电涡流传感器实验
03实验三 电涡流传感器实验
![03实验三 电涡流传感器实验](https://img.taocdn.com/s3/m/c661ee755627a5e9856a561252d380eb62942329.png)
电涡流传感器实验
实验台简介
DRZZS-A型多功能转子试验台由:1底座、2主轴、3飞轮、4直流电机、5主轴支座、6含油轴承及油杯、7电机支座、8连轴器及护罩、9RS9008电涡流传感器支架、10磁电转速传感器支架、11测速齿轮(15齿)、12保护挡板支架,几部分组成,如图1所示。
图1 DRZZS-A型多功能转子试验台传感器安装位置示意图
主要技术指标为:
可调转速范围:0~2500转/分,无级
电源:DC12V
主轴长度:500mm
主轴直径:12mm
外形尺寸:640×140×160mm
重量:12.5kg
轴心轨迹是转子运行时轴心的位置,在忽略轴的圆度误差的情况下,可以将两个电涡流位移传感器探头安装到实验台中部的传感器支架上,相互成90度,并调好两个探头到主轴的距离(约1.6mm),标准是使从前置器输出的信号刚好为0(mV)。
这时,转子实验台启动后两个传感器测量的就是它在两个垂直方向(X,Y)上的瞬时位移,合成为李沙育图就是转
图5 轴心轨迹测量
子的轴心运动轨迹。
利用轴心运动轨迹可以对转轴进行故障诊断。
轴心运动轨迹示意图:
(利用软件仿真产生,拷屏)。
电涡流传感器实验报告
![电涡流传感器实验报告](https://img.taocdn.com/s3/m/01301afdc67da26925c52cc58bd63186bdeb926b.png)
电涡流传感器实验报告电涡流传感器实验报告摘要:本实验旨在研究电涡流传感器的原理和应用。
通过实验,我们探索了电涡流传感器的工作原理、特性以及在工业领域的应用。
实验结果表明,电涡流传感器具有高灵敏度、快速响应和广泛的应用前景。
引言:电涡流传感器是一种常用的非接触式传感器,广泛应用于工业领域。
它通过感应电磁场中的涡流来检测目标物体的位置、形状、材料和表面缺陷等信息。
本实验旨在深入了解电涡流传感器的原理和特性,并通过实验验证其性能。
一、电涡流传感器的原理电涡流传感器利用法拉第电磁感应原理,当导体在变化的磁场中运动或受到变化的磁场作用时,会在其内部产生涡流。
电涡流传感器通过检测涡流的变化来获取目标物体的信息。
涡流的强度与目标物体的导电性、形状、运动速度等因素有关。
二、电涡流传感器的特性1. 高灵敏度:电涡流传感器可以检测微小的涡流变化,对目标物体的微小变化有很高的响应能力。
2. 快速响应:电涡流传感器的响应时间较短,可以实时检测目标物体的变化。
3. 非接触式:电涡流传感器无需与目标物体直接接触,减少了磨损和损坏的风险。
4. 宽频率范围:电涡流传感器可以适应不同频率范围内的磁场变化,具有较广泛的应用范围。
三、实验方法1. 实验器材:电涡流传感器、交流电源、信号发生器、示波器等。
2. 实验步骤:a. 将电涡流传感器连接到交流电源和信号发生器上。
b. 调节信号发生器的频率和幅度,观察示波器上的涡流信号变化。
c. 改变目标物体的材料、形状和距离等参数,观察涡流信号的变化。
四、实验结果与分析通过实验,我们观察到了不同频率和幅度下涡流信号的变化。
当频率较高时,涡流信号的幅度减小,响应时间变短。
当目标物体的材料为导体时,涡流信号较强;当目标物体的材料为绝缘体时,涡流信号几乎消失。
此外,目标物体的形状和距离也会对涡流信号产生影响。
五、电涡流传感器的应用电涡流传感器具有广泛的应用前景,主要应用于以下领域:1. 金属材料检测:电涡流传感器可以检测金属材料中的缺陷、裂纹和变形等问题,用于质量控制和安全检测。
电涡流传感器实验报告
![电涡流传感器实验报告](https://img.taocdn.com/s3/m/a23bd6849fc3d5bbfd0a79563c1ec5da50e2d6d1.png)
电涡流传感器实验报告电涡流传感器实验报告引言电涡流传感器是一种常见的非接触式传感器,广泛应用于工业领域。
本实验旨在通过实际操作和数据分析,深入了解电涡流传感器的原理、特点和应用。
实验目的1. 理解电涡流传感器的工作原理;2. 掌握电涡流传感器的基本操作方法;3. 分析电涡流传感器在不同应用场景下的性能表现。
实验装置与方法本实验使用了一台电涡流传感器测试仪和一组标准试样。
首先,将试样固定在传感器上,然后通过测试仪的操作面板设置相应的参数,如频率、电流等。
随后,观察传感器输出的电压信号,并记录下相应的数据。
实验结果与分析通过实验操作,我们得到了一系列关于电涡流传感器的数据。
首先,我们观察到传感器输出信号的幅值与试样的导电性质有关。
当试样的导电性越好时,传感器输出的电压信号幅值越大,反之亦然。
这是因为电涡流传感器通过感应试样中的涡流产生电磁场变化,并通过电感耦合原理转换为电压信号。
其次,我们发现传感器输出信号的频率对试样的尺寸和形状有一定的敏感性。
当试样的尺寸较大或形状复杂时,传感器输出信号的频率会有所变化。
这是由于试样的尺寸和形状会影响涡流的形成和消散过程,从而影响到传感器的工作频率。
此外,我们还测试了传感器在不同环境条件下的性能表现。
实验结果显示,传感器对温度和湿度的变化具有一定的抗干扰能力。
然而,在极端环境条件下,如高温和高湿度下,传感器的性能可能会受到影响。
因此,在实际应用中,需要根据具体情况选择合适的传感器型号和工作条件。
讨论与展望电涡流传感器作为一种非接触式传感器,具有许多优点,如高灵敏度、快速响应和无磨损等。
在工业领域,电涡流传感器被广泛应用于材料检测、无损检测和精密测量等领域。
然而,目前电涡流传感器的应用还存在一些局限性,如对试样尺寸和形状的限制以及对环境条件的敏感性。
因此,未来的研究可以致力于改进传感器的性能,拓展其应用范围。
结论通过本实验,我们深入了解了电涡流传感器的工作原理、特点和应用。
电涡流效应实验报告(3篇)
![电涡流效应实验报告(3篇)](https://img.taocdn.com/s3/m/722cd541182e453610661ed9ad51f01dc281573f.png)
第1篇一、实验目的1. 了解电涡流效应的基本原理和产生过程。
2. 通过实验验证电涡流效应的存在及其与金属导体距离的关系。
3. 掌握电涡流传感器的原理和位移测量方法。
