高二下册期中数学(理)试题及答案(人教版)【最新】
2024年最新人教版初三数学(下册)期中试卷及答案(各版本)
![2024年最新人教版初三数学(下册)期中试卷及答案(各版本)](https://img.taocdn.com/s3/m/b6f5f367e97101f69e3143323968011ca200f741.png)
2024年最新人教版初三数学(下册)期中试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图像开口向上,且顶点坐标为(1,2),则下列结论正确的是()A. a > 0B. b = 2aC. c = aD. 顶点坐标为(1,2)3. 若直线y = kx + b(k ≠ 0)经过点(2,3)和(4,7),则该直线的斜率k等于()A. 1B. 2C. 3D. 44. 在直角坐标系中,点P(m,n)关于原点O的对称点坐标为()A. (m,n)B. (m,n)C. (m,n)D. (m,n)二、填空题(每题5分,共20分)5. 已知等差数列{an}中,a1 = 3,d = 2,则a5 = _______。
6. 在△ABC中,若∠A = 90°,AB = 6cm,AC = 8cm,则BC = _______cm。
7. 若函数y = mx + n(m ≠ 0)的图像经过点(1,3)和(2,5),则该函数的解析式为y = _______。
8. 已知圆的方程为(x 3)^2 + (y + 4)^2 = 25,则圆心坐标为_______,半径为_______。
三、解答题(每题10分,共30分)9. 解方程组:{ 2x y = 4, 3x + 2y = 7 }。
10. 已知等差数列{an}中,a1 = 5,d = 3,求前10项的和S10。
11. 在△ABC中,若∠A = 60°,AB = 5cm,AC = 7cm,求BC的长度。
四、证明题(每题10分,共20分)12. 证明:对于任意实数a和b,都有(a + b)^2 ≥ 4ab。
13. 已知等差数列{an}中,a1 = 2,d = 3,证明:对于任意正整数n,都有an > 0。
人教版二年级数学下册期中考试试题及答案(共4套)
![人教版二年级数学下册期中考试试题及答案(共4套)](https://img.taocdn.com/s3/m/5a86461c4a73f242336c1eb91a37f111f0850d7e.png)
人教版二年级数学下册期中考试试题及答案(共4套)期中检测卷一、填一填。(8,9题每题3分,其余每空1分,共28分)1.63÷7=()读作:(),63是(),()是XXX答案:9,九,被除数。
改写:63除以7等于9,63是被除数,9是商。
2.用六九五十四写两道乘法算式和两道除法算式:()。答案:654×2,654×3,654÷2,654÷3.改写:654乘以2等于1308,654乘以3等于1962,654除以2等于327,654除以3等于218.3.在计算42-18÷6时,要先算()法,再算()法。答案:除,减。
改写:计算42减去18除以6时,要先算除法,再算减法。
4.在有小括号的加、减、乘、除混合算式里要先算()里面的,再算()外面的。答案:括号里面的,括号外面的。
改写:有小括号的加、减、乘、除混合算式里,要先算括号里面的,再算括号外面的。
5.摆一个正方形要用4根同样长的小棒,摆5个不相连的正方形要用()根同样长的小棒,用32根同样长的小棒可以摆()个这样的正方形。答案:12,3.改写:摆一个正方形需要4根同样长的小棒,摆5个不相连的正方形需要12根同样长的小棒,用32根同样长的小棒可以摆3个这样的正方形。
6.把下列算式按得数从大到小排列。答案:7>6>4>2.改写:按照得数从大到小的顺序排列下列算式:7大于6大于4大于2.7.在()里填上合适的数。6×()=36,49÷()=7,()÷9=8,89×()=63,64÷()=8,()÷5=68.答案:6,7,72,0.71,8,340.改写:在括号里填上合适的数,使得等式成立:6乘以多少等于36,49除以多少等于7,多少除以9等于8,89乘以多少等于63,64除以多少等于8,多少除以5等于68.9.下列图形是轴对称图形的有()。
人教版七年级下册数学期中考试试题及答案
![人教版七年级下册数学期中考试试题及答案](https://img.taocdn.com/s3/m/a3f8de56effdc8d376eeaeaad1f34693dbef1011.png)
人教版七年级下册数学期中考试试卷一、单选题1.下列数据能确定物体具体位置的是()A .朝阳大道右侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒2.在0.21)A .0.2BC .﹣1D3.下列各式计算正确的是()A 2=±B 1=-C 2=±D .3=4.下列命题中是假命题的是()A .两直线平行,同位角互补B .对顶角相等C .直角三角形两锐角互余D .平行于同一直线的两条直线平行5.在平面直角坐标系内,将M (5,2)先向下平移2个单位,再向左平移3个单位,则移动后的点的坐标是()A .(2,0)B .(3,5)C .(8,4)D .(2,3)6.如图,直线AB 和CD 相交于点O ,45AOC ∠=︒,射线OE 是BOD ∠的角平分线,则∠BOE 的度数为()A .22.5︒B .23.5︒C .45︒D .40︒7.如图,在下列条件中,能判断AB ∥CD 的是()A .∠1=∠2B .∠BAD =∠BCDC .∠BAD +∠ADC =180°D .∠3=∠48.小明在学习平行线的性质后,把含有60°角的直角三角板摆放在自己的文具上,如图,AD ∥BC ,若∠2=70°,则∠1=()A .22°B .20°C .25°D .30°9.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近)A .点MB .点NC .点PD .点Q10.如图,已知直线AB ,CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC 的度数可能是()A .①②③B .①②④C .①③④D .①②③④二、填空题11.已知点(1,3)M m m ++在x 轴上,则m 等于______.12.如果一个正数a 的两个不同平方根分别是22x -和63x -,则a =______.13.在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是______.14.如图://AB CD ,AE CE ⊥,13EAF EAB ∠=∠,13ECF ECD ∠=∠,则AFC ∠=__.15a ,小数部分是b ,计算a ﹣2b 的值是__.16<x x 的整数有4个;③﹣3⑥对于任意实数a a .其中正确的序号是_____.三、解答题17218.求下列各式中的x :(1)24810x -=;(2)35(1)48x -+=.19.如图,已知AD BC ⊥于点D ,点E 在AB 上,EF BC ⊥于点F ,12∠=∠,试说明//DE AC .20.按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及△ABC 的顶点都在格点上.(1)点A 的坐标为;(2)将△ABC 先向下平移2个单位长度,再向右平移5个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1.(3)△A 1B 1C 1的面积为.21.(1)由8个同样大小的立方体组成的魔方,体积为64,则出这个魔方的棱长是_____.(2)图1正方形EFGH 的边长等于魔方的棱长,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得A 与1-重合,那么D 在数轴上表示的数为______.22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知A (1,3),B (﹣3,﹣5),试求A ,B 两点间的距离;(2)已知线段MN ∥y 轴,MN =4,若点M 的坐标为(2,﹣1),试求点N 的坐标;(3)已知一个三角形各顶点坐标为D (0,6),E (﹣3,2),F (3,2),你能判定此三角形的形状吗?说明理由.24.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,直接写出A ∠和C ∠之间的数量关系________;(2)如图2,过点B 作BD AM ⊥于点D ,请说明ABD C ∠=∠的理由;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE ,BP 、CF ,BF 平分DBC ∠,BE 平分ABD ∠,若180FCB NCF ∠+∠=︒,3BFC DBE ∠=∠,求EBC ∠的度数.参考答案1.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:朝阳大道右侧、好运花园2号楼、南偏西55︒都不能确定物体的具体位置,东经103︒,北纬30°能确定物体的具体位置,故选:C.【点睛】此题主要考查了坐标确定位置,要明确,一个有序数对才能确定一个点的位置.2.D【分析】按照无理数的定义逐个来判定即可.【详解】解:A、0.2属于有理数,故A不符合题意;3,为有理数,故B不符合题意;BC、﹣1为有理数,故C不符合题意;D符合题意.D故选:D.【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义.3.B【分析】根据算术平方根、平方根和立方根的定义分别判断即可.【详解】解:A2=,故选项错误;B1=-,故选项正确;C2=,故选项错误;D、3=±,故选项错误;故选B.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.4.A【分析】根据平行线、相交线、三角形内角和等性质,对选项逐个判断即可.【详解】解:A:两直线平行,同位角相等,同旁内角互补,选项错误,符合题意;B:对顶角相等,为真命题,故选项不符合题意;C:直角三角形两锐角相加为90︒,即互余,为真命题,故选项不符合题意;D:平行于同一直线的两条直线平行,为真命题,故选项不符合题意;故选A.【点睛】此题主要考查了真假命题,涉及到平行线、相交线、三角形内角和、平行公理等内容,熟练掌握相关几何性质是解题的关键.5.A【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】因为M点坐标为(5,2),根据平移变换的坐标变化规律可知,向下平移2个单位,再向左平移3个单位后得到的点的坐标是(5−3,2-2),即(2,0).故选:A.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.6.A【分析】根据对顶角相等可得∠BOD=∠AOC,再根据射线OE是∠BOD的角平分线即可得解.【详解】解:由对顶角相等得,∠BOD=∠AOC=45°,∵射线OE是∠BOD的角平分线,∴∠BOE=12∠BOD=12×45°=22.5°.故选:A.【点睛】本题考查了对顶角的性质和角平分线的定义,熟记概念并求出∠BOD的度数是解题的关键.7.C【分析】利用平行线的判定方法逐一判断即可.【详解】解:A.由∠1=∠2可判断AD∥BC,不符合题意;B.∠BAD=∠BCD不能判定图中直线平行,不符合题意;C.由∠BAD+∠ADC=180°可判定AB∥DC,符合题意;D.由∠3=∠4可判定AD∥BC,不符合题意;故选择:C.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.8.B【分析】过F作FG∥AD,则FG∥BC,即可得到∠2=∠EFG=70°,再根据∠AFE=90°,即可得出∠AFG=90°-70°=20°,进而得到∠1=∠AFG=20°.【详解】解:如图,过F作FG∥AD,则FG∥BC,∴∠2=∠EFG=70°,又∵∠AFE=90°,∴∠AFG=90°-70°=20°,∴∠1=∠AFG=20°,故选:B.【点睛】本题考查了平行线的性质,三角板的知识,比较简单,熟记平行线的性质是解题的关键.9.B【分析】先估算.【详解】∵∴43-<-∴最接近N故答案选择B.【点睛】本题考查的是无理数,正确估算.10.D【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB//CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB//CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.当AE2平分∠BAC,CE2平分∠ACD时,∠BAE2+∠DCE2=12(∠BAC+∠ACD)=12×180°=90°,即α+β=90°,又∵∠AE2C=∠BAE2+∠DCE2,∴∠AE2C=180°﹣(α+β)=180°﹣α﹣β;(3)如图3,由AB//CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB//CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.(5)(6)当点E 在CD 的下方时,同理可得,∠AEC =α﹣β或β﹣α.综上所述,∠AEC 的度数可能为β﹣α,α+β,α﹣β,180°﹣α﹣β,360°﹣α﹣β.故选:D .【点睛】本题主要考查了平行线的性质的运用与外角定理,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.11.3-【分析】当点M 的纵坐标为0时,即可列式求值.【详解】解:由题意得:m+3=0,解得m=-3,故答案为:3-.【点睛】此题主要考查点的坐标;用到的知识点为:x 轴上点的纵坐标为0.12.36【分析】根据平方根的定义,两不同平方根互为相反数,列式求解即可【详解】解:由题意可得()3262x x -=--,即2263x x -=-+,解得4x =,222426x ∴-=⨯-=,36a ∴=故答案为:36【点睛】本题主要考查了平方根的定义,利用正数的平方根有两个且互为相反数列出正确的关系式是解决本题的关键.【分析】根据点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,得到点M 的横纵坐标可能的值,进而根据所在象限可得点M 的具体坐标.【详解】解:设点M 的坐标是(x ,y ).∵点M 到x 轴的距离为5,到y 轴的距离为4,∴|y|=5,|x|=4.又∵点M 在第二象限内,∴x =−4,y =5,∴点M 的坐标为(−4,5),故答案是:(−4,5).【点睛】本题考查了点的坐标,用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值;第二象限(−,+).14.60︒【分析】利用两直线平行,同旁内角互补,垂直的定义,方程的思想求解即可.【详解】解:连接AC ,设EAF x ∠=,ECF y ∠=,3EAB x ∠=,3ECD y ∠=,//AB CD ,180BAC ACD ∴∠+∠=︒,33180CAE x ACE y ∴∠++∠+=︒,180(33)CAE ACE x y ∴∠+∠=︒-+,180(22)FAC FCA x y ∠+∠=︒-+180()AEC CAE ACE ∴∠=︒-∠+∠180[180(33)]x y =︒-︒-+33x y=+3()x y =+,180()AFC FAC FCA ∠=︒-∠+∠180[180(22)]x y =︒-︒-+2()x y =+,AE CE ⊥ ,90AEC ∴∠=︒,22906033AFC AEC ∴∠=∠=⨯︒=︒.故答案为:60︒.