog timers, and pulse width modulated outputs. Variations of the 8051 with clock speeds up to 40MHz and voltage requirements down to 1.5 volts are available. This wide range of parts based on one core makes the 8051 family an excellent choice as the base architecture for a company's entire line of products since it canperform many functions and developers will only have to learn this one platform.The basic architecture consists of the following features:? an eight bit ALU? 32 descrete I/O pins (4 groups of 8) which can be individually accessed? two 16 bit timer/counters? full duplex UART? 6 interrupt sources with 2 priority levels? 128 bytes of on board RAM? separate 64K byte address spaces for DATA and CODE memoryOne 8051 processor cycle consists of twelve oscillator periods. Each of the twelve oscillator periods is used for a special function by the 8051 core such as op code fetches and samples of the interrupt daisy chain for pending interrupts. The time required for any 8051 instruction can be computed by dividing the clock frequency by 12, inverting that result and multiplying it by the number of processor cycles required by the instruction in question. Therefore, if you have a system which is using an 11.059MHz clock, you can compute the number of instructions per second by dividing this value by 12. This gives an instruction frequency of 921583 instructions per second. Inverting this will provide the amount of time taken by each instruction cycle (1.085 microseconds).二、etting Started with µVision2The Keil Software 8051 development tools listed below are programsyou use to compile your C code, assemble your assembly source files,link and locate object modules and libraries, create HEX files, and debug your target program.µVision2 for Windows? is an Integrated Development Environment that combines project management, source code editing, and program debuggingin one single, powerful environment.The C51 ANSI Optimizing C Cross Compiler creates relocatable object modules from your C source code.The A51 Macro Assembler creates relocatable object modules from your 8051 assembly source code.The BL51 Linker/Locator combines relocatable object modules createdby the C51 Compiler and the A51 Assembler into absolute object modules.The LIB51 Library Manager combines object modules into librariesthat may be used by the linker.The OH51 Object-HEX Converter creates Intel HEX files from absolute object modules.The RTX-51 Real-time Operating System simplifies the design of complex, time-critical software projects.Software Development CycleWhen you use the Keil Software tools, the project development cycleis roughly the same as it is for any other software development project.1. Create a project, select the target chip from the device database, and configure the tool settings.2. Create source files in C or assembly.3. Build your application with the project manager.4. Correct errors in source files.5. Test the linked application.µVision2 IDEThe µVision2 IDE combines project management, a rich-featured editor with interactive error correction, option setup, make facility, and on-line help. Use µVision2 to create your source files and organize them into a project that defines your target application. µVision2 automatically compiles, assembles, and links your embedded application and provides a single focal point for your development efforts.LIB51 Library ManagerThe LIB51 library manager allows you to create object library from the object files created by the compiler and assembler. Libraries are specially formatted, ordered program collections of object modules that may be used by the linker at a later time. When the linker processes a library, only those object modules in the library that are necessary to create the program are used.BL51 Linker/LocatorThe BL51 linker creates an absolute object module using the object modules extracted from libraries and those created by the compiler and assembler. An absolute object file or module contains no relocatable code or data. All code and data reside at fixed memory locations. The absolute object file may be used:To program an EPROM or other memory devices,With the µVision2 Debugger for simulation and target debugging,With an in-circuit emulator for the program testing.µVision2 DebuggerThe µVision2 symbolic, source-level debugger is ideally suited for fast, reliable program debugging. The debugger includes a high-speed simulator that let you simulate an entire 8051 system including on-chip peripherals and external hardware. The attributes of the chip you use are automatically configured when you select the device from the Device Database.The µVi sion2 Debugger provides several ways for you to test your programs onreal target hardware:Install the MON51 Target Monitor on your target system and download your program using the Monitor-51 interface built-in to the µVision2 Debugger.,Use the Advan ced GDI interface to attach use the µVision2 Debugger front end with your target system.Monitor-51The µVision2 Debugger supports target debugging using Monitor-51. The monitor program resides in the memory of your target hardware and communicates with the µVision2 Debugger using the serial port of the 8051 and a COM port of your PC. With Monitor-51, µVision2 lets you perform source-level, symbolic debugging on your target hardware.RTX51 Real-Time Operating SystemThe RTX51 real-time operating system is a multitasking kernel for the 8051 microcontroller family. The RTX51 real-time kernel simplifies the system design, programming, and debugging of complex applications where fast reaction to time critical events is essential. The kernel is fully integrated into the C51 Compiler and is easy to use. Task description tables and operating system consistency are automatically controlled by the BL51 linker/locator.C51 Optimizing C Cross CompilerThe Keil C51 Cross Compiler is an ANSI C Compiler that was written specifically to generate fast, compact code for the 8051 microcontroller family.The C51 Compiler generates object code that matches the efficiency and speedof assembly programming.Using a high-level language like C has many advantages over assembly languageprogramming:Knowledge of the processor instruction set is not required. Rudimentary knowledge of the memory structure of the 8051 CPU is desirable (but not necessary).Details like register allocation and addressing of the various memory types and data types is managed by the compiler.Programs get a formal structure (which is imposed by the C programming language) and can be divided into separate functions. This contributes to source code reusability as well as better overall application structure.The ability to combine variable selection with specific operations improves program readability.Keywords and operational functions that more nearly resemble the human thought process may be used.Programming and program test time is drastically reduced.The C run-time library contains many standard routines such as: formatted output, numeric conversions, and floating-point arithmetic.Existing program parts can be more easily included into new programs because of modular program construction techniques.The language C is a very portable language (based on the ANSI standard) that enjoys wide popular support and is easily obtained for most systems.Existing program investments can be quickly adapted to other processors as needed.Code OptimizationsThe C51 Compiler is an aggressive optimizing compiler that takes numerous steps to ensure that the code generated and output to the object file is the most efficient (smallest and/or fastest) code possible. The compiler analyzes the generated code to produce the mostefficient instruction sequences. This ensures that your C program runsas quickly and effectively as possible in the least amount of code space.The C51 Compiler provides nine different levels of optimizing. Each increasing level includes the optimizations of levels below it. The following is a list of all optimizations currently performed by the C51 Compiler.General OptimizationsConstant Folding: Constant values occurring in an expression or address calculation are combined as a single constant.Jump Optimizing: Jumps are inverted or extended to the final target address when the program efficiency is thereby increased.Dead Code Elimination: Code that cannot be reached (dead code) is removed from the program.Register Variables: Automatic variables and function arguments are located in registers whenever possible. No data memory space is reserved for these variables.,Parameter Passing Via Registers: A maximum of three function arguments,may be passed in registers.Global Common Subexpression Elimination: Identical subexpressions or address calculations that occur multiple times in a function are recognized and calculated only once whenever possible.Common Tail Merging: Common instruction blocks are merged together using jump instructions.Re-use Common Entry Code: Common instruction sequences are moved in front of a function to reduce code size.二、Principle of MCUSingle-chip is an integrated on a single chip a complete computer system. Even though most of his features in a small chip, but it has a need to complete the majority of computer components: CPU, memory, internal and external bus system, most will have the Core. At the same time, such as integrated communication interfaces, timers, real-time clock and other peripheral equipment. And now the most powerful single-chip microcomputer system can even voice, image, networking, input and output complex system integration on a single chip.Also known as single-chip MCU (Microcontroller), because it wasfirst used in the field of industrial control. Only by the single-chip CPU chip developed from the dedicated processor. The design concept is the first by a large number of peripherals and CPU in a single chip, the computer system so that smaller, more easily integrated into the complex and demanding on the volume control devices. INTEL the Z80 is one of the first design in accordance with the idea of the processor, From then on, the MCU and the development of a dedicated processor parted ways.Early single-chip 8-bit or all of the four. One of the most successful is INTEL's 8031, because the performance of a simple and reliable access to a lot of good praise. Since then in 8031 to develop a single-chip microcomputer system MCS51 series. Based on single-chip microcomputer system of the system is still widely used until now. Asthe field of industrial control requirements increase in the beginningof a 16-bit single-chip, but not ideal because the price has not been very widely used. After the 90's with the big consumer electronics product development, single-chip technology is a huge improvement. INTEL i960 Series with subsequent ARM in particular, a broad range of applications, quickly replaced by 32-bit single-chip 16-bit single-chip high-end status, and enter the mainstream market. Traditional 8-bitsingle-chip performance has been the rapid increase in processing power compared to the 80's to raise a few hundred times. At present, the high-end 32-bit single-chip frequency over 300MHz, the performance of themid-90's close on the heels of a special processor, while the ordinary price of the model dropped to one U.S. dollars, the most high-end models, only 10 U.S. dollars. Contemporary single-chip microcomputer system isno longer only the bare-metal environment in the development and use ofa large number of dedicated embedded operating system is widely used in the full range of single-chip microcomputer. In PDAs and cell phones as the core processing of high-end single-chip or even a dedicated direct access to Windows and Linux operating systems.More than a dedicated single-chip processor suitable for embedded systems, so it was up to the application. In fact the number of single-chip is the world's largest computer. Modern human life used in almost every piece of electronic and mechanical products will have a single-chip integration. Phone, telephone, calculator, homeappliances, electronic toys, handheld computers and computer accessories such as a mouse in the Department are equipped with 1-2 single chip. And personal computers also have a large number of single-chip microcomputer in the workplace. Vehicles equipped with more than 40 Department of the general single-chip, complex industrial control systems and even single-chip may have hundreds of work at the same time! SCM is not only far exceeds the number of PC and other integrated computing, even more than the number of human beings.Hardwave introductionThe 8051 family of micro controllers is based on an architecture which is highly optimized for embedded control systems. It is used in a wide variety of applications from military equipment to automobiles to the keyboard on your PC. Second only to the Motorola 68HC11 in eight bit processors sales, the 8051 family of microcontrollers is available in a wide array of variations from manufacturers such as Intel, Philips, and Siemens. These manufacturers have added numerous features and peripherals to the 8051 such as I2C interfaces, analog to digital converters, watchdog timers, and pulse width modulated outputs. Variations of the 8051 with clock speeds up to 40MHz and voltage requirements down to 1.5 volts are available. This wide range of parts based on one core makes the 8051 family an excellent choice as the base architecture for a company's entire line of products since it can perform many functions and developers will only have to learn this one platform.The basic architecture consists of the following features:? an eight bit ALU? 32 descrete I/O pins (4 groups of 8) which can be individually accessed? two 16 bit timer/counters? full duplex UART? 6 interrupt sources with 2 priority levels? 128 bytes of on board RAM? separate 64K byte address spaces for DATA and CODE memoryOne 8051 processor cycle consists of twelve oscillator periods. Each of the twelve oscillator periods is used for a special function by the 8051 core such as op code fetches and samples of the interrupt daisy chain for pending interrupts. The time required for any 8051 instruction can be computed by dividing the clock frequency by 12, inverting that result and multiplying it by the number of processor cycles required by the instruction in question. Therefore, if you have a system which is using an 11.059MHz clock, you can compute the number of instructions per second by dividing this value by 12. This gives an instruction frequency of 921583 instructions per second. Inverting this will provide the amount of time taken by each instruction cycle (1.085 microseconds).附录B 中文译文单片机和keil一、单片机原理单片机是指一个集成在一块芯片上的完整计算机系统。

