(原创)高中物理选修3-2知识点汇编 概念重点

合集下载

人教版高中物理选修3-2知识点整理及重点题型梳理] 互感和自感、涡流

人教版高中物理选修3-2知识点整理及重点题型梳理] 互感和自感、涡流

人教版高中物理选修3-2知识点梳理重点题型(常考知识点)巩固练习互感和自感、涡流【学习目标】1、知道什么是互感现象和自感现象。

2、知道自感系数是表示线圈本身特征的物理量,知道它的单位及其大小的决定因素。

3、能够通过电磁感应部分知识分析通电、断电自感现象的原因。

4、知道涡流是如何产生的,知道涡流对人类有利和有害的两方面,以及如何利用涡流和防止涡流。

【要点梳理】要点一、互感现象两个线圈之间没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象称为互感,产生的感应电动势叫互感电动势。

要点诠释:(1)互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。

(2)互感现象可以把能量从一个电路传到另一个电路。

变压器就是利用互感现象制成的。

(3)在电子电路中,互感现象有时会影响电路的正常工作,应设法减小电路间的互感。

要点二、自感现象1.实验如图甲所示,首先闭合S 后调节R ,使12A A 、亮度相同,然后断开开关。

再次闭合S ,灯泡2A 立刻发光,而跟线圈L 串联的灯泡1A 却是逐渐亮起来的。

如图乙所示电路中,选择适当的灯泡A 和线圈L ,使灯泡A 的电阻大于线圈L 的直流电阻。

断开S 时,灯A 并非立即熄灭,而是闪亮一下再逐渐熄灭。

图甲实验叫通电自感。

在闭合开关S 的瞬间,通过线圈L 的电流发生变化而引起穿过线圈L 的磁通量发生变化,线圈L 中产生感应电动势,这个感应电动势阻碍线圈中电流的增大,通过灯泡1A 的电流只能逐渐增大,所以1A 只能逐渐变亮。

图乙实验叫断电自感。

断开S 的瞬间,通过线圈L 的电流减弱,穿过线圈的磁通量很快减小,线圈L 中出现感应电动势。

虽然电源断开,但由于线圈L 中有感应电动势,且和A 组成闭合电路,使线圈中的电流反向流过灯A ,并逐渐减弱由于L 的直流电阻小于灯A 的电阻,其原电流大于通过灯A 的原电流,故灯闪亮一下后才逐渐熄灭。

高中物理选修3-2:自感现象知识点总结

高中物理选修3-2:自感现象知识点总结

高中物理选修3-2:自感现象知识点总结理物高中考点/易错点1自感现象1、自感:由于线圈本身的电流发生变化而产生的电磁感应现象.2、自感电动势:由于自感现象而产生的电动势.3、自感电动势对电流的作用:电流增加时,感应电动势阻碍电流的增加;电流减小时,感应电动势阻碍电流的减小.4、实验与探究考点/易错点2自感系数1、物理意义:描述线圈本身特性的物理量,简称自感或电感.2、影响因素:线圈的形状、长短、匝数、有无铁芯.线圈越粗、越长,匝数越多,其自感系数就越大;有铁芯时线圈的自感系数比没铁芯时大得多.3、单位:亨利,简称亨,符号是H.常用的较小单位有mH和μH.考点/易错点3日光灯1、主要组成:灯管、镇流器和启动器.2、灯管(1)工作原理:管中气体导电时发出紫外线,荧光粉受其照射时发出可见光.可见光的颜色由荧光粉的种类决定.(2)气体导电的特点:灯管两端的电压达到一定值时,气体才能导电;而要在灯管中维持一定大小的电流,所需的电压却低得多.3、镇流器的作用日光灯启动时:提供瞬时高压;日光灯启动后:降压限流.4、启动器(1)启动器的作用:自动开关.(2)启动器内电容器的作用:减小动、静触片断开时产生的火花,避免烧坏触点.考点/易错点4自感现象的理解1、对自感电动势的进一步理解(1)自感电动势产生的原因通过线圈的电流发生变化,导致穿过线圈的磁通量发生变化,因而在原线圈中产生感应电动势.(2)自感电动势的作用阻碍原电流的变化,而不是阻止,电流仍在变化,只是使原电流的变化时间变长,即总是起着推迟电流变化的作用.(3)自感电动势的方向当原电流增大时,自感电动势方向与原电流方向相反,电流减小时,自感电动势方向与原电流方向相同.2、自感现象的分析思路(1)明确通过自感线圈的电流怎样变化(是增大还是减小).(2)判断自感电动势方向.电流增强时(如通电),自感电动势方向与原电流方向相反;电流减小时(如断电),自感电动势方向与原电流方向相同.(3)分析电流变化情况,电流增强时(如通电),自感电动势方向与原电流方向相反,阻碍增加,电流逐渐增大.电流减小时(如断电),由于自感电动势方向与原电流方向相同,阻碍减小,线圈中电流方向不变,电流逐渐减小.特别提醒自感电动势阻碍原电流的变化,而不是阻止,电流仍在变化,只是使原电流的变化时间变长.考点/易错点5自感现象中灯泡亮度变化在处理通断电灯泡亮度变化问题时,不能一味套用结论,如通电时逐渐变亮,断电时逐渐变暗,或闪亮一下逐渐变暗.要具体问题具体分析,关键要搞清楚电路连接情况.自感现象的分析技巧在求解有关自感现象的问题时,必须弄清自感线圈的工作原理和特点,这样才能把握好切入点和分析顺序,从而得到正确答案.1.自感现象的原理当通过导体线圈中的电流变化时,其产生的磁场也随之发生变化.由法拉第电磁感应定律可知,导体自身会产生阻碍自身电流变化的自感电动势.2.自感现象的特点(1)自感电动势只是阻碍自身电流变化,但不能阻止.(2)自感电动势的大小跟自身电流变化的快慢有关.电流变化越快,自感电动势越大.(3)自感电动势阻碍自身电流变化的结果,会给其他电路元件的电流产生影响.①电流增大时,产生反电动势,阻碍电流增大,此时线圈相当于一个阻值很大的电阻;②电流减小时,产生与原电流同向的电动势,阻碍电流减小,此时线圈相当于电源.3.通电自感与断电自感自感现象中主要有两种情况:即通电自感与断电自感.在分析过程中,要注意:(1)通过自感线圈的电流不能发生突变,即通电过程中,电流是逐渐变大;断电过程中,电流是逐渐变小,此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.特别提醒线圈对变化电流的阻碍作用与对稳定电流的阻碍作用是不同的.对变化电流的阻碍作用是由自感现象引起的,它决定了要达到稳定值所需的时间;对稳定电流的阻碍作用是由绕制线圈的导线的电阻引起的,决定了电流所能达到的稳定值.考点/易错点6日光灯的工作原理1、构造日光灯的电路如图所示,由日光灯管、镇流器、开关等组成.2、日光灯的启动当开关闭合时,电源把电压加在启动器的两极之间,使氖气放电而发出辉光,辉光产生的热量使U 形动触片膨胀伸长,从而接通电路,于是镇流器的线圈和灯管的灯丝中就有电流通过,电路接通后,启动器中的氖气停止放电,U形动触片冷却收缩,两个触片分开,电路自动断开,通过镇流器的电流迅速减小,会产生很高的自感电动势,方向与原来电压方向相同,形成瞬间高压加在灯管两端,使灯管中的气体开始导电,于是日光灯管就成了通路开始导电发光.3、日光灯正常工作时镇流器的作用由于日光灯使用的是交流电源,电流的大小和方向做周期性变化,当交流电的大小增大时,镇流器上的自感电动势阻碍原电流增大,自感电动势与原电压反向,当交流电减小时,镇流器上的自感电动势阻碍原电流的减小,自感电动势与原电压同向,可见镇流器的自感电动势总是阻碍电流的变化,镇流器起降压、限流的作用.四、课程小结1、自感现象●自感:由于线圈本身的电流发生变化而产生的电磁感应现象.●自感电动势:由于自感现象而产生的电动势.●自感电动势对电流的作用:电流增加时,感应电动势阻碍电流的增加;电流减小时,感应电动势阻碍电流的减小.2、自感系数●物理意义:描述线圈本身特性的物理量,简称自感或电感.●影响因素:线圈的形状、长短、匝数、有无铁芯.线圈越粗、越长,匝数越多,其自感系数就越大;有铁芯时线圈的自感系数比没铁芯时大得多.●单位:亨利,简称亨,符号是H.常用的较小单位有mH和μH.1H=103mH1H=106μH一、自感现象的四个要点和三个状态要点一:电感线圈产生感应电动势的原因是通过线圈本身的电流变化引起穿过自身的磁通量变化。