【点睛】本题考查了平行线的性质,垂直的定义,方程的思想,熟练应用平行线的性质,科学引入未知数是解题的关键.15.3﹣【分析】a 、b 的值,代入求出即可.【详解】解:∵12,∴a =1,b 1,∴a ﹣2b =1﹣21)=3﹣故答案为:3﹣【点睛】此题主要考查无理数的估算,解题的关键是根据无理数的大小先表示出a 、b ,代入求解.16.②③【分析】根据有理数、无理数、实数的意义逐项进行判断即可.【详解】解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;x x 的整数有﹣1,0,1,2共4个,因此②正确,符合题意;③﹣3是99,因此③正确,符合题意;④π就是无理数,不带根号的数也不一定是有理数,因此④不正确,不符合题意;⑤无限循环小数,是有理数,因此⑤不正确,不符合题意;⑥若a <0|a|=﹣a ,因此⑥不正确,不符合题意;因此正确的结论只有②③,故答案为:②③.【点睛】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提.172++.【分析】先化简绝对值、化简二次根式、立方根、二次根式的乘法,再计算二次根式的加减法即可得.【详解】原式35=+,2+.【点睛】本题考查了化简绝对值、立方根、二次根式的乘法与加减法,熟记各运算法则是解题关键.18.(1)92x =±;(2)12x =-【分析】(1)移项后根据平方根的定义求解;(2)移项后根据立方根的定义求解;【详解】解:(1)∵24810x -=,∴2481x =,∴2814x =,∴92x =±;(2)∵35(1)48x -+=,∴327(1)8x -=-,∴312x -=-,∴12x =-.【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.见解析【分析】先由垂直于同一条直线的两条直线平行,得出∠1=∠3,再用∠1=∠2代换,最后用内错角相等得出结论.【详解】解:如图,∵AD BC ⊥于点D ,EF BC ⊥于点F ,∴//AD EF ,∴13∠=∠,∵12∠=∠,∴23∠∠=,∴//DE AC .【点睛】此题是平行线的判定,主要考查了平行线的性质和判定,用判断垂直于同一条直线的两直线平行,解本题的关键是判断出AD ∥EF .20.(1)(-4,2);(2)见解析;(3)5.5.【分析】(1)根据点A 的的位置和平面直角坐标系求解即可;(2)根据平移规律即可画出△A 1B 1C 1;(3)利用割补法求△A 1B 1C 1的面积,把△A 1B 1C 1补全成一个矩形,然后用矩形的面积减去其他三个三角形的面积,即可求出△A 1B 1C 1的面积.【详解】(1)A (-4,2);(2)如图,△A 1B 1C 1即为所求.(3)11111134231413 5.5222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯= .∴△A 1B 1C 1的面积是5.5.【点睛】此题考查了平移变换以及利用割补法求三角形面积,解题的关键是熟练掌握平移变换以及利用割补法求三角形面积.21.(1)4;(2)阴影部分的面积是8,边长是(3)-1-【分析】(1)根据正方体的体积公式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D 在数轴上表示的数.【详解】解:(1=4,答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:12×2×2×4=8,答:阴影部分的面积是8,边长是(3)D 在数轴上表示的数为-1-故答案为:-1-【点睛】本题考查的是立方根在实际生活中的运用,解答此题的关键是根据立方根求出魔方的棱长.22.(1)(0,2);(2)4;(3)(﹣1,1)或(﹣3,﹣1)【分析】(1)利用y 轴上点的坐标特征得到b ﹣2=0,求出b 得到C 点坐标;(2)利用与x 轴平行的直线上点的坐标特征得到a +1=4,求出a 得到A 、B 点的坐标,然后计算两点之间的距离;(3)利用垂直于x 轴的直线上点的坐标特征得到|b |=1,然后求出b 得到C 点坐标.【详解】解:(1)∵点C 在y 轴上,∴20b -=,解得2b =,∴C 点坐标为(0,2);(2)∵AB ∥x 轴,∴A 、B 点的纵坐标相同,∴a +1=4,解得a =3,∴A(﹣2,4),B(2,4),∴A ,B 两点间的距离=2﹣(﹣2)=4;(3)∵CD ⊥x 轴,CD =1,∴|b |=1,解得b =±1,∴C 点坐标为(﹣1,1)或(﹣3,﹣1).【点评】本题考查平面直角坐标系中点坐标的求解,解题的关键是掌握坐标轴上点的坐标特征.23.(1)(2)(2,3)或(2,﹣5);(3)等腰三角形,见解析【分析】(1)直接利用两点间的距离公式计算;(2)利用MN∥y轴得到M、N的横坐标相同,设N(2,t),利用两点间的距离为4得到|t+1|=4,然后求出t即可;(3)利用两点间的距离公式计算出DE、DF、EF,然后根据三角形的分类进行判断.【详解】解:(1)A,B(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE5,DF5,EF6,∴DE=DF,∴△DEF为等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.24.(1)∠A+∠C=90°;(2)证明见解析(3)105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BG∥DM,证∠DBG=90°,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∴∠D+∠DBG=180°,∵BD⊥AM,∴∠D=90°,∴∠DBG=90°,∴∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,∴∠DBF=∠CBF,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,∵BE平分∠ABD,∴∠DBE=∠ABE,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠ABF=β,∵BG∥DM,∴∠AFB=∠GBF=β,∵∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵BG∥DM,∴∠AFC+∠NCF=180°,∵∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质和三角形内角和,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。
2024年人教版四年级数学下册期中测试卷及答案【精选】
![2024年人教版四年级数学下册期中测试卷及答案【精选】](https://img.taocdn.com/s3/m/3dcb1a96d05abe23482fb4daa58da0116c171fcb.png)
2024年人教版四年级数学下册期中测试卷及答案【精选】(时间:60分钟分数:100分)班级:姓名:分数:一、填空题。
(每题2分,共20分)1、有一个数,十位和百分位都是8,个位和十分位都是0,这个数写作(),读作()。
2、计数单位个和十分之一之间的进率是()。
3、最大的三位数与最小的两位数的积是().4、把0.36扩大到100倍再把小数点向左移动一位后是().5、一本少儿版西游记有245页,小明用了一个星期刚好看完,平均每天看()页。
6、一个十位数,最高位上是7,百万位和百位都是5,其他各数位上都是0,这个数写作(),读作(),这个数最高位是()位.省略亿后面的尾数约是()亿.7、我们下午3:30放学,用24计时法表示为()时()分。
8、一个角有()个顶点和()条边。
9、在一道有余数的除法算式里,被除数是378,商和余数都是14,除数是().10、甲、乙两地相距60千米,李林8时从甲地出发去乙地,前一半时间平均每分钟行1千米,后一半时间平均每分钟行0.8千米,李林从甲地到乙地共用了()小时.二、判断题(对的打“√”,错的打“×”。
每题2分,共10分)1、一个五位数,“四舍五入”后约等于6万,这个数最大是5999.()2、从不同的角度观察同一物体,所看到的物体的形状是不一样的。
()3、大于1.6小于1.9的小数只有1.7和1.8两个.()4、直角三角形只有一条高.()5、9:30时,时针和分针组成的角是直角.()三、选择题。
(每题1分,共5分)1、3:30时,时针和分针构成的角是()。
A.锐角B.直角C.钝角2、下列图形中,不是轴对称图形的是()A.线段B.平行四边形C.等腰三角形3、45×26=1170,其中一个因数扩大2倍,另一个因数缩小2倍,积是()A.1170 B.2340 C.5854、101×76的简便算法是()A.100×76+1 B.100×76+100 C.100×76+765、用一个放大一百倍的放大镜来观察一个30°的角,则观察的角()A.大小不变B.缩小了100倍C.放大100倍四、直接写出得数。
人教版高一下学期期中考试数学试卷及答案解析(共五套)
![人教版高一下学期期中考试数学试卷及答案解析(共五套)](https://img.taocdn.com/s3/m/09e9b52cb5daa58da0116c175f0e7cd18425189f.png)
人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。
人教版二年级数学下册期中测试卷(含答案)
![人教版二年级数学下册期中测试卷(含答案)](https://img.taocdn.com/s3/m/ec35a81c3868011ca300a6c30c2259010202f362.png)
人教版二年级数学下册期中测试卷(含答案)一.选择题(共8小题)1.下面哪种分法表示平均分?()A.B.C.2.一堆苹果,比20个多,比30个少,平均分成的份数和每份的数量同样多,这堆苹果可能有()个.A.24 B.36 C.253.从27里面连续减去9,()次减完。
A.3 B.7 C.94.下面算式中与12÷3÷2结果一样的算式是()A.12÷3×2 B.12÷2×3 C.12÷(3×2)5.李老师要为图书馆购置一批图书,他需要先调查()。
A.同学们每天阅读多长时间B.同学们在家会阅读吗C.同学们喜欢哪几类课外书D.同学们本学期读了几本课外书6.下面不是轴对称图形的是()A.长方形B.等腰三角形C.直角梯形D.正六边形7.乐乐和他的3个好朋友每人折了9只纸鹤,送给幼儿园的小朋友19只,还剩多少只?列式正确的是()A.3×9﹣19 B.4×9﹣19 C.4×9+198.下面各式中,算式()要想先算除法必须加上小括号.A.56÷8+25 B.36÷6×4 C.4×8÷2二.填空题(共8小题)9.巧算24点.(1)7、5、2、6(2)3、6、7、8.10.每3根小棒摆一个三角形,27根小棒可以摆个三角形.算式是.11.光明小学少先队展览30张优秀图画作品.(1)每排贴6张,可以贴几排?□〇□=□(2)贴5排,平均每排贴几张?□〇□=□12.想一想,填一填.(1)每盒蜡笔9元.笑笑了2盒蜡笔,付给售货员阿姨一张,应找回元.(2)养殖场白兔有20只,灰兔有12只.如果把这些兔子放在4间兔舍中,平均每间兔舍住只兔子.(3)花店运来8束康乃馨,每束9枝._____,还剩下多少枝?如果列式为(8﹣3)×9,那么横线上需填的信息正确的是.(填序号)①卖出3枝②卖出3束③又运来3束13.小虎在计算“40+□÷2”时,先计算加法,后算除法,得到的结果是50。
2019学年高二数学下学期期中理试题(含解析)人教版
![2019学年高二数学下学期期中理试题(含解析)人教版](https://img.taocdn.com/s3/m/5d4a6424f242336c1eb95ebc.png)
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……2019学年第二学期期中考试高二数学(理科)试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.1.若随机变量ξ的分布列如下表所示,则p1=( )A. 0B.C.D. 1【答案】B【解析】【分析】由分布列的性质:所有随机变量对应概率的和为列方程求解即可.【详解】因为所有随机变量对应概率的和为,所以,,解得,故选B.【点睛】本题主要考查分布列的性质,意在考查对基本性质的掌握情况,属于简单题.2. 若随机变量X~B(n,0.6),且E(X)=3,则P(X=1)的值是()A. 2×0.44B. 2×0.45C. 3×0.44D. 3×0.64【答案】C【解析】试题分析:根据随机变量符合二项分布,根据期望值求出n的值,写出对应的自变量的概率的计算公式,代入自变量等于1时的值.解:∵随机变量X服从,∵E(X)=3,∴0.6n=3,∴n=5∴P(X=1)=C51(0.6)1(0.4)4=3×0.44故选C.考点:二项分布与n次独立重复试验的模型.3.3.下列说法正确的是( )A. 相关关系是一种不确定的关系,回归分析是对相关关系的分析,因此没有实际意义B. 独立性检验对分类变量关系的研究没有100%的把握,所以独立性检验研究的结果在实际中也没有多大的实际意义C. 相关关系可以对变量的发展趋势进行预报,这种预报可能是错误的D. 独立性检验如果得出的结论有99%的可信度就意味着这个结论一定是正确的【答案】C【解析】相关关系虽然是一种不确定关系,但是回归分析可以在某种程度上对变量的发展趋势进行预报,这种预报在尽量减小误差的条件下可以对生产与生活起到一定的指导作用;独立性检验对分类变量的检验也是不确定的,但是其结果也有一定的实际意义,故正确答案为C.4.4.已知回归直线方程,其中且样本点中心为,则回归直线方程为()A. B. C. D.【答案】C【解析】【分析】根据回归直线方程,将样本点的中心坐标代入,即可求得回归直线方程.【详解】回归直线方程为,样本点的中心为,,,回归直线方程,故选C.【点睛】本题主要考查回归方程的性质以及求回归方程的方法,属于简单题. 回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.5.5.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.6826.若μ=4,σ=1,则P(5<X<6)=( )A. 0.135 9B. 0.135 8C. 0.271 8D. 0.271 6【答案】A【解析】【分析】根据变量符合正态分布和所给的和的值,结合原则,得到,两个式子相减,根据对称性得到结果.【详解】随机变量符合正态分布,,,,,,故选A.【点睛】本题主要考查正态分布的性质,属于中档题.有关正态分布应用的题考查知识点较为清晰,只要熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系,问题就能迎刃而解.6.6.如图所示,表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么此系统的可靠性为()A. 0.504B. 0.994C. 0.496D. 0.06【答案】B【解析】试题分析:系统正常工作的概率为,即可靠性为0.994.故选B.考点:相互独立事件同时发生的概率.【名师点睛】1.对于事件A,B,若A的发生与B的发生互不影响,则称A,B相互独立;2.若A与B相互独立,则P(B|A)=P(B),P(AB)=P(B|A)×P(A)=P(A)×P(B)3.若A与B相互独立,则A与,与B,与也都相互独立.4.若P(AB)=P(A)P(B),则称A,B相互独立.7.7.如图所示的5个数据,去掉后,下列说法错误的是()A. 相关系数变大B. 残差平和变大C. 变大D. 