(完整版)单片机毕业参考英文文献及翻译

(完整版)单片机毕业参考英文文献及翻译

Structure and function of the MCS-51 seriesStructure and function of the MCS-51 series one-chip computer MCS-51 is a name of a piece of one-chip computer series which Intel Company produces。

This company introduced 8 top-grade one—chip computers of MCS—51 series in 1980 after introducing 8 one-chip computers of MCS-48 series in 1976. It belong to a lot of kinds this line of one—chip computer the chips have,such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc。

, their basic composition, basic performance and instruction system are all the same. 8051 daily representatives— 51 serial one-chip computers 。

An one—chip computer system is made up of several following parts: ( 1) One microprocessor of 8 (CPU)。

( 2) At slice data memory RAM (128B/256B),it use not depositting not can reading /data that write, such as result not middle of operation,final result and data wanted to show, etc. ( 3) Procedure memory ROM/EPROM (4KB/8KB ),is used to preserve the procedure , some initial data and form in slice. But does not take ROM/EPROM within some one-chip computers, such as 8031 , 8032, 80C ,etc。

单片机英文文献外文翻译

单片机英文文献外文翻译

单片机英文文献Principle of MCUSingle-chip is an integrated on a single chip a complete computer system. Even though most of his features in a small chip, but it has a need to complete the majority of computer components: CPU, memory, internal and external bus system, most will have the Core. At the same time, such as integrated communication interfaces, timers, real-time clock and other peripheral equipment. And now the most powerful single-chip microcomputer system can even voice, image, networking, input and output complex system integration on a single chip.Also known as single-chip MCU (Microcontroller), because it was first used in the field of industrial control. Only by the single-chip CPU chip developed from the dedicated processor. The design concept is the first by a large number of peripherals and CPU in a single chip, the computer system so that smaller, more easily integrated into the complex and demanding on the volume control devices. INTEL the Z80 is one of the first design in accordance with the idea of the processor, From then on, the MCU and the development of a dedicated processor parted ways.Early single-chip 8-bit or all of the four. One of the most successful is INTEL's 8031, because the performance of a simple and reliable access to a lot of good praise. Since then in 8031 to develop a single-chip microcomputer system MCS51 series. Based on single-chip microcomputer system of the system is still widely used until now. As the field of industrial control requirements increase in the beginning of a 16-bit single-chip, but not ideal because the price has not been very widely used. After the 90's with the big consumer electronics product development, single-chip technology is a huge improvement. INTEL i960 Series with subsequent ARM in particular, a broad range of applications, quickly replaced by 32-bit single-chip 16-bit single-chip high-end status, and enter the mainstream market. Traditional 8-bit single-chip performance has been the rapid increase in processing power compared to the 80's to raise a few hundred times. At present, the high-end 32-bit single-chip frequency over 300MHz, the performance of the mid-90's close on the heels of a special processor, while the ordinary price of the model dropped to one U.S. dollars, the most high-end models, only 10 U.S. dollars. Contemporary single-chip microcomputer system is no longer only the bare-metal environment in the development and use of a large number of dedicated embedded operating system is widely used in the full range of single-chip microcomputer. In PDAs and cell phones as the core processing of high-end single-chip or even a dedicated direct access to Windows and Linux operating systems.More than a dedicated single-chip processor suitable for embedded systems, so it was up to the application. In fact the number of single-chip is the world's largest computer. Modern human life used in almost every piece of electronic and mechanical products will have a single-chip integration. Phone, telephone, calculator, home appliances, electronic toys, handheld computers and computer accessories such as a mouse in the Department are equipped with 1-2 single chip. And personal computers also have a large number of single-chip microcomputer in the workplace. Vehicles equipped with more than 40 Department of the general single-chip, complex industrial control systems and even single-chip may have hundreds of work at the same time! SCM is not only far exceeds the number of PC and other integrated computing, even more than the numberof human beings.Hardwave introductionThe 8051 family of micro controllers is based on an architecture which is highly optimized for embedded control systems. It is used in a wide variety of applications from military equipment to automobiles to the keyboard on your PC. Second only to the Motorola 68HC11 in eight bit processors sales, the 8051 family of microcontrollers is available in a wide array of variations from manufacturers such as Intel, Philips, and Siemens. These manufacturers have added numerous features and peripherals to the 8051 such as I2C interfaces, analog to digital converters, watchdog timers, and pulse width modulated outputs. Variations of the 8051 with clock speeds up to 40MHz and voltage requirements down to 1.5 volts are available. This wide range of parts based on one core makes the 8051 family an excellent choice as the base architecture for a company's entire line of products since it can perform many functions and developers will only have to learn this one platform.The basic architecture consists of the following features:·an eight bit ALU·32 descrete I/O pins (4 groups of 8) which can be individually accessed·two 16 bit timer/counters·full duplex UART· 6 interrupt sources with 2 priority levels·128 bytes of on board RAM·separate 64K byte address spaces for DA TA and CODE memoryOne 8051 processor cycle consists of twelve oscillator periods. Each of the twelve oscillator periods is used for a special function by the 8051 core such as op code fetches and samples of the interrupt daisy chain for pending interrupts. The time required for any 8051 instruction can be computed by dividing the clock frequency by 12, inverting that result and multiplying it by the number of processor cycles required by the instruction in question. Therefore, if you have a system which is using an 11.059MHz clock, you can compute the number of instructions per second by dividing this value by 12. This gives an instruction frequency of 921583 instructions per second. Inverting this will provide the amount of time taken by each instruction cycle (1.085 microseconds).单片机原理单片机是指一个集成在一块芯片上的完整计算机系统。

单片机 外文翻译 外文文献 英文文献 中英对照 基于C51兼容微(宝典)

单片机 外文翻译 外文文献 英文文献 中英对照 基于C51兼容微(宝典)