高中物理选修3-2复习提纲

高中物理选修3-2复习提纲

选修3-2知识点复习提纲一、电磁感应现象利用磁场产生电流的现象叫电磁感应,是1831年______________发现的。

1、产生感应电流的条件:(1)___________________ (2)______________________ 2、感应电动势:(1)概念:在电磁感应现象里产生的电动势叫感应电动势,产生感应电动势的那部分导体相当于电源。

(2)规律:在电磁感应现象中,既然闭合回路中有电流,这个电路就一定有电动势,电路断开时,虽然没有感应电流,但电动势依然存在。

(3)感应电动势E 的大小决定于穿过电路的磁通量的变化率的大小,而与线圈的大小、磁感应强度的大小没有必然联系,与电路的电阻无关;感应电流的大小与E 和回路总电阻R 有关。

(4)磁通量的变化率 ,是Φ-t 图象上某点切线的______________。

(5)磁通量发生变化的三种方式一是磁感应强度B 不变,垂直与磁场的回路面积发生变化,此时E=_____________ 二是垂直于磁场的回路面积S 不变,磁感应强度发生变化,此时E=_______________ 三是磁感应强度和线圈面积均不变,而是线圈绕平面内的某一轴转动即θ发生变化。

3、法拉第电磁感应定律(1)内容:_______________________________________________________________。

(2)公式:①______________②______________ 注意:①式普遍适用于求______感应电动势。

2)E 只与穿过电路的磁通量的变化率∆∆φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。

严格区别磁通量Φ, 磁通量的变化量ΔΦ, 磁通量的变化率 , 磁通量φ=B S ·, 表示__________________________________ 磁通量的变化量∆φφφ=-21, 表示__________________________________ 磁通量的变化率 表示__________________________________②式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结高中物理选修3-2的知识点总结如下:1. 电流(I)的概念: 电流指单位时间内通过导体横截面的电荷量,其单位为安培(A),符号为I。

2. 电流的大小:电流的大小与通过导体的电荷量和通过导体的时间成正比。

数学上可以表示为I = ΔQ/Δt,其中ΔQ表示通过导体的电荷量,Δt表示通过导体的时间。

3. 电流的方向:在直流电路中,电流的方向与正电荷流动的方向相同;在交流电路中,电流的方向会周期性地改变。

4. 电阻(R)的概念:电阻指导体阻碍电流通过的程度,其单位为欧姆(Ω),符号为R。

5. 电阻的计算:电阻的大小与导体材料的特性以及导体的几何形状有关。

数学上可以表示为R = ρ× (L/A),其中ρ表示导体的电阻率,L表示导体的长度,A表示导体的横截面积。

6. 电阻的串联和并联:在串联电路中,电阻依次连接,总电阻等于各个电阻之和;在并联电路中,电阻同时连接,总电阻是各个电阻倒数之和的倒数。

7. 欧姆定律:欧姆定律描述了电流、电压和电阻之间的关系,可以表示为U = I ×R,其中U表示电压,I表示电流,R表示电阻。

8. 电功(W)的概念:电功指电流在电路中进行的能量转化,其单位为焦耳(J),可以表示为W = U × I × t,其中U表示电压,I表示电流,t表示时间。

9. 电功率(P)的概念:电功率指单位时间内进行的电功,其单位为瓦特(W),可以表示为P = U × I,其中U表示电压,I表示电流。

10. 电能(E)的概念:电能指电流在电路中的能量转化,其单位为焦耳(J),可以表示为E = U × I × t,其中U表示电压,I表示电流,t表示时间。

(完整版)高中物理选修3-2知识点总结

(完整版)高中物理选修3-2知识点总结

高中物理选修3-2知识点总结第一章 电磁感应1.两个人物:a.法拉第:磁生电b.奥期特:电生磁2.产生条件:a.闭合电路b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b②产生感应电动势的那部分导体相当于电源。

③电源内部的电流从负极流向正极。

3.感应电流方向的叛定: (1).方法一:右手定则 (2).方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4. 感应电动势大小的计算: (1).法拉第电磁感应定律: a.内容:b.表达式:t n E ∆∆⋅=φ (2).计算感应电动势的公式 ①求平均值:t n E ∆∆⋅=φ_②求瞬时值:E=BLV (导线切割类) ③法拉第电机:ω221BL E =④闭合电路殴姆定律:)r (R I E +=感5.感应电流的计算: 平均电流:tr R r R E I ∆+∆=+=)(_φ 瞬时电流:rR BLVr R E I +=+=6.安培力计算: (1)平均值:tBLqt r )(R BL L I B F∆=∆+∆==φ__(2). 瞬时值:rR VL B BIL F +==227.通过的电荷量:rR q tI +∆=-=∆⋅φ注意:求电荷量只能用平均值,而不能用瞬时值。