二、实验原理电涡流效应是指当金属导体置于变化的磁场中时,导体内会产生感应电流,这种电流在导体内形成闭合回路,类似于水中的漩涡,故称为电涡流。
电涡流效应的产生主要依赖于法拉第电磁感应定律和楞次定律。
三、实验器材1. 电涡流传感器2. 信号发生器3. 示波器4. 金属样品5. 实验台6. 连接线四、实验步骤1. 将电涡流传感器固定在实验台上,确保传感器水平且与金属样品保持一定的距离。
2. 将金属样品放置在传感器的检测区域内,并确保金属样品表面平整。
3. 连接信号发生器和示波器,设置合适的频率和幅度,使传感器产生交变磁场。
4. 打开信号发生器,观察示波器上的信号变化,记录下不同金属样品距离传感器时的信号波形。
5. 逐渐改变金属样品与传感器之间的距离,重复步骤4,记录不同距离下的信号波形。
6. 分析实验数据,探讨电涡流效应与金属导体距离的关系。
五、实验结果与分析1. 实验过程中,随着金属样品与传感器距离的增加,示波器上的信号波形逐渐减弱,说明电涡流效应随距离的增加而减弱。
2. 当金属样品与传感器距离较远时,示波器上几乎无信号显示,说明电涡流效应随距离的增加而消失。
3. 当金属样品与传感器距离较近时,示波器上的信号波形明显,说明电涡流效应随距离的减小而增强。
六、实验结论1. 电涡流效应确实存在,且与金属导体距离密切相关。
2. 当金属导体与传感器距离较近时,电涡流效应较强;当距离较远时,电涡流效应较弱。
3. 电涡流效应可用于电涡流传感器的位移测量,通过测量电涡流效应的变化,可以实现对金属导体位移的精确测量。
七、实验讨论1. 电涡流效应的产生与金属导体的电阻率、磁导率以及几何形状等因素有关。
2. 实验过程中,金属样品表面平整度对实验结果有一定影响,表面不平整可能导致实验误差。
实验06(电涡流传感器)实验报告
![实验06(电涡流传感器)实验报告](https://img.taocdn.com/s3/m/46eb96b0cc22bcd126ff0c45.png)
实验六-电涡流传感器实验1:电涡流传感器位移实验一、实验目的了解电涡流传感器测量位移的工作原理和特性。
二、实验原理通过交变电流的线圈产生交变磁场,当金属体处在交变磁场时,根据电磁感应原理,金属体内产生电流,该电流在金属体内自行闭合,并呈旋涡状,故称为涡流。
涡流的大小与金属导体的电阻率、导磁率、厚度、线圈激磁电流频率及线圈与金属体表面的距离x等参数有关。
电涡流的产生必然要消耗一部分磁场能量,从而改变激磁线线圈阻抗,涡流传感器就是基于这种涡流效应制成的。
电涡流工作在非接触状态(线圈与金属体表面不接触),当线圈与金属体表面的距离x以外的所有参数一定时可以进行位移测量。
三、实验器械主机箱、电涡流传感器实验模板、电涡流传感器、测微头、被测体(铁圆片)。
四、实验接线图五、实验数据记录以及数据分析实验数据如下:实验数据拟合图像如下:数据分析:由图像可知,位移-输出电压曲线的线性区域是0.4mm~4.4mm,进行正、负位移测量时的最佳工作点2.4mm处。
实验拟合直线方程为:y=1.9885x-0.8639灵敏度和非线性误差计算:测量范围为1mm时,灵敏度为1.0677(V/mm),非线性误差为20.426%测量范围为3 mm时,灵敏度为1.7738(V/mm),非线性误差为12.244%六、实验备注电涡流传感器的量程与哪些因素有关,如果需要测量±5mm 的量程应如何设计传感器?与被测物体的磁导率,电导率,尺寸因子,探头线圈的电流强度和频率有关。
通过调节前面五个因素的组合来达到所需要的量程。
实验2:被测体材质对电涡流传感器特性影响一、实验目的了解不同的被测体材料对电涡流传感器性能的影响。
二、实验原理涡流效应与金属导体本身的电阻率和磁导率有关,因此不同的材料就会有不同的性能。
三、实验器械和实验1相同,另加铜和铝的被测体。
四、实验接线图和实验1相同。
五、实验数据记录以及数据分析实验数据记录如下:被测物体材料为铝时被测物体材料为铜时实验数据拟合图像如下:材料为铝,量程为1mm和3mm数据分析:由图像可知,位移-输出电压曲线的线性区域是0.1mm~1.0mm。
电涡流传感器位移实验
![电涡流传感器位移实验](https://img.taocdn.com/s3/m/0270820d3868011ca300a6c30c2259010202f3d0.png)
实验二十电涡流传感器位移实验一、实验目的了解电涡流传感器测量位移的工作原理和特性。
二、实验内容用铁圆片检测电涡流传感器的位移特性。
三、实验仪器电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片。
四、实验原理电涡流式传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,与其平行的金属片上感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关。
当平面线圈、被测体(涡流片)、激励源已确定,并保持环境温度不变,阻抗Z只与X距离有关。
将阻抗变化经涡流变换器变换成电压V输出,则输出电压是距离X的单值函数。
五、实验注意事项被测体与涡流传感器测试探头平面尽量平行,并将探头尽量对准被测体中间,以减少涡流损失。
六、实验步骤1、根据图20-1安装电涡流传感器。
2、观察传感器结构,这是一个平绕线圈。
3、将涡流传感器输出线接入实验模板上标有L的两端插孔中,作为振荡器的一个元件。
图20-1 电涡流传感器安装示意图图8-2 电涡流传感器位移实验接线图4、在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。
5、将实验模板输出端Vo与数显单元输入端Vin相接。
数显表量程切换到选择电压20V 档。
6、用连结导线从主控台接入15V直流电源接到模板上标有+15V的插孔中。
7、使测微头与传感器线圈端部接触,开启主控台电源开关,此时数显表读数为最小,然后每隔0.1mm读一个数,直到输出几乎不变为止。
将结果列入下表。
(实验结论:1、本实验每隔0.1mm是相对位置,起始值看做0.1mm即可,无需从测微头上读绝对位置。
每旋转0.1mm,输出的电压的增量应该大致相等。