附录A 英文原文Design of PWM Controller in a MCS-51 Compatible MCUAuthor . Yue-Li Hu Wei Wang Microelectronic Research Development Center CampusP.O.B.221 149 Yanchang Rd Shanghai 200072 China Introduction PWM technology is a kind of voltage regulation method by controlling the switchfrequency of DC power with fixed voltage to modify the two-end voltage of load. Thistechnology can be used for a variety of applications including motor control temperaturecontrol and pressure control and so on. In the motor control system shown as Fig. 1 throughadjusting the duty cycle of power switch the speed of motor can be controlled. As shown inFig. 2 under the control of PWM signal the average of voltage that controls the speed ofmotor changes with Duty-cycle D t1/T in this Figure thus the motor speed can beincreased when motor power turn on decreased when power turn off.Fig.1: The Relationship between Voltage of Armature and Fig.2 Architecture of PWM Module Therefore the motor speed can be controlled with regularly adjusting the time of turn-onand turn-off. There are three methods could achieve the adjustment of duty cycle: 1 Adjustfrequency with fixed pulse-width. 2 Adjust both frequency and pulse-width. 3 Adjustpulse-width with fixed frequency. Generally there are four methods to generate the PWM signals as the following: 1Generated by the device composed of separate logic components. This method is the originalmethod which now has been discarded. 2 Generated by software. This method need CPU tocontinuously operate instructions to control I/O pins for generating PWM output signals sothat CPU can not do anything other. Therefore the method also has been discarded gradually.3 Generated by ASIC. The ASIC makes a decrease of CPU burden and steady workgenerally has several functions such as over-current protection dead-time adjustment and soon. Then the method has been widely used in many kinds of occasion now. 4 Generated byPWM function module of MCU. Through embedding PWM function module in MCU andinitializing the function PWM pins of MCU can also automatically generate PWM outsignals without CPU controlling only when need to change duty-cycle. It is the method thatwill be implemented in this paper. In this paper we propose a PWM module embedded in a 8051 microcontroller. ThePWM module can support PWM pulse signals by initializing the control register andduty-cycle register with three methods just mentioned above to adjust the duty cycle andseveral operation modes to add flexibility for user. The following section explains the architecture of the PWM module and the architecturesof basic functional blocks. Section3 describes two operation modes. Experimental andsimulation results verifying proper system operation are also shown in that section.Depending on mode of operation the PWM module creates one or more pulse-widthmodulated signals whose duty ratios can be independently adjusted. Implementation of PWM module in MCU Overview of the PWM module A block diagram of PWM module is shown in Fig.3. It is clearly from the diagram thatthe whole module is composed of two sections: PWM signal generator and dead-timegenerator with channel select logic. The PWM function can be started by the user throughimplementing some instructions for initializing the PWM module. In particular the followingpower and motion control applications are supported: DC Motor Uninterruptablel Power Supply UPSThe PWM module also has the following features: Two PWM signal outputs with complementary or independent operation Hardware dead-time generators for complementary mode Duty cycle updates are configurable to be immediated or synchronized to the PWM Fig.3 Architecture of PWM Module Details of the architecture PMW generator The architecture of the 2-output PWM generator shownin Fig.4 is based on a 16-bitresolution counter which creates a pulse-width modulated signal. The system is synthesizedby a system clock signal whose frequency can be divided by 4 times or 12 times throughsetting the value of T3M for PWM0 or T4M for PWM1 in the special register PWMCON asshown in Fig.4. To PWM0 generator the clock to 16-bit counter will be pre-divided by 4times by default when T3M is set to zero. And the clock will be divided by 12 times whenT3M is set to 1. This is also true for PWM1. The other bits in PWMCON are explained indetail in Table 1. Fig .4 Bit Mapping of PWMCON Table 1: The Bit Definition in PWMCONChannel-select logic The follow Fig. 5 shows the channel-select logic which is useful in ComplementaryMode. From this diagram it is clear to know that signal CP and CPWM control the source ofPWMH and PWML. And the details about the two control signals will be discussed in thesection 3 and the architecture of dead-time generator will also be discussed in section 5 forthe continuity of Complementary Mode. Fig. 5 Diagram of Channel-select LogicOperation Mode and Simulation Results The design has two operation modes: Independent Mode and Complimentary Mode. Bysetting the corresponding bit CPWM in register PWMCON shown in Fig.6 user can select oneof the two operation modes. When CPWM is set to zero PWM module will work inIndependent Mode whereas PWM module will work in Complimentary Mode. In thefollowing of this section the two operation mode will be explained respectively in detail andthe simulation results of the PWM module from the Synoposys VCS EDA platform whichverify the design will also be shown.Independent PWM Output Mode An Independent PWM Output mode is useful for driving loads such as the one shown inFigure 6. A particular PWM output is in the Independent Output mode when thecorresponding CP bit in the PWMCON register is set to zero.In this case two-channel PWMoutputs are independent of each other. The signal on pin PWM0/PWMH is from PWM0generator and the signal on pin PWM1/PWML is from PWM0 generator. The separate case isachieved by the channel-select logic shown in Fig. 6. The PWM I/O pins are set toindependent mode by default upon advice reset. The dead-time generator is disabled in theIndependent mode. The simulation result is shown in Figure 6 as the following Fig.6 Tr4 andtr3 are run bits to PWM0 and PWM1 respectively. Actually from this diagram Pin P15/P14 of MCU is used for PWMH/ PWML or normal I/O alternatively. Fig6 the Waveform of PWM Outputs in Independent ModeComplementary PWM Output Mode The Complementary Output mode is used to drive inverter loads similar to the oneshown in Figure 7. This inverter topology is typical for DC applications. In ComplementaryOutput Mode the pair of PWM outputs cannot be active simultaneously. The PWM channeland output pin pair are internally configured through channel-select logic as shown in Figure7.A dead-time may be optionally inserted during device switching where both outputs areinactive for a short period. Fig 7 : Typical Load for Complementary PWM Outputs The Complementary mode is selected for PWM I/O pin pair by setting the appropriateCPWM bit in PWMCON. In this case PSEL is in effect. PWMH and PWML will come fromPWM0 generator when PSEL is set to zero when the signals from PWM1 generator is uselesswhereas PWMH and PWML will come from PWM1 generator when PSEL is set to 1 whenthe signals from PWM0 generator is useless. In the process of producing the PWM outputs inComplementary Mode the dead-time will be inserted to be discussed in the following section.Dead-time Control Dead-time generation is automatically enabled when PWM I/O pin pair is operating inthe Complementary Output mode. Because the power output devices cannotswitchinstantaneously some amount of time must be provided between the turn-off event of onePWM output in a complementary pair and the turn-on event of the other transistor. The2-output PWM module has one programmable dead-time with 8-bitregister.Thecomplementary output pair for the PWM module has an 8-bit down counter that is used toproduce the dead-time insertion. As shown in Figure 8 the dead time unit has a rising andfalling edge detector connected to PWM signal from one of PWM generator. The dead timesis loaded into the timer on the detected PWM edge event. Depending on whether the edge isrising or falling one of the transitions on the complementary outputs is delayed until the timercounts down to zero. A timing diagram indicating the dead time insertion for the pair of PWMoutputs is shown in Figure 8a. Fig 8a Dead-time Unit Block Diagram Fig. 8b the Waveforms of PWM Outputs in Complementary ModeConclusions In this paper we have designed PWM module based on an 8-bit MCU compatible with8051 family. The design can generate 2-channel programmable periodic PWM signals withtwo operation mode Independent Mode and Complementary Mode in which dead-time willbe inserted. The simulation results on the EDA platform have proven its correctness andusefulness. 附录B 汉语翻译基于C51 兼容微处理器单片机的PWM 控制器设计Yue-Li Hu Wei Wa 单片机研究与开发中心Campus P.O.B.221 149Yanchang Rd Shanghai 200072 China 导言PWM 技术,是一种电压调节方法,通过控制具有固定电压的直流电源的开关频率来调整两端负荷电压。