8.互感:由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中 激发了感应电动势。

这种现象叫互感。

9.自感现象:(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。

(2)决定因素:线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。

另外, 有铁心的线圈的自感系数比没有铁心时要大得多。

(3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH ),微亨(μH )。

10.涡流及其应用(1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结第四章 电磁感应1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁2.感应电流的产生条件:a.闭合电路b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则(2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同)④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

B 、表达式:tnE ∆∆=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ∆=∆φ ②S 不变,B 变,BS ∆=∆φ ③B 和S 同时变,12φφφ-=∆ (3)计算感应电动势的公式①求平均值:tn E ∆∆=φ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω221BL E = 5.感应电流的计算: 瞬时电流:总总R BLvR E I ==(瞬时切割) 6.安培力的计算:瞬时值:rR vL B BIL F +==227.通过截面的电荷量:rR n t I q +∆=∆=φ注意:求电荷量只能用平均值,而不能用瞬时值 8.自感:(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。

(2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。

另外,有铁芯的线圈自感系数比没有铁芯时大得多。

(3)类型:通电自感和断电自感(4)单位:亨利(H )、毫亨(mH)、微亨(H μ)(5)涡流及其应用①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。

一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉b.金属探测器,飞机场火车站安全检查、扫雷、探矿接通电源的瞬间,灯泡A 1较慢地亮起来。

完整版)高中物理选修3-2知识点总结

完整版)高中物理选修3-2知识点总结

完整版)高中物理选修3-2知识点总结高中物理选修3-2知识点总结第一章电磁感应1.两个人物:XXX和XXX,分别研究磁生电和电生磁。

2.产生感应电动势的条件是闭合电路和磁通量发生变化。

注意,只具备磁通量发生变化的条件就可以产生感应电动势,而产生感应电动势的那部分导体相当于电源。

电源内部的电流从负极流向正极。

3.感应电流方向的确定可以用右手定则或楞次定律。

楞次律包含四种阻碍,分别是阻碍原磁通量的变化、阻碍导体间的相对运动、阻碍原电流的变化以及面积有扩大与缩小的趋势。

4.感应电动势大小的计算可以用法拉第电磁感应定律,公式为E=n*(ΔΦ/Δt)。

还有其他计算公式,如求平均值的公式E=n*(ΔΦ/Δt)和求瞬时值的公式E=BLV(导线切割类),以及法拉第电机和闭合电路欧姆定律。

5.感应电流的计算可以用平均电流公式I=E/(R+r)=ΔΦ/(R+r)Δt和瞬时电流公式I=BLV/(R+r)。

6.安培力的计算可以用平均值公式F=BLΔΦ/(R+r)Δt和瞬时值公式F=BIL=B2L2VR/(R+r)。

7.通过的电荷量的计算只能用平均值公式,不能用瞬时值公式。

8.互感是指由于线圈A中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B中激发了感应电动势的现象。

9.自感现象是指由于导体本身的电流发生变化而产生的电磁感应现象。

自感系数的大小取决于线圈的长度、单位长度上的匝数、截面积以及是否有铁心。

自感系数的单位是XXX、毫亨和微亨。

10.涡流是指变压器在工作时,在原、副线圈产生感应电动势的同时,变化的磁通量也会在铁芯中产生感应电流的现象。

涡流的应用包括新型炉灶和金属探测器。

第二章交变电流1.正弦交变电流有两个特殊的位置。

电电流,可以减小能量损失,提高输电效率。

2.高压输电的方式:目前主要采用的是交流输电,直流输电则主要用于海底电缆等特殊情况。

3.输电线路的构成:输电线路主要由导线、绝缘子、杆塔等组成。

其中导线又分为裸导线和绝缘导线。

人教版单元知识图谱及重难点解析 高二物理 高中物理选修3—2

人教版单元知识图谱及重难点解析 高二物理 高中物理选修3—2

2020年线上课程单元知识图谱及重难点解析高二物理高中物理选修3—2第四章电磁感应一、“电磁感应”知识结构图二、本章主要物理思维方法电磁感应现象和导体切割磁感线产生的感应电流方向的判别——右手定则;磁通量变化时产生感应电流方向的判别方法——楞次定律;电磁现象中的基本定律之一,即法拉第电磁感应定律:感应电动势与磁通量变化快慢的定量关系。

通过实验探究“感应电动势大小与磁通量变化快慢的关系”,运用控制磁通量变化、时间、线圈匝数等变量的方法进行探究。

从法拉第的发现到信息化时代的发展历程,感悟科学技术是社会发展的动力。

掌握法拉第电磁感应定律内容,系统地认识电磁感应现象的规律,通过探究实验、DIS 实验,学会运用控制变量法探究感应电动势大小与磁通量变化快慢的关系,在电磁感应与其他相关内容综合的新情景下,应用法拉第电磁感应定律解决一些简单的物理问题,学会运用分析、综合、类比等科学推理方法。

从电磁感应规律在电话、测量仪器等现代技术中的应用,感悟科学和技术是社会发展的动力。

三、本章重难点分析及其突破的方法本章重难点:实验探究感应电动势大小与磁通量变化快慢的关系。

法拉第电磁感应定律内容:E =ΔΦΔt。

法拉第电磁感应定律的应用,导体切割磁感线产生的感应电动势(E =BLv )与法拉第电磁感应定律的一致性。

1.对感应电动势概念的理解在电磁感应现象的学习过程中,我们知道,不仅在闭合电路中会产生感应电流,在电路不闭合的情况下,只要线圈中磁通量发生变化,线圈两端就有电压输出,可见,这时虽无感应电流,但仍有电磁感应现象,用恒定电流的闭合电路跟它进行类比:恒定电流的闭合电路中,要产生电流必须有电源(有电动势);在电磁感应现象中,闭合回路里有感应电流,也会有感应电动势。

而且,感应电动势比感应电流更能反映电磁感应现象的本质。

2.法拉第电磁感应定律中的k 为什么等于1课本“大家谈”中提出的比例常数是的问题,是单位制中的一个普遍问题。

高中物理选修3-2全册知识点总结

高中物理选修3-2全册知识点总结

高中物理选修3-2全册知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中物理选修3-2全册知识点总结第四章电磁感应4.1划时代的发现一、奥斯特的“电生磁”1820年,丹麦物理学家奥斯特发现了电流的磁效应它揭示了电现象与磁现象之间存在着某种联系。