2、由于学生做实验可能不能正确的找到起始点,导致采集的数据不在线性范围内,从而影响数据采集的线性度,可以让学生从选取的起始点开始计数,多计几组数据,然后选取线性度较好的十组数据,填入下表)8、根据上表数据画出V-X曲线,根据曲线找出线性区域及进行正、负位移测量时的最佳工作点,试计算量程为1mm、3 mm及5mm时的灵敏度和线性度(可以用端基法或其它拟合直线)。
电涡流式位移传感器实验报告
![电涡流式位移传感器实验报告](https://img.taocdn.com/s3/m/21d9203700f69e3143323968011ca300a7c3f674.png)
电涡流式位移传感器实验报告引言:电涡流式位移传感器是一种常用于测量物体位移的传感器。
它通过感应物体表面的涡流引起的感应电磁场变化来实现位移测量。
本实验旨在通过实验验证电涡流式位移传感器的工作原理,并探究其在位移测量中的应用。
实验目的:1. 了解电涡流式位移传感器的工作原理;2. 学习使用电涡流式位移传感器进行位移测量;3. 分析位移测量结果的准确性和稳定性。
实验仪器和材料:1. 电涡流式位移传感器;2. 示波器;3. 可调直流电源;4. 待测物体。
实验步骤:1. 将待测物体固定在实验台上,并将电涡流式位移传感器的感应头靠近物体表面;2. 连接电涡流式位移传感器和示波器,并调节示波器的参数以观察信号波形;3. 通过调节可调直流电源的电压,改变电涡流式位移传感器的工作距离,记录不同工作距离下的信号波形;4. 根据示波器上的信号波形,计算出不同工作距离下的位移值;5. 重复上述步骤,以获得多组位移测量数据。
实验结果和分析:根据实验记录的信号波形和位移测量数据,可以得出以下结论:1. 电涡流式位移传感器的工作距离与信号波形的变化呈反比关系,即工作距离越小,信号波形的振幅越大;2. 通过对信号波形的观察和分析,可以较准确地计算出位移值;3. 在一定范围内,电涡流式位移传感器的测量结果具有较高的准确性和稳定性。
实验结论:通过本实验,验证了电涡流式位移传感器的工作原理,并探究了其在位移测量中的应用。
实验结果表明,电涡流式位移传感器具有较高的测量精度和稳定性,在工业自动化控制和机械加工等领域有着广泛的应用前景。
参考文献:[1] Xie Y, Zhang H, Fu C, et al. Design and fabrication of an eddy current displacement sensor[J]. Sensors, 2018, 18(10): 3243.[2] Wei D, Zhao J, Yan Y. Design and evaluation of a noveleddy current displacement sensor for in-situ monitoring of turbine blades[J]. IEEE Sensors Journal, 2019, 19(13): 5284-5291.。
电涡流式传感器实验报告
![电涡流式传感器实验报告](https://img.taocdn.com/s3/m/2db34a5ea200a6c30c22590102020740bf1ecd4c.png)
电涡流式传感器实验报告电涡流式传感器实验报告引言:电涡流式传感器是一种广泛应用于工业领域的非接触式传感器,它利用了涡流的原理来检测金属材料中的缺陷和变化。
本实验旨在探究电涡流式传感器的工作原理、应用领域以及实验结果的可靠性。
一、工作原理电涡流式传感器利用了电磁感应的原理,当电磁场通过金属材料时,会在材料内部产生电涡流。
这些电涡流会改变电磁场的分布,从而反映出材料的性质和状态。
传感器通过测量电涡流的变化来判断材料的缺陷和变化。
二、应用领域1. 材料缺陷检测:电涡流式传感器可以用于检测金属材料中的裂纹、疲劳和腐蚀等缺陷。
通过测量电涡流的变化,可以精确地定位和评估材料中的缺陷程度,为后续的修复和保养提供依据。
2. 金属排序:由于不同材料的电导率和磁导率不同,电涡流式传感器可以用于对金属进行分类和排序。
通过测量电涡流的强度和频率,可以快速准确地区分不同种类的金属材料。
3. 无损检测:电涡流式传感器是一种非接触式的检测方法,可以在不破坏材料表面的情况下进行检测。
因此,它被广泛应用于对复杂结构和精密零件的无损检测,如航空航天、汽车制造和电子设备等领域。
三、实验设计与结果在本实验中,我们选择了一块铝合金板作为被测材料,利用电涡流式传感器对其进行了缺陷检测。
实验过程中,我们将传感器靠近铝合金板表面,并通过测量电涡流的变化来判断板材中是否存在缺陷。
实验结果显示,当传感器靠近板材表面时,电涡流的强度和频率发生了明显的变化。
在板材表面平滑的区域,电涡流强度较弱,频率较高;而在存在缺陷的区域,电涡流强度增强,频率降低。
通过对实验结果的分析,我们可以准确地定位和评估板材中的缺陷。
四、实验结果的可靠性在实验过程中,我们注意到实验结果的可靠性受到多种因素的影响。
首先,传感器与被测材料的距离和角度会对测量结果产生影响。
因此,在实际应用中,需要根据具体情况进行传感器的位置和角度调整。
其次,被测材料的性质和状态也会对实验结果产生影响。
电涡流传感器系列实验
![电涡流传感器系列实验](https://img.taocdn.com/s3/m/7dabb7f509a1284ac850ad02de80d4d8d15a01ff.png)
电涡流传感器系列实验电涡流传感器是用来检测金属零件表面及内部缺陷、裂纹、腐蚀程度、变形等信息的一种非接触式电磁传感器。
本次实验室课程将分为三个部分,分别为电涡流传感器原理的介绍、实验步骤以及实验数据的分析处理。
一、原理介绍电涡流传感器是利用电磁感应的原理来检测金属零件表面及内部缺陷、裂纹、腐蚀程度、变形等信息的一种传感器。
它是将激励信号通过探头送入被测件表面,经过被测件表面和内部微小变形后,产生涡流和磁场,利用敏感元件检测产生的电磁信号,从而检测出被测件的变形情况。
二、实验步骤1. 实验器材(1)y 波示波器;(2)电源;(3)电容式电压表;(4)电涡流传感器;(5)接线器件。
2. 实验步骤(1)将电涡流传感器连接在信号发生器上,设定信号发生器输出频率为 100kHz;(2)将电涡流传感器沿着被测件轮廓轻轻地刷过,实验人员可根据实验需求自行选择角度和方向;(3)将信号输出到 y 波示波器,观察并记录不同条件下的波形;(4)通过记录的数据进行分析和图表绘制。
三、实验数据的分析处理通过实验,我们可以得到电涡流传感器的检测结果。
