雷尼绍对刀仪(Renishaw)

雷尼绍对刀仪(Renishaw)
雷尼绍对刀仪(Renishaw)

摘要英国雷尼绍公司的对刀仪在数控车床上应用有三种,插拔式手臂(HPRA)、下拉式手臂(HPPA)、全自动对刀臂式。可以快速、高效、精确地在士X、土Z及Y五个轴方向上,对加工过程中的刀具磨损或破损自动监测、报警和补偿;对机床丝杠热变形引起的刀偏值变动量进行补偿。

关键词数控车床对刀仪刀具补偿

中图分类号TP216 文献标识码B

在工件的加工过程中,工件装卸、刀具调整等辅助时间,占加工周期中相当大的比例,其中刀具的调整既费时费力,又不易准确,最后还需要试切。统计资料表明,一个工件的加工,纯机动时间大约只占总时间的55%,装夹和对刀等辅助时间占45%。因此,对刀仪便显示出极大的优越性。

一、对刀仪种类

1.插拔式手臂(High Precision Removable Arm,HPRA)

HPRA的特点是对刀臂和基座可分离。使用时通过插拔机构把对刀臂安装至对刀仪基座上(图1),同时电器信号亦连通并进入可工作状态;用完后可将对刀臂从基座中拔出,放到合适的地方以保护精密的对刀臂和测头不受灰尘、碰撞的损坏,适合小型数控车床用。

2.下拉式手臂(High Precision Pulldown Arm,HPPA)

HPPA的特点是对刀臂和基座旋转联接,是一体化的。使用时将对刀臂从保护套中摆动拉出(图2),不用时把对刀臂再收回保护套中,不必担心其在加工中受到损坏。不必频繁地插拔刀臂,避免了频繁插拔引起的磕碰。

3.全自动对刀臂(High Precision Motorised Arm,HPMA)

HPMA的特点是,对刀臂和基座通过力矩电机实现刀臂的摆出和摆回与HPPA的区别是加了力矩电机(见图2内括号中内容),提高了自动化程度。更重要的是可把刀臂的摆出、摆回通过M代码编到加工程序中,在加工循环过程中,即可方便地实现刀具磨损值的自动测量、补偿和刀具破损的监测,再配合自动上下料机构,可实现无人化加工。

三、对刀仪的工作原理

对刀仪的核心部件是由一个高精度的开关(测头),一个高硬度、高耐磨的硬质合金四面体(对刀探针)和一个信号传输接口器组成(其他件略)。四面体探针是用于与刀具进行接触,并通过安装在其下的挠性支撑杆,把力传至高精度开关;开关所发出的通、断信号,通过信号传输接口器,传输到数控系统中进行刀具方向识别、运算、补偿、存取等。

数控机床的工作原理决定,当机床返回各自运动轴的机械参考点后,建立起来的是机床坐标系。该参考点一旦建立,相对机床零点而言,在机床坐标系各轴上的各个运动方向就有了数值上的实际意义。

对于安装了对刀仪的机床,对刀仪传感器距机床坐标系零点的各方向实际坐标值是一个固定值,需要通过参数设定的方法来精确确定,才能满足使用(图4),否则数控系统将无法在机床坐标系和对刀仪固定坐标之间进行相互位置的数据换算。

当机床建立了“机床坐标系”和“对刀仪固定坐标”后(不同规格的对刀仪应设置不同的固定坐标值),对刀仪的工作原理如下:

1.机床各直线运动轴返回各自的机械参考点之后,机床坐标系和对刀仪固定坐标之间的相对位置关系就建立起了具体的数值。

2.不论是使用自动编程控制,还是手动控制方式操作对刀仪,当移动刀具沿所选定的某个轴,使刀尖(或动力回转刀具的外径)靠向且触动对刀仪上四面探针的对应平面,并通过挠性支撑杆摆动触发了高精度开关传感器后,开关会立即通知系统锁定该进给轴的运动。因为数控系统是把这一信号作为高级信号来处理,所以动作的控制会极为迅速、准确。

3.由于数控机床直线进给轴上均装有进行位置环反馈的脉冲编码器,数控系统中也有记忆该进给轴实际位置的计数器。此时,系统只要读出该轴停止的准确位置,通过机床、对刀仪两者之间相对关系的自动换算,即可确定该轴刀具的刀尖(或直径)的初始刀具偏置值了。换一个角度说,如把它放到机床坐标系中来衡量,即相当于确定了机床参考点距机床坐标系零点的距离,与该刀具测量点距机床坐标系零点的距离及两者之间的实际偏差值。

4.不论是工件切削后产生的刀具磨损、还是丝杠热伸长后出现的刀尖变动量,只要再进行一次对刀操作,数控系统就会自动把测得的新的刀具偏置值与其初始刀具偏置值进行比较计算,并将需要进行补偿的误差值自动补入刀补存储区中。当然,如果换了新的刀具,再对其重新进行对刀,所获得的偏置值就应该是该刀具新的初始刀具偏置值了。