解释变量与预报变量的相关性变强【答案】B【解析】分析:由散点图知,去掉后,与的线性相关加强,由相关系数,相关指数及残差平方和与相关性的关系得出选项.详解:由散点图知,去掉后,与的线性相关加强,且为正相关,所以r变大,变大,残差平方和变小.故选B.点睛:本题考查刻画两个变量相关性强弱的量:相关系数r,相关指数R2及残差平方和,属基础题.8. 已知随机变量X~B(6,0.4),则当η=-2X+1时,D(η)=( )A. -1.88B. -2.88C. 5. 76D. 6.76【答案】C【解析】试题分析:因为随机变量X~B(6,0.4),所以,.故选C.考点:1、离散型随机变量的分布列(二项分布);2、离散型随机变量函数的方差.9.9.一名篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为( ) A. B. C. D.【答案】D【解析】试题分析:由题意,投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a、b、c∈(0,1)),∴3a+2b=2,∴2≥2,∴ab≤(当且仅当a=,b=时取等号)∴ab 的最大值为.故答案:D.考点:离散型随机变量的期望与方差.10.10.下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和大小,残差平方和越小的模型拟合效果越好.其中说法正确的是( )A. ①②B. ②③C. ①③D. ①②③【答案】C【解析】①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.②相关指数来刻画回归的效果,值越大,说明模型的拟合效果越好,因此②不正确.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.综上可知:其中正确命题的是①③.故答案为C11.11.将三颗骰子各掷一次,设事件“三个点数都不相同”,“至少出现一个6点”,则概率等于()A. B. C. D.【答案】A【解析】试题分析:∵P(A|B)=P(AB)÷P(B),P(AB)=P(B)=1-P(.B)=1-∴P(A/B)=P(AB)÷P(B)=考点:条件概率与独立事件12.12.同时抛掷5枚质地均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为X,则X的均值是( )A. 20B. 25C. 30D. 40【答案】B【解析】抛掷一次正好出现3枚反面向上,2枚正面向上的概率为,所以X~B.故E(X)=80×=25.二、填空题(本大题共4小题,每小题5分,共20分).13.13.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射一个目标,则他们都中靶的概率是 .【答案】【解析】试题分析:依题意可知甲中靶与乙中靶是相互独立事件,且他们中靶的概率分布为0.8,0.7。
新人教版高二(下)期中数学试卷(理科)含解析
![新人教版高二(下)期中数学试卷(理科)含解析](https://img.taocdn.com/s3/m/e74ee8fb10a6f524cdbf858d.png)
新人教版高二(下)期中数学试卷(理科)一、选择题:(本题共12小题,每小题5分,共60分,每小题给出四个选项只有一项符合题目要求的)1.(5分)已知复数z =11+i ,则z ﹣i 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.(5分)有不同颜色的四件上衣与不同颜色的三条长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数( ) A .7B .64C .12D .813.(5分)用反证法证明“已知x ,y ∈R ,x 2+y 2=0,求证:x =y =0.”时,应假设( ) A .x ≠y ≠0B .x =y ≠0C .x ≠0且y ≠0D .x ≠0或 y ≠04.(5分)f (x )=e x lnx ,f ′(x )为f (x )的导函数,则f ′(1)的值为( ) A .1B .eC .2eD .05.(5分)设函数f (x )可导,则lim △x→0f(1)−f(1+△x)3△x 等于( )A .﹣f '(1)B .3f '(1)C .−13f ′(1)D .13f ′(1)6.(5分)曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为( ) A .e 2B .2e 2C .4e 2D .e 227.(5分)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+lnx ,则f ′(2)=( ) A .32B .1C .﹣1D .−328.(5分)设函数f(x)=x 3−12x 2−2x +5,若对于任意x ∈[﹣1,2]都有f (x )<m 成立,则实数m 的取值范围为( ) A .(7,+∞)B .(8,+∞)C .[7,+∞)D .(9,+∞)9.(5分)中华文化博大精深.我国古代对年龄的表述可谓是名目繁多,比如“二八年华”指女子16岁.乾隆曾出上联“花甲重逢,外加三七岁月”,纪晓岚对下联“古稀双庆,更多一度春秋”,暗指一位老人的年龄.根据类比思想和文化常识,这位老人的年龄为( )A .71岁B .81岁C .131岁D .141岁10.(5分)函数f(x)=12x −sinx 的图象大致是( )A .B .C .D .11.(5分)在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8的展开式中,含x 3的项的系数是( ) A .74B .121C .﹣74D .﹣12112.(5分)对于定义域为R 的函数f (x ),若满足①f (0)=0;②当x ∈R ,且x ≠0时,都有xf ′(x )>0;③当x 1<0<x 2,且|x 1|=|x 2|时,都有f (x 1)<f (x 2),则称f (x )为“偏对称函数”.现给出四个函数:f 1(x )=﹣x 3+32x 2;f 2(x )=e x ﹣x ﹣1;f 3(x )={ln(−x +1),x ≤02x ,x >0,f 4(x )={x(12x −1+12),x ≠00,x =0,则其中是“偏对称函数”的函数个数为( ) A .0B .1C .2D .3二、填空题(本题共4小题,每小题5分,共20分)13.(5分)曲线y =(ax +1)e x 在点(0,1)处的切线的斜率为﹣2,则a = . 14.(5分)函数f (x )={x +1,−1≤x <0e x,0≤x ≤1的图象与直线x =1及x 轴所围成的封闭图形的面积为 .15.(5分)(√2−x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则(a 0+a 2+…+a 10)2﹣(a 1+a 3+…+a 9)2的值为 .16.(5分)设f (x )是定义在R 上的可导函数,且满足f (x )+xf ′(x )>0.则不等式f (√x +1)>√x −1f (√x 2−1)的解集为 .三、解答题:(本题共6小题,共70分,各题解答过程应写出必要的文字说明、演算步骤或推理过程)17.(10分)已知复数z 满足|z |=3+3i ﹣z ,求(1+3i)⋅(3+4i)z的值.18.(12分)有3名男生4名女生,在下列不同要求下,求不同的排列方法总数(用数字作答).(1)全体排成一行,其中男生甲不在最左边; (2)全体排成一行,其中4名女生必须排在一起; (3)全体排成一行,3名男生两两不相邻. 19.(12分)已知a >0,用分析法证明:√a 2+1a 2−√2≥a +1a −2. 20.(12分)若函数f (x )=ax 3﹣bx +4,当x =2时,函数f (x )有极值−43. (1)求函数的解析式; (2)求函数的极值;(3)若关于x 的方程f (x )=k 有三个零点,求实数k 的取值范围.21.(12分)已知数列{a n }满足a 1=2,a n +1=an 1+a n.(1)计算a 2,a 3,a 4;(2)猜测a n 的表达式,并用数学归纳法证明.22.(12分)设函数f (x )=lnx ﹣ax (a ∈R )(e =2.71828…是自然对数的底数). (1)判断f (x )的单调性;(2)当f (x )<0在(0,+∞)上恒成立时,求a 的取值范围.答案一、选择题:(本题共12小题,每小题5分,共60分,每小题给出四个选项只有一项符合题目要求的) 1.解:∵z =11+i =1−i (1+i)(1−i)=12−12i , ∴z ﹣i =12−32i .∴z ﹣i 在复平面内对应的点为(12,−32),在复平面内对应的点位于第四象限. 故选:D .2.解:∵选定一件上衣时,有不同颜色的裤子3条, ∴有3种不同的穿衣方案,∴共有3×4=12种不同的搭配方法, 故选:C .3.解:用反证法证明“已知x ,y ∈R ,x 2+y 2=0,求证:x =y =0.”时,应先假设x ≠0或 y ≠0. 故选:D .4.解:∵f (x )=e x lnx , ∴f ′(x)=e x lnx +e xx , ∴f ′(1)=e . 故选:B . 5.解:由lim △x→0f(1)−f(1+△x)3△x =−13lim △x→0f(1+△x)−f(1)△x =−13f ′(1), ∴lim△x→0f(1)−f(1+△x)3△x =−13f ′(1), 故选:C .6.解:依题意得y ′=e x ,因此曲线y =e x 在点A (2,e 2)处的切线的斜率等于e 2, 相应的切线方程是y ﹣e 2=e 2(x ﹣2), 当x =0时,y =﹣e 2,即y =0时,x =1,∴切线与坐标轴所围成的三角形的面积为:S =12×e 2×1=e 22. 故选:D .7.解:∵函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+lnx ,(x >0) ∴f ′(x )=2f ′(1)+1x,把x =1代入f ′(x )可得f ′(1)=2f ′(1)+1, 解得f ′(1)=﹣1,∴f ′(2)=2f ′(1)+12=−2+12=−32. 故选:D .8.解:∵f (x )<m 恒成立,即f (x )的最大值<m 恒成立, ∴f ′(x )=3x 2﹣x ﹣2,当x ∈[﹣1,−23]时,f (x )为增函数, 当x ∈[−23,1]时,f (x )为减函数, 当x ∈[1,2]时,f (x )为增函数, ∴f (x )的极大值为f (−23)=52227,又f (2)=7,且f (2)>f (−23), 所以f (x )的最大值为7. 所以m 的取值范围为(7,+∞). 故选:A .9.解:由花甲指60岁,外加三七岁月指60+21=81岁, “古稀双庆,更多一度春秋”,“古稀”指70岁, 即这位老人的年龄为70×2+1=141岁, 故选:D .10.解:∵函数f(x)=12x −sinx ,∴f (﹣x )=﹣f (x ),为奇函数,图象关于原点对称,∴排除A .f '(x )=12−cosx ,由f '(x )=12−cosx =0,得cos x =12,∴函数的极值点由无穷多个,排除B ,D , 故选:C .11.解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8的展开式中,含x 3的项的系数C 53(−1)3+C 63(−1)3+C 73(−1)3+C 83(−1)3=﹣10+(﹣20)+(﹣35)+(﹣56) =﹣121 故选:D .12.解:经验证,f 1(x ),f 2(x ),f 3(x ),f 4(x )都满足条件①;xf ′(x )>0⇔{x >0f ′(x)>0,或{x <0f ′(x)<0,即条件②等价于函数f (x )在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增.f 1′(x )=﹣3x 2+3x ,xf 1′(x )=﹣3x 3+3x 2=﹣3x 2(x ﹣1),当x >1时,xf 1′(x )<0,故f 1(x )不满足条件②,不是“偏对称函数”;f 2′(x )=e x ﹣1,xf 2′(x )=x (e x ﹣1),满足条件②.由f 2(x )的单调性知当x 1≠x 2,设x 1<0<x 2.﹣x 2<0,f 2(x 1)﹣f 2(x 2)=f 2(﹣x 2)﹣f 2(x 2)=﹣e x 2+e ﹣x 2+2x 2.令F (x )=﹣e x +e ﹣x +2x ,x >0,F ′(x )=﹣e x ﹣e ﹣x +2≤﹣2√e x ⋅e −x +2=0, 当且仅当e x =e ﹣x 即x =0时,“=”成立,所以F (x )在[0,+∞)上是减函数,所以F (x 2)<F (0)=0,所以f 2(x )是“偏对称函数”. 由函数f 3(x )={ln(−x +1),x ≤02x ,x >0,满足条件①②,当x 1<0<x 2,且|x 1|=|x 2|时, 设F (x )=ln (x +1)﹣2x ,x >0.则F ′(x )=1x+1−2<0,F (x )在(0,+∞)上是减函数, 可得F (x )<F (0)=0,故f 3(x )也满足条件③,所以f 3(x )是“偏对称函数”; 而容易验证f 4(x )是偶函数,可知f 4(x )在区间(﹣∞,0)递减和(0,+∞)递增, 故f 4(x )满足条件①②,但|x 1|=|x 2|时,都有f 4(x 1)=f 4(x 2),不满足条件③,则f 4(x )不是“偏对称函数”. 故选:C .二、填空题(本题共4小题,每小题5分,共20分) 13.解:曲线y =(ax +1)e x ,可得y ′=ae x +(ax +1)e x , 曲线y =(ax +1)e x 在点(0,1)处的切线的斜率为﹣2, 可得:a +1=﹣2,解得a =﹣3. 故答案为:﹣3.14.解:由题意,﹣1≤x <0时,图象与x 轴所围成的封闭图形的面积为12,0≤x ≤1时,f (x )={x +1,−1≤x <0e x,0≤x ≤1的图象与直线x =1及x 轴所围成的封闭图形的面积为∫ 10e x dx =e x |01=e ﹣1,∴函数f (x )={x +1,−1≤x <0e x ,0≤x ≤1的图象与直线x =1及x 轴所围成的封闭图形的面积为12+e ﹣1=e −12,故答案为:e −12.15.解:∵(a 0+a 2+a 4+…+a 10)2﹣(a 1+a 3+a 5+…+a 9)2=(a 0+a 2+a 4+…+a 10+a 1+a 3+a 5+…+a 9)[(a 0+a 2+a 4+…+a 10)﹣(a 1+a 3+a 5+…+a 9)],∴令x =1,则a 0+a 1+a 2+…+a 10=[(a 0+a 2+a 4+…+a 10)+(a 1+a 3+a 5+…+a 9)]=(√2−1)10,令x =﹣1,则a 0﹣a 1+a 2﹣…+a 10=[(a 0+a 2+a 4+…+a 10)﹣(a 1+a 3+a 5+…+a 9)]=(√2+1)10,∴两式相乘得:[(a 0+a 2+a 4+…+a 10)2﹣(a 1+a 3+a 5+…+a 9)2]=(√2+1)10•(√2−1)10=[(√2)2﹣1]10=110=1.∴(a 0+a 2+…+a 10)2﹣(a 1+a 3+…+a 9)2=1. 故答案为:1.16.解:∵f (x )+xf ′(x )>0,∴( x •f (x ))′>0,故函数y =x •f (x )在R 上是增函数. ∴由不等式f (√x +1)>√x −1f (√x 2−1),可得 √x +1•f (√x +1)>√x +1•√x −1•f (√x 2−1 ),即 √x +1•f (√x +1)>√x 2−1•f (√x 2−1 ),∴√x +1>√x 2−1,即{x +1≥0x ≥1,或x ≤−1x +1>x 2−1,解得 1≤x <2,故答案为:{x |1≤x <2}.