这些结果包括了被测件表面质量、材料状态、表面裂纹等的信息。
我们可以将这些信息度量出来,并绘制成图表,描绘出被测件产生的涡流磁场。
通过这些图表,我们可以比较出不同被测件的质量差异,可以帮助我们进行一些维护和修理工作。
总的来说,电涡流传感器是一种重要的非接触式电磁传感器,它可以帮助我们了解被测件表面质量、材料状态、表面裂纹等信息。
这些信息可以帮助我们进行更好的维护和修理工作,确保零件的有效性和长期安全性。
涡流传感器位移实验报告
![涡流传感器位移实验报告](https://img.taocdn.com/s3/m/119b81b14bfe04a1b0717fd5360cba1aa9118c64.png)
一、实验目的1. 理解涡流传感器的工作原理及其在位移测量中的应用。
2. 掌握电涡流传感器位移测量的基本操作流程。
3. 分析电涡流传感器在不同位移条件下的测量特性。
二、实验原理电涡流传感器是利用电磁感应原理进行非接触式测量的传感器。
当高频电流通过传感器线圈时,会在其周围产生交变磁场。
当金属被测物体靠近该磁场时,会在物体表面产生感应电流,即电涡流。
电涡流的产生会消耗部分能量,从而改变传感器线圈的阻抗,进而影响线圈的输出电压。
根据电涡流效应,当金属被测物体与传感器线圈之间的距离发生变化时,电涡流的强度和分布也会发生变化,导致传感器线圈的阻抗和输出电压随之改变。
通过测量线圈阻抗或输出电压的变化,可以实现对金属被测物体位移的测量。
三、实验器材1. 电涡流传感器2. 被测金属圆片3. 测微头4. 数显电压表5. 直流电源6. 连接导线7. 主控箱四、实验步骤1. 将电涡流传感器安装在主控箱上,并将传感器输出线接入实验模块的标有“TI”的插孔中。
2. 将测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。
3. 将电涡流传感器输出线接入实验模块的输出端Vo,并与数显电压表输入端Vi相接。
4. 将实验模块输出端Vo与数显电压表输入端Vi相接,并选择电压20V档。
5. 用连接导线从主控台接入15V直流电源到模块上标有15V的插孔中,同时主控台的地与实验模块的地相连。
6. 使测微头与传感器线圈端部有机玻璃平面接触,开启主控箱电源开关(数显表读数能调到零的使接触时数显表读数为零且刚要开始变化),记下数显表读数。
7. 每隔0.1mm读取一次数显表读数,直到输出几乎不变为止。
8. 将结果列入表格,并绘制位移-电压曲线。
五、实验结果与分析1. 位移-电压曲线如图所示,可以看出电涡流传感器具有较好的线性度,且在较小的位移范围内,其测量精度较高。
2. 通过曲线拟合,可以得到电涡流传感器的线性区域,并选择最佳工作点进行位移测量。
电涡流传感器实验总结
![电涡流传感器实验总结](https://img.taocdn.com/s3/m/e9e835614a73f242336c1eb91a37f111f1850d8f.png)
电涡流传感器实验总结电涡流传感器是一种常用的非接触式传感器,主要用于测量金属导体表面的涡流损耗,广泛应用于工业生产和科学研究领域。
在本次实验中,我们对电涡流传感器进行了深入的研究和实验,现将实验总结如下。
首先,我们对电涡流传感器的工作原理进行了深入了解。
电涡流传感器利用感应电磁场与金属导体产生的涡流相互作用的原理,通过测量涡流损耗来实现对金属导体表面缺陷的检测和测量。
在实验中,我们通过理论分析和实验操作,深入了解了电涡流传感器的工作原理及其在实际应用中的重要性。
其次,我们进行了电涡流传感器的性能测试。
通过搭建实验平台,我们对电涡流传感器的灵敏度、稳定性和测量精度等性能进行了全面的测试。
实验结果表明,电涡流传感器具有高灵敏度、良好的稳定性和较高的测量精度,能够满足工业生产和科学研究中对金属导体表面缺陷检测和测量的需求。
此外,我们还对电涡流传感器在实际应用中的优缺点进行了分析。
电涡流传感器具有非接触式、高精度、快速响应等优点,能够实现对金属导体表面缺陷的高效检测和测量;但同时也存在着对金属材料和导体形状的限制、对环境电磁干扰敏感等缺点。
因此,在实际应用中需要根据具体情况进行合理选择和使用。
最后,我们对电涡流传感器的未来发展进行了展望。
随着科学技术的不断进步和工业生产的不断发展,电涡流传感器作为一种重要的非接触式传感器,将会在材料检测、航空航天、汽车制造等领域发挥越来越重要的作用。
同时,随着新材料、新工艺的不断涌现,电涡流传感器的性能和应用范围也将得到进一步的提升和拓展。
总的来说,本次实验对电涡流传感器进行了全面的研究和实验,深入了解了其工作原理、性能特点以及在实际应用中的优缺点,对于我们进一步深入研究和应用电涡流传感器具有重要的意义。
希望通过我们的努力,能够为电涡流传感器的发展和应用做出更大的贡献。
电涡流式传感器实验
![电涡流式传感器实验](https://img.taocdn.com/s3/m/c9484b3a7dd184254b35eefdc8d376eeaeaa17c2.png)
电涡流式传感器实验电涡流传感器是一种非接触式的传感器,它基于电磁感应原理,用于检测金属零件表面的微小变形和缺陷。
在本实验中,我们将学习电涡流传感器的基本原理和设计,并使用LabVIEW软件来控制和获取传感器的数据。
实验器材:1. 电涡流传感器模块2. 信号发生器3. 示波器4. LabVIEW软件实验步骤:1. 将信号发生器连接到电涡流传感器的输入端口,并将其设置为正弦波输出。
调整信号发生器的频率和振幅,以使输出信号符合底部的要求。
在本实验中,我们将使用50kHz的频率和1Vpp的振幅。
2. 连接示波器到电涡流传感器的输出端口,并调整示波器的设置以显示传感器输出信号的波形。
您应该可以看到一个类似于正弦波的波形,其振幅随着金属零件距离传感器的表面越来越远而减小。
3. 使用实验提供的金属零件(可以是铝或钢),将其放在传感器的下方,并检查传感器输出信号的变化。
您应该看到传感器输出信号的幅值会随着金属零件离传感器表面的距离变化而变化。
当金属零件接近传感器的表面时,传感器输出信号的幅值将减小,反之亦然。
4. 使用LabVIEW软件创建一个程序,以实时控制和获取电涡流传感器的数据。
您可以使用LabVIEW的数据采集和图表绘制功能来显示传感器输出信号随时间的变化。
您还可以尝试使用基于信号处理的技术(例如傅里叶变换)来提取更多关于金属零件的信息。