四、对刀仪的对刀精度

根据有关资料及实践证明,对刀仪测头重复精度1μm;15英寸以下卡盘,手臂旋转重复精度5μm。18英寸及其以上卡盘的大规格,对刀臂的重复精度能达到8μm。这一精度可以满足大部分用户的需要而不需试切。

对刀仪的使用,减少了机床的辅助时间,降低了返工和废品率,若配合雷尼绍LP2工件测头一起使用,可显著提高机床效率和加工精度。

雷尼绍检查规

QC20-W无线球杆仪系统 硬件 软件

QC20-W 球杆仪及球杆仪组件 QC20-W 球杆仪包括一个雷尼绍自主设计的精密位移传感器(已申请专利)。它用于测量球杆仪在绕一个固定点旋转时的半径变化。该数据用于根据 ISO 230-4、ASME B5.54/57和GB17421.4等国际标准计算定位精度的总体测量值(圆度、圆度偏差)。在采用雷尼绍独特的诊断报告格式分析该数据时,还可提供单个误差源的详细诊断。数据以图形和数字的格式显示,用以帮助故障诊断。 信号处理在球杆仪内部进行,数据传输使用Bluetooth ?(蓝牙)二类模块输送至匹配的个人计算机中。传感器壳体上有一个LED 状态指示灯,对通讯、电池和故障状态进行指示。 每套系统随机配备一只标准(非充电型)CR2锂电池,不过系统的电子装置和组件也允许使用可充电CR2电池。 Zerodur ?校准规 每套QC20-W 组件 (A-8014-1510) 均随附一个Zerodur ?校准规,用于校准球杆仪的长度。它是由零温度膨胀系数的材料制成的。 当与Zerodur ?校准规配合使用时,QC20-W 球杆仪可以计算绝对(而不是相对)误差,来决定各轴比例匹配关系和径向偏差值,满足ISO 230-4和ASME B5.54/57分析所需。 此外,此软件还会自动计算待测机器的位置公差。(位置公差值是在球杆仪测试区域、在无负载条件下对机器在某一平面内双向定位精度好坏的一个估计) Zerodur ?校准规可以校准100 mm 、150 mm 及300 mm 的长度。小圆组件包含一个50 mm Zerodur ?校准规。 QC20-W 球杆仪组件 组件包括 ? QC20-W 无线球杆仪(和一只CR2电池)? 中心座 ? 工具杯 ? 50、150和300 mm 加长杆? Zerodur ?校准规? 系统软件(含手册)? 中心设定球? 机器验证卡 ? 校准证书 ? 系统便携箱(便携箱组件包括用于存放小圆组件和VTL 适配器的带槽口的海绵块) Zerodur ?为Schott Glass T echnologies Inc.公司的商标。 2 QC20-W 球杆仪 Bluetooth 文字商标和标识归Bluetooth SIG, Inc.所有,Renishaw plc 使用的所有此类商标均已获得授权。其他商标和商品名为各自所有者拥有。

对刀仪使用办法

对刀仪使用办法 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

对刀仪使用方法随着的广泛使用,许多用户也开始使用刀具装置。它不仅可以检测刀具的磨损情况,而且可实现自动补偿(通过修改刀补值实现),极大的提高了加工效率和精度。另外,同时使用其刀具破损检测功能与刀具寿命管理功能,还可以实现自动寻找同组刀具的功能,节约了刀具检查和更换的时间。但由于用户对原理不是很了解,使用时容易产生误区,有时补偿后的精度反而不如补偿前,这就使用户产生了迷惑,限制了测量装置的广泛使用。本文以英国.html"target="_blank"class="keylink">雷尼绍()公司TS27R测头的安装调试为例,就如何更好的使用刀具测量装置做一详细介绍,供读者参考借鉴。 刀具测量的基本原理是利用系统的跳步功能(G31):在程序中指令“G31ZxxxFxxx”(与GO1的动作相同)。但此时如果SKIP信号由“0”变为“1”时,Z轴将停止运动,再用宏程序控制坐标轴后退,然后再次碰触量块,反复测量并运算后得出刀具的实际长度和直径,最后修改系统宏变量从而达到修改刀补值的目的。 刀具测量装置的使用主要包括三个步骤:安装和接线;标定;测量。 1安装和接线

刀具侧量装置通常包括测头和信号转换装置(硬件)及相关的测量程序(软件包)。测头(TS27R)安装在工作台上,并尽量远离加工区域,外部应加防护装置,使用前先将防护装置打开并将刀具用风吹干净(用M代码控制气动元件可实现自动),确保刀具表面无杂物,测量完成后关闭防护。 测头安装完成后,首先要调整测头接触面的平行度和直线度。将一只百分表(或千分表DTI)吸在头上,表头打在量块(圆形或方形)的上表面;用手轮控制X轴沿量块表面来回移动,观察表针变化,同时调整测头上的调节螺钉,使X向的直线度保证在0.010mm,调整好后紧固螺钉。再控制Y轴沿量块表面来回移动,同时调整测头上的调节螺钉,使Y向的直线度也保证在0.010mm,调整好后紧固螺钉。 转换装置(MI8-4)用35mm标准导轨安装在电气柜里。需要注意的是,给转换装置提供DC24V的稳压电源最好是单独的,尽量不要和电磁阀或中间继电器共用电源,如果必须共用,就要考虑信号的抗干扰能力,否则可能会影响测量结果。 安装结束后,按照图1(三菱系统)或图2(系统)正确接线。 图1测量装置接线原理图(三菱64M系统) 图2测量装置接线原理图(-0i-M系统) 2测头的标定