三、解答题:(本题共6小题,共70分,各题解答过程应写出必要的文字说明、演算步骤或推理过程)17.解:设z =x +yi , ∵|z |=3+3i ﹣z ,∴√x 2+y 2=3−x +(3−y)i , ∴{√x 2+y 2=3−x3−y =0⇒{x =0y =3∴z =3i ,∴(1+3i)⋅(3+4i)z=(1+3i)⋅(3+4i)3i=133+3i .18.解:(1)根据题意,先排最左边,除甲外有A 61种排法,剩下的6人全排列A 66,则符合条件的排法一共有A 61⋅A 66=4320种;(2)根据题意,将4名女生看成一个整体,有A 44种顺序, 再把4名女生作为一个整体和其他人全排列,有A 44种顺序,则有A 44⋅A 44=576种排法;(3)根据题意,先排好女生,有A 44种顺序,排好后,有5个空位,将3名男生安排在3个空位中,有A 53种排法,则有A 44⋅A 53=1440种排法.19.证明:要证√a 2+1a 2−√2≥a +1a −2. 只要证√a 2+1a2+2≥a +1a +√2 ∵a >0,∴两边均大于零,因此只需证(√a 2+12+2)2≥(a +1a +√2)2, 只需证√a 2+1a 2≥√22(a +1a ), 只需证a 2+1a 2≥12(a 2+1a2+2) 即证a 2+12≥2,它显然成立. ∴原不等式成立.20.解:(1)f ′(x )=3ax 2﹣b由题意知{f ′(2)=12a −b =0f(2)=8a −2b +4=−43,解得{a =13b =4,∴所求的解析式为f (x )=13x 3﹣4x +4;(2)由(1)可得f ′(x )=x 2﹣4=(x ﹣2)(x +2) 令f ′(x )=0,得x =2或x =﹣2, ∴因此,当x =﹣2时,f (x )有极大值283,当x =2时,f (x )有极小值−43;(3)由(2)知,得到当x <﹣2或x >2时,f (x )为增函数;当﹣2<x <2时,f (x )为减函数,∴函数f (x )=13x 3﹣4x +4的图象大致如图. 由图可知:−43<k <283.21.(1)解:由a n+1=a n1+a n 及a1=1,得a2=a11+a1=12,进而a3=a21+a2=13,a4=a31+a3=14.﹣﹣﹣﹣﹣(4分)(2)证明:猜想a n=1n,再用数学归纳法证明之.当n=1时,a1=11=1,而已知a1=1,所以n=1时,猜想正确.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)假设当n=k时,猜想正确,即a k=1k,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)则n=k+1时,a k+1=a k1+a k =1k1+1k=1k+1.所以当n=k+1时,猜想也成立.综上所述可知,对一切n∈N,猜想a n=1n都正确.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)22.解:(1)函数f(x)的定义域是(0,+∞),f′(x)=1x−a=1−axx,当a≤0时,f'(x)>0恒成立,此时f(x)在(0,+∞)上单调递增,当a>0时,令f'(x)=0,得到x=1a,当x∈(0,1a)时,f'(x)>0,f(x)在(0,1a)上单调递增,当x∈(1a,+∞)时,f'(x)<0,f(x)在(1a,+∞)上单调递减,综上,当a≤0时,f(x)在(0,+∞)上单调递增;当a>0时,f(x)在(0,1a)上单调递增,在(1a,+∞)上单调递减.(2)由f(x)<0在(0,+∞)上恒成立,即lnx﹣ax<0在(0,+∞)上恒成立,常规法分离参数得到a>lnx x在(0,+∞)上恒成立,令g(x)=lnx x,则g′(x)=1−lnxx2,当x∈(0,e)时,g'(x)>0,g(x)在(0,e)上单调递增,当x∈(e,+∞)时,g'(x)<0,g(x)在(e,+∞)上单调递减,故x=e时,g(x)max=g(e)=1e,故a>1e。
人教版高二上学期期中考试数学试题与答案解析(共两套)
![人教版高二上学期期中考试数学试题与答案解析(共两套)](https://img.taocdn.com/s3/m/d6cfc7257275a417866fb84ae45c3b3566ecdd50.png)
人教版高二上学期期中考试数学试题(一) (本卷满分150分,考试时间120分钟)测试范围:选择性必修第一册:第一章、第二章、第三章一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知两个非零向量)(111z y x a ,,=,)(222z y x b ,,=,则这两个向量在一条直线上的充要条件是( )。
A 、||||b b a a ::= B 、212121z z y y x x == C 、0212121=++z z y y x x D 、存在非零实数k ,使b k a =2.已知焦点在x 轴上的双曲线的焦距为32,焦点到渐近线的距离为2,则双曲线的方程为( )。
A 、1222=-y xB 、1222=-y xC 、1222=-x y D 、1222=-x y3.若直线m my x +=+2与圆012222=+--+y x y x 相交,则实数m 的取值范围为( )。
A 、)(∞+-∞, B 、)0(,-∞ C 、)0(∞+, D 、)0()0(∞+-∞,, 4.点)24(-,P 与圆422=+y x 上任一点连线的中点的轨迹方程是( )。
A 、1)1()2(22=++-y x B 、4)1()2(22=++-y x C 、1)1()2(22=-++y x D 、4)2()4(22=-++y x5.若P 、Q 分别为直线01243=-+y x 与0586=++y x 上任意一点,则||PQ 的最小值为( )。
A 、59 B 、1029 C 、518 D 、5296.已知椭圆C :12222=+b y a x (0>>b a )的左焦点1F ,过点1F 作倾斜角为 30的直线与圆222b y x =+相交的弦长为b 3,则椭圆的离心率为( )。
A 、21 B 、22 C 、43 D 、237.已知点1F 是抛物线C :py x 22=的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F 、2F 为焦点的双曲线上,则双曲线的离心率为( )。
2022-2023学年湖南省永州市冷水滩区人教版五年级下册期中测试数学试卷(含答案解析)
![2022-2023学年湖南省永州市冷水滩区人教版五年级下册期中测试数学试卷(含答案解析)](https://img.taocdn.com/s3/m/0203257bf6ec4afe04a1b0717fd5360cba1a8dae.png)
2022-2023学年湖南省永州市冷水滩区人教版五年级下册期中测试数学试卷学校:___________姓名:___________班级:___________考号:___________一、填空题1.下面的三个图形分别是从什么方向看到的,填一填。
从()面看从()面看从()面看2.在下面四个几何体中:(1)从正面看是图A的是(),从左面看是图B的是()。
(2)观察④,从()面和()面看到的都是图B。
(3)用5个同样的小正方体摆一个从上面看和①一样的几何体,有()种不同的摆法。
3.一个两位数,既是3的倍数,又有因数5,这个两位数最小是(),最大是()。
4.如果有三个连续的奇数,中间一个是a,那么另外两个可以表示为()、()。
5.一个长方体的棱长总和是56cm,长是6cm,宽是5cm,高是()cm,这个长方体的表面积是()cm2,体积是()cm3。
6.将一个长8dm,宽和高都是5dm的长方体框架,拆开后再焊接成一个正方体,并给它表面贴上纸,这个正方体的棱长是()dm,表面积是()dm2,体积是()dm3。
7.把一个棱长为4dm的正方体锯成两个相同的长方体,再拼成一个稍大的长方体,拼成的长方体的表面积是()dm2。
8.9和15的公因数有(),6和10的最小公倍数是().二、判断题.两个几何体从上面看到的形状都是,那么从正面看到的形状也一定是相三、选择题72同时是.........一根绳子剪成两段,第一段长米,第二段占全长的35,两段相比(四、解答题22.求下面每组数的最大公因数和最小公倍数.24和1632和6435和28五、其他计算六、填空题25.从下面四张卡片中选出三张,按要求组成三位数。
3的倍数:()5的倍数:()同时是2和3的倍数:()同时是2和5的倍数:()同时是3和5的倍数:()同时是2、3和5的倍数:()26.把下面的数按要求归类。
125139297831478010897102七、解答题27.重阳节这天,45名志愿者到老年公寓帮忙,展现新时代尊老、敬老、爱老、助老的新风貌。
2021年高二下学期期中统一考试数学(理)试题 含答案
![2021年高二下学期期中统一考试数学(理)试题 含答案](https://img.taocdn.com/s3/m/a62bb66fc77da26924c5b0b8.png)
2021年高二下学期期中统一考试数学(理)试题 含答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项最符合题目要求的. 1.复数z 满足z =2-i1-i,则z 等于( ) A .1+3i B .3-i C.32-12iD.12+32i 2.函数的单调减区间是( )A .(0,2) B. (0,3) C. (0,1) D. (0,5)3. 已知△ABC 的顶点B 、C 在椭圆上,顶点A 是椭圆的一个焦点,且BC 边经过椭圆的另外一个焦点,则△ABC 的周长是( )A . B. C. D. 4. 变量x 、y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.Z =yx,则Z 的最小值为( )A .225B .25 C .1D .5.在中,,那么A =( )A . B. C. 或 D.6.函数y =f (x )在定义域⎝⎛⎭⎫-32,3内可导,其图象如下图所示,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )≤0的解集为( )A. ⎣⎡⎦⎤-32,12∪[1,2)B.⎣⎡⎦⎤-1,12∪⎣⎡⎦⎤43,83C. ⎝⎛⎦⎤-32,-1∪⎣⎡⎦⎤12,43∪⎣⎡⎦⎤83,3D. ⎣⎡⎦⎤-13,1∪[2,3)7.“a >0”是“|a |>0”的( )A .充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件8.下图是一组有规律的图案,第(1)个图案由4个基础图形组成,第(2)个图案由7个基础图形组成,……,第(670)个图案中的基础图形个数有( ) A 、xx B 、xx C 、xx D 、2011二、填空题:本大题共6小题,每小题5分,满分30分. 9. 抛物线的焦点坐标是_ _ _10. 命题:,则11. 若平面α,β的法向量分别为=(-1,2,4),=(x ,-1,-2),并且α⊥β,则x 的值为 12.13. 已知等比数列....的公比q=2,其前4项和,则等于__ __ 14.已知,则函数的最大值是 。
人教A版选修2-2高二(下)期中数学试卷(理科).docx
![人教A版选修2-2高二(下)期中数学试卷(理科).docx](https://img.taocdn.com/s3/m/7586c490050876323112128a.png)
马鸣风萧萧马鸣风萧萧高中数学学习材料马鸣风萧萧*整理制作高二(下)期中数学试卷(理科)参考答案与试题解析一.选择题(共12小题,每题5分)1.(5分)=()A.B.C.D.考点:复数代数形式的乘除运算.专题:计算题.分析:利用复数代数形式的除法法则即可得到答案.解答:解:===,故选B.点评:本题考查复数代数形式的乘除运算,属基础题.2.(5分)函数f(x)=在(0,1)处的切线方程是()A.x+y﹣1=0 B.2x+y﹣1=0 C.2x﹣y+1=0 D.x﹣y+1=0考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:先对函数f(x)=进行求导,再根据导数的几何意义求出曲线f(x)=在点x=0处的切线斜率,进而可得到切线方程.解答:解:∵f′(x)=,∴切线的斜率k=f′(x)|x=0=﹣1,切点坐标(0,1)∴切线方程为y﹣1=﹣(x﹣0),即x+y﹣1=0.故选A.点评:本题主要考查导数的几何意义,考查函数的求导运算.导数是由高等数学下放到高中数学的新内容,是高考的热点问题,每年必考,一定要强化复习.3.(5分)曲线y=x3﹣3x和y=x围成的面积为()A.4B.8C.10 D.9考点:定积分.专题:计算题.分析:先求出曲线y=x3﹣3x与y=x的交点坐标,得到积分的上下限,然后利用定积分求出第一象限所围成的图形的面积,根据图象的对称性可求出第三象限的面积,从而求出所求.解答:解:曲线y=x3﹣3x与y=x的交点坐标为(0,0),(2,2),(﹣2,﹣2)曲线y=x3﹣3x与直线y=x在y轴右侧所围成的图形的面积是(x﹣x3+3x)dx=(4x﹣x3)dx=(2x2﹣x4)=4,根据y=x3﹣3x与y=x都是奇函数,关于原点对称,y轴左侧的面积与第一象限的面积相等.∴曲线y=x3﹣3x与y=x所围成的图形的面积为2×4=8.故选B.点评:本小题考查根据定积分的几何意义,以及会利用定积分求图形面积的能力,同时考查了函数图象的对称性.4.(5分)有一段“三段论”推理是这样的:对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f'(0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中()A.大前提错误B.小前提错误C.推理形式错误D.结论正确考点:演绎推理的基本方法.专题:阅读型.分析:在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误,我们分析的其大前提的形式:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不难得到结论.马鸣风萧萧解答:解:∵大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f'(x0)=0,且满足当x>x0时和当x<x0时的导函数值异号时,那么x=x0是函数f(x)的极值点,∴大前提错误,故选A.点评:本题考查的知识点是演绎推理的基本方法,演绎推理是一种必然性推理,演绎推理的前提与结论之间有蕴涵关系.因而,只要前提是真实的,推理的形式是正确的,那么结论必定是真实的,但错误的前提可能导致错误的结论.5.(5分)设a,b,c∈(﹣∞,0),则a+,b+,c+()A.都不大于﹣2 B.都不小于﹣2C.至少有一个不大于﹣2 D.至少有一个不小于﹣2考点:反证法与放缩法.专题:证明题.分析:假设a+≤﹣2,b+≤﹣2,c+≤﹣2,得a++b++c+≤﹣6,因为a+≤﹣2,b+≤﹣2,c+≤﹣2,即a++b++c+≤﹣6,所以a++b++c+≤﹣6成立.解答:解:假设a+,b+,c+都小于或等于﹣2,即a+≤﹣2,b+≤﹣2,c+≤﹣2,将三式相加,得a++b++c+≤﹣6,又因为a+≤﹣2,b+≤﹣2,c+≤﹣2,三式相加,得a++b++c+≤﹣6,所以a++b++c+≤﹣6成立.故选C.点评:本题考查不等式的性质和应用,解题时要注意均值不等式的合理运用.6.(5分)设,则f(n+1)﹣f(n)=()A.B.C.D.考点:函数的表示方法.专题:计算题;函数的性质及应用.分析:根据题中所给式子,求出f(n+1)和f(n),再两者相减,即得到f(n+1)﹣f(n)的结果.