二、法拉第的“磁生电”(1)、“磁生电”的发现英国物理学家法拉第经过10年的不懈努力,在1831年8月29日发现由磁场得到电流的现象,叫做电磁感应。

(2)、产生电流的原因在电磁感应现象中产生的电流叫做感应电流。

法拉第把产生这种电流的原因概括为五类:变化的电流,变化的磁场,运动的恒定的电流,运动的磁铁,在磁场中运动的导体。

4.2探究电磁感应的产生条件一、相关实验及分析论证实验名称闭合电路的部分导体切割磁感线向线圈中插入磁铁,把磁铁从线圈中拔出模拟法拉第的实验实验装置运动方式部分导体切割磁感线,闭合电路所围面积发生变化(磁场不变化)磁体相对线圈运动,线圈内磁场发生变化,变强或者变弱(线圈面积不变)线圈A中电流变化,导致线圈B内磁场发生变化,变强或者变弱(线圈面积不变)只要穿过闭合电路的磁通量变化,闭合电路中就有感应电流产生。

4.3楞次定律一. 相关实验相关实验规律总结:(1)、原磁通变大,则感应电流磁场与原磁场相反,有阻碍变大作用 (2)、原磁通变小,则感应电流磁场与原磁场相同,有阻碍变小作用即:(增反减同)二、楞次定律——感应电流的方向(1)、内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

(2)、理解:①、阻碍既不是阻止也不等于反向(增反减同)“阻碍”又称作“反抗”,注意不是阻碍原磁场而阻碍原磁场的变化..②、注意两个磁场:原磁场和感应电流磁场强调: a 、从磁通量变化的角度看:感应电流总要阻碍磁通量的变化。

b 、从导体和磁体的相对运动的角度来看,感应电流总要阻碍相对运动。

③、阻碍的过程中,即一种能向另一种转化的过程例:若条形磁铁是自由落体,则磁铁下落过程中受到向上的阻力,即机械能→电能→内能(3)、应用楞次定律步骤:①、确定原磁场的方向;②、搞清穿过闭合回路的磁通量是增加还是减少; ③、根据楞次定律判定感应电流的磁场方向; ④、利用感应电流的磁场方向判定感应电流的方向。

高中物理 选修3-2 变压器 知识点及方法总结 题型分类总结 变压器电路分析

高中物理 选修3-2  变压器  知识点及方法总结 题型分类总结   变压器电路分析

高中物理选修3-2变压器1、理想变压器(1)构造:如图所示,变压器是由闭合铁芯和绕在铁芯上的两个线圈组成的。

①原线圈:与交流电源连接的线圈,也叫初级线圈。

②副线圈:与负极连接的线圈,也叫次级线圈。

③闭合铁芯(2)原理:电流磁效应、电磁感应(3)基本公式①功率关系:P入=P出无论有几个副线圈在工作,变压器的输入功率总等于所有输出功率纸盒②电压关系:U1U2=n1n2即对同一变压器的任意两个线圈,都有电压和匝数成正比。

有多个副线圈时,U1n1=U2n2=U3n3③电流关系:只有一个副线圈时I1I2=n2n1由P入=P出及P=UI推出有多个副线圈时,U1I1=U2I2+U3I3+⋯+U n I n当原线圈中U1、I1代入有效值时,副线圈对应的U2、I2也是有效值,当原线圈中U1、I1为最大值或瞬时值时,副线圈中的U2、I2也对应最大值或瞬时值④原副线圈中通过每匝线圈的磁通量的变化率相等⑤原副线圈中电流变化规律一样,电流的周期频率一样(4)几种常用的变压器①自耦变压器-调压变压器如图是自耦变压器的示意图。

这种变压器的特点是铁芯上只绕有一个线圈。

如果把整个线圈作原线圈,副线圈只取线圈的一部分,就可以降低电压;如果把线圈的一部分作原线圈,整个线圈作副线圈,就可以升高电压。

调压变压器:就是一种自耦便要,它的构造如图所示。

线圈AB绕在一个圆环形的铁芯上。

AB之间加上输入电压U1。

移动滑动触头P的位置就可以调节输出电压U2。

②互感器{电压互感器:用来把高电压变成低电压电流互感器:用来把大电流变成低电流交流电压表和电流表都有一定的量度范围,不能直接测量高电压和大电流。

用变压器把高电压变成低电压,或者把大电流变成小电流,这个问题就可以解决了。

这种变压器叫做互感器。

a、电压互感器电压互感器用来把高电压变成低电压,它的原线圈并联在高电压电路中,副线圈接入交流电压表。

根据电压表测得的电压U2和铭牌上注明的变压比(U1U2),可以算出高压电路中的电压。

物理选修3-2知识点归纳总结

物理选修3-2知识点归纳总结

物理选修3-2知识点归纳总结物理选修3-2通常涵盖了电磁学和光学等领域的高级概念。

以下是对这些知识点的归纳总结:### 电磁学#### 1. 电场和电势- 电场强度:描述电场对电荷的作用力。

- 电势:电场中某点的电势能与电荷量的比值。

#### 2. 电容器- 电容:描述电容器存储电荷的能力。

- 充电与放电:电容器在电路中的能量转换过程。

#### 3. 电流与电阻- 欧姆定律:描述电压、电流和电阻之间的关系。

- 电阻率:材料对电流的阻碍程度。

#### 4. 磁场- 磁感应强度:描述磁场对运动电荷的作用力。

- 安培环路定理:磁场与电流的关系。

#### 5. 电磁感应- 法拉第电磁感应定律:描述变化的磁场产生电动势。

- 楞次定律:电磁感应中电流方向的确定。

#### 6. 麦克斯韦方程组- 描述电磁场的基本方程,包括高斯定律、高斯磁定律、法拉第定律和安培-麦克斯韦定律。

### 光学#### 1. 光的波动性- 干涉:两束或多束光波相遇时的相加效应。

- 衍射:光波通过狭缝或绕过障碍物时的传播特性。

#### 2. 光的偏振- 偏振现象:光波振动方向的特定取向。

#### 3. 光的折射- 斯涅尔定律:描述光从一种介质进入另一种介质时入射角和折射角的关系。

#### 4. 光的色散- 色散现象:不同波长的光在介质中传播速度不同,导致光的分离。

#### 5. 光学仪器- 透镜:聚焦或发散光线的光学元件。

- 望远镜和显微镜:利用透镜放大远处或微小物体的仪器。

#### 6. 光的量子性- 光电效应:光子撞击金属表面时释放电子的现象。

- 波粒二象性:光同时具有波动性和粒子性。

### 现代物理#### 1. 相对论- 狭义相对论:描述在不同惯性参考系中物理定律的不变性。

- 时间膨胀和长度收缩:相对论效应的直观表现。

#### 2. 量子力学基础- 量子态:描述粒子状态的数学函数。

- 不确定性原理:粒子的位置和动量不能同时被精确测量。

高中物理选修3-2知识点详细汇总

高中物理选修3-2知识点详细汇总

高中物理选修3-2知识点详细汇总电磁感应现象愣次定律一、电磁感应1.电磁感应现象只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。