对刀仪使用方法

对刀仪使用方法 随着加工中心的广泛使用,许多用户也开始使用刀具测量装置。它不仅可以检测刀具的磨损情况,而且可实现自动补偿(通过修改刀补值实现),极大的提高了加工效率和精度。另外,同时使用其刀具破损检测功能与刀具寿命管理功能,还可以实现自动寻找同组刀具的功能,节约了刀具检查和更换的时间。但由于用户对测量原理不是很了解,使用时容易产生误区,有时补偿后的精度反而不如补偿前,这就使用户产生了迷惑,限制了测量装置的广泛使用。本文以英国RENISHAW.html" target="_blank" class="keylink">雷尼绍(RENISHAW) 公司TS27 R测头的安装调试为例,就如何更好的使用刀具测量装置做一详细介绍,供读者参考借鉴。 刀具测量的基本原理是利用系统的跳步功能(G31):在程序中指令“G31 Zx x x Fx x x”(与GO1的动作相同)。但此时如果SKIP信号由“0”变为“1”时,Z轴将停止运动,再用宏程序控制坐标轴后退,然后再次碰触量块,反复测量并运算后得出刀具的实际长度和直径,最后修改系统宏变量从而达到修改刀补值的目的。 刀具测量装置的使用主要包括三个步骤:安装和接线;标定;测量。

1 安装和接线 刀具侧量装置通常包括测头和信号转换装置(硬件)及相关的测量程序(软件包)。测头(TS27R)安装在工作台上,并尽量远离加工区域,外部应加防护装置,使用前先将防护装置打开并将刀具用风吹干净(用M代码控制气动元件可实现自动),确保刀具表面无杂物,测量完成后关闭防护。 测头安装完成后,首先要调整测头接触面的平行度和直线度。将一只百分表(或千分表DTI)吸在主轴头上,表头打在量块(圆形或方形)的上表面;用手轮控制X轴沿量块表面来回移动,观察表针变化,同时调整测头上的调节螺钉,使X 向的直线度保证在0.010mm,调整好后紧固螺钉。再控制Y轴沿量块表面来回移动,同时调整测头上的调节螺钉,使Y向的直线度也保证在0.010mm,调整好后紧固螺钉。 转换装置(MI 8-4)用35mm标准导轨安装在电气柜里。需要注意的是,给转换装置提供DC24V的稳压电源最好是单独的,尽量不要和电磁阀或中间继电器共用电源,如果必须共用,就要考虑信号的抗干扰能力,否则可能会影响测量结果。

数控车床对刀仪的用途与原理

英国“雷尼绍”(RENISHAW)车床对刀仪的用途及原理 济南一机床集团有限公司李军 摘要:文中着重介绍了英国“雷尼绍”公司数控车床用对刀仪的种类、用途以及简要的工作原理,同时也简要介绍了在数控车床上采用对刀仪对提高加工精度及加工效率的意义。 关键词:对刀仪种类及用途工作原理 作为机械加工业中用量最大的数控车床,近些年来随国内经济的高速发展已迅速得到普及。今天,一个企业内拥有几十台甚至上百台数控车床早已不是什么稀罕事了。 但众所周知,使用数控车床的目地是提高工件的加工质量和效率。可是使用过数控车床的人都知道,在一个工件的加工过程中,工件的装卸、刀具的调整等辅助时间占用了加工周期中相当大的比例,其中的刀具调整更是既麻烦、又费力。统计资料证明,实现一个工件的加工,纯机动时间大约要占总时间的55%,装、夹和对刀等辅助时间却占到45%,这实在不是一个小数。 老话讲磨刀不误砍柴工,但在现代社会中,时间就是金钱,效率就是生命。要多砍柴就必须向磨刀要效益,对时间进行分秒必争。那么,在提高对刀效率方面我们还有什么好办法吗?实践证明,通过在数控车床上增设对刀仪装置即是一种向“磨刀”要时间的好方法。 以下,结合英国雷尼绍公司的对刀仪装置,谈谈它在构成、用途及简要工作原理等方面的知识: 1、雷尼绍公司有哪几种对刀仪装置? 目前在雷尼绍车床对刀仪系列产品中共有三种型号,其对刀的原理是一样的,只是按结构的复杂程度和操作的自动化水平分为低、中、高三档型号。 第一种,HPRA (H igh P recision R emovable A rm) 型:

这是一种结构较简单、价位低的型号,其特点是对刀仪的臂和基座之间是可分离的,使用时通过插拔机构把对刀仪臂安装至对刀仪基座上(图1) 图1:HPRA型对刀仪的系统构成 同时电器信号亦连通并进入可工作状态;用完后可将对刀臂从基座中拔出,放到合适的地方以保护精密的对刀臂和对刀传感器部分不受灰尘、碰撞的损坏。 第二种,HPPA (H igh P recision P ulldown A rm) 型: 这是一种较实用、中等价位的型号。其特点是对刀仪的臂和基座之间是可旋转联接、一体化的。使用时由操作者将对刀仪臂从保护套中摆动拉出(图2)

雷尼绍对刀仪(Renishaw)

摘要英国雷尼绍公司的对刀仪在数控车床上应用有三种,插拔式手臂(HPRA)、下拉式手臂(HPPA)、全自动对刀臂式。可以快速、高效、精确地在士X、土Z及Y五个轴方向上,对加工过程中的刀具磨损或破损自动监测、报警和补偿;对机床丝杠热变形引起的刀偏值变动量进行补偿。 关键词数控车床对刀仪刀具补偿 中图分类号TP216 文献标识码B 在工件的加工过程中,工件装卸、刀具调整等辅助时间,占加工周期中相当大的比例,其中刀具的调整既费时费力,又不易准确,最后还需要试切。统计资料表明,一个工件的加工,纯机动时间大约只占总时间的55%,装夹和对刀等辅助时间占45%。因此,对刀仪便显示出极大的优越性。 一、对刀仪种类 1.插拔式手臂(High Precision Removable Arm,HPRA) HPRA的特点是对刀臂和基座可分离。使用时通过插拔机构把对刀臂安装至对刀仪基座上(图1),同时电器信号亦连通并进入可工作状态;用完后可将对刀臂从基座中拔出,放到合适的地方以保护精密的对刀臂和测头不受灰尘、碰撞的损坏,适合小型数控车床用。 2.下拉式手臂(High Precision Pulldown Arm,HPPA) HPPA的特点是对刀臂和基座旋转联接,是一体化的。使用时将对刀臂从保护套中摆动拉出(图2),不用时把对刀臂再收回保护套中,不必担心其在加工中受到损坏。不必频繁地插拔刀臂,避免了频繁插拔引起的磕碰。

3.全自动对刀臂(High Precision Motorised Arm,HPMA) HPMA的特点是,对刀臂和基座通过力矩电机实现刀臂的摆出和摆回与HPPA的区别是加了力矩电机(见图2内括号中内容),提高了自动化程度。更重要的是可把刀臂的摆出、摆回通过M代码编到加工程序中,在加工循环过程中,即可方便地实现刀具磨损值的自动测量、补偿和刀具破损的监测,再配合自动上下料机构,可实现无人化加工。 三、对刀仪的工作原理 对刀仪的核心部件是由一个高精度的开关(测头),一个高硬度、高耐磨的硬质合金四面体(对刀探针)和一个信号传输接口器组成(其他件略)。四面体探针是用于与刀具进行接触,并通过安装在其下的挠性支撑杆,把力传至高精度开关;开关所发出的通、断信号,通过信号传输接口器,传输到数控系统中进行刀具方向识别、运算、补偿、存取等。 数控机床的工作原理决定,当机床返回各自运动轴的机械参考点后,建立起来的是机床坐标系。该参考点一旦建立,相对机床零点而言,在机床坐标系各轴上的各个运动方向就有了数值上的实际意义。 对于安装了对刀仪的机床,对刀仪传感器距机床坐标系零点的各方向实际坐标值是一个固定值,需要通过参数设定的方法来精确确定,才能满足使用(图4),否则数控系统将无法在机床坐标系和对刀仪固定坐标之间进行相互位置的数据换算。