解答:解:根据题中所给式子,得f(n+1)﹣f(n)=﹣()=﹣=故选C.点评:本题考查函数的表示方法,明确从n到n+1项数的变化是关键,属于基础题.7.(5分)把15个相同的小球放入编号为1,2,3的三个不同盒子中,使盒子里的球的个数大于它的编号数,则不同的放法种数是()A.56 B.72 C.28 D.63考点:计数原理的应用.专题:计算题;分类讨论;概率与统计.分析:由题意知,本题限制条件较多,故应采取分类的方法,可按1号球中的小球的个数分类计数,选出正确答案解答:解:由题意,可按1号盒中小球的个数进行分类,进行计数若1号盒中小球的个数为2,三号中至少有四个球,所以此时二号盒中有球数可能为3到9个,共7种放法;若1号盒中小球的个数为3,三号中至少有四个球,所以此时二号盒中有球数可能为3到8个,共6种放法;若1号盒中小球的个数为4,三号中至少有四个球,所以此时二号盒中有球数可能为3到7个,共5种放法;若1号盒中小球的个数为5,三号中至少有四个球,所以此时二号盒中有球数可能为3到6个,共4种放法;若1号盒中小球的个数为6,三号中至少有四个球,所以此时二号盒中有球数可能为3到5个,共3种放法;若1号盒中小球的个数为7,三号中至少有四个球,所以此时二号盒中有球数可能为3到4个,共2种放法;若1号盒中小球的个数为8,三号中至少有四个球,所以此时二号盒中有球数只能为3个,共1种放法;综上,不同的放法种数是7+6+5+4+3+2+1=28种故选C点评:本题考查计数原理的应用,对于复杂问题的计数,找到合适的分类标准是准确计数的关键8.(5分)高三(三)班学生要安排毕业晚会的3个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,3个音乐节目恰有两个节目连排,则不同排法的种数是()A.240 B.188 C.432 D.288考点:排列、组合及简单计数问题.专题:计算题;概率与统计.分析:由题意,可先将两个音乐节目绑定,与另一个音乐节目看作两个元素,全排,由于三个音乐节目不能连排,故可按一个曲艺节目在此两元素之间与不在两元素之间分成两类分别记数,即可得到所有的排法种数,选出正确选项解答:解:由题意,可先将两个音乐节目绑定,共有=6种方法,再将绑定的两个节目看作一个元素与单马鸣风萧萧独的音乐节目全排有=2第三步分类,若1个曲艺节目排在上述两个元素的中间,则它们隔开了四个空,将两2个舞蹈节目插空,共有=12种方法;若1个曲艺节目排不在上述两个元素的中间,则它有两种排法,此时需要从两2个舞蹈节目选出一个放在中间避免3个音乐节目相连,有两种选法,最后一个舞蹈节目有三种放法综上,所以的不同排法种数为6×2×(1×12+2×2×3)=288故选D点评:本题考查排列、组合及简单计数问题,解答的关键是熟练掌握计数的一些技巧及准确使用计数公式计数,本题是基础题,计算型9.(5分)的展开式中含x15的项的系数是()A.17 B.﹣34 C.51 D.﹣18考点:二项式定理的应用.专题:计算题.分析:先求出二项式展开式的通项公式,再令x的系数等于15,求得r的值,即可求得展开式中的含x15的项的系数.解答:解:∵的展开式的通项公式为T r+1=•x18﹣r•3﹣r•=•,令18﹣=15,解得r=2,故展开式中含x15的项的系数是=17,故选A.点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.10.(5分)(2013•宁波二模)设函数f(x)的导函数为f′(x),对任意x∈R都有f'(x)>f(x)成立,则()A.3f(ln2)>2f(ln3)B.3f(ln2)=2f(ln3)C.3f(ln2)<2f(ln3)D.3f(ln2)与2f(ln3)的大小不确定考点:利用导数研究函数的单调性;导数的运算.专题:综合题;导数的综合应用.分析:构造函数g(x)=,利用导数可判断g(x)的单调性,由单调性可得g(ln2)与g(ln3)的大小关系,整理即可得到答案.解答:解:令g(x)=,则=,因为对任意x∈R都有f'(x)>f(x),所以g′(x)>0,即g(x)在R上单调递增,又ln2<ln3,所以g(ln2)<g(ln3),即,所以,即3f(ln2)<2f(ln3),故选C.点评:本题考查导数的运算及利用导数研究函数的单调性,属中档题,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性.11.(5分)把正整数按一定的规则排成了如图所示的三角形数表.设是位于这个三角形数表中从上往下数第i行,从左往右数第j个数,若a ij=2013,则i与j的和为()A.105 B.103 C.82 D.81考点:数列的应用.专题:等差数列与等比数列.分析:由三角形数表可以看出其奇数行为奇数列,偶数行为偶数列,前32个奇数行内数的个数的和为1024,得到2013在第32个奇数行内,且奇数从大到小排列,从而得到结果.解答:解:由三角形数表可以看出其奇数行为奇数列,偶数行为偶数列,由2013=2×1007﹣1,得2013为第1007个奇数,又前31个奇数行内数的个数的和为1+3+…+61=961,前32个奇数行内数的个数的和为1024,故2013在第32个奇数行内,所以i=63,且奇数从大到小排列因为第63行的第一个数为2×1024﹣1=2047,2013=2047﹣2(m﹣1),所以m=18,即j=18,所以i+j=81.故选D点评:本题考查简单的演绎推理,考查数列的特点,考查学生分析解决问题的能力,属于中档题.12.(5分)在1,2,3,4…14中任取4个数a1,a2,a3,a4且满足a4≥a3+4,a3≥a2+3,a2≥a1+2共有多少种不同的方法()A.35 B.70 C.50 D.105考点:排列、组合及简单计数问题.专题:概率与统计.分析:用列举法,由题意,14≥a4≥10,10≥a3≥6,7≥a2≥3,5≥a1≥1,再分类列举,即可得到结论.解答:解:用列举法由题意,14≥a4≥10,10≥a3≥6,7≥a2≥3,5≥a1≥11、当a1=1时,a2=3时,a3=6时,a4可以取10,11,12,13,14,这5个数中的一个;a3=7时,a4可以取11,12,13,14这4个数中的一个;a3=8时,a4可以取12,13,14这3个数中的一个;马鸣风萧萧a3=9时,a4可以取13,14这2个数中的一个;a3=10时,a4=14共有1+2+3+4+5=15种情况.当a2=4时,同理可求有1+2+3+4=10种情况当a2=5时,同理可求有1+2+3=6种情况当a2=6时,同理可求有1+2=3种情况当a2=7时,同理可求有1种情况以上共有1+3+6+10+15=35种情况.2、当a1=2时,同理可求有1+3+6+10=20种情况3、当a1=3时,同理可求有1+3+6=10种情况4、当a1=4时,同理可求有1+3=4种情况5、当a1=5时,同理可求有1种情况总共有35+20+10+4+1=70情况.故选B.点评:本题考查计数问题,考查列举法的运用,考查学生分析解决问题的能力,属于中档题.二.填空题(共4小题,每题5分)13.(5分)若曲线y=e x+a与直线y=x相切,则a的值为﹣1.考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:先求导函数,利用曲线y=e x+a与直线y=x相切,可知切线的斜率为1,得出切点的横坐标,再利用切点处的函数值相等,即可求出a的值.解答:解:设切点为(x,y),∵y=e x+a,∴y′=e x,∵直线y=x与曲线y=e x+a相切,∴e x=1,即x=0.∵切点处的函数值相等,∴e0+a=0,解得a=﹣1.故答案为:﹣1.点评:本题以直线与曲线相切为载体,考查了利用导数研究曲线上过某点切线方程的斜率,解题的关键是正确理解导数的几何意义.14.(5分)若(x+)4=a0+a1x+a2x2+a3x3+a4x4则(a0+a2+a4)2﹣(a1+a3)2=1.考点:二项式定理的应用.专题:计算题.分析:在(x+)4=a0+a1x+a2x2+a3x3+a4x4中利用赋值法,分别令x=1可求a0+a1+a2+a3+a4,令x=﹣1可求a0﹣a1+a2﹣a3+a4),而(a0+a2+a4)2﹣(a1+a3)2=(a0+a1+a2+a3+a4)(a0﹣a1+a2﹣a3+a4),代入可求解答:解:在(x+)4=a0+a1x+a2x2+a3x3+a4x4中令x=1可得,a0+a1+a2+a3+a4=令x=﹣1可得,∴(a0+a2+a4)2﹣(a1+a3)2=(a0+a1+a2+a3+a4)(a0﹣a1+a2﹣a3+a4)=•=1故答案为:1点评:本题主要考查了二项展开式中利用赋值法求解二项展开式的各项系数之和(注意是各项系数之和,要区别于二项式系数之和),解饿答本题还要注意所求式子的特点:符合平方差公式.15.(5分)=.考点:定积分.专题:计算题.分析:由于=+.前半部分由积分的几何意义求解较好,其几何意义是以(2,0)为圆心,以2为半径的圆在x从1到3部分与x轴所围成的图形的面积.解答:解:由于=+.其中值相当于(2,0)为圆心,以2为半径的圆在x从1到3部分与x轴所围成的图形的面积的大小,即图中阴影部分的面积.故其值是S△ACQ+S扇形ABQ+S△BDQ=++=+,又=6,∴=.故答案为:.点评:本题考查求定积分,解题的关键是掌握住求定积分的公式以及定积分的几何意义,对于有些原函数不易求出的积分的求解,用其几何意义比较方便.16.(5分)在等比数列{a n}中,若前n项之积为T n,则有.则在等差数列{b n}中,若前n 项之和为S n,用类比的方法得到的结论是S3n=3(S2n﹣S n).马鸣风萧萧考点:类比推理.专题:压轴题;探究型.分析:由等差和等比数列的通项和求和公式及类比推理思想可得结果.解答:解:在等差数列中S3n=S n+(S2n﹣S n)+(S3n﹣S2n)=(a1+a2+…+a n)++(S2n﹣S n)+(a2n+1+a2n+2+…+a3n)因为a1+a3n=a2+a 3n﹣1=…=a n+a2n+1=a n+1+a2n所以S n+(S3n﹣S2n)=2(S2n﹣S n),所以S3n=3(S2n﹣S n).故答案为:S3n=3(S2n﹣S n).点评:本题考查类比推理、等差和等比数列的类比,搞清等差和等比数列的联系和区别是解决本题的关键.三.解答题(17题10分,其它题12分,写出必要的文字说明)17.(10分)(1)6名身高互不相等的学生,排成三排二列,使每一列的前排学生比后排学生矮,有多少种不同的排法?(2)6本不同的书分给3名学生,每人至少发一本,共有多少种不同的分法?考点:排列、组合及简单计数问题.专题:概率与统计.分析:(1)按先取后排(先排第一列,再排第二列,最后排第三列)即可得到结论;(2)先分组,再分给3名学生,利用乘法原理,即可得到结论.解答:解:(1)从6人中任选2人排在第一列(前矮后高),有=15种方法,再从剩余的4人中选2人排在第二列(前矮后高),有=6种方法,最后剩余的两人排在第三列(前矮后高),有一种方法,由分步乘法计数原理可得共有16×6=90;(2)先把6本书分成3组,包括1、1、4;1、2、3;2、2、2三种情况,共有=90种分法,再分给3名学生有=6种方法,故共有90×6=540种分法.点评:本题考查排列、组合及简单计数问题,突出考查分步乘法计数原理的应用,考查理解与应用能力,属于中档题.18.(12分)在二项式的展开式中,前三项系数的绝对值成等差数列(1)求n的值;(2)求展开式中二项式系数最大的项;(3)求展开式中项的系数最大的项.考点:二项式定理的应用;二项式系数的性质.专题:计算题.分析:(1)前三项系数的绝对值成等差数列,可得,由此解得n的值.(2)由于第r+1项的二项式系数为,故当r=4时,二项式系数最大,由此求得二项式系数最大的项.(3)研究系数绝对值即可,,解得2≤r≤3,结合通项公式可得第三项的系数最大.解答:解:(1)二项式的展开式中,前三项系数的绝对值成等差数列,∴,即n2﹣9n+8=0,解得n=8;(2)由于第r+1项的二项式系数为,故当r=4时,二项式系数最大,故二项式系数最大的项为=.(3)先研究系数绝对值即可,,解得2≤r≤3,故系数最大的项为第三项,即.点评:本题主要考查二项式定理的应用,二项式系数、二项式的系数的定义和性质,属于中档题.19.(12分)数列{a n}满足S n=2n﹣a n(n∈N)(Ⅰ)计算a1,a2,a3,a4;(Ⅱ)猜想通项公式a n,并用数学归纳法证明.考点:数学归纳法.专题:计算题;证明题.分析:(I)根据S n=2n﹣a n,利用递推公式,求出a1,a2,a3,a4.(II)总结出规律求出a n,然后利用归纳法进行证明,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.解答:解:(Ⅰ)由a1=2﹣a1,得a1=1,由a1+a2=2×2﹣a2,得a2=,由a1+a2+a3=2×3﹣a3,得a3=,由a1+a2+a3+a4=2×4﹣a4,得a4=,猜想a n=(Ⅱ)证明:(1)当n=1,由上面计算可知猜想成立,马鸣风萧萧(2)假设n=k时猜想成立,即a k=,此时S k=2k﹣a k=2k﹣,当n=k+1时,S k+1=2(k+1)﹣a k+1,得S k+a k+1=2(k+1)﹣a k+1,因此a k+1=[2(k+1)﹣S k]=k+1﹣(2k﹣)=,∴当n=k+1时也成立,∴a n=(n∈N+).点评:此题主要考查归纳法的证明,归纳法一般三个步骤:(1)验证n=1成立;(2)假设n=k成立;(3)利用已知条件证明n=k+1也成立,从而求证,这是数列的通项一种常用求解的方法.20.(12分)证明:.考点:不等式的证明.专题:证明题.分析:利用数学归纳法的证题步骤证明即可.先证当n=1时,不等式成立;再假设当n=k时不等式成立,可以分析法去证明当n=k+1时不等式也成立即可.解答:证明:(ⅰ)当n=1时,T1==1,=,1<,不等式成立;(ⅱ)假设当n=k时,T k<,则当n=k+1时,T k+1=T k+<+,要证:T k+1<,只需证:+<,由于﹣==<,所以:+<,于是对于一切的自然数n∈N*,都有T n<.点评:本题考查不等式的证明,突出考查数学归纳法,考查分析法与综合法的应用,考查推理分析与证明的能力,属于中档题.21.(12分)已知函数f(x)=ax+lnx(1)试讨论f(x)的极值(2)设g(x)=x2﹣2x+2,若对∀x1∈(0,+∞),∃x2∈[0,1],使得f(x1)<g(x2),求实数a的取值范围.考点:函数在某点取得极值的条件;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)求导数,利用导数不等式先判断函数的单调性,从而判断函数的极值.(2)将f(x1)<g(x2)问题转化为求函数的最值问题.解答:解:(1)函数f(x)的定义域为(0,+∞),.当a≥0时f'(x)>0,所以f(x)在(0,+∞)上为增函数,此时函数不存在极值.当a<0时,由f'(x)>0,解得,此时函数递增.由f'(x)<0,解得此时函数递减.此时函数在x=﹣处取得极小值.无极大值.综上所述:当a≥0时,函数不存在极值.当a<0时,函数在x=﹣处取得极小值.无极大值.(2)对∀x1∈(0,+∞),∃x2∈[0,1],使得f(x1)<g(x2),恒成立由(1)知当a≥0时,f(x1)在(0,+∞)上为增函数,f(x1)无最大值;当a<0时,又g(x2)=x22﹣2x2+2在x2∈[0,1]上单调递减,所以g(x2)max=g(0)=2.所以,解得a<﹣e﹣3.所以,实数a的取值范围是(﹣∞,﹣e﹣3).点评:本题的考点是利用导数求函数的极值以及求函数的最大值最小值.22.(12分)(2013•宁波二模)已知函数f(x)=a(x﹣1)2+lnx.a∈R.(Ⅰ)当时,求函数y=f(x)的单调区间;(Ⅱ)当x∈[1,+∞)时,函数y=f(x)图象上的点都在不等式组所表示的区域内,求a的取值范围.考点:利用导数研究函数的单调性.专题:综合题;转化思想;导数的综合应用.分析:(Ⅰ)a=﹣时求出f′(x),在定义域内解不等式f'(x)>0,f'(x)<0即可;(Ⅱ)由题意得a(x﹣1)2+lnx≤x﹣1对x∈[1,+∞)恒成立,设g(x)=a(x﹣1)2+lnx﹣x+1,x∈[1,+∞),则问题等价于g(x)max≤0,x∈[1,+∞)成立,求导数g′(x),按照a的范围分类进行讨论可得g(x)的单调性,根据单调性可得g(x)的最大值,由最大值情况即可求得a的范围;解答:解:(Ⅰ)(x>0),马鸣风萧萧,当0<x<2时,f'(x)>0,f(x)在(0,2)上单调递增;当x>2时,f'(x)<0,f(x)在(0,2)上单调递减;所以函数的单调递增区间是(0,2),单调递减区间是(2,+∞).(Ⅱ)由题意得a(x﹣1)2+lnx≤x﹣1对x∈[1,+∞)恒成立,设g(x)=a(x﹣1)2+lnx﹣x+1,x∈[1,+∞),则有g(x)max≤0,x∈[1,+∞)成立.求导得,①当a≤0时,若x>1,则g'(x)<0,所以g(x)在[1,+∞)单调递减,g(x)max=g(1)=0≤0成立,得a≤0;②当时,,g(x)在x∈[1,+∞)上单调递增,所以存在x>1,使g(x)>g(1)=0,此时不成立;③当,,则存在,有,所以不成立;综上得a≤0.点评:本题考查利用导数研究函数的单调性、最值,考查恒成立问题,考查分类讨论思想,恒成立问题往往转化为函数最值解决,解决(Ⅱ)问的关键是正确理解题意并能合理进行转化.。