单片机的外文文献及中文翻译

单片机的外文文献及中文翻译

单片机的外文文献及中文翻译一、外文文献Title: The Application and Development of SingleChip Microcontrollers in Modern ElectronicsSinglechip microcontrollers have become an indispensable part of modern electronic systems They are small, yet powerful integrated circuits that combine a microprocessor core, memory, and input/output peripherals on a single chip These devices offer significant advantages in terms of cost, size, and power consumption, making them ideal for a wide range of applicationsThe history of singlechip microcontrollers can be traced back to the 1970s when the first microcontrollers were developed Since then, they have undergone significant advancements in technology and performance Today, singlechip microcontrollers are available in a wide variety of architectures and capabilities, ranging from simple 8-bit devices to complex 32-bit and 64-bit systemsOne of the key features of singlechip microcontrollers is their programmability They can be programmed using various languages such as C, Assembly, and Python This flexibility allows developers to customize the functionality of the microcontroller to meet the specific requirements of their applications For example, in embedded systems for automotive, industrial control, and consumer electronics, singlechip microcontrollers can be programmed to control sensors, actuators, and communication interfacesAnother important aspect of singlechip microcontrollers is their low power consumption This is crucial in batterypowered devices and portable electronics where energy efficiency is of paramount importance Modern singlechip microcontrollers incorporate advanced power management techniques to minimize power consumption while maintaining optimal performanceIn addition to their use in traditional electronics, singlechip microcontrollers are also playing a significant role in the emerging fields of the Internet of Things (IoT) and wearable technology In IoT applications, they can be used to collect and process data from various sensors and communicate it wirelessly to a central server Wearable devices such as smartwatches and fitness trackers rely on singlechip microcontrollers to monitor vital signs and perform other functionsHowever, the design and development of systems using singlechip microcontrollers also present certain challenges Issues such as realtime performance, memory management, and software reliability need to be carefully addressed to ensure the successful implementation of the applications Moreover, the rapid evolution of technology requires developers to constantly update their knowledge and skills to keep up with the latest advancements in singlechip microcontroller technologyIn conclusion, singlechip microcontrollers have revolutionized the field of electronics and continue to play a vital role in driving technological innovation Their versatility, low cost, and small form factor make them an attractive choice for a wide range of applications, and their importance is expected to grow further in the years to come二、中文翻译标题:单片机在现代电子领域的应用与发展单片机已成为现代电子系统中不可或缺的一部分。

at89c52单片机中英文资料对照外文翻译文献综述

at89c52单片机中英文资料对照外文翻译文献综述

D.htmlat89c52单片机中英文资料对照外文翻译文献综述at89c52单片机简介中英文资料对照外文翻译文献综述AT89C52 Single-chip microprocessor introductionSelection of Single-chip microprocessor1. Development of Single-chip microprocessorThe main component part of Single-chip microprocessor as a result of by such centralize to be living to obtain on the chip,In immediate future middle processor CPU。

Storage RAM immediately﹑memoy readROM﹑Interrupt system、Timer /'s counter along with I/O's rim electric circuit awaits the main microcomputer section,The lumping is living on the chip。

