弹性力学试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、概念题(32分)
1、 如图所示三角形截面水坝,其右侧受重度为γ的水压力作用,左侧为自
由面。试列出下述问题的边界条件
解:1)右边界(x=0)
1
1 2)左边界(x=ytg β)
1 1 由: 2
2
2、何谓逆解法和半逆解法。
答:1. 所谓逆解法,就是先设定各种形式、满足相容方程的应力函
数,利用公式求出应力分量,然后根据应力边界条件考察在各种形状的弹性体上,这些应力分量对应于什么样的面力,从而得知设定的应力函数可以解决什么问题。 4 2. 所谓半逆解法,就是针对所要求解的问题,根据弹性体的边界形状与受力情况,假设部分或全部应力分量为某种形式的函数,从而推出应力函数,然后考察该应力函数是否满足相容方程,以及原来假设的应力分量和由这个应力函数求出的其余应力分量,是否满足应力边界条件和位移单值条件。如果相容方程和各方面的条件都能满足,就可得到正确解答;如果某一方面不能满足,就需要另作假设,重新考察。 4
3、已知一点的应力状态,试求主应力的大小及其作用的方向。
200,0,400x y xy MPa MPa σστ===-
解:根据公式122x y σσσσ+= 2
和公式11tan x
xy σσατ-=,求出主应力和主应力方向: 2
2000512.31312.322MPa σσ+==- 2 512200
tan 0.7808,3757'11400
αα-==-=- 2 4、最小势能原理等价于 以位移表示的平衡微分 (3) 方程和 应力 (3)
边界条件,选择位移函数仅需满足 位移 (2) 边界条件。
二、图示悬臂梁,长度为l , 高度为h ,l >>h ,在梁上边界受均布荷载。
试检验应力函数
523322
ΦAy Bx y Cy Dx Ex y
能否成为此问题的解?,如果可以,试求出应力分量。(20分)
00
0y x x xy x σγτ=-===()
()
cos ,cos cos ,cos()2sin l n x m n y βπ
ββ====+=-()
()
()
()
x y l m x xy s s
l m xy y s s f f σττσ+=+=⎫⎪⎬⎪⎭(
)
()()
()
cos sin 0
cos sin 0
x xy s s xy y s s
σβτβτβσβ-=+=⎫⎪⎬⎪⎭
解:将应力函数代入到兼容方程
444204224x x y y
∂Φ∂Φ∂Φ
++=∂∂∂∂ 得到,当5B A =-时Φ可作为应力函数 5
根据 2
22
22x
y
y x
xy x y
σ
στ∂
Φ
=
∂∂
Φ
=
∂∂Φ
=-
∂∂ 3
求得应力表达式:
32206632222(62)Ay Bx y Cy
x
By D Ey
y Bxy Ex xy σστ=++=++=-+⎧⎪⎪⎨⎪⎪⎩ 3
由应力边界条件确定常数
()()(),0,0
222q y y xy y h y h y h σστ=-===-==±
端部的边界条件
()()22
0,02200h h dy ydy x x h h x x σσ==⎰⎰--== 5
解得333,,,,51044q q q q q
A B C D E h h h h
==-=-=-= 2 三、应力分量(不计体力)为2
2
3
462253134322
31422h y
x q x y h h q y y y h h q x y xy h h σστ=--=--+=--⎛
⎫
⎪
⎪⎝⎭
⎛
⎫ ⎪ ⎪⎝⎭⎛⎫ ⎪ ⎪⎝⎭
2
三、已知轴对称平面应力问题,应力和位移分量的表达式为:(23分)
C A
22
+=
ρσρ, C A
22
+-
=ρσϕ, 0==ϕρρϕττ
⎥⎦
⎤⎢⎣⎡-++-=
ρμρμρC A
E u )1(2)1(1 0=ϕu
.有一个内、外半径分别为a 和b 的圆筒,筒外受均布压力q 作用,求其应力,位移及圆筒厚度的改变值。 解:1.本题为位移轴对称平面问题,位移与ϕ无关,因此应力表达式为: 222,2,0A A C C ρϕρϕϕρσσττρρ=+=-+==
1(1)2(1)0
A
u C E u ρϕμμρρ⎡⎤=-++-⎢⎥
⎣⎦= 2.有边界条件确定常数,求出应力分量
()
()
0,q a b
σσρ
ρρρ==-== 4
22
202A
C a A C q b ⎧+=⎪⎪⎨
⎪+=-⎪⎩ 2 ()
222
,22222qa b qb A C b a b a
==--- 4
(
)(
)
(
)(
)
2
22
2
212
2
22222
2
2
2
212
2
22220
qb a qb
a b a
b a qb a qb
a b a
b a ρσρρρρσϕρρτρϕ-=-=--+=-+=--=⎛⎫ ⎪ ⎪⎝⎭
⎛⎫ ⎪ ⎪⎝⎭
3
圆环的径向位移(平面应变情况下)将E 换成2
1μ-E ,μμ-1 2
()()()()2
2
12222221qb a a E b a u ρ
μμρρμρ--++---⎡⎤=⎢⎥⎣
⎦ 4
1. 圆环内、外半径变化,壁厚的改变值
∆
分别为
()()
()
2
22122qab
u a E b a μρρ-=-
=- 2
()
()
()
()
22
122
22()221qb u a b a b b Eb b a μμρρμ-=-++-=--⎡⎤⎢⎥⎣
⎦ 2 ()
()
()()()()()2
1()1(121()
qb u u a b a b b a E b a qb a b E a b μ
μ
ρρρρμμμ-∆=-=
-+
+==+-+=+-+⎡⎤
⎢⎥⎣⎦
⎡⎤⎣⎦ 2
4、弹性力学中的几个基本假设为:物体是 ; 物体是 ; 物体是 ; 物体的位移和变形是 。(8分)
三 、已知图(a )示集中力作用下半平面体内应力分量为:(15分)
()
()
()
2
22
22
22
2
2
22
3
2,
2,
2y
x y
x p
y
x xy p
y
x x p
xy y x +-
=+-
=+-
=πτπσπσ