产生的电流叫做感应电流.2.产生感应电流的条件:闭合回路中磁通量发生变化3. 磁通量变化的常见情况 (Φ改变的方式):①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S增大或减小②线圈在磁场中转动导致Φ变化。

线圈面积与磁感应强度二者之间夹角发生变化。

如匀强磁场中转动的矩形线圈就是典型。

③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化(Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件:成闭合回路,四指指向高电势.⑤“因电而动”用左手定则.“因动而电”用右手定则.⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。

导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便.2.楞次定律(1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化.(感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的)变化原因产生结果;结果阻碍原因。

(定语) 主语 (状语) 谓语 (补语) 宾语(2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。

阻碍磁通量变化指:磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用);磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”.(3)楞次定律另一种表达:感应电流的效果总是要阻碍..(.或反抗...).产生感应电流的原因. (F安方向就起到阻碍的效果作用)即由电磁感应现象而引起的一些受力、相对运动、磁场变化等都有阻碍原磁通量变化的趋势。

高中物理选修3-2人教版4.7涡流、电磁阻尼和电磁驱动

高中物理选修3-2人教版4.7涡流、电磁阻尼和电磁驱动

2.关于电磁驱动,下列说法正确的是 () A.磁场相对于导体转动时,导体中会产 生感应电流,感应电流使导体受到安培力 的作用,安培力使导体运动起来,这种作 用称为电磁驱动
B.在电磁驱动的过程中,通过安培力做 功使电能转化为导体的机械能
解析 根据电磁驱动的定义可知,选项A、 B、D正确;在电磁驱动中,主动部分与被 动部分的运动(或转动)方向相同,且被动 部分的速度(或角速度)较小,选项C错误。 答案 ABD
(2)应用:磁电式外表中利用电磁阻尼使指 针迅速停止,安便培力于读数。 2.电磁驱动
[要 点 精 讲] 要点1 电磁阻尼的产生原理和应用 (1)产生:闭合回路的部分导体在做切割磁 感线运动产生感应电流时,导体在磁场中 就要受到安培力的作用,根据楞次定律, 安培力总是阻碍导体的运动,于是产生电
(2)应用举例:使用磁电式电表进行测量时, 总希望指针摆到所示值的位置时便迅速地 稳定下来,以便读数。由于指针转轴的摩 擦力矩很小,若不采取其他措施,线圈及 指针将会在所示值附近来回摆动,不易稳 定下来。为此,许多电表把线圈绕在闭合
第4章 电磁感应
第7节 涡流、电磁阻尼和 电磁驱动
知识点一 涡流
1.定义:用整块金属材料作铁芯绕制的
变化
磁场
线铁圈芯,当线圈中通有 感应电流
的电流时,变化的电流会产生变化
的 ,变化的磁场穿过 ,整个铁芯
真空冶炼炉
会自成回路,产生
ቤተ መጻሕፍቲ ባይዱ
,这种电流看
探雷器
起来像水的旋涡,把这种电流叫做涡电流,
3.防止:电动机、变压器等设备中应防
课堂自测 1.下列关于涡流的说法正确的是( ) A.涡流跟平时常见的感应电流一样,都 是因为穿过导体的磁通量变化而产生的 B.涡流不是感应电流,而是一种有别于 感应电流的特殊电流