Although the Single-chip microprocessor r is only a chip,Yet through makes up and the meritorous service be able to on sees,It had haveed the calculating machine system property,calling it for this reason act as Single-chip microprocessor r minisize calculating machine SCMS and abbreviate the Single-chip microprocessor。

(完整word版)单片机外文文献翻译

(完整word版)单片机外文文献翻译

中文资料原文单片机单片机也被称为微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。

单片机由芯片内仅有CPU的专用处理器发展而来。

最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。

INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。

早期的单片机都是8位或4位的。

其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。

此后在8031上发展出了MCS51系列单片机系统。

基于这一系统的单片机系统直到现在还在广泛使用。

随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。

90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。

随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。

而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。

目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。

当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。

而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。

单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。

事实上单片机是世界上数量最多的计算机。

现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。

手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。

而个人电脑中也会有为数不少的单片机在工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外文原文A: Fundamentals of Single-chip MicrocomputerT h e s i n gl e-c hi p m i c r o c om p ut e r i s t h e c u l m i n at i on o f bot h t h e d e v el opm e nt o f t h e di gi t a l co m p ut e r a nd t h e i n t egr a t e d ci r c ui t a rgua b l y t h e t o w m o s t s i gni fi c an t i nv e nt i o ns o f t he 20t h c e nt u r yT h es e t ow t yp e s o f a r c hi t e ct u re a r e fou n d i n s i n gl e-ch i p m i c r o com pu t e r. S om e em pl o y t h e s pl i t p r o gr am/d at a m e m o r y o f t h e Ha r v a rd a r c hi t e ct u re, s ho w n i n Fi g.3-5A-1, ot h e rs fo l l o w t h e p hi l os op h y,w i de l y a d a p t ed for ge n e r a l-p ur po s e co m p ut e rs an d m i cr o p ro c es s o rs, o f m a ki n g no l o gi c al d i st i n ct i o n b et w e en p ro gr a m a nd d a t a m e m o r y a s i n t h e P ri n c et on a r c hi t ec t u r e, s ho w n i n Fi g.3-5A-2.In ge n e r a l t e rm s a s i n gl e-c hi p m i c r oc o m p ut e r i s c h ar ac t e ri z ed b y t h e i n co rp o r at i on o f al l t h e u ni t s o f a c om p ut e r i nt o a si n gl e d e vi c e, a s s ho w n i nFig.3-5A-1 A Harvard typeRead only memory (ROM)R OM i s u su al l y f o r t h e p er m an e nt,no n-v ol at i l e st o r a ge o f an a pp l i c at i on s p r o gr am.M a n y m i c ro c om put e r s an d m i cr o co nt ro l l e rs a r e i nt en d ed f or h i gh-v ol u m e a pp l i c a t i on s a nd h en c e t he e c on om i c al m a nu f a ct ur e of t he d e vi c es re qu i re s t h a t t h e c ont e nt s of t h e p ro gr a m m em o r y b e c om m i t t ed p e rm a n en t l y d u r i ng t he m an u f ac t u r e o f ch i ps. C l e a rl y,t hi s i m pl i e s a r i go ro us a p pr o a ch t o R OM c od e d ev e l o pm e nt s i n c e c h ange s c an no t b e m ad e a f t e r m an u f ac t u r e .T hi s d e v el o pm e nt pr o c e s s m a y i n vo l v e em ul at i on us i n g a s op hi st i c at e d d ev el o pm e nt s ys t e m wi t h a h a rd w a re em ul a t i on c ap a bi l i t y a s w e l l as t h e u se of po w e r fu l s o ft w ar e t oo l s.S om e m a nu f a ct ur e rs p ro vi d e ad di t i o na l R O M opt i o ns by i n c l u di n g in t h ei r r a n ge d e vi c es wi t h (o r i nt e nd ed f o r u s e wi t h)us e r p r o gr am m a bl e m em o r y.T he s i m pl e st of t h e s e i s us u a l l y d e v i c e w hi c h c an o p er at e i n a m i c r op r oc e ss o r m od e b y u s i n g s om e of t h e i n put/o ut p ut l i n es a s a n ad d r ess a n d d at a bu s f or a cc e s si n g ex t e r n al m e m or y.T h i s t yp e o f d e vi c e c a n b e h av e f u n ct i on al l y a s t h e s i n gl e chi p m i c ro c om pu t e r f rom w hi ch i t i s d e ri v ed al b eit w i t h r est ri c t e d I/O an d a m od i f i ed ex t e rn a l ci r cui t. Th e u s e o f t h es e R O M l e ss de vi c es i s c om m o n ev en i n p ro du c t i o n ci r cu i t s w h er e t he vo l u m e d oes n ot j us t i f y t h e d eve l opm e nt co s t s o f cu st om o n-c hi p R OM[2];t h er e c an s t i l l b e a si gn i fi c ant s av i n g i n I/O a nd ot h e r c hi ps c om p a r ed t o a co nv e nt i on al m i c r op r oc e ss o r b ase d ci r cu i t. M o r e ex a c t re pl a c em e nt f o r R OM d e vi c es c an b e ob t ai n e d i n t he fo rm o f v a ri a nt s wi t h 'p i gg y-b a c k' EP R O M(E r as a bl e p r o gr am m a bl e R OM)so ck e t s or d evi c e s wi t h E P R OM i n s t e ad o f R OM。