实验结果:在进行此实验时,您应该能够了解电涡流传感器的基本原理和设计,并掌握使用LabVIEW软件控制和获取传感器数据的方法。
您还应该能够观察传感器输出信号的变化,这可以有助于识别金属零件的一些特征(例如尺寸、形状、瑕疵等)。
电涡流传感器实验报告
![电涡流传感器实验报告](https://img.taocdn.com/s3/m/e1ab5824178884868762caaedd3383c4ba4cb441.png)
一、实验目的本次实验旨在了解电涡流传感器的工作原理,掌握其位移特性的测量方法,并验证电涡流传感器在实际应用中的可靠性和准确性。
二、实验原理电涡流传感器是利用电磁感应原理进行测量的传感器。
当导电体(被测物体)接近电涡流传感器的线圈时,线圈中产生的交变磁场会在导电体中感应出涡流。
涡流的大小与导电体的材料、电阻率、导磁率、厚度、温度以及与线圈的间距有关。
通过测量涡流的大小,可以计算出导电体与线圈的间距,从而实现位移的测量。
三、实验仪器与材料1. 电涡流传感器2. 信号发生器3. 示波器4. 金属样品5. 螺旋测微仪6. 电压表四、实验步骤1. 将电涡流传感器固定在实验台上,将金属样品放在传感器的检测区域内。
2. 连接信号发生器和示波器,设置合适的工作频率和幅度。
3. 使用螺旋测微仪测量金属样品与电涡流传感器线圈的距离。
4. 打开信号发生器,调节频率和幅度,使传感器产生稳定的涡流信号。
5. 使用示波器观察涡流信号的波形,记录不同距离下的信号幅度。
6. 将测得的距离和信号幅度数据填入表格,绘制V-X曲线。
7. 分析V-X曲线,确定传感器的线性范围和灵敏度。
五、实验结果与分析1. 通过实验,我们得到了电涡流传感器的V-X曲线。
从曲线可以看出,传感器的线性范围较宽,灵敏度较高。
2. 在线性范围内,传感器的输出电压与距离呈线性关系,满足实际应用的要求。
3. 通过对V-X曲线的分析,我们可以确定传感器的最佳工作频率和幅度。
六、实验结论1. 电涡流传感器是一种高精度、高灵敏度的位移测量传感器,在实际应用中具有广泛的应用前景。
2. 通过实验,我们掌握了电涡流传感器的工作原理和测量方法,为后续的实际应用奠定了基础。
七、实验注意事项1. 在实验过程中,应确保电涡流传感器与金属样品保持平行,避免因角度偏差导致测量误差。
2. 在调节信号发生器的工作频率和幅度时,应逐步进行,避免突然变化对实验结果的影响。
3. 在读取数据时,应注意记录准确,避免因记录错误导致分析结果不准确。
电涡流传感器实验
![电涡流传感器实验](https://img.taocdn.com/s3/m/adca9a07793e0912a21614791711cc7930b77817.png)
电涡流传感器实验1 实验目的:了解电涡流传感器原理;了解不同被测材料对电涡流传感器的影响。
2 实验仪器 :电涡流传感器实验模块示波器: DS5062CE微机电源:WD990型, ±12V万用表: VC9804A型电源连接电缆螺旋测微仪3 实验原理:电涡流传感器由平面线圈和金属涡流片组成, 当线圈中通以高频交变电流后, 在与其平行的金属片上会感应产生电涡流, 电涡流的大小影响线圈的阻抗Z, 而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X 有关, 当平面线圈、被测体(涡流片)、激励源确定, 并保持环境温度不变, 阻抗Z只与距离X有关, 将阻抗变化转为电压信号V输出, 则输出电压是距离X的单值函数。
4 实验步骤:实验步骤如下:(1)用电源电缆连接电源和电涡流式传感器实验模块(插孔在后侧板), 其中电缆的橙蓝线为+12V, 白蓝线为-12V, 隔离皮(金色)为地, 切记勿接错!(2)安装电涡流线圈与涡流片(铁片, 黑色), 两者须保持平行;电涡流探头插头插入变换器插孔;安装好测微仪, 涡流变换器输出端Vout接电压表20V 档。
(3)打开微机电源, 用测微仪带动涡流片移动, 当涡流片完全紧贴线圈时输出电压为零(如不为零可适当改变支架中的线圈角度), 然后旋动测微仪使涡流片离开线圈, 从电压表有读数时每隔0.2mm记录一个电压值, 将V、X数值填入表 6, 作出V-X曲线。
(4)示波器接电涡流式传感器实验模块的探头入插孔, 观察电涡流传感器的激励信号频率, 随着线圈与电涡流片距离的变化, 信号幅度也发生变化, 当涡流片紧贴线圈时电路停振, 输出为零。
记录此现象。
(5) 更换涡流片(铜片, 金色), 进行测试并记录数据, 填入表 7。
在同一坐标上作出V-X曲线。
(6) 更换涡流片(铝片, 银色), 进行测试并记录数据, 填入表 8。
在同一坐标上作出V-X曲线。
5 实验数据记录和处理电涡流传感器测量数据(铁片)电涡流传感器测量数据(铜片)电涡流传感器测量数据(铝片)铁片:散点图为:拟合直线为:y=0.4326+1.6598 铜片:散点图为:拟合直线为:Y=0.4644+2.5960 铝片:散点图为:拟合直线为:y=0.4273+2.82696 实验感想通过本次实验, 了解了电涡流传感器原理和不同被测材料对电涡流传感器的影响, 熟悉了用电涡流传感器测位移的方法, 提高了动手能力, 总的来说有很大的收获。
电涡传感器应用实验报告
![电涡传感器应用实验报告](https://img.taocdn.com/s3/m/9681386a66ec102de2bd960590c69ec3d4bbdb6d.png)
一、实验目的1. 了解电涡流传感器的工作原理及特性。
2. 掌握电涡流传感器的安装与调试方法。
3. 通过实验,验证电涡流传感器在不同材料上的测量效果。
4. 分析电涡流传感器在实际应用中的优缺点。
二、实验原理电涡流传感器是一种非接触式传感器,它利用电磁感应原理,通过检测被测物体表面的涡流来测量物体的尺寸、位置、速度等参数。
当高频交流电流通过传感器线圈时,会在被测物体表面产生涡流,涡流的大小与物体表面的电导率、磁导率及传感器与物体表面的距离有关。
通过检测涡流的大小,可以实现对物体尺寸、位置等参数的测量。
三、实验设备1. 电涡流传感器2. 高频信号发生器3. 数据采集器4. 被测物体(不同材料)5. 测量装置6. 示波器四、实验步骤1. 将电涡流传感器安装在测量装置上,确保传感器与被测物体表面平行。
2. 将高频信号发生器的输出端连接到电涡流传感器的输入端。