雷尼绍测头使用经验总结

//优先级别:红、绿、蓝、黑 1.测头刀长 有补偿路径时需要将测头刀长设为基准刀长,且测头刀长不能虚设必须为其实际刀长。由于测头不能在对刀仪上进行对刀,要想利用已知的刀具长度进行计算,只需要在同一个基准面上进行对刀,得到的Z向原点差值即为刀长之差。 1.在刀具设置中将“对刀基准与对刀仪原点间距”和“机外对刀刀长换算参数”清零; 2.使用测头在工件表面对刀,记下机床坐标Z1; 3.换刀,用一把加工刀具在工件表面同样位置对刀记下机床坐标Z2; 4.对刀设为当前刀具刀长,并在刀具设置中记下刀长Z3 5.测头刀长=Z3-(Z2-Z1); 一般测头比加工刀具长,所以算出的测头刀长的绝对值小于加工刀具刀长的绝对值。 在45系统T213版本的升级说明中给出了刀具参数的设置流程,有些同事只知其然,不知其所以然,其实只要理解了刀具长度的换算关系,不止一种方法可以得到测头刀长。 2.测头使用过程中常见的异常报警 1)b08-c:12位扩展输入信号暂停。可能是测头信号设置错误、接收器被遮挡、在移动过程中碰到障碍物或者电量不足。测头电量不足时,马波斯测头信号灯黄橙闪烁,雷尼绍测头蓝绿或蓝色闪烁。 2)310-0:碰触过程中没有发现任何信号。需要修正测量点位置或者增大探测距离,目前45系统中允许的最大探测距离为40mm。 3)313-100:碰触回退后信号未消除。说明回退距离太小或者搜索速度过大,两者之间的数值关系应为:回退距离=搜索速度/2+0.05。一般建议首次测量速度不小于0.4mm,45系统中默认的是两次触碰模式,即先以搜索速度碰触到工件后再回退一段距离,然后以准确测量速度进行探测,第二次触碰到的位置才会保存在测量结果中;使用单次触碰模式可以提高探测效率,但测量精度会下降,可在一些对测量精度要求不高的情况下使用。 4)311-0:测头信号异常。需要确认当前测头状态是否正确。 5)路径类型与刀具类型不符。探测路径使用的刀具必须与设备参数设置里接触式测头设置的占用刀位一致。 6)数据已经被更新,不能重复更新。检查测量点编号或者数值保存编号是否重复使用。 7)计算源数据无效,不可使用。测量计算中使用了还未探测的点或者未赋值的数值编号。 8)计算源数据不足。计算角度、中心等使用的测量点数不够。 9)尺寸超差。测量结果超出允许的误差范围,若相差数值比较异常需要仔细检查测量点的设置、属性等。 3.测头安全操作及保养 1)测头接线或拆线之前要先断掉电源,接完线后应先检查线路再给机床上电,拆掉测头模块后应在机床配置参数中退选“允许接触式测头”。 2)未经JD45Test调试的测头不能使用,调试正常后最好进加工界面确认一下测头能

卓乐对刀仪说明书

卓乐对刀仪说明书 篇一:对刀仪操作规程 对刀仪操作规程 一、对刀仪的日常保养: 1、 2、 3、每日检查润滑系统是否正常;主轴务必清洁干净,并涂抹干净防锈油;测试棒务必擦拭干净,并涂抹干净防锈油; 4、使用后请保持或增加干净的防锈油,并及时清除杂物、灰尘、铁屑等; 5、每日清洁对刀仪外罩; 6、请务必用清洁防锈油,切记不可使用汽油,丙酮类溶剂; 二、对刀仪操作注意事项: 1、操作Z轴快速位移时请勿大力拉扯,请将把手往内压下,在移至接近刀具时,再使用微调手轮; 2、量测刀具时,请以刀背接触侧头,避免损坏测头及量仪; 3、每次对刀前务必用测试棒校正数据,直径跳动允差0.02mm;长度 255.375mm

4、操作前松开X轴固定螺钉; 5、操作前松开Z轴固定配重螺钉; 6、用完后请关闭电源; 三、操作说明: 1、X轴归“0”: 1)、请同时擦拭清洁主轴及测试棒; 2)、将Z轴(升降)百分表架向顺时针方向移90度,以免X轴归零时撞及测试棒; 3)、将X轴量表测头调至接触测试棒,使量表指针向顺时针方向接触第一个0的位置; 4)、将X轴显示数据设定为测试棒半径之数字,即完成归“0”; 2、确定测试棒的归“0”的动作: 1)、将刀具装入主轴,并锁紧螺帽固定之; 2)、旋转主轴,使刀具之刀尖接触到X轴测头,让量表指针转至第一个“0”的位置; 3)、在显示器上设定刀具所需之尺寸,X轴输入刀具半径值,此时即完成刀具预调值; 4)、取下刀具时,请以逆时针方向松脱主固定螺帽;篇二:对刀仪使用方法 对刀仪使用方法 随着加工中心的广泛使用,许多用户也开始使用刀具测

量装置。它不仅可以检测刀具的磨损情况,而且可实现自动补偿,极大的提高了加工效率和精度。另外,同时使用其刀具破损检测功能与刀具寿命管理功能,还可以实现自动寻找同组刀具的功能,节约了刀具检查和更换的时间。但由于用户对测量原理不是很了解,使用时容易产生误区,有时补偿后的精度反而不如补偿前,这就使用户产生了迷惑,限制了测量装置的广泛使用。本文以英国RENISHAW.html" target="_blank" class="keylink">雷尼绍公司TS27 R测头的安装调试为例,就如何更好的使用刀具测量装置做一详细介绍,供读者参考借鉴。 刀具测量的基本原理是利用系统的跳步功能:在程序中指令“G31 Zx x x Fx x x”。但此时如果SKIP信号由“0”变为“1”时,Z轴将停止运动,再用宏程序控制坐标轴后退,然后再次碰触量块,反复测量并运算后得出刀具的实际长度和直径,最后修改系统宏变量从而达到修改刀补值的目的。 刀具测量装置的使用主要包括三个步骤:安装和接线;标定;测量。 1 安装和接线 刀具侧量装置通常包括测头和信号转换装置及相关的测量程序。测头安装在工作台上,并尽量远离加工区域,外部应加防护装置,使用前先将防护装置打开并将刀具用风吹干净,确保刀具表面无杂物,测量完成后关闭防护。