T h es e d e vi c es a r e na t ur a l l y m o r e ex p en si v e t h an e qui v al en t R O M d ev i ce, b ut d o p r ovi d e c om pl et e ci r cu i t e qu i v al en t s. EP R OM b as ed d e vi c es ar e al s o ex t r e m el y a t t r a ct i ve fo r l o w-v ol um e a p pl i c a t i o ns w h er e t h e y p r o vi d e t h e a d v an t a ge s o f a si n gl e-ch i p d evi c e, i n t e rm s o f o n-c hi p I/O,e t c. ,w i t h t h e c o nv e ni en c e o f f l ex i b l e u s e r pr o gr am m a bi l i t y.Random access memory (RAM).R AM i s f o r t h e s t or a ge o f wo rk i n g v ar i ab l es an d d at a u se d du ri n g p r o gr am ex e c ut i on. Th e s i ze o f t hi s m em o r y v a ri e s wi t h d e vi c e t yp e b u t i t h as t he s a m e c h a ra c t er i st i c wi d t h (4,8,16 b i t s e t c.) as t h e pr o c es s o r,S p e ci al f u n ct i on r e gi st e rs, s u ch as s t a ck poi nt e r o r t i m e r r e gi st e r a r e o ft en l o gi ca l l y i n co rp o r at ed i nt o t h e R AM ar e a. It i s a l s o co m m on i n H a rd t yp e m i c r o com pu t er s t o t r e at t h e R A M a re a a s a c ol l e c t i o n o f r e gi s t e r;i t i s u n ne c e ss a r y t o m ak e di s t i n ct i on be t we e n R A M a nd p ro ce s s o r r e gi s t e r as i s d o ne i n t h e c as e o f a m i c ro p ro c es s o r sys t e m si n c e R AM an d re gi s t e rs a re not u su a l l y p h ys i c a l l y s e p a ra t ed i n a m i c ro c om put e r .Central processing unit (CPU).T h e C P U i s m u ch l i k e t h at o f a n y m i c r op r oc e ss o r. Ma n y a p pl i c a t i o ns o f m i cr o co m p ut e rs an d m i cr o co nt ro l l e rs i nv ol ve t h e h an dl i n g o f bi n ar y-c o d e d de c i m al(B C D)d a t a (fo r n um e ri c al d i s pl a ys,f o r ex am p l e),h e n c e i t i s co m m on t o fi n d t hat t h e C P U i s w el l a d a pt ed t o h a ndl i ng t h i s t yp e o f d at a.It i s al s o co m m on t o f i n d goo df a c i l i t i es f or t est i ng,s e t t i ng a nd r es et t i n g i n di vi d u al bi t s o f m e m o r y o r I/O s i n c e m a n y c o n t ro l l e r a ppl i c at i on s i nv ol v e th e t u rni n g on an d o ff o f s i n gl e o ut pu t l i ne s o r t he r e a di n g t h e si n gl e l i n e. Th es e l i n e s a r e r e a di l y i n t e rf a c e d t o t w o-s t at e d e vi c es s u ch a s sw i t ch e s, t h er m o s t at s, s o l i d-s t at e r el a ys, v al v es, m ot or, e t c.Parallel input/output.P a r al l el i np ut a nd ou t p ut s ch e m e s v ar y s om e wh a t i n di ff ere n t m i cr o co m p ut e r;i n m ost a m e ch a n i sm i s p r ov i d ed t o at l e as t al l o w so m e fl ex i bi l i t y o f c h oo s i n g w hi c h pi ns a r e out pu t s a nd wh i ch ar e i np ut s. T hi s m a y a p p l y t o al l o r s om e of t he p o rt s. S om e I/O l i n es a re s ui t abl e f o r di r ec t i nt e r f a ci n g t o, for ex a m pl e,f l u o re s c en t d i sp l a ys,o r c an p ro vi de s u ffi c i en t cu r r ent t o m a k e i nt e r fa c i n g ot h e r co m p on e nt s st r ai ght f o r w a rd. S om e d evi c es a l l o w a n I/O p o rt t o b e co n fi gur e d as a s ys t e m bu s t o a l l ow o ff-c hi p m em or y a n d I/O ex p an si on.T hi s f ac i l i t y i s po t e nt i a l l y u s e f u l as a pr odu c t r a n ge d ev el op s, s i n c e su c c es s i ve enh a n c em en t s m a y b e c o m e t oo bi g f or on-c hi p m em o r y a n d i t i s un d es i r a bl e not t o bui l d o n t h e ex i s t i n g s o ft wa r e b as e.Serial input/output .S e ri al co m m u ni c at i o n w i t h t e rm i n al d ev i c es i s co m m o n m e a n s o f p ro vi d i n g a l i n k us i n g a s m a l l n um b er o f l i n e s.Th i s s o rt o f com m u ni c at i o n c a n a l s o b e ex pl oi t e d f or i nt e r f a c i n g s p e ci al f u n ct i on ch i p s or l i nki n g s e v e ra l m i c r o com pu t er s t oge t h e r .Bo t h t h e c o m m o n a s yn c h r on o us s yn c h r o no us c o m m u ni c at i o n s c he m es r eq ui r e p r ot oc o l s t h at p r ovi d e fr a m i n g (s t a rt a nd s t o p) i n fo rm a t i o n .T hi s c a n b e i m pl em e nt ed as a h a rd wa r e f a ci l i t y o r U(S) A RT(U ni v e rs a l(s yn c h r on ou s)as yn c h r o n ous r e ce i v e r/t r an s m i t t e r) r el i e vi n g t h e p ro c es s o r(a nd t h e a pp l i c at i ons pr o gr am m er)of t h i s l o w-l e ve l, t i m e-c on su m i n g,de t ai l. t i s m e r el y n e c e ss a r y t o s el e ct e d a b a ud-r at e an d p os si bl y o t h e r op t i o ns(n um b e r o f st op b i t s, p a ri t y,e t c.) a nd l oa d (or r ea d f r om) t h e s e ri a l t r an s m i t t e r (o r r e ce i ve r)b u ff e r. S e ri al i z a t i on o f t h e d at a i n t h e a pp ro p ri at e f o rm at i s t h en h a nd l e d b y t h e h ar d w ar e ci r c ui t.Timing/counter facilities.M a n y a p p l i c a t i o n of si n gl e-c hi p m i cr oc o m p ut e rs r eq ui r e a c c u r at e ev al u at i on o f el ap s ed re a l t i m e .T hi s c an b e d e t er m i n ed b y c a r e f ul as s es sm en t of t h e ex e c ut i on t i m e of ea c h b r an c h i n a pr ogr a m b ut t hi s ra pi dl y b e c om e si n e ff i ci en t fo r al l bu t s i m pl es t pr o gr am s .T h e p re f e r r ed ap p ro a c h i s t o u s et i m e r ci r cu i t t h at ca n i nd e pe nd e nt l y c o u nt p r ec i s e t i m e i n c r em e nt s an dge n e r a t e a n i nt e r rup t a ft e r a p r es e t t i m e h as el a ps ed .Thi s t yp e o f t i m e r i su su a l l y a r r a n ge d t o b e r el o ad a bl e wi t h t h e r e qu i r e d c ou nt .Th e t i m e r t h e nd e c r em e nt s t hi s v a l u e p r od u ci n g a n i nt e r r u pt o r se t t i n g a f l a g wh e n t h ec o un t er r ea c h es z e ro.B et t e r t i m e rs t h en ha v e t h e a bi l i t y t o au t om a t i c al l yr e l o a d t h e i n i t i al co u nt v al u e. T hi s r