3. 将数据采集器的输入端连接到电涡流传感器的输出端。
4. 设置高频信号发生器的频率、幅度等参数。
5. 将被测物体放置在传感器与测量装置之间,调整传感器与物体表面的距离。
6. 打开数据采集器,记录涡流大小与传感器与物体表面距离的关系。
7. 重复步骤5和6,分别对不同的被测物体进行测量。
8. 分析实验数据,总结电涡流传感器的应用特点。
五、实验结果与分析1. 实验数据表明,电涡流传感器在不同材料上的测量效果存在差异。
对于导电性能较好的材料,如铜、铝等,涡流较大,测量精度较高;而对于导电性能较差的材料,如塑料、木材等,涡流较小,测量精度较低。
2. 随着传感器与物体表面距离的增加,涡流大小逐渐减小。
在一定的距离范围内,涡流大小与距离呈线性关系。
3. 当传感器与物体表面距离达到一定值时,涡流大小趋于稳定,说明此时涡流已达到饱和状态。
六、实验结论1. 电涡流传感器具有非接触式、响应速度快、测量精度高等优点,适用于各种场合的尺寸、位置、速度等参数的测量。
2. 电涡流传感器在实际应用中,应注意选择合适的材料、调整传感器与物体表面的距离,以提高测量精度。
电涡流位移传感器实验报告
![电涡流位移传感器实验报告](https://img.taocdn.com/s3/m/e5dc9ac303d276a20029bd64783e0912a3167c60.png)
实验目的:通过对电涡流位移传感器的实验,了解其工作原理、特性以及在位移测量中的应用。
### 1. 实验背景
电涡流位移传感器是一种非接触、高精度的位移传感器,主要应用于测量金属导体的微小位移。
本实验旨在深入了解电涡流位移传感器的性能参数和使用方法。
### 2. 实验设备
- 电涡流位移传感器
- 信号调理电路
- 示波器
- 位移标准样品
### 3. 实验步骤
1. 连接电路:将电涡流位移传感器与信号调理电路连接,确保连接正确无误。
2. 设置示波器:对示波器进行适当设置,以便观察电涡流传感器输出信号的波形。
3. 校准:使用位移标准样品对电涡流传感器进行校准,调整信号调理电路,确保输出信号与位移值对应准确。
4. 进行位移测量:将电涡流传感器放置在待测物体上,通过示波器观察和记录输出信号的变化,进行位移测量。
5. 性能评估:测量不同位移值下的输出信号,并评估电涡流位移传感器的灵敏度、稳定性和线性度等性能指标。
### 4. 实验数据处理
对实验得到的数据进行整理和分析,绘制位移与输出信号的关系曲线,计算性能指标。
### 5. 实验结论
根据实验数据和分析结果,得出电涡流位移传感器在不同条件下的性能特点,评估其在位移测量中的适用性。
### 6. 实验总结
通过本次实验,深入了解了电涡流位移传感器的工作原理和性能,掌握了其在位移测量中的应用方法,为今后的传感器应用和实验研究提供了基础。
### 7. 实验改进和展望
根据实验中的经验,提出可能的实验改进方案,并展望电涡流位移传感器在未来的发展方向和应用领域。
电涡流式位移传感器实验报告
![电涡流式位移传感器实验报告](https://img.taocdn.com/s3/m/afc4480bf6ec4afe04a1b0717fd5360cba1a8d19.png)
电涡流式位移传感器实验报告一、引言电涡流式位移传感器是一种常用的非接触式位移测量装置,它基于涡流效应原理,可用于测量金属物体的位移变化。
本实验旨在探究电涡流式位移传感器的原理和性能,并通过实验验证其在位移测量中的应用。
二、实验原理电涡流效应是指当导体在磁场中运动或受力时,由于磁场的变化而在导体中产生涡流的现象。
在电涡流式位移传感器中,传感器探头由线圈和磁铁构成。
当探头靠近金属物体时,磁铁产生的磁场会感应出涡流,并改变线圈的电阻。
通过测量线圈的电阻变化,可以确定金属物体的位移大小。
三、实验步骤1. 准备实验装置:将电涡流式位移传感器固定在测量平台上,将金属物体放置在传感器上方,并调整传感器与金属物体的距离。
2. 连接电路:将传感器的线圈接入测量电路中,保证电路的可靠连接。
3. 调节参数:根据实际情况,调节传感器的灵敏度和滤波器的参数,以获得准确的位移测量结果。
4. 进行位移测量:通过改变金属物体的位置或距离,记录传感器输出的电阻值,并计算出相应的位移值。
5. 数据分析:根据实验数据,分析位移测量的准确性和稳定性,评估电涡流式位移传感器的性能。
四、实验结果经过多次实验测量,我们得到了一系列位移测量数据,并计算出相应的位移值。
实验结果表明,电涡流式位移传感器具有较高的测量精度和稳定性,在不同位移范围内均能提供准确的测量结果。
五、实验讨论1. 影响位移测量精度的因素:在实验中,我们发现传感器与金属物体的距离、金属物体的材料和形状等因素都会对位移测量结果产生影响。
通过合理调整传感器的参数和选择合适的金属物体,可以提高位移测量的精度。
2. 传感器的应用范围:电涡流式位移传感器广泛应用于工业自动化、机械制造和航天航空等领域,用于测量零件的位移、振动和变形等参数,为工程设计和质量控制提供重要的数据支持。
六、结论通过本次实验,我们深入了解了电涡流式位移传感器的原理和性能,并验证了其在位移测量中的应用。
实验结果表明,电涡流式位移传感器具有高精度、稳定性好的优点,适用于各种位移测量场景。
电涡流传感器实验
![电涡流传感器实验](https://img.taocdn.com/s3/m/4a4f705aa88271fe910ef12d2af90242a895ab29.png)
电涡流传感器实验电涡流传感器是一种基于涡流效应的非接触式的传感器技术,广泛应用于工业领域中的材料检测、缺陷检测、位移测量等方面,具有灵敏度高、稳定性好、响应速度快等优点。
本文将介绍电涡流传感器的实验原理、实验步骤和实验结果。
实验原理:电涡流原理是指在均匀磁场中,导体中会产生一个环状旋转的涡流,涡流的方向垂直于磁场的方向。
当涡流与磁场相互作用时,产生一个阻力,称为涡流阻力。
涡流阻力大小与导体的电导率、磁场频率和导体距离等因素有关。
电涡流传感器利用涡流阻力的变化来检测目标物体的性质和状态。
当目标物体在传感器附近运动或存在缺陷时,涡流阻力会发生变化,这种变化会被传感器检测到并产生相应的信号,从而实现对目标物体的检测和测量。
实验步骤:1.准备实验器材,包括电涡流传感器、信号发生器、数字示波器等。
2.连接器材,将信号发生器的输出端与电涡流传感器的输入端相连,将数字示波器的输入端与电涡流传感器的输出端相连。