雷尼绍测头的应用

1 绪论 1.1 研究背景 随着科技、生产的快速发展,测量技术日益显著。而相当长的时间内,测量基本上是静态的,即测量对象在测量过程中不变化或没有明显变化,同时,测量大多是“离线”的,而不是“在线”的,即不是在生产制造过程中实现。比如,对于生产,离线的静态测量只能对零部件和成品分别进行检测;而对生产加工的过程则无能为力。如果能对生产制造过程加以检测,即进行所谓的“在线测量”,则不仅可以保证产品质量、增加产量,降低消耗、减少成本、提高效率,而且还可以随时监测甚至排除生产中的潜在问题,保证生产顺利进行。 国际上,上世纪60 年代后期开始,在机测量技术便引起了人们的关注。这一方面是由于科技、生产和社会发展的需要,尤其是质量和效益的挑战;另一方面则是由于传感器技术、微型计算机技术、自动控制技术和图像识别技术等的进展,为在机测量的实现提供了必要的条件。1974 年召开的第一次在机测量国际会议,进一步引起了全世界各国的普遍关注,对在机测量技术的开发与应用起了有力作用。 近年来,基于接触式、非接触式等各种测头的在机测量技术在现代工业领域被广泛应用。触发式测头在国外发展较早,技术也都相对成熟,测头的位置坐标主要通过加工设备的控制系统存储,其精度主要取决于加工设备的定位精度。因此,为了得到较高的测量精度,国内外的研究大多都是采用国外的数控系统和加工设备,比如:FANUC 数控系统等而随着国内加工设备的精度提升,此次采用北京精雕控制系统及其北京精雕高速雕刻中心来完成测头的在机测量研究。对于非接触式测量方式,激光扫描法相对成熟,比如国外大多采用FANUC 数控加工中心上配激光测头,使其附加了数控测量功能,实现了三轴机床上的在机测量。 随着加工技术的飞速发展,数控机床在生产中的应用越来越广泛。虽然机床按程序执行,但加工时间短,效率高,但工件对准、检查等辅助加工时间没有缩短,甚至占整个加工过程的1/3 以上。面对这些问题,使用Renishaw 探头不仅避免了重复编程,节省了编程和调试时间,还具有机器测量功能,保证了机床生产和操作的可靠性,保证了产品加工尺寸精度。 1.2 雷尼绍测头在机测量介绍 在数控加工过程中,有很多时间被工件的装夹找正及刀具尺寸的测量所占去。 采用工件测头系统,可在机床上快速、准确测量工件的位置,直接把测量结果反馈到数控系统中修正机床的工件坐标系。若机床具有数控转台,还可由测头自动找正工件基准面,自动

雷尼绍测头的应用

1 绪论 1.1研究背景 随着科技、生产的快速发展,测量技术日益显著。而相当长的时间内,测量基本上是静态的,即测量对象在测量过程中不变化或没有明显变化,同时,测量大多是“离线”的,而不是“在线”的,即不是在生产制造过程中实现。比如,对于生产,离线的静态测量只能对零部件和成品分别进行检测;而对生产加工的过程则无能为力。如果能对生产制造过程加以检测,即进行所谓的“在线测量”,则不仅可以保证产品质量、增加产量,降低消耗、减少成本、提高效率,而且还可以随时监测甚至排除生产中的潜在问题,保证生产顺利进行。 国际上,上世纪60 年代后期开始,在机测量技术便引起了人们的关注。这一方面是由于科技、生产和社会发展的需要,尤其是质量和效益的挑战;另一方面则是由于传感器技术、微型计算机技术、自动控制技术和图像识别技术等的进展,为在机测量的实现提供了必要的条件。1974 年召开的第一次在机测量国际会议,进一步引起了全世界各国的普遍关注,对在机测量技术的开发与应用起了有力作用。 近年来,基于接触式、非接触式等各种测头的在机测量技术在现代工业领域被广泛应用。触发式测头在国外发展较早,技术也都相对成熟,测头的位置坐标主要通过加工设备的控制系统存储,其精度主要取决于加工设备的定位精度。因此,为了得到较高的测量精度,国内外的研究大多都是采用国外的数控系统和加工设备,比如:FANUC 数控系统等而随着国内加工设备的精度提升,此次采用北京精雕控制系统及其北京精雕高速雕刻中心来完成测头的在机测量研究。对于非接触式测量方式,激光扫描法相对成熟,比如国外大多采用FANUC 数控加工中心上配激光测头,使其附加了数控测量功能,实现了三轴机床上的在机测量。 随着加工技术的飞速发展,数控机床在生产中的应用越来越广泛。虽然机床按程序执行,但加工时间短,效率高,但工件对准、检查等辅助加工时间没有缩短,甚至占整个加工过程的1/3以上。面对这些问题,使用Renishaw探头不仅避免了重复编程,节省了编程和调试时间,还具有机器测量功能,保证了机床生产和操作的可靠性,保证了产品加工尺寸精度。 1.2雷尼绍测头在机测量介绍 在数控加工过程中,有很多时间被工件的装夹找正及刀具尺寸的测量所占去。