el i e v es t he p r o gr am m e r o f t h er e s po nsi bi l i t y o f r el o ad i n g t h e c ou nt e r a nd a ss es s i n g el a ps e d t i m e b e f or e t h e t i m e r r e st a rt ed ,w hi c h ot h e rw i s e w ou nd b e n e c es s ar y i f c o nt i n uo us p r e ci s el y t i m ed i nt e rr up t s w er e r eq ui r ed(as i n a c l o c k ,f o r ex a m p l e).S om et i m esa s so ci a t e d w i t h t i m e r i s a n e v en t c ou nt e r. Wi t h t hi s f a c i l i t y t h e r e i s us u al l y a s p e ci al i n pu t pi n , t h at c a n d ri v e t he co u nt er di re c t l y.Timing components.T h e cl o ck ci r cu i t ry o f m o s t m i c ro com pu t e r s r e qu i r e s on l y s i m pl e t i m i n g c o m p on e nt s. If m ax i m um p er f o rm an ce i s r e qui r e d,a cr ys t al m us t b e u s ed t o e n s u r e t he m ax i m um cl o ck fr e qu e n c y i s a pp r o ac h ed but no t ex c e ed e d.M a n y c l o ck c i rc ui t s a l s o w o rk w i t h a r es i st o r a nd c a p a ci t or a s l ow-c os t t i m i n g c o m p on e nt s or c an b e d ri v en fr om a n ex t e rn al s o u r c e.Thi s l at t e r a r r a n ge m e nt i s u s e fu l i s ex t e rn a l s yn c h r on i z a t i o n o f t h e m i c r o c o m p u t e r i s r e qu ir ed.B:PLC[1]P LC s(pr o gr am m ab l e l o gi c al co nt ro l l e r) f a c e ev e r m o re c om pl ex c h a l l en ge s t h es e d ays . W h er e o n ce t h ey q u i et l y r e p l a ce d re l a ys a nd ga v e a n o c c a si o n al r e po rt t o a c o rp or a t e m ai n fr a m e, t h e y a r e n ow gr o u p ed i n t o c el l s, gi v e n n ew j ob a nd ne w l an gu a ge s, a n d a r e f o rc e d t o c om p et e a ga i n s t a gr o w i n g a r ra y o f co nt r ol pr od u ct s. Fo r t h i s ye a r's a nn ua l P LC t e ch nol o g y u p da t e ,w e q u er i ed P LC m ak e rs o n t h es e t opi c s a nd m o r e .Programming languagesH i gh e r l ev el P LC p r o gr am m i n g l an g ua ge s h av e b ee n ar ou n d f or s om e t i m e ,b ut l at el y t he i r po pu l ar i t y h a s m us h ro om i n g. "As R a ym o nd Le v e i l l e, v i c e p r es i d en t& ge n e r a l m a na ge r, S i e m e ns E ne rg y &A u t o m a t i on .i n c; P ro gr a m m a bl e c ont r ol s ar e b e i n g use d fo r m o r e a nd m o re s op hi s t i c at e d o p e r at i on s,l a n gu age s o t h e r t ha n l ad d e r l o gi c b ec om e m or e p r ac t i c al, e ff i ci e nt,an d pow e r f ul. F o r ex a m p l e,i t's v e r y d i ff i cu l t t o w ri t e a t ri go no m et ri c f un ct i o n us i n g l ad d e r l o gi c."La n gu a ge s ga i ni n g a c c ept a n ce i n cl u d e B o ol e an, c o nt ro l s ys t e m f l ow c h a rt i n g, a nd s uc h fu n ct i on c h a rt l a n gu a ges as G r a ph c e t an d i t s v a ri a t i o n .An d t h e r e's i n cr e a s i n g i nt e re s t in l a n gu a ges l i k e C and B AS IC.PLCs in process controlT h us f ar,P LC s h ave n ot b ee n u s ed ex t e ns i v el y f o r c o nt i n u ous p ro c es s c o nt ro l .Wi l l t hi s co nt i n ue? "Th e f ee l i n g t h a t I'v e go t t en," s a ys K e n J an not t a, m a n ge r,p ro du c t p l a n ni n g, s e ri e s O n e a nd S e ri e s S i x p ro d uc t,a t G E F a nu c N o rt h Am e ri c a ,'i s t h at P LC s w i l l b e us e d i n t h e p ro c es s i n dus t r y b u t not n e c e ss a ri l y f o r p r oc e s s c ont r ol."S e ve r al v e nd o rs-ob vi ou sl y b e t t i n g t ha t t he op po si t e w i l l h a pp en-h a v e i nt ro du c e d P LC s op t i m i z e d fo r pr o c es s ap pl i c at i o n .R i c h Rya n,m a n ge r, c o m m e r ci al m a rk e t i n g,A l l en-br a dl e y P ro gr a m m ab l e C on t rol s D i v.,c i t es P LC s's i n c r ea si n g u s e s u ch i nd ust r i es a s f oo d,c h em i c al s,an d p e t r ol e um. Rya n f e el s t h e r e are t wo t yp e s of a pp l i c at i o ns i n whi c h t h e y'r e a p p ro p ri at e. "o n e,"h e s a ys,"i s w h e r e t h e s i z e o f t h e p r o c ess co nt ro l s ys t e m t h at's b ei n g a u t om a t ed do e s n't j u s t i f y D C S[d i s t ri bu t ed c on t r ol s ys t e m].Wi t h t he st a rt i ng p r i c e t a gs o f cho s e p r od uc t s b ei ng r e l a t i v e l y h i gh, a p r o gr am m a bl ec o nt ro l l e r m a ke s s en s e fo r s m al l, l ow l oo p co un t ap pl i c at i on .Th e s e c ond i s w he r e yo u h av e t o i n t e gr at e t h e l o op cl o s el y w i t h t h e s eq u ent i a l l o gi c a l.B a t ch c on t rol l er s a r e p ri m e ex a m pl e ,wh e r e t h e s e qu e n c e and m ai nt ai ni n g t h e pr oc e s s v a ri a bl e a re i nt e rt wi n ed s o cl os e l y t h a t t h e b en e fi t s of h avi ng a p r o gr am m a bl e co nt ro l l e r t o d o th e s e qu e nti al l o gi ca l o ut we i ghs s om e o f t h e di s ad va n t a ges o f n ot h av i n g a d i st ri b ut ed con t rol s ys t e m."B i l l B a r ko vi t z, pr e si d en t o f Tr i con ex,p r ed i ct s t h at"al l fut u r e c o nt ro l l e rs t h a t co m e out i n t h e pr o c e s s c ont r ol s ys t em b us i n es s wi l l e m br a c e a l ot o f m or e P LC t e ch nol o g y a n d a l o t m o r e P LC f un ct i o n al i t y t h a n t h e y e v e r di d be f o re ."Communications and MAPC om m un i c a t i o ns are vi t a l t o a n i nd i vi du al au t om a t i o n ce l l an d t o b e a u t om a t ed f a ct o r y a s a wh ol e. We'v e h e a r d a l o t ab ou t M A P i n t h e l as t f ew ye a r s,a n d a l o t of c om p an i e s h a v e j um pe d o n t h e b an d w a gon.