完整版)高中物理选修3-2知识点详细汇总

完整版)高中物理选修3-2知识点详细汇总

完整版)高中物理选修3-2知识点详细汇总电磁感应现象和法拉第-楞次定律电磁感应是指当磁通量穿过闭合回路发生变化时,会在回路中产生电流的现象。

这个产生的电流被称为感应电流。

产生感应电流的条件是闭合回路中的磁通量发生变化。

磁通量变化的常见情况包括线圈所围面积发生变化,线圈在磁场中转动导致Φ变化,以及磁感应强度随时间或位置变化。

磁通量改变的最直接结果是产生感应电动势。

如果线圈或线框是闭合的,那么就会在其中产生感应电流。

产生感应电动势的条件是穿过线圈的磁通量发生变化。

感应电流的方向可以通过右手定则来判定。

这个定则要求伸开右手,让磁感线垂直穿过手心,然后让大拇指指向导线运动的方向。

四指所指的方向即为感应电流方向。

需要注意的是,右手定则仅适用于导体切割磁感线时,而且应用时要注意磁场方向、运动方向和感应电流方向三者互相垂直。

总之,电磁感应现象的实质是产生感应电动势,如果回路闭合,就会有感应电流,否则只会出现感应电动势。

通过右手定则可以判定感应电流的方向。

导体在磁场中切割磁感线会引起感应电流,这是磁通量发生变化引起感应电流的特例。

因此,判定电流方向的右手定则也是楞次定律的一个特例。

虽然可以用右手定则判断导体在磁场中切割磁感线而产生感应电流的方向,但使用楞次定律判定更为方便。

楞次定律是用来判断感应电流方向的,其规定感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

这里的“阻碍”并不是指完全阻止,而是指阻止磁通量变化的速率。

当磁通量增加时,感应电流的磁场和原磁场方向相反,起到抵消作用;当磁通量减少时,感应电流的磁场和原磁场方向一致,起到补偿作用,简称“增反减同”。

因此,楞次定律也可以表述为感应电流的效果总是要阻碍或反抗产生感应电流的原因。

楞次定律还可以从能量守恒的角度表述,即感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

此外,楞次定律还有一个特例,即右手定则,用于判定感应电流的磁场总是阻碍原磁场的变化。

楞次定律的应用包括两种情况:一是磁场不变,导体回路相对磁场运动;二是导体回路不动,磁场发生变化。

高中物理必修一、必修二、选修3-1与选修3-2知识点汇总

高中物理必修一、必修二、选修3-1与选修3-2知识点汇总

F = ma 。牛顿第二定律揭示了力的瞬时效应,定量描述了力与运动
(加速度 )
的关系。由定律可知,力与加速度是瞬时对应关系,即加速度与力是同时产生、同时变化、同时消失;力与加速
度具有因果关系。力是产生加速度的原因,加速度是力产生的结果。
(3) 牛顿第三定律:作用力与反作用力总是大小相等,方向相反,作用在一条直线上。牛顿第三定律揭示了 物体与物体间的相互作用规律。两个物体之间的作用力与反作用力总是同时产生、同时变化、同时消失,一定是
高中物理必修一、必修二、选修 3-1 及选修 3-2 知识点汇总
1. 弹力
(1) 大小:只有弹簧中的弹力我们可以应用胡克定律
F = kx 计算,而支持力、压力、轻绳中的拉力、轻杆中
的弹力等必须根据题中的物理情境应用牛顿运动定律或平衡条件得出。
(2) 方向:压力和支持力的方向垂直于接触面指向被压或被支持的物体,若接触面是曲面,则弹力的作用线 一定垂直于曲面上过接触点的切线;轻绳中的弹力方向一定沿绳,指向轻绳收缩的方向;对轻杆,若一端由铰链
15. 牛顿三大定律
(1) 牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
牛顿第一定律揭示了运动和力的关系:力不是维持物体速度
(运动状态 )的原因,而是改变物体速度的原因。
(2) 牛顿第二定律:物体的加速度 与合外力的方向相同。数学表达式:
a 与物体所受的合外力 F 成正比,与物体的质量 m 成反比,加速度的方向
Fx= 0,∑ F y
(1) 合成法:对物体进行受力分析,并画出受力分析图。将所受的其中两个力应用平行四边形定则合成为一 个等效力,由平衡条件可知该等效力一定与第三个力大小相等方向相反。

(完整版)高中物理选修3-2知识点清单(非常详细)

(完整版)高中物理选修3-2知识点清单(非常详细)

(完整版)高中物理必修3-2知识点清单(非常详细)第一章 电磁感应第二章 楞次定律和自感现象一、磁通量1.定义:在磁感应强度为B 的匀强磁场中,与磁场方向垂直的面积S 和B 的乘积. 2.公式:Φ=B ·S .3.单位:1 Wb =1_T ·m 2.4.标矢性:磁通量是标量,但有正、负. 二、电磁感应 1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象. 2.产生感应电流的条件(1)电路闭合;(2)磁通量变化. 3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.三、感应电流方向的判断 1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化. (2)适用情况:所有的电磁感应现象. 2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.3.楞次定律推论的应用楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产生感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”; (2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”; (4)阻碍原电流的变化(自感现象)——“增反减同”四、法拉第电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =ER +r.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =n ΔΦΔt,n 为线圈匝数.3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv .(2)若B ⊥l ,l ⊥v ,v 与B 夹角为θ,则E =Blv sin_θ. 五、自感与涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E =L ΔIΔt.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关. 2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流. (1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.考点一 公式E =n ΔΦ/Δt 的应用 1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 引起时,则E =n S ΔB Δt ;当ΔΦ仅由S 引起时,则E =n B ΔSΔt.2.磁通量的变化率ΔΦΔt是Φ-t 图象上某点切线的斜率.3.应用电磁感应定律应注意的三个问题(1)公式E =n ΔΦΔt求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR.考点二 公式E =Blv 的应用 1.使用条件本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B 、l 、v 三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E =Blv sin θ,θ为B 与v 方向间的夹角.2.使用范围导体平动切割磁感线时,若v 为平均速度,则E 为平均感应电动势,即E =Bl v .若v 为瞬时速度,则E 为相应的瞬时感应电动势.3.有效性公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度.例如,求下图中MN 两点间的电动势时,有效长度分别为甲图:l=cd sin β.乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,l=2R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.考点三自感现象的分析1.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.2.自感现象的四个特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.3.自感现象中的能量转化通电自感中,电能转化为磁场能;断电自感中,磁场能转化为电能.4.分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程,线圈中电流逐渐变大,断电过程,线圈中电流逐渐变小,方向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.六、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦΔt . (2)路端电压:U =IR =ER +r·R .二、电磁感应中的图象问题 1.图象类型(1)随时间t 变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象. (2)随位移x 变化的图象如E -x 图象和i -x 图象. 2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量. (3)利用给出的图象判断或画出新的图象.考点一 电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的一般思路:(1)确定等效电源,利用E =n ΔΦΔt或E =Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 4.(1)对等效于电源的导体或线圈,两端的电压一般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的方向,电势逐渐升高. 考点二 电磁感应中的图象问题 1.题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量; (3)根据图象定量计算. 2.解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的一般步骤 (1)明确图象的种类,即是B -t 图象还是Φ-t 图象,或者是E -t 图象、I -t 图象等; (2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等; (6)画出图象或判断图象.4.解决图象类选择题的最简方法——分类排除法.首先对题中给出的四个图象根据大小或方向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是用物理量的方向,排除错误选项,此法最简捷、最有效.第三章 交变电流 传感器一、交变电流的产生和变化规律 1.交变电流大小和方向随时间做周期性变化的电流. 2.正弦交流电(1)产生:在匀强磁场里,线圈绕垂直于磁场方向的轴匀速转动. (2)中性面①定义:与磁场方向垂直的平面.②特点:线圈位于中性面时,穿过线圈的磁通量最大,磁通量的变化率为零,感应电动势为零.线圈每经过中性面一次,电流的方向就改变一次.(3)图象:用以描述交变电流随时间变化的规律,如果线圈从中性面位置开始计时,其图象为正弦曲线.二、描述交变电流的物理量1.交变电流的周期和频率的关系:T =1f.2.峰值和有效值(1)峰值:交变电流的峰值是它能达到的最大值.(2)有效值:让交流与恒定电流分别通过大小相同的电阻,如果在交流的一个周期内它们产生的热量相等,则这个恒定电流I 、恒定电压U 就是这个交变电流的有效值.(3)正弦式交变电流的有效值与峰值之间的关系IU E 3.平均值:E =n ΔΦΔt=BL v .考点一 交变电流的变化规律1.正弦式交变电流的变化规律(线圈在中性面位置开始计时)图象2.(1)线圈平面与中性面重合时,S ⊥B ,Φ最大,ΔΦΔt=0,e =0,i =0,电流方向将发生改变.(2)线圈平面与中性面垂直时,S ∥B ,Φ=0,ΔΦΔt最大,e 最大,i 最大,电流方向不改变.3.解决交变电流图象问题的三点注意(1)只有当线圈从中性面位置开始计时,电流的瞬时值表达式才是正弦形式,其变化规律与线圈的形状及转动轴处于线圈平面内的位置无关.(2)注意峰值公式E m =nBS ω中的S 为有效面积. (3)在解决有关交变电流的图象问题时,应先把交变电流的图象与线圈的转动位置对应起来,再根据特殊位置求特征解.考点二 交流电有效值的求解 1.正弦式交流电有效值的求解 利用I =I m2,U =U m 2,E =E m2计算.2.非正弦式交流电有效值的求解交变电流的有效值是根据电流的热效应(电流通过电阻生热)进行定义的,所以进行有效值计算时,要紧扣电流通过电阻生热(或热功率)进行计算.注意“三同”:即“相同电阻”,“相同时间”内产生“相同热量”.计算时“相同时间”要取周期的整数倍,一般取一个周期.考点三 交变电流的“四值”的比较1.书写交变电流瞬时值表达式的基本思路(1)求出角速度ω,ω=2πT=2πf .(2)确定正弦交变电流的峰值,根据已知图象读出或由公式E m =nBS ω求出相应峰值. (3)明确线圈的初始位置,找出对应的函数关系式. ①线圈从中性面位置开始转动,则i -t 图象为正弦函数图象,函数式为i =I m sin ωt . ②线圈从垂直中性面位置开始转动,则i -t 图象为余弦函数图象,函数式为i =I m cos ωt三、变压器原理1.工作原理:电磁感应的互感现象. 2.理想变压器的基本关系式 (1)功率关系:P 入=P 出.(2)电压关系:U 1U 2=n 1n 2,若n 1>n 2,为降压变压器;若n 1<n 2,为升压变压器.(3)电流关系:只有一个副线圈时,I 1I 2=n 2n 1; 有多个副线圈时,U 1I 1=U 2I 2+U 3I 3+…+U n I n .四、远距离输电1.输电线路(如图所示)2.输送电流(1)I =P U. (2)I =U -U ′R.3.电压损失 (1)ΔU =U -U ′. (2)ΔU =IR . 4.功率损失 (1)ΔP =P -P ′.(2)ΔP =I 2R =⎝ ⎛⎭⎪⎫P U 2R =ΔU 2R .考点一 理想变压器原、副线圈关系的应用 1.基本关系(1)P 入=P 出,(有多个副线圈时,P 1=P 2+P 3+……)(2)U 1U 2=n 1n 2,有多个副线圈时,仍然成立.(3)I 1I 2=n 2n 1,电流与匝数成反比(只适合一个副线圈) n 1I 1=n 2I 2+n 3I 3+……(多个副线圈)(4)原、副线圈的每一匝的磁通量都相同,磁通量变化率也相同,频率也就相同. 2.制约关系(1)电压:副线圈电压U 2由原线圈电压U 1和匝数比决定. (2)功率:原线圈的输入功率P 1由副线圈的输出功率P 2决定. (3)电流:原线圈电流I 1由副线圈电流I 2和匝数比决定. 3.关于理想变压器的四点说明: (1)变压器不能改变直流电压.(2)变压器只能改变交变电流的电压和电流,不能改变交变电流的频率. (3)理想变压器本身不消耗能量.(4)理想变压器基本关系中的U 1、U 2、I 1、I 2均为有效值. 考点二 理想变压器的动态分析 1.匝数比不变的情况(如图所示)(1)U 1不变,根据U 1U 2=n 1n 2可以得出不论负载电阻R 如何变化,U 2不变.(2)当负载电阻发生变化时,I 2变化,根据I 1I 2=n 2n 1可以判断I 1的变化情况.(3)I 2变化引起P 2变化,根据P 1=P 2,可以判断P 1的变化. 2.负载电阻不变的情况(如图所示)(1)U 1不变,n 1n 2发生变化,U 2变化. (2)R 不变,U 2变化,I 2发生变化.(3)根据P 2=U 22R和P 1=P 2,可以判断P 2变化时,P 1发生变化,U 1不变时,I 1发生变化.3.变压器动态分析的思路流程考点三 关于远距离输电问题的分析 1.远距离输电的处理思路对高压输电问题,应按“发电机→升压变压器→远距离输电线→降压变压器→用电器”这样的顺序,或从“用电器”倒推到“发电机”一步一步进行分析.2.远距离高压输电的几个基本关系(以下图为例):(1)功率关系:P 1=P 2,P 3=P 4,P 2=P 损+P 3.(2)电压、电流关系:U 1U 2=n 1n 2=I 2I 1,U 3U 4=n 3n 4=I 4I 3U 2=ΔU +U 3,I 2=I 3=I 线.(3)输电电流:I 线=P 2U 2=P 3U 3=U 2-U 3R 线.(4)输电线上损耗的电功率:P 损=I 线ΔU =I 2线R 线=⎝ ⎛⎭⎪⎫P 2U 22R 线.3.解决远距离输电问题应注意下列几点(1)画出输电电路图.(2)注意升压变压器副线圈中的电流与降压变压器原线圈中的电流相等. (3)输电线长度等于距离的2倍.(4)计算线路功率损失一般用P 损=I 2R 线.。