雷尼绍对刀仪调试说明

一.对刀仪调试 1.首先检查下连接的电路,是否通气,然后检查下雷尼绍的在电柜中的分线盒上的小开关是否打在正确位置。其中分线盒外部有四个小开关,应置0010(SW1);打开分线盒盖板,里面的PC板上还有八个小开关,应置0000(SW3);1010(SW2)。另测头接受器也有九个小开关,应置000001000。(测头) 2.若上述一切都已连接设置完毕,开始设置参数。在PLC/RENSHAW/NC_2设置,如图所示。具体设置请参照附表。 3.把刀具移到测试位置,记下当前位置值,并在文件夹PLC/OEMCY9/NC/中找到MT_START文件,如图所示,输入记录值。

需要写入哪个轴进给 注意:选择哪个轴作为刀具轴,在以下界面选择,TOOL CALL Y 的话,程序自动选择NC_2参数组,TOOL CALL X,程序自动选择NC_1 参数组。 在start程序中写入: 如TOOL CALL Y L X?Y?Z?F1000M91 ;对刀仪其实位置 在end程序中写入: TOOL CALL Z 4.设置完毕,先测试下。在自动运行模式下,调出 TNC/RENISHAW/SYSTEST程序,如图所示。

注:当测试对刀仪时,NR6=1;当测试测头是NR6=0,注意修改。 按下绿色START键,程序运行至第十行左右时,用手遮挡下激光,系统报FOO警告,说明一切正常。继续下面步骤。 5.矫正激光。在单步程序运行状态下编写501程序:新建程序 段,按键调出下面各个状态,最终选择501。

选择501,会出现如图所示程序段,其中Q361表示激光轴方向,(32DF改成Q361=2 Y轴) Q362表示激光测量方向, Q363表示激光切入两点间的幅值;激光有效长度。 装上一把已知刀长和刀径的标准刀,把刀长和刀径调入刀具表,调用此刀。运行该指令,然后切换至自动运行模式下,按Q键,会出现系统Q信息:Q279表示XZ方向的补偿值,Q280表示YZ方向的补偿值。通过调节对刀仪上的螺孔,要使Q279和Q280的值都小于0.01才算合格。其中Y方向上的,小孔顶,大孔压;Z方向上的,上下两孔调节。 在矫正激光束运行程序后,会在NC2程序中写入大致的激光接收器的坐标位置。 注:在运行501程序时,主轴不转,且需要在激光束中间位置离开20mm左右即可 6.测试对刀仪激光位置。在单步程序运行状态下编写502程序: 新建程序段,按键调出下面各个状态,最终选择502。会出现 程序段。令Q362=0,Q379=0。运行后,所测的激光位置会自动在PLC/CYCLE9/NC_2填写。 7.测试刀长和刀径。清空刀具表上所测对应刀具的刀长和刀径,

Renishaw对刀仪及测头安装接线参考说明

Renishaw 对刀仪及测头安装手册 Roy.Hong 2015/5/26 一、FANUC 系统 1、接线图 对刀仪MI8-4: 地 蓝 红 24V 0V X4.7

2、参数修改 接线方法一(M17开启测头,M18关闭测头):

接线方法二(M103开启/关闭测头): 3、检测信号 a 、方法一 接线完毕后,观察机床信号状态X0004状态栏,手动点触对刀仪平台,X4.7状态出现0-1变化,则说明有信号,反之,无信号。检测测头信号时,需先将测头打开(M17/M18或者M103),手触碰探针,X4.3状态出现0-1变化,则说明有信号,反之,无信号。 b 、方法二 方法一是观察状态栏的变化,真正运行对刀仪及测头是通过G31移动,所以可以通过在MDI 模式下,运行G91G31X-10.F10.;,看到机床工作台位置在移动,手触碰对刀仪平台,位置移动结束,即程序立即结束,则说明有信号,反之,无信号。再检测测头信号时,需先将测头打开(M17/M18或者M103),MDI 模式下,运行G91G31P2X-10.F10.;,看到机床工作台位置在移动,手触碰测针,位置移动结束,即程序立即结束,则说明有信号,反之,无信号。 4、标定对刀仪及测头 5、运行对刀程序及测头探测程序 程序此处略。 注意:此种接线方法下,要注意对刀仪程序是使用的G31跳转移动,测头使用的是G31P2跳转移动,所以需要检查所对应的程序是否正确,如果不正确,需要整体替换!