[2]M a n y, h o w ev e r,we r e d i sa p po i nt e d w h en a f ul l y-d e f i n ed and co m p l e t ed M AP s p e ci fi c at i on di dn't a pp e a r i m m ed i a t el y .S a ys La r r y K o m a r e k:"R i gh t n ow, M A P i s s t i l l a m ovi n g t a rget fo r t h e m a nu f a ct ur e rs, a s p e c i f i ca t i on t h at i s n ot fi n a l.P re s en t l y,f o r ex am pl e.p eo pl e ar e i nt ro du ci ng p r od u ct s t o m e e t t h e M AP2.1s t an d a rd .Ye t2.1-ba s ed pro d uc t s wi l l b e o bs o l et e w h e n t h e n ew s t an da r d f or M AP3.0 i s i nt r od u ce d."B e c a u s e o f t hi s,m a n y P LC v e nd o rs a r e h ol di n g o ff o n ful l M AP i m pl e m e nt at i o ns. O m ro n,fo r ex am p l e,h a s a n on goi n g M AP-co m p at i b i l i t y p r o gr am;[3]b ut F ra n k N e w bu rn,vi c e p r esi d en t o f O m ro n's In d us t r i alD i vi s i o n ,r ep or t s t ha t be c a us e o f t h e l ac k o f a fi rm d ef i ni t i on ,O m r on's P LC s d o n't ye t t al k t o MA P.S i n c e i t's un l i k e l y t h at an i n di vi d u al P LC wo ul d t al k t o b ro a d M AP a n yw a y, m a k e rs a r e c on c en t r a t i n g on pr o p ri et a r y n e t wo r ks. A c co r di n g t o S a l P ro v anz a no, u s e r s f e a r t h at i f t h e y do get on bo a r d an d ve nd o rs wi t h dr a w f r om M A P, t h e y'l l b e t h e o n es l e ft ho l d i n g a c om m u ni c at i o ns s t ru c t u r e t h a t's n ot s up po rt e d.Universal I/OW h i l e t h er e a r e con c e r ns ab ou t t h e l ac k o f com p at i bl e co m m uni c at i o ns b e t w e e n P LC s fr om di ff er e nt ve nd o rs,t he c on n e ct i on at t h e o t h e r en d-t h e I/O-i s ev e n m o re f r a gm ent e d .Wi t h r a r e ex c ep t i on s,I/O i s s t i l l p r op ri e t a r y .Ye t t he r e a r e t h os e wh o f e e l t h a t I/O w i l l e v e nt ua l l y b e c om e m o re un i v e rs a l .GE F a n u c i s h opi n g t o d o t h at wi t h i t s G e ni us s m a rt I/O l i n e. T h e i n d ep e nd en t I/O m a k e rs a r e p ul l i n g i n t he s a m e d i rec t i on.M a n y s a y t h a t I/O i s s u c h a h i gh-v al u e i t em t h at P LC m ak e r s wi l l a l w a ys w a nt t o k e ep i t p ro p ri et a r y .A s K en J an no t t a, s a ys: "T h e I/O i s goi ng t o b e a di sp r op or t i o n at e am ou nt o f t he h a rd w a r e s a l e. C e r t ai nl y e a c h P LC v e nd o r i s go i n g t o t r y t o p rot e ct t h at. "F o r t h at r e a so n, he s a ys, P LC m a ke r s w o n't b e gi n s el l i ng u ni v e rs al I/O s ys t em f r om ot h e r ve n do r."i f we s t ar t s e l l i n g t h a t ki n d o f p ro du c t,"s a ys j ann ot t a, "w h at d o w e m a nu f a ct ur e?"Wi t h m or e i nt el l i gen t I/O a pp e a ri n g, S a l P ro v anz a no f e el s t hi s wi l l l e adt o m o r e di ffe r e nt i at i o n am on g I/O f ro m di ff er e nt m ak er s. "W h e re t he I/O b e c om es ex t r em el y i nt el l i gen t a nd b e co m es p a rt of t h e s ys t em,"h e s a ys,"i t r e a l l y i s h a rd t o d ef i ne w hi c h i s t he I/O an d wh i c h i s C P U. It r e a l l y C P U, i f yo u w i l l, i s eq u al l y i n t e gr a t ed i nt o t h e s ys t e m as t h e I/O."Connecting PLC I/O to PCsW h i l e di ff er e nt P LC s p r ob a bl y w i l l co nt i n ue t o u s e p r op r i e t ar y I/O, s e v e ra l v en do rs m ak e i t pos s i bl e t o con n e ct5 t h ei r I/O t o IB M P C-co m p at i b l e e q ui pm en t. Al l e-bra d e l e y, C o ul d, a nd C i n ci nn at i M i l a c r on a l r e a d y h a v e, an d r u m o r ha s i t t ha t GE i s pl a nn i n g s om et hi n g al on g t h es e s a m e l i n e s .[4]Bi ll K e t el hut, m an a ge of p ro du ct p l a nn i n g a t G E F a n uc No rt h A m e ri c a ,s e es t his s o rt o f t hi n g as al t e r n a t i v e t o u ni v ers a l I/O."I t h i n k t he t r en d,i ns t ea d o f t o wa r d u ni v e r sa l I/O, wi l l be m ul t i p l e h os t i nt e r f a c e ,"h e s a ys.J od i e G l or e,di r e ct o r o f m ar ki n g, S qu a r e D Au t o m a t i o n P r od u ct s,Vi e w s i t as a n ot h er i ndi c a t i o n t h at P LC s a r e,an d h av e b e e n fo r s om e t i m e, i n du s t ri al c o m p ut e rs.PLCs VS PCsIf t h e IB M7552, t he A c t i o n In s t r um e nt s B C22,a nd o t h e r c o m p ut e rs a re a p p e ar i n g o n t h e f ac t or y f l o o r,wo n't t h i s m e a n n e w c om p e t i t i o n f o r P LC s? R i c h Rya n:"Th e re a r e som e co nt rol f un c t i o ns t ha t ar e be t t e r j ob s f or c o m p u t e rs. P r o gr am m a bl e co nt ro l l e rs ha v e b e en fo r c ed t o f i t i n t o t ho se a p pl i c a t i o ns. "Ye t, t he m a j o ri t y o f v en d or s w e s u rv e ye d d on't l i k e t h e"P C i nv a si o n" wi l l po se a pr ob l em fo r t he m.M os t s ai d t h at P LC s an d P C s a r ee n ou gh ap a rt i n a rch i t e ct ur e t ha t t h e y w i l l us u a l l y d o t h e c o nt ro l. T h e y d o n'tf e e l t h a t P C s wi l l t a k e j o bs f rom P LC s j u s t b e c au s e P LC I/O m o du l es c an n o w b e c on n ec t ed t o P C s; t h e y b e l i ev e t hi s si m pl y m e a ns t h at P LC s a nd P C s w i l l be ab l e t o sh a re t h e s am e d at a."T h e r e a r e i nh e r ent a r c hi t e ct u r al di f f er e n c es be t w e e n a ge n e r al p u rp os e c o m p ut e r,"s a ys R i c h Rya n,"a n d a p r o gr am m a bl e co nt r ol l e r .T h e r e a r e h a r dw a r e c on s t ru ct s b ui l t i nt o al m os t e v e r y m a n uf a c t ur e's p r o gr am m a bl e c o nt ro l l e r t od a y t ha t cus t o m i z e t h e h ar d w a r e t o r un l ad d er l o gi c a nd t o s ol v e m a c hi n e co d e."O ne f un d am e nt al d i ffe r e n c e h e ci t e s i s c a l l e d s t at e of t h e m a c hi n e .Rya n:"W h e n yo u s hut t h e m a c h i n e o ff, o r i nt e rr u pt t h e c yc l e,or yo u j um p t o an ot her s p ot i n t h e c yc l e,p ro gr a m m a bl e c ont r ol l e rs i nh e r en t l y r e m em b er t h e st at e of t h e m ac hi n e:w h a t t he t i m e r s w e r e,w h at t h e co un t er s w e r e,wh at t h e s t a t e s o f a l l t h e l at c hes w e r e .C om pu t e r s d o n't i n h er e nt l y d o t h at."外文资料翻译译文单片机基础单片机是电脑和集成电路发展的巅峰,有据可查的是他们也是20世纪最有意义的两大发明。

相关文档
最新文档