3.调节信号发生器的输出频率和振幅,使其满足传感器的工作要求。
4.将目标物体逐渐接近传感器,并观察数字示波器上的信号波形。
如果目标物体存在缺陷或性质异常,信号波形将发生变化。
5.根据数字示波器的信号波形进行信号分析和处理,得出目标物体的状态和性质等信息。
实验结果:通过实验,我们成功地检测到了不同材料和存在缺陷的目标物体,并成功地获取了它们的性质和状态等信息。
实验结果表明,电涡流传感器是一种具有广泛应用前景的传感器技术,可以在材料检测、缺陷检测等领域发挥重要作用。
总结:本文介绍了电涡流传感器的工作原理、实验步骤和实验结果。
该实验具有较高的实用价值和研究意义,是电涡流传感器技术研究和应用的重要一步。
希望该实验可以对广大工程技术人员和学生提供有益的参考和借鉴。
电涡流传感器实验
![电涡流传感器实验](https://img.taocdn.com/s3/m/6a92e9393069a45177232f60ddccda38376be1b1.png)
电涡流传感器实验电涡流式传感器传感器是现代检测和控制装置的重要组成部分,在现代科学技术领域中的地位越来越重要。
各类传感器的研制、推⼴和使⽤飞速发展,作为现代信息技术三⼤⽀柱之⼀的传感器技术将是⼆⼗⼀世纪⼈们在⾼新技术发展⽅⾯争夺的⼀个制⾼点。
实际应⽤中,⼈们通常把将⾮电量信号转换成电量信号的装置叫做传感器。
电涡流式传感器是建⽴在涡流效应原理上的⼀种传感器。
利⽤它可以把距离的变化转换为电量的变化,从⽽做成位移、振幅、厚度等传感器;也可以利⽤它把电阻率的变化转换成电量的变化,做成表⾯温度、电介质的浓度等传感器;还可以利⽤它把磁导率的变化转换为电量的变化,做成应⼒、硬度等传感器。
电涡流式传感器能够实现⾮接触测量,⽽且还具有测量范围⼤、灵敏度⾼、抗⼲扰能⼒强、不受油污等介质的影响、结构简单及安装⽅便等优点。
因此⼴泛应⽤于⼯业⽣产和科学研究的各个领域。
【实验⽬的】1.了解电涡流式传感器的⼯作原理。
2.掌握静态标定的⽅法,了解被测材料对电涡流式传感器特性的影响。
3.掌握电涡流传感器测量振幅的⽅法4.了解由电涡流式传感器组成的电⼦称的标定和测量⽅法。
【实验原理】1.电涡流式传感器⼯作原理电涡流传感器有⾼频反射式和低频透射式两种,⾼频反射式应⽤较⼴。
本实验使⽤⾼频反射式。
如图6.2-2所⽰,在⼀⾦属导体上⽅放置⼀个线圈,当线圈中通⼊交变电流I 1时,线圈的周围空间就产⽣了交变磁场H 1,则⾦属导体中将产⽣感⽣电流I 2,由于I 2呈涡旋状,故称为电涡流。
⽽此电涡流将产⽣交变磁场H 2,它的⽅向与磁场H 1⽅向相反,由于磁场H 2的反作⽤使导电线圈的电感量、阻抗及品质因数等发⽣变化,这些参数变化量的⼤⼩与⾦属导体的电阻率、磁导率、⼏何形状、激励电流以及线圈与⾦属导体间的距离等有关。
限制其中其它参数不变,只让其中某⼀个参数变化,就构成了测量该参数的传感器。
涡流效应可等效为如图6.2-3所⽰的等效电路。
图中,R 1和L 1为传感器线圈的电阻和电感,R 2和L 2为⾦属导体等效的电阻和电感,各⾃的电流为I 1、I 2 ,U 为激励电压,M 为互感系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电涡流式传感器传感器是现代检测和控制装置的重要组成部分,在现代科学技术领域中的地位越来越重要。
各类传感器的研制、推广和使用飞速发展,作为现代信息技术三大支柱之一的传感器技术将是二十一世纪人们在高新技术发展方面争夺的一个制高点。
实际应用中,人们通常把将非电量信号转换成电量信号的装置叫做传感器。
电涡流式传感器是建立在涡流效应原理上的一种传感器。
利用它可以把距离的变化转换为电量的变化,从而做成位移、振幅、厚度等传感器;也可以利用它把电阻率的变化转换成电量的变化,做成表面温度、电介质的浓度等传感器;还可以利用它把磁导率的变化转换为电量的变化,做成应力、硬度等传感器。
电涡流式传感器能够实现非接触测量,而且还具有测量范围大、灵敏度高、抗干扰能力强、不受油污等介质的影响、结构简单及安装方便等优点。
因此广泛应用于工业生产和科学研究的各个领域。
【实验目的】1.了解电涡流式传感器的工作原理。
2.掌握静态标定的方法,了解被测材料对电涡流式传感器特性的影响。
3.掌握电涡流传感器测量振幅的方法4.了解由电涡流式传感器组成的电子称的标定和测量方法。
【实验原理】1.电涡流式传感器工作原理电涡流传感器有高频反射式和低频透射式两种,高频反射式应用较广。
本实验使用高频反射式。
如图6.2-2所示,在一金属导体上方放置一个线圈,当线圈中通入交变电流I 1时,线圈的周围空间就产生了交变磁场H 1,则金属导体中将产生感生电流I 2,由于I 2呈涡旋状,故称为电涡流。
而此电涡流将产生交变磁场H 2,它的方向与磁场H 1方向相反,由于磁场H 2的反作用使导电线圈的电感量、阻抗及品质因数等发生变化,这些参数变化量的大小与金属导体的电阻率、磁导率、几何形状、激励电流以及线圈与金属导体间的距离等有关。
限制其中其它参数不变,只让其中某一个参数变化,就构成了测量该参数的传感器。
涡流效应可等效为如图6.2-3所示的等效电路。
图中,R 1和L 1为传感器线圈的电阻和电感,R 2和L 2为金属导体等效的电阻和电感,各自的电流为I 1、I 2 ,U 为激励电压,M 为互感系数。
根据基尔霍夫定律可以写出方程⎩⎨⎧=-+=-+01222221111MI j I L j I R U MI j I L j I R ωωωω 以上两式联立解得传感线圈中的电流1I 为⎥⎦⎤⎢⎣⎡+-+⎥⎦⎤⎢⎣⎡++=2222222212222222211L R L M L j L R R M R UI ωωωωω 图 6.2-3 等效电路 R 2 U L 1 L 2 R 1 I 1 I 2 M 图6.2-2 电涡流传感器工作原理 I 1上式的分母即为线圈受涡流产生的磁场H 2影响后的阻抗L j R I U Z ω+==11 其中,线圈等效电阻 222222221L R R M R R ωω++= 线圈等效电抗 222222221L R L M L L ωω+-= 由此可算出线圈的品质因数 RL Q ω= 而无涡流效应时线圈的品质因数为 Q =11/R L ω。
可见,R 、L 、Q 均为M 的函数。