高中物理选修3-2全册知识点总结

高中物理选修3-2全册知识点总结

高中物理选修3-2全册知识点总结第四章电磁感应4.1划时代的发现一、奥斯特的“电生磁”1820年,丹麦物理学家奥斯特发现了电流的磁效应它揭示了电现象与磁现象之间存在着某种联系。

二、法拉第的“磁生电”(1)、“磁生电”的发现英国物理学家法拉第经过10年的不懈努力,在1831年8月29日发现由磁场得到电流的现象,叫做电磁感应。

[(2)、产生电流的原因在电磁感应现象中产生的电流叫做感应电流。

法拉第把产生这种电流的原因概括为五类:变化的电流,变化的磁场,运动的恒定的电流,运动的磁铁,在磁场中运动的导体。

4.2探究电磁感应的产生条件一、相关实验及分析论证实验装置运动方式部分导体切割磁感线,闭合电路所围面积发生变化(磁场不变化):磁体相对线圈运动,线圈内磁场发生变化,变强或者变弱(线圈面积不变)线圈A中电流变化,导致线圈B内磁场发生变化,变强或者变弱(线圈面积不变)磁通量是否发生变化磁通量发生变化实验结论有感应电流产生只要穿过闭合电路的磁通量变化,闭合电路中就有感应电流产生。

;4.3楞次定律一.相关实验相关实验规律总结:(1)、原磁通变大,则感应电流磁场与原磁场相反,有阻碍变大作用(2)、原磁通变小,则感应电流磁场与原磁场相同,有阻碍变小作用!即:(增反减同)二、楞次定律——感应电流的方向(1)、内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

(2)、理解:①、阻碍既不是阻止也不等于反向(增反减同)“阻碍”又称作“反抗”,注意不是阻碍原磁场而阻碍原磁场的变化..②、注意两个磁场:原磁场和感应电流磁场强调: a、从磁通量变化的角度看:感应电流总要阻碍磁通量的变化。

]b、从导体和磁体的相对运动的角度来看,感应电流总要阻碍相对运动。

③、阻碍的过程中,即一种能向另一种转化的过程例:若条形磁铁是自由落体,则磁铁下落过程中受到向上的阻力,即机械能→电能→内能(3)、应用楞次定律步骤:①、确定原磁场的方向;②、搞清穿过闭合回路的磁通量是增加还是减少;③、根据楞次定律判定感应电流的磁场方向;④、利用感应电流的磁场方向判定感应电流的方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 电磁感应
§4.1划时代的发现 §4.2探究感应电流的产生条件
1、了解奥斯特梦圆“电生磁”的发展史及其实验内容。