期中模拟测试三(第1—4单元)(试题)人教版四年级下册数学
![期中模拟测试三(第1—4单元)(试题)人教版四年级下册数学](https://img.taocdn.com/s3/m/06aaac09366baf1ffc4ffe4733687e21af45ffc9.png)
人教版数学四年级下册期中模拟测试三(第一~第四单元)学校:___________姓名:___________班级:___________评卷人 得分一、选择题(共10分 1.(本题1分)一个数的近似数是2.45,这个数可能是( )。
A .2.444B .2.449C .2.456D .2.42.(本题1分)比0.16大,比0.19小的小数有( )个。
A .2B .3C .9D .无数3.(本题1分)比较5.3、5.30、5.300,我发现它们( )。
A .大小相等,意义不同 B .大小相等,意义相同 C .大小不等,意义不同D .大小不等,意义相同4.(本题1分)小马虎在计算7(30)⨯+时,算成了730⨯+得数比原来少了( )。
A .30B .180C .210D .605.(本题1分)如图各图中。
不能说明“6×3+4×3”与“(6+4)×3”相等的是( )。
A .B .C .D .6.(本题1分)算式102×125进行简便计算时,可以变形为( )。
A .100×125+2 B .125×100+125×2 C .125×100×2D .125×100-125×27.(本题1分)因为●÷★=★,所以( )。
A .●×★=★B .★÷★=●C .★×★=●D .★×●=★8.(本题1分)下面关于0的描述错误的是( )。
A .0加任何数都得任何数 B .0除以任何数都得0 C .0乘任何数都得0D .任何数减0都得任何数9.(本题1分)图中几何体从左面看到的图形是( )。
A.B.C.D.10.(本题1分)下面的五个图形都是由形状相同的小正方体搭成的,搭成最左边这个模型可以选择()。
A.★★B.★★C.★★二、填空题(共18分11.(本题4分)猜一猜。
高二下学期期中考试数学(理)答案
![高二下学期期中考试数学(理)答案](https://img.taocdn.com/s3/m/5791061bd1f34693dbef3e35.png)
答案和解析1.【答案】B【解析】解:∵A={x|0<x<2},B={x|x2≥1}={x|x≥1或x≤-1},∴∁R B={x|-1<x<1},∴A∩(∁R B)={x|0<x<1}.故选:B.根据补集、交集的定义即可求出.本题考查了集合的化简与运算问题,是基础题目.2.【答案】D【解析】解:∵(2a+i)(1+i)=(2a-1)+(2a+1)i在复平面内所对应的点在虚轴上,∴2a-1=0,即a=.故选:D.利用复数代数形式的乘除运算化简,再由实部为0求得a值.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.3.【答案】B【解析】解:设“从正方形ABCD中任取一点P,则点P落在该圆中“为事件A,由几何概型中的面积型可得:P(A)===,故选:B.由几何概型中的面积型及圆、正方形的面积公式得:P(A)===,得解.本题考查了几何概型中的面积型及圆、正方形的面积公式,属中档题.4.【答案】A【解析】解:函数f(-x)=-xcos(-x)-(-x)3=-xcosx+x3=-f(x),则函数f(x)是奇函数,图象关于原点对称,排除C,D,f()=cos-()3=-()3<0,排除B,故选:A.判断函数的奇偶性和图象的对称性,利用特殊值进行排除即可.本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性的关系以及特殊值,结合排除法是解决本题的关键.5.【答案】B【解析】解:根据题意,设等比数列{a n}的公比为q,若2a2为3a1和a3的等差中项,则有2×2a2=3a1+a3,变形可得4a1q=3a1+a1q2,即q2-4q+3=0,解得q=1或3;又a2-a1=2,即a1(q-1)=2,则q=3,a1=1,则a n=3n-1,则有a4=33=27;故选:B.根据题意,设等比数列{a n}的公比为q,由2a2为3a1和a3的等差中项,可得2×2a2=3a1+a3,利用等比数列的通项公式代入化简为q2-4q+3=0,解得q,又a2-a1=2,即a1(q-1)=2,q≠1,分析可得a1、q的值,解可得数列{a n}的通项公式,将n=4代入计算可得答案.本题考查等比数列的性质以及通项公式,关键是掌握等比数列通项公式的形式,属于基础题.6.【答案】D【解析】解:由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大,由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为=0.1,=0.16,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,故A,B,C错误;由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是=67,所以该市的市民对乙部门的评分的中位数的估计值是67,故D正确;故选:D.根据茎叶图的知识以及样本来估计总体,进行合理的评价,恰当的描述即可.本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.7.【答案】A【解析】解:根据函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象,可得A=1,•=-,∴ω=2.再利用五点法作图可得2•+φ=π,求得φ=,∴f(x)=sin(2x+).为了得到g(x)=sin(ωx+)=sin(2x+)的图象,只需将f(x)的图象上所有点向右平移个单位长度,即可,故选:A.由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得f(x)得解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.8.【答案】C【解析】解:由程序框图可得:m=2a-3,当i的值为1时,m=2(2a-3)-3=4a-9,当i的值为2时,m=2(4a-9)-3=8a-21,当i的值为3时,m=2(8a-21)-3=16a-45,当i的值为4时,m=2(16a-45)-3=32a-93,此时不满足循环条件,输出m=32a-93=67,解得:a=5.故选:C.模拟程序框图的运行过程,即可得出程序运行后输出m值时对应a的值.本题考查了模拟实验法解程序框图的应用问题,是基础题.9.【答案】C【解析】解:该几何体是由半个圆柱对接半个球而形成的,视图表示的是几何体水平放置时的情形,其表面积S=2π×12+π×12+π×2+2×2=4+5π.该几何体是由半个圆柱对接半个球而形成的,利用三视图的数据求解几何体的表面积,然后推出结果.本题考查三视图求解几何体的表面积,考查空间想象能力以及计算能力.10.【答案】C【解析】解:当甲成立,即“相交直线l、m都在平面α内,并且都不在平面β内”时,若“l、m中至少有一条与平面β相交”,则“平面α与平面β相交”成立;若“平面α与平面β相交”,则“l、m中至少有一条与平面β相交”也成立故选:C.判断乙是丙的什么条件,即看乙⇒丙、丙⇒乙是否成立.当乙成立时,直线l、m中至少有一条与平面β相交,则平面α与平面β至少有一个公共点,故相交相交.反之丙成立时,若l、m中至少有一条与平面β相交,则l∥m,由已知矛盾,故乙成立.本题考查空间两条直线、两个平面的位置关系判断、充要条件的判断,考查逻辑推理能力.11.【答案】B【解析】解:由f(x)=2x-1+2x+3=0得2x-1=-2x-3,即2x=-4x-6,作出函数y=2x与y=-4x-6的图象如图,(黑色图象),由图象知两个图象交点的横坐标x1满足-2<x1<-1,由g(x)=x-x-1=0得x-1=x,作出y=x-1和y=x的图象如图(红色图象)由图象知两个图象交点的横坐标x2满足2作出h(x)=()x和y=,的图象如图(蓝色图象)由图象知两个图象交点的横坐标x3满足1<x2<2,综上x1,x2,x3的大小关系为x1<x3<x2,故选:B.利用函数与方程的关系,分别转化为y=2x与y=-4x-6的图象,y=x-1和y=x的图象,h(x)=()x和y=的图象,利用数形结合研究x1,x2,x3的范围即可得到结论.本题主要考查函数与方程的应用,根据条件转化为两个函数图象交点问题,利用数形结合求出对应究x1,x2,x3的范围是解决本题的关键.12.【答案】B【解析】解:设MF1与圆相切于点E,因为|MF2|=|F1F2|=2c,所以△MF1F2为等腰三角形,N为MF1的中点,所以|F1E|=|MF1|,又因为在直角△F1EO中,|F1E|2=|F1O|2-a2=c2-a2,所以|F1E|=b=|MF1|①又|MF1|=|MF2|+2a=2c+2a ②,c2=a2+b2③由①②③可得c2-a2=()2,即为4(c-a)=c+a,即3c=5a,b===a,则双曲线的渐近线方程为y=±x,即为y=±x.故选:B.先设MF1与圆相切于点E,利用|MF2|=|F1F2|,及直线MF1与圆x2+y2=a2相切,可得几何量之间的关系,从而可求双曲线的渐近线方程.本题考查直线与圆相切,考查双曲线的定义,考查双曲线的几何性质,注意运用平面几何的性质,考查运算能力,属于中档题.13.【答案】3【解析】解:∵||=2,是单位向量,且与夹角为60°,∴•(-)=-•=4-2×1×=3,故答案为:3.依题意,利用平面向量的数量积即可求得•(-)的值.本题考查平面向量数量积的运算,掌握平面向量的数量积的运算性质及定义是解决问题的关键,属于中档题.14.【答案】80【解析】解:(2x-)5的展开式中,通项公式T r+1=(2x)5-r=(-1)r25-r,令5-r=2,解得r=2.∴x2的系数=23=80.故答案为:80.利用通项公式即可得出.本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.15.【答案】(x-2)2+(y-√3)2=4【解析】解:∵抛物线y2=4x的焦点为F,准线为l,P为抛物线上一点,∴|PF|=|PA|,F(1,0),准线l的方程为:x=-1;设F在l上的射影为F′,又PA⊥l,依题意,∠AFF′=60°,|FF′|=2,∴|AF′|=2,PA∥x轴,∴点P的纵坐标为2,设点P的横坐标为x0,(2)2=4x0,∴x0=3,∴|PF|=|PA|=x0-(-1)=3-(-1)=4.故以PF为直径的圆的圆心为(2,),半径为2.以PF为直径的圆的标准方程为(x-2)2+(y-)2=4故答案为:(x-2)2+(y-)2=4.利用抛物线的定义,|PF|=|PA|,设F在l上的射影为F′,依题意,可求得|FF′|,|AF′|,从而可求得点P的纵坐标,代入抛物线方程可求得点P的横坐标,从而可求得|PA|.本题考查抛物线的简单性质,考查转化思想,考查解三角形的能力,属于中档题.16.【答案】200201【解析】解:设等差数列{a n}的首项为a1,公差为2,前n项和为S n,且S1,S2,S4成等比数列.则:,解得:a1=1,所以:a n=1+2(n-1)=2n-1,所以:b n=(-1)n-1=,所以:,==,故答案为:首项利用已知条件求出数列的通项公式,进一步利用裂项相消法求出数列的和.本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.17.【答案】解:(Ⅰ)∵∠BAD=60°,∠BAC=90°,∴∠DAC=30°,在△ADC中,由正弦定理可得:DCsin∠DAC =ACsin∠ADC,∴sin∠ADC=ACDC sin∠DAC=√32,∴∠ADC=120°,或60°,又∠BAD=60°,∴∠ADC=120°(Ⅱ)∵BD=2DC,∴BC=3DC,在△ABC中,由勾股定理可得:BC2=AB2+AC2,可得:9DC2=6+3DC2,∴DC=1,BD=2,AC=√3,令∠ADB=θ,由余弦定理:在△ADB中,AB2=AD2+BD2-2AD•BD•cosθ,在△ADC中,AC2=AD2+CD2-2AD•CD•cos(π-θ),可得:{3=AD2+1+2ADcosθ6=AD2+4−4ADcosθ,∴解得:AD2=2,可得:AD=√2.【解析】(Ⅰ)由已知可求∠DAC=30°,在△ADC 中,由正弦定理可得sin ∠ADC=,即可解得∠ADC=120°. (Ⅱ)由已知在△ABC 中,由勾股定理可得DC=1,BD=2,AC=,令∠ADB=θ,由余弦定理,即可解得AD 的值.本题主要考查了正弦定理,余弦定理,勾股定理在解三角形中的应用,考查了计算能力和转化思想,属于中档题.18.【答案】证明:(1)∵平面四边形ABCD ,AB ⊥BD ,AB =BC =CD =2,BD =2√2, 面ABD ⊥面BCD ,AB ⊥BD ,面ABD ∩平面BCD =BD ,∴AB ⊥面BCD ,∴AB ⊥CD ,又AC 2=AB 2+BC 2=8,AD 2=AB 2+BD 2=12,AD 2=AC 2+CD 2=12,∴AB ⊥BC ,AB ⊥BD ,AC ⊥CD ,∵AC ∩AB =A ,∴CD ⊥平面ABC .解:(2)AB ⊥面BCD ,如图以B 为原点,在平面BCD中,过B 作BD 的垂线为x 轴,以BD 为y 轴,以BA 为z 轴,建立空间直角坐标系,则B (0,0,0),A (0,0,2),C (√2,√2,0),D (0,2√2,0),∵E 是AD 的中点,∴E (0,√2,1),∴BC ⃗⃗⃗⃗⃗ =(√2,√2,0),BE ⃗⃗⃗⃗⃗ =(0,√2,1),令平面BCE 的一个法向量为n⃗ =(x ,y ,z ), 则{n ⃗ ⋅BC ⃗⃗⃗⃗⃗ =√2x +√2y =0n⃗ ⋅BE ⃗⃗⃗⃗⃗ =√2y +z =0,取x =1,得n ⃗ =(1,-1,√2), ∵CD ⊥面ABC ,∴平面ABC 的一个法向量为CD ⃗⃗⃗⃗⃗ =(-√2,√2,0),∴cos <n ⃗ ,CD ⃗⃗⃗⃗⃗ >=n ⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ |n ⃗⃗ |⋅|CD ⃗⃗⃗⃗⃗ |=√22, ∴二面角E -BC =A 的大小为45°.