而互感系数M 决定于线圈靠近金属导体的程度,随着线圈与金属导体离得越近,互感M 值越大,涡流效应引起上述参数的变化也越大,表现为涡流损耗的功率增大,线圈回路的Q 值降低。
电涡流传感器的基本原理就是将传感器与被测体间的距离转换为传感器的品质因数Q 值、等效阻抗Z 及等效电感L 三个参量,并用相应的测量电路来测量。
2.电涡流传感器的测量电路本实验中电涡流传感器的测量电路采用定频调幅式测量电路。
测量电路中提供一个稳定性很高的振荡信号,它是由石英晶体振荡器产生,其频率一般选在1MHz~2MHz 。
通常采用一个电容C 与电涡流线圈L 并联,构成并联谐振回路,其谐振频率为LC πν210=传感器线圈作为振荡回路的一个电感元件与电容构成基本电路单元。
振荡器的输出信号经电阻R 加到传感器上。
其作用是将位移变化引起的振荡回路阻抗的变化转化为高频载波信号的幅度变化。
当没有被测导体时,使谐振回路产生谐振,回路谐振频率为ν0,当与被测导体接近时,回路将失谐,使回路Q 值降低,振荡幅值下降,ν也发生变化。
阻抗Z 也发生变化。
传感器LC 回路的阻抗变化既反映了电感的变化,又反映了Q 值变化。
发生谐振时回路的等效阻抗最大。
此时阻抗最高,对应的输出电压U 0最大。
当被测导体接近传感器线圈时,电感线圈L 感应的高频电磁场作用于被测导体,由表面的涡流反射作用,使电感量L 变小,导致回路失谐,回路的等效阻抗相应减小,对应的输出电压U 值减少。
因此通过对输出电压的测量,就可以确定距离x 的大小。
实际上,参数R 、L 、Q 均是M 的非线性函数,即与距离x 呈非线性关系。
但在某一小范围内可以将这些函数关系近似地用线性函数表示,即电涡流位移传感器只能在一定范围内呈线性关系。
可以用电涡流传感器在这段线性范围内测量位移、振幅等物理量。
【实验仪器】CSY 10系列传感器系统实验仪、双踪示波器等。
【实验内容】1.电涡流传感器的静态标定(1)选择实验所需部件:电涡流传感器、涡流变换器、螺旋测微仪、电压表。
(2)按图6.2-4连接电路,安装好电涡流线圈与金属片,注意两者必须保持平行,安装好测微仪,将电涡流线圈接入涡流变换器输入端。
涡流变换器输出端接电压/频率表20V 档。
(3)开启主机电源与副电源,用测微仪带动涡流片移动,当涡流片完全紧贴线圈时输出电压应为零(可适当改变支架中的线圈角度,若不为零记下零点偏移量) 。
然后旋动测微仪使涡流片离开线圈,从电压表有读数时每隔0.5mm 记录一个电压值,共记约14组数据。
将U 、x 数值填入自己设计的表格内,作出U~x 曲线,指出线性范围,求出灵敏度。
(4)将示波器接涡流变换器输入端口,观察电涡流传感器的激励信号频率,随着线圈与电涡流片距离的变化,信号幅度也发生变化,当涡流片紧贴线圈时电路停振,输出为零。
2.比较不同被测材料对电涡流传感器特性的影响电涡流传感器中线圈仅是传感器的一个组成部分,而另一部分则是被测导体,因此线圈阻抗的变化还与被测导体的材料、形状、大小有关。
一般情况下,被测体导电率越高,灵敏度越高,在相同的量程下,其线性范围越宽。
此外被测体的形状和大小对测量也有影响。
当被测体的面积比传感器线圈面积大很多时,传感器灵敏度基本不发生变化;当被测体面积为传感器一半时,其灵敏度减少一半;更小时,灵敏度则显著减小。
因此需对不同的被测材料分别进行标定。
(1)按内容1的要求分别对铁、铜、铝涡流片进行测试与标定,记录数据,在同一坐标上作出U~x 曲线。
(2)分别找出不同材料被测体的线性工作范围、灵敏度、最佳工作点,进行比较并做出定性的结论。
3.振幅测量(1)选择所需部件:电涡流传感器、涡流变换器、直流稳压电源、电桥、差动放大器、激振器I 、低频振荡器等,按图6.2-5接线。
(2)差动放大器调零。
(3)换回被测铁片,将测微头旋至离开振动台,将电涡流传感器的线圈安装在与被测铁片的最佳工作距离上(即线性区域的中点位置),利用差放和电桥电位器W D 所组成的电平移动电路将输出电压调节为零,此时振动台处于平衡位置。
(4)移动振动台至上、下偏离位置,观察输出电压的变化,若平衡位置恰为传感器的最佳工作点上,则电压的双向指示值应对称,若不对称需重新安装传感器线圈与被测铁片的位置,寻找最佳工作点。
(5)选好最佳工作点后,用双踪示波器的一个通道在A 点观察涡流传感器的高频振荡波形,并测出其振荡频率ν。
(6)将低频振荡器的低频输出信号接入激振器I ,缓慢加大增益使振动台产生适当振幅的振动,调节振动频率范围1~30Hz ,观察振动台振动状态,记下共振频率ν0。
(7)再将示波器的另一个通道接入在B 点观察涡流变换器的输出电压波形,适当调节低频振荡器的增益以保证输出电压波形不失真,用示波器测出U p-p 值大小。
(8)根据实验内容1的结果(即当被测材料为铁片时,对电涡流传感器进行静态标定所得的灵敏度S n )估算出振动台振幅大小n pp S U A 2-=4.电涡流传感器组成的电子秤(1)按图6.2-5接线,调节好差动放大器的零点,将差放的输出接电压表20V 档。
(2)调整电涡流传感器的位置,使其处于线性范围的起始处,调节电桥电位器W D 使电压表指示为零(调节好以后差放增益和W D 均不可再动)。
(3)在振动台上逐步累加砝码,记下相应的砝码重量W 和输出电压U 值。
根据实验数据作出U ~W 曲线,找出线性区,计算出灵敏度W U S n∆∆='/ (4)取下砝码,在振动台上放一重量未知的物体,记下输出电压值U x 则该物体的重量为nx x S U W '= 【注意事项】1.振动台共振时,应及时减小振荡器增益,以免振动台振幅过大发生碰撞。
2.更换被测金属片时,应首先移开传感器探头(线圈)。
3.显示仪表量程宜从高档转换到低档,激励信号幅度则应从小到大。
4.涡流变换器输入端接入示波器时由于一些示波器的输入阻抗不高(包括探头阻抗)以至影响线圈的阻抗,使输出U 变小,并造成初始位置附近的一段死区,将示波器探头离开输入端即可解决这个问题。
5.若换上铜、铝和其他金属涡流片,线圈紧贴涡流片时的输出电压并不为零,这是因为电涡流线圈的尺寸是为配合铁涡流片而设计的,换了不同材料的涡流片,只有改变线圈尺寸输出才能为零。
【预习思考题】1.电涡流传感器与其它传感器比较有什么优缺点?2.本试验采用的变换电路是什么电路。
【分析讨论题】1.若此传感器仅用来测量振动频率,工作点问题是否仍十分重要?为什么?2.如何能提高电涡流传感器的线性范围?。