2、了解法拉第“磁生电”的发展史相关内容。

3、掌握并理解感应电流产生的条件: ①闭合电路;②磁通量发生变化。

§4.3楞次定律
1、掌握并理解楞次定律的内容和应用:
理解1:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

即:“增反减同”
理解2:感应电流的效果总是要反抗产生感应电流的原因。

即从运动的角度看“来拒去留”,从磁能量变化看,会使线圈产生形变。

应用:楞次定律的判定步骤: (1)明确原磁场的方向;
(2)明确穿过闭合回路的磁通量是增加还是减少; (3)根据楞次定律,判定感应电流的磁场方向; (4)利用安培定则判定感应电流的方向。

2、熟练掌握并应用感应电流方向的判定。

3、感应电动势方向的判定:
当电路不闭合时,通过回路的磁通量发生改变时,电路中无感应电流,但有感应电动势。

感应电动势的方向与感应电流的方向一致,判定其方向①磁通量变化类用楞次定律;②切割用右手定则。

§4.4法拉第电磁感应定律
1、理解t
φ
φφ∆∆∆、、
的含义及区别 2、掌握并理解法拉第电磁感应定律。

=n
E t
φ∆∆ 注:①若
t
φ∆∆是恒定的,则E 是稳恒的,若t φ∆∆变化,则感应电动势也是变化的

t
φ
∆∆是磁通量的变化率,即磁通量的变化快慢,t
φ
∆∆ 在t φ-图上为图线上某点的斜率。

③当Δt 较长时,E 为平均感应电动势,因此这段时间内通过导体的电荷量为:E q I t t n
R R φ
∆=∆=∆=总总
3、平动切割感应电动势的计算:
①当B 、L 、v 相互垂直时:E=BLv ②当B 、I 、L 不垂直时: 【右上图】
注:高中阶段,对不垂直情况只要求做定性了解。

4、转动切割感应电动势的计算:
21
=BL =
BL 2
E v ω中 注:感应电动势的方向可用右手定则确定
§4.5电磁感应规律的应用
1、了解感应电动的按产生的原因分可分为哪两种
2、掌握动生电动势的非静电力由什么提供:
注:动生电动势的非静电力是f 洛的一个分力;f 洛
永不做功。

3、掌握感生电动势的非静电力由什么提供: 如图所示,当B 减小时,在其周围空间会产生环形的感生电场,如果有电荷在此,则电荷将受感生电场力的作用而发生移动,形成感应电流,因此: 感生电动势的非静电力为感生电场力。

§4.6互感和自感
1、掌握自感和互感产生的原因
2、了解影响自感电动势大小的因素:
I
=L
E t
∆∆
v 与I 不垂直
ε
=BL V ⊥
=BLVcos
θ
v
与B 不垂直 F=BL V
⊥ =BLVsin θ
I
V
V ⊥
V
B
O
杆 V 合
f f
3、能熟练的分析有关自感和互感的电路。

§4.7涡流、电磁阻尼和电磁驱动
1、了解涡流产生的原因及涡流的利用和防止。

2、了解电磁阻尼及其应用
3、了解电磁驱动及其应用。

第五章 交变电流
§5.1交变电流
1、交变电流的基本概念,能正确判定交流电与直流电。

2、掌握交流发电机两特殊面的特点:
①中性面:磁感线与线圈平面垂直,此时Φ最大,电动势为0(或
0t
φ
∆=∆) ②中性面的垂直面:磁感线与线圈平面平行,此时Φ
最小,电动势最大E m =NBS ω(或t
φ
∆∆最大)
3、正弦(余弦)交流电的瞬时表达式: 电动势:sin sin m e E NBs t θωω==
电流:sin sin m m e
i i t R θω==总
注:①以上两式是通过矩形线圈绕垂直于磁感线的转轴推导而得,但对于其它形状的线圈表达式是一样的。

②以上两式中的中与转轴oo ’的位置无关只要转轴与磁感线垂直,无论是在线圈上还是在线圈外,所得表达式是一样的。

§5.2描述交变电流的物理量
1、掌握从时间角度描述交变电流的三个物理最及其换算关系(2T=
π
ω
1f T
=
) 2、掌握从大小角度描述交变电流的三个物理量。

①最大值(峰值):电压或电流波形上对应的最大峰值。

②有效值:将交变电流接在某一电阻两端在相同时间内的发热量与某直流接在该电阻两端在同样时间内的发热量相等,则该直流的值称为该交流的有效值。

③平均值:在某段时间内电流或电压的平均值。

平均值主要用来计算通过电路的电荷量,如:
E n
t E q I t t n E R R I R φφ∆⎫=⎪∆∆⎪
⇒=∆=
∆=⎬⎪=
⎪⎭总总总 注:Ⅰ、用电器的耐压值必须大于电压的最大值; Ⅱ、所有仪表测定的读数均为有效值;
Ⅲ、计算电功(发热量)或电功率均必须用有效值。

专题:对交变电流供电电路的理解
①瞬时值:+e u u =外内 ②有效值:E U +U =外内 ③峰值I m 、 U m.
§5.3电感和电容对交变电流的影响
1、电感对交变电流的作用:2L X fL π=“通直流,阻交流;通低频,阻高频”。

2、电容对交变电流的作用:1
2C X fC
π=
“隔直流,通交流;通高频,阻低频”。

3、能利用电感和电容对交变电流的作用规律对有关电路进行分析。

§5.4变压器
1、掌握理想变压器的基本规律: ①U 1:U 2:U 3=n 1:n 2:n 3
②I 1U 1=I 2U 2+I 3U 3 (或n 1I 1=n 2I 2+n 3I 3) 2、了解常见变压器的分类。

专题一:变压器的原理
专题二:理想变压器电路的动态分析问题 ①电压分析:初级决定次级。

即只要有电压输入则一定有电压输出,且
11
22
U n U n = ②电流(功率)分析:次级决定初级。

当次级无输出时,初级必无输入。

当输出的电流(功率)变大时,输入的电流(功率)必变大。

§5.5电能的输送
1、了解减少线路损耗的两种方法,掌握线路损耗的计
算公式:222
P =I R =R U P 送
损送
线线送
2、高压送电的电路构成和基本规律:
3、①电压关系:
3311
232244
U = U =U +U U n U n U n n =损 ②电流关系:
312
4232143I I I =I = I I n n n n =
③功率关系:
P 送=P 1=P 2 P 3=P 4=P 用 P 送=P 用+P 损
2P 损
34P 用
P 送。

相关文档
最新文档