【解析】(1)推导出AB ⊥面BCD ,从而AB ⊥CD ,再求出AB ⊥BC ,AB ⊥BD ,AC ⊥CD ,由此能证明CD ⊥平面ABC .(2)以B 为原点,在平面BCD 中,过B 作BD 的垂线为x 轴,以BD 为y 轴,以BA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角E-BC=A 的大小.本题考查线面垂直的证明,考查二面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.19.【答案】解:(Ⅰ)由题意知X的可能取值为100,300,500,P(X=100)=2+16=0.2,90=0.4,P(X=300)=3690=0.4,P(X=500)=25+7+490∴X的分布列为:E(X)=100×0.2+300×0.4+500×0.4=340.(Ⅱ)由题意知六月份这种饮料的进货量n满足100≤n≤500,当300≤n≤500时,若最高气温不低于25,则Y=5n-3n=2n,若最高气温位于[20,25),则Y=5×300+2(n-300)-3n=900-n,若最高气温低于20,则Y=5×100+2(n-100)-3n=300-n,∴E(Y)=2n×0.4+(900-n)×0.4+(300-n)×0.2=420+0.2n,此时,n=500时,Y的数学期望达到最大值,最大值为520元,当100≤n≤300时,若最高气温不低于25,则Y=5n-3n=2n,若最高气温位于[20,25),则Y=5n-3n=2n,若最高气温低于20,则Y=5×100-(n-100)-300=300-n,∴E(Y)=2n×(0.4+0.4)+(300-n)×0.2=60+1.4n,此时,n=300时,Y的数学期望达到最大值,最大值为480元,∴n=340时,Y的数学期望值为:420+0.2×340=488不是最大值,n=500时,y的数学期望达到最大值,最大值为520元.【解析】(Ⅰ)由题意知X的可能取值为100,300,500,分别求出相应的概率,由此能求出X的分布列和E(X).(Ⅱ)六月份这种饮料的进货量n 满足100≤n≤500,当300≤n≤500时,若最高气温不低于25,则Y=5n-3n=2n ,若最高气温位于[20,25),则Y=5×300+2(n-300)-3n=900-n ,若最高气温低于20,则Y=5×100+2(n-100)-3n=300-n ,求出E (Y )=420+0.2n ,当n=500时,Y 的数学期望达到最大值,最大值为520元;当100≤n≤300时,若最高气温不低于25,则Y=5n-3n=2n ,若最高气温位于[20,25),则Y=5n-3n=2n ,若最高气温低于20,则Y=5×100-(n-100)-300=300-n ,E (Y )=60+1.4n ,n=300时,Y 的数学期望达到最大值,最大值为480元.由此能求出n=500时,y 的数学期望达到最大值,最大值为520元.本题考查离散型随机变量的分布列、数学期望的求法,考查互斥事件概率加法公式等基础知识,考查运算求解能力,是中档题.20.【答案】解:(Ⅰ)由题意可得{12c ×1=√34a 2+1b 2=1a 2=b 2+c 2,解得a 2=6,b 2=3, 故椭圆C 的方程为x 26+y 23=1, 证明(Ⅱ):设直线AP 的斜率为k ,则直线BP 的斜率为-k ,设A (x 1,y 1),B (x 2,y 2),直线PA 的方程为y +1=k (x -2),即y =kx +1-2k联立{y =kx +1−2k x 26+y 23=1,得(1+2k 2)x 2+4(k -2k 2)x +8k 2-8k -4=0.∴2x 1=8k 2−8k−41+2k 2,即x 1=4k 2−4k−21+2k 2设直线PB 的方程为y +1=-k (x -2),同理求得x 2=4k 2+4k−21+2k 2∴x 2-x 1=-8k 1+2k 2∴y 1-y 2=k (x 1+x 2)+2-4k =8k 1+2k 2,∴直线AB 的斜率k AB =y 2−y 1x 2−x 1=1, 易知l 与在两坐标轴的截距绝对值相等且都不为0,∴直线AB 与两坐标轴围成的三角形一定是等腰三角形【解析】(Ⅰ)由题意可得,解得a2=6,b2=3,则椭圆方程可求;(Ⅱ)设直线PA的方程为y+1=k(x-2),联立直线方程和椭圆方程,求得A的横坐标,同理求得B的横坐标,进一步求得A、B的纵坐标的差,代入斜率公式得答案.本题考查椭圆标准方程的求法,考查了直线与椭圆位置关系的应用,考查计算能力,属中档题.21.【答案】解:(1)∵f(x)=12x2−2x+mlnx+2,(x>0),∴f′(x)=x−2+mx =x2−2x+mx,令g(x)=x2-2x+m,∵m<1,∴△=4-4m>0,令f’(x)=0则x=1±√1−m,当1−√1−m≤0,即m≤0时,令f’(x)<0则x∈(0,1+√1−m);令f’(x)>0则x∈(1+√1−m,+∞).此时函数在(0,1+√1−m)上单调递减;在(1+√1−m,+∞)上单调递增.当1−√1−m>0,即0<m<1时,令f’(x)<0,则x∈(1−√1−m,1+√1−m);令f’(x)>0则x∈(0,1−√1−m)∪(1+√1−m,+∞),此时函数在(1−√1−m,1+√1−m)上单调递减;在(0,1−√1−m)和(1+√1−m,+∞)上单调递增.(2)由(1)知,若f(x)有两个极值点,则0<m<1且x1=1−√1−m∈(0,1),x2=1+√1−m∈(1,2),又x1,x2是x2-2x+m=0的两个根,则x1+x2=2,m=2x1−x12,∴f(x1)x2=12x12−2x1+2+(2x1−x12)lnx12−x1=12(2−x1)+x1lnx1,令ℎ(t)=12(2−t)+tlnt,t∈(0,1),则ℎ′(t)=lnt+12,令h’(t)<0,则t∈(0√e ),令h’(t)>0,则t∈(√e1),所以h(t)在(0e )上单调递减;在(e1)上单调递增.∴ℎ(t)≥ℎ(√e )=1−√e,∵ℎ(1)=12;t→0,ℎ(t)→1,∴h(t)<1,得证.【解析】(1)首先求得导函数,然后分类讨论确定函数的单调性即可;(2)首先确定x1,x2的范围,然后结合题意证明题中的不等式即可.本题主要考查导函数研究函数的单调性,导函数研究函数的极值,利用导数证明不等式的方法等知识,属于中等题.22.【答案】解:(Ⅰ)当θ0=3π4时,联立{θ=3π4ρ=4cosθ得A(-2√2,3π4);同理得B(2√6,3π4),由极径的几何意义有|AB|=2√6-(-2√2)=2√6+2√2.(Ⅱ)由已知令P(ρ,θ),A(ρ1,θ),B(ρ2,θ),∵ρ1=4cosθ,ρ2=4√3sinθ,P为AB的中点,∴ρ=ρ1+ρ22=2cosθ+2√3sinθ,即ρ2=2ρcosθ+2√3sinθ,所以P点的轨迹的直角坐标方程为x2+y2-2x-2√3y=0,因为直线l不与坐标轴重合,所以需去掉(1,0),(0,√3).【解析】(Ⅰ)用直线l的极坐标方程分别代入C1,C2的极坐标方程,再根据极径的几何意义可得;(Ⅱ)先求出AB的中点的轨迹的极坐标方程,再化成直角坐标方程.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】解:(1)f (x )={3x −2,x ≥3x +4,−12<x <32−3x ,x ≤−12,其图象为(2)关于x 的不等式f (x )≥|x -m |的解集包含[4,5],即|2x +1|+|x -3|≥|x -m |在x ∈[4,5]上恒成立,∴|x -m |≤3x -2,即2-3x ≤m -x ≤3x -2,∴2-2x ≤m ≤4x -2,x ∈[4,5]上恒成立,∴-6≤m ≤14,故m ∈[-6,14].【解析】(1)f (x )=,画图即可,(2)关于x 的不等式f (x )≥|x -m|的解集包含[4,5],可得|x-m|≤3x -2在x ∈[4,5]上恒成立,解得即可本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,数形结合思想,是一道常规题.。
高二下册期中考试数学试题(理)有答案
![高二下册期中考试数学试题(理)有答案](https://img.taocdn.com/s3/m/fc7d34f6aaea998fcd220e70.png)
第二学期其中考试试卷高二数学理科第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、计算复数2(ii i-是虚数单位) A .12i + B .12i -+ C .12i -- D .12i -2、函数21y x =-的图象上一点(1,0)处的切线的斜率为A .1B .2C .0D .-13、由①上行的对角线互相垂直;②菱形的对角线互相垂直;③正方形是菱形,写出一个“三段论”形式的推理,则作为大前提、小前提和结论的分别为A .②①③B .③①②C .①②③D .②③① 4、设()ln f x x x =,若0(3)f x '=,则0x = A .2e B .e C .ln 22D .ln 2 5、20cos xdx π⎰等于A .3-B .12C .3D .12- 6、若()sin cos f x x α=-,则()f α'等于A .sin αB .cos αC .sin cos αα+D .2sin α 7、函数()(3)x f x x e =-的单调区间是A .(,2)-∞B .(2,)+∞C .()1,4D .()0,38、设函数()f x '是函数()f x 的导函数,()y f x '=的图象如图所示,则()y f x =的图象最有可能的是9、函数3239(04)y x x x x =--<<有A .极大值5,极小值-27B .极大值5,极小值-11C .极大值5,无极小值D .极小值-27,无极大值 10、已知函数()f x 在R 上满足()122(2)x f x f x e x -=-++,则()1f '=A .2B .3C .-1D .1第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
. 11、核黄素()sin 2f x x =,则函数的导函数为()f x '= 12、复数12,z i z =-=13、在ABC ∆中,不等式1119A B C π++≥成立,在四边形ABCD 中,不等式1111162A B C D π+++≥成立;在五边形ABCDE 中,不等式11111253A B C D E π++++≥成立,猜想在n 边形12n A A A 中,有 不等式成立。
人教版中考模拟考试数学试卷及答案(共七套)
![人教版中考模拟考试数学试卷及答案(共七套)](https://img.taocdn.com/s3/m/217cbb1653d380eb6294dd88d0d233d4b14e3f4a.png)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
最新新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案](可编辑)名师优秀教案
![最新新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案](可编辑)名师优秀教案](https://img.taocdn.com/s3/m/6899ebf1b9f3f90f76c61bb8.png)
新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案](可编辑)新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案]第一章立体几何初步一、知识结构二、重点难点重点:空间直线,平面的位置关系。
柱、锥、台、球的表面积和体积的计算公式。
平行、垂直的定义,判定和性质。
难点:柱、锥、台、球的结构特征的概括。
文字语言,图形语言和符号语言的转化。
平行,垂直判定与性质定理证明与应用。
第一课时棱柱、棱锥、棱台【学习导航】知识网络学习要求1.初步理解棱柱、棱锥、棱台的概念。
掌握它们的形成特点。
2.了解棱柱、棱锥、棱台中一些常用名称的含义。
3.了解棱柱、棱锥、棱台这几种几何体简单作图方法4.了解多面体的概念和分类.【课堂互动】自学评价棱柱的定义:表示法:思考:棱柱的特点:.【答】棱锥的定义:表示法:思考:棱锥的特点:.【答】3.棱台的定义:表示法:思考:棱台的特点:.【答】4.多面体的定义:5.多面体的分类:?棱柱的分类?棱锥的分类?棱台的分类【精典范例】例1:设有三个命题: 甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱; 乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥;丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。
以上各命题中,真命题的个数是 (A)A.0B. 1C. 2D. 3 例2:画一个四棱柱和一个三棱台。
【解】四棱柱的作法:?画上四棱柱的底面----画一个四边形;?画侧棱-----从四边形的每一个顶点画平行且相等的线段;?画下底面------顺次连结这些线段的另一个端点互助参考7页例1?画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去.互助参考7页例1点评:1被遮挡的线要画成虚线2画台由锥截得思维点拔:解柱、锥、台概念性问题和画图需要:1.准确地理解柱、锥、台的定义2.灵活理解柱、锥、台的特点:例如:棱锥的特点是:?两个底面是全等的多边形;?多边形的对应边互相平行;?棱柱的侧面都是平行四边形。
高二下册期中考试数学理试题及答案(人教版)【精品】
![高二下册期中考试数学理试题及答案(人教版)【精品】](https://img.taocdn.com/s3/m/c0031bc7e53a580216fcfe60.png)