二、Brother 系统 1、接线图 Ⅰ、Brother 2A a 、单独对刀仪MI8-4: b 、单独测头OMI 接受器: c 、单独测头OMI-2接受器: 地蓝 红 24V 0V 11号口

对刀仪使用说明书_对刀仪使用方法大全

对刀仪使用说明书_对刀仪使用方法【干货】 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、自动化、数字无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展。 一、工作原理 对刀仪的核心部件是由一个高精度的开关(测头),一个高硬度、高耐磨的硬质合金四面体(对刀探针)和一个信号传输接口器组成(其他件略)。四面体探针是用于与刀具进行接触,并通过安装在其下的挠性支撑杆,把力传至高精度开关;开关所发出的通、断信号,通过信号传输接口器,传输到数控系统中进行刀具方向识别、运算、补偿、存取等。 数控机床的工作原理决定,当机床返回各自运动轴的机械参考点后,建立起来的是机床坐标系。该参考点一旦建立,相对机床零点而言,在机床坐标系各轴上的各个运动方向就有了数值上的实际意义。 对于安装了对刀仪的机床,对刀仪传感器距机床坐标系零点的各方向实际坐标值是一个固定值,需要通过参数设定的方法来精确确定,才能满足使用,否则数控系统将无法在机床坐标系和对刀仪固定坐标之间进行相互位置的数据换算。当机床建立了“机床坐标系”和“对刀仪固定坐标”后(不同规格的对刀仪应设置不同的固定坐标值),对刀仪的工作原理如下:1、机床各直线运动轴返回各自的机械参考点之后,机床坐标系和对刀仪固定坐标之间的相对位置关系就建立起了具体的数值。 2、不论是使用自动编程控制,还是手动控制方式操作对刀仪,当移动刀具沿所选定的某个

轴,使刀尖(或动力回转刀具的外径)靠向且触动对刀仪上四面探针的对应平面,并通过挠性支撑杆摆动触发了高精度开关传感器后,开关会立即通知系统锁定该进给轴的运动。因为数控系统是把这一信号作为高级信号来处理,所以动作的控制会极为迅速、准确。 3、由于数控机床直线进给轴上均装有进行位置环反馈的脉冲编码器,数控系统中也有记忆该进给轴实际位置的计数器。此时,系统只要读出该轴停止的准确位置,通过机床、对刀仪两者之间相对关系的自动换算,即可确定该轴刀具的刀尖(或直径)的初始刀具偏置值了。换一个角度说,如把它放到机床坐标系中来衡量,即相当于确定了机床参考点距机床坐标系零点的距离,与该刀具测量点距机床坐标系零点的距离及两者之间的实际偏差值。 4、不论是工件切削后产生的刀具磨损、还是丝杠热伸长后出现的刀尖变动量,只要再进行一次对刀操作,数控系统就会自动把测得的新的刀具偏置值与其初始刀具偏置值进行比较计算,并将需要进行补偿的误差值自动补入刀补存储区中。当然,如果换了新的刀具,再对其重新进行对刀,所获得的偏置值就应该是该刀具新的初始刀具偏置值了。 二、对刀精度 根据有关资料及实践证明,对刀仪测头重复精度1μm;15英寸以下卡盘,手臂旋转重复精度5μm。18英寸及其以上卡盘的大规格,对刀臂的重复精度能达到8μm。这一精度可以满足大部分用户的需要而不需试切。 对刀仪的使用,减少了机床的辅助时间,降低了返工和废品率,若配合雷尼绍LP2工件测头一起使用,可显著提高机床效率和加工精度。 三、对刀仪操作规程 1、对刀仪的日常保养 ①每日检查润滑系统是否正常; ②主轴务必清洁干净,并涂抹干净防锈油;

雷尼绍TS27R技术资料

TS27R对刀仪资料整理——by David TS27R的特点? 减少刀具设定时间:一般传统手动量测刀具约需 5 ̄10 分钟,TS27R自动量刀系统只需40秒的 时间即可完成刀长、刀径量测以及补 正,大幅减少刀具设定时间。断刀破损检测:

全自动之断刀检测,避免因断裂刀具造成工件损伤,降低废料产生。 避免人为误差 : 由 NC程式控量测过程,避免因人为因素产生的误差。 触发力量: 1.3~2.4N (Z)、 130~240N (X/Y) 重现精度: ±1μm2σ 感测方向: ±X、±Y 以及+Z 轴向 探针: 圆盘探针直径12.7mm 固定方式: 使用T型螺栓固定 硬件安装步骤说明: 1.选择一适当位置安装TS27R,尽量避免 装置在切屑或是切屑液容易覆盖的位置 ,建议装置在床台角落,增加床台使用 空间,但须注意床台之行程极限以及避 免干涉。可自行增加底座将TS27R 加高 ,避免切屑及切削液影响量测。 2. 利用T型螺栓将底座固定在床台上:

3安装保护蛇管: 将讯号线穿入保护管内后锁上固定环。 4. 将测头本体锁在底座上: 注意有一垫片需放至固定座上。 + 5.连结断裂螺栓与holder:

探针水平度调整方法: (1) 将千分表吸附在主 轴上,并将探针水平度调校在3μ以内。

TS27R前后方L1和L2可调整,L3和L4可调整偏摆度。 若前方向(Front)过高,将L1螺栓放松L2螺栓旋紧,反之亦然。若L3螺栓侧稍高,将L4螺栓放松L3螺栓旋紧,反之亦然。 圆柱形探针直径:12.7mm 方形探针水平调整方法: (1) 将千分表吸附在主 轴上,并将探针水 平度调校在3μ以内

相关主题
相关文档
最新文档