高二年级第二学期期中练习数 学(理科)学校 班级 姓名 成绩 本试卷共100分.考试时间90分钟.一、选择题:本大题共8小题, 每小题4分,共32分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i z =-的虚部是A. 2-B. 2C.2i -D. 2i 2.下列导数运算错误..的是( ) A. 21()'2x x --=- B.(cos )'sin x x =- C. (ln )'1ln x x x =+ D. (2)'2ln 2x x = 3. 函数()f x 的图象如图所示,则()f x 的极大值点的个数为( ) A. 0 B. 1 C. 2 D. 34.若函数()f x 的导函数'()(2)e x f x x x -=-,则下列关系一定成立的是( )A.(2)0f >B. (0)(1)f f >C. (2)(1)f f <D. (2)(3)f f >5. 已知两个命题::p “若复数12,z z 满足120z z ->,则1z >2z .”:q “存在唯一的一个实数对(,)a b 使得i i(2i)a b -=+.” 其真假情况是( )A.p 真q 假B. p 假q 假C. p 假q 真D. p 真q 真 6.若小球自由落体的运动方程为21()2s t gt =(g 为常数),该小球在1t =到3t =的平均速度为v ,在2t =的瞬时速度为2v ,则v 和2v 关系为( )A .2vv > B .2v v < C .2v v = D .不能确定7.如图,过原点斜率为k 的直线与曲线ln y x =交于两点11(,)A x y ,22(,)B x y . ① k 的取值范围是1(0,)e.② 1211k x x <<. ③ 当12(,)x x x ∈时,()ln f x kx x =-先减后增且恒为负.以上结论中所有正确结论的序号是(A.①B.①②C.①③8.已知函数32()f x axbx cx d =+++()f x 的图象可能是( )9.计算1+2ii=_________. 10.20(3)x dx -=⎰_____________.11.已知()1xf x x =- ,则'()f x =______________. 12. 方程(1)1x x e -=的解的个数为_______________.三、解答题:本大题共5小题,共52分. 解答应写出文字说明,证明过程或演算步骤. 13.(本小题12分) 已知函数cx bx ax x f ++=23)(,其导函数为)('x f 的部分值如下表所示:(Ⅰ)实数c 的值为___________;当x = ________时,()f x 取得极大值...(将答案填写在横线上). (Ⅱ)求实数a ,b 的值.(Ⅲ)若()f x 在(,2)m m +上单调递减,求m 的取值范围.14.(本小题10分)如图,四棱锥B ACDE -的底面ACDE 满足 DE //AC ,AC =2DE . (Ⅰ)若DC ⊥平面ABC , AB ⊥BC ,求证:平面ABE ⊥平面BCD ; (Ⅱ)求证:在平面ABE 内不存在直线与DC 平行;某同学用分析法证明第(1)问,用反证法证明第 (2)问,证明过程如下,请你在横线上填上合适的内容.(Ⅰ)证明:欲证平面ABE ⊥平面BCD ,只需证_______________________________,由已知AB ⊥BC ,只需证_________________, 由已知DC ⊥平面ABC 可得DC ⊥AB 成立, 所以平面ABE ⊥平面BCD .(Ⅱ)证明:假设________________________________________,又因为DC ⊄平面ABE ,所以//DC 平面ABE . 又因为平面ACDE I 平面ABE =AE , 所以__________________, 又因为DE //AC ,所以ACDE 是平行四边形,所以AC DE =,这与_______________________________矛盾, 所以假设错误,原结论正确.15.(本小题12分)已知函数()ln f x x ax =+(a ∈R ). (Ⅰ)若函数)(x f 在点))1(,1(f 处的切线与直线x y 2=平行,求实数a 的值及该切线方程; (Ⅱ)若对任意的),0(+∞∈x ,都有1)(≤x f 成立,求实数a 的取值范围.16. (本小题8分)请阅读问题1的解答过程,然后借鉴问题1的解题思路完成问题2的解答: 问题1:已知数集{}()1212,,1,2n n A a a a a a a n =≤<<<≥L L 具有性质P :对任意的(),1i j i j n ≤≤≤,i j a a 与j ia a 两数中至少有一个属于A .若数集{}14,2,3,a a 具有性质P ,求,a a 的值.问题2:已知数集1212,,0,2n n A a a a a a a n =≤<<<≥L L 具有性质P :对任意的(),1i j i j n ≤≤≤,i j a a +与j i a a -两数中至少有一个属于A .若数集{}14,1,3,a a 具有性质P ,求14,a a 的值.17. (本小题10分)已知函数1()(0)f x x x=>,对于正数1x ,2x ,…,n x (n ∈N +),记12n n S x x x =+++L ,如图,由点(0,0),(,0)i x ,(,())i i x f x ,(0,())i f x 构成的矩形的周长为i C (1,2,,)i n =L ,都满足4i i C S =(1,2,,)i n =L . (Ⅰ)求1x ;(Ⅱ)猜想n x 的表达式(用n 表示),并用数学归纳法证明.数 学(理科)一、选择题:本大题共8小题, 每小题4分,共32分.AABD CCCD二、填空题:本大题共4小题, 每小题4分,共16分.9.2i - 10. 4- 11. 21(1)x -- 12. 1三、解答题:本大题共5小题,共52分. 解答应写出文字说明,证明过程或演算步骤. 13.(本小题12分) (Ⅰ)6, 3. ------------------------------------------------------------------4分(Ⅱ)解:2'()32f x ax bx c =++,--------------------------------------------------------------5分由已知表格可得'(1)8,'(3)0,f f =⎧⎨=⎩解得2,32.a b ⎧=-⎪⎨⎪=⎩---------------------------------------------7分(Ⅲ)解:由(Ⅱ)可得2'()2462(3)(1)f x x x x x =-++=--+,-----------------------8分 由'()0f x <可得(,1)x ∈-∞-(3,)+∞U ,------------------------------------------------9因为()f x 在(,2)m m +上单调递减,所以仅需21m +≤-或者3m ≥, ------------------------------------------------------11分所以m 的取值范为3m ≥或3m ≤-.-----------------------------------------------------12分 14.(本小题10分)(Ⅰ)证明:欲证平面ABE ⊥平面BCD ,只需证由已知AB ⊥BC ----------------------------------------------------4分由已知DC ⊥平面ABC 可得DC ⊥AB 成立, 所以平面------------------------------------6分又因为DC I 平面ABE =AE ,------------------------------------------8分所以AC DE =-----------------------------------------------10分所以假设错误,原结论正确.15.(本小题12分) (Ⅰ)解:11'()ax f x a x x+=+=,0x >.----------------------------------------------------------2分由已知可得'(1)12f a =+=,解得1a =.---------------------------------------------------3分因为(1)1f =,所以在点))1(,1(f 处的切线方程为21y x =-.------------------------4分(Ⅱ)解1:若对任意),0(+∞∈x ,都有1)(≤x f 成立,即1ln xa x-≤成立.------------6分设1ln ()x g x x-=,--------------------------------------------------------------7分 2ln 2'()x g x x-=,令'()0g x =,解得2e x =, 则'(),()g x g x 的情况如下:分所以()g x 的最小值为22(e )e g -=-, ------------------------------------------10分所以,依题意只需实数a 满足2e a -≤-,---------------------------------------11分故所求a 的取值范围是2(,e ]--∞-.--------------------------------------------12分解2:当0a ≥时,'()0f x >恒成立,所以函数()f x 的单调递增区间为(0,)+∞又因为11(1)ln(1)11f a a a+=+++>,所以不符题意,舍.--------------------6分当0a <时,令'()0f x =,得1x a=-.----------------------------------------------7分所以'(),()f x f x 随x 的变化如下表所示:分所以()f x 的最大值为1()f a -,------------------------------------------------------10分所以,依题意只需11()ln()11f a a-=--≤即可,解得2e a -≤-.---------------11分综上,a 的取值范围是2(,e ]--∞-.---------------------------------------------------12分16. (本小题8分)解:对于集合中最大的数4a ,因为444a a a +>,443a a +>,441a a +>-----------------2分所以44a a -,43a -,41a -,41a a -都属于该集合.--------------------------------------------4分又因为14013a a ≤<<<,所以44a a -<43a -<41a -41a a <-.-----------------------6分 所以1440a a a =-=,431a -=,------------------------------------------------------------------7分即140,4a a ==.-------------------------------------------------------------------------------------8分17. (本小题10分)(Ⅰ)解:由题意知,12(())2()i i i i iC x f x x x =+=+(1,2,,)i n =L ,所以12i iiS x x =+(1,2,,)i n =L .--------------------------------------------------------------1分令i =1,得11112S x x =+,又11S x =,且1x >0,故11x =.---------------------------------------------------------------2分(Ⅱ)解:令i =2,得22212S x x =+,又212S x x =+,11x =,且2x >0,故21x =;------------------------------------3分 令i =3,得33312S x x =+,由此猜想,n x =(n ∈N +).-------------------------------------------------------5分下面用数学归纳法证明: ①当n =1时,11x =,命题成立;---------------------------------------------------------6分②假设n =k时命题成立,即k x =(k ∈N +), -----------------------------7分则当n =k +1时,11112k k k S x x +++=+,又11k k k S S x ++=+,12k k kS x x =+, 故11111()2k k k k k x x x x x +++++=+,由k x =,得21110k k x +++-=,--------------------------------------8分所以1k x +).-------------------------------------------9分即当n =k +1时命题成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二第二学期期中质量调查数学试题(理科)
第Ⅰ卷(选择题 共40分)
一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题
目要求的.
1若i 为虚数单位,则33i +等于 A. 334i - B. 332i - C. 334i + D. 332i + 2. 若0,10a b <-<<,则下列不等关系成立的是
A.2ab ab a <<
B. 2a ab ab <<
C. 2ab a ab <<
D. 2
a a
b ab <<
3.曲线324y x x =-+在点()1,3处的切线的倾斜角为 A.
6π B. 4π C. 3
π D. 23π 4.设67,58,5a b c =+=+=,则,,c a b 的大小关系为
A. c b a <<
B. b c a <<
C. c a b <<
D. a b c << 5.计算2
11x dx x ⎛⎫+ ⎪⎝⎭
⎰的值为 A. 34
B. 3ln 22+
C. 5ln 22+
D. 3ln 2+ 6.若函数()331f x x ax =-+在区间()0,1内有极小值,则a 的取值范围是 A. ()0,1 B. (]0,1 C. [)0,1 D. []0,1
7.设函数()224ln f x x x x =--,则()f x 的单调递增区间为
A. ()0,+∞
B. ()1,0-
C. ()2,+∞
D. ()()1,02,-+∞U
8.设函数()y f x =在定义域内可导,其图象如右图所示,则导函数()y f x '=的图象只可能是下列情形中的
9. 设()111,1,23n N f n n *∈=++++L 计算得()()()()352,42,8,163,22f f f f =>>>观察上述结果,可推测一般结论为
A. ()()2log 22n f n n N *+≥
∈ B. ()()222
n f n n N *+≥∈ C. ()()222n n f n N *+>∈ D. ()()222
n n f n N *+≥∈ 10.若在区间1,22⎡⎤⎢⎥⎣⎦
上,函数()2f x x px q =++与()3322x g x x =+在同一点处取得相同的最小值,则()f x 在区间1,22⎡⎤⎢⎥⎣⎦
上的最大值是 A. 3 B. 4 C. 134 D. 6
第Ⅱ卷(非选择题 共60分)
二、填空题:本大题共5小题,每小题5分,共20分.
11.已知i 为虚数单位,(),2a R ai i ∈-的实部与虚部互为相反数,则a 的值为 .
12.函数()ln x f x x
=
的单调递减区间是 . 13.若12342358,,,,,35813
a a a a ====L 则8a = . 14.已知函数()()21f x x k x k =+--恰有一个零点在()2,3内,则实数k 的取值范围是 . 15.若()329652
f x x x x =-+-满足条件()f x m '≥恒成立,则m 的最大值是 .
三、解答题:本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.
16.(本小题满分6分)
已知0a b >>,求证:2
222 1.a b
b a b a b -+<++
17.(本小题满分8分)
计算下列各题:
(1)1122i ⎛⎫⎫
- ⎪⎪ ⎪⎪⎝⎭⎝⎭
g
(2)()()
21212i i i +-+
18.(本小题8分)
已知函数()3 3.f x x x =-+
(1)求()f x 在1x =处的切线方程;
(2)求()f x 的单调递增区间.
19. (本小题8分)
用数学归纳法证明:
()()()
()11222221123411.2n n n n n n N --*+-+-++-=-⋅∈L
20.(本小题满分10分)
已知()()322
23.3f x x ax x a R =--∈
(1)若()f x 在区间()1,1-内为减函数,求实数a 的取值范围;
(2)对于实数a 的不同取值,试讨论()y f x =在()1,1-内的极值点的个数.。