《概率论与数理统计》区间估计 (2)

合集下载

概率论与数理统计-第6章-第4讲-区间估计

概率论与数理统计-第6章-第4讲-区间估计
5
本讲内容
01 置信区间定义 02 求置信区间的步骤 03 几点说明
02 求置信区间的步骤
例 设X1,…Xn 是取自 N (, 2 ) 的样本, 2已知,
求参数 的置信水平为 1 的置信区间.
明确问题:求什么参数的置信区间?置信水平是多少?
解 选 的点估计为 X
寻找未知参数的
取 U X N (0,1) 一个良好估计 n
u
2} 1
1
为什么 这样取?
u
u
2
2
8
02 求置信区间的步骤
从中解得
P{|
X
n
|u2}源自1P{Xn u 2
X
n
u
2}
1
于是所求 的 置信区间为
[X
n u 2 ,
X
n u
2]
也可简记为 X n u 2
从例题的过程,我们归纳出求置信区间的
一般步骤如下:
1
u
u
2
2
9
02 求置信区间的步骤
求置信区间的步骤
10
本讲内容
01 置信区间定义 02 求置信区间的步骤 03 几点说明
03 几点说明
1. 要求 θ 以很大的可能被包含在 [θˆ1, θˆ2 ]
内,P(ˆ1 ˆ2 ) 1 要尽可能大.
即要求估计尽量可靠. 2. 估计的精度要尽可能的高. 如要求区间
长度 θˆ2 θˆ1 尽可能短.
置信度与精度是一对矛盾,当样本容 量固定时,置信度越高,则精度越差.
u
u
2
2
区间的长度为 2u —— 达到最短
2n
14
03 几点说明
特别说明
即使在概率密度不对称的情形,如

概率论与数理统计(二)

概率论与数理统计(二)

欢迎阅读内容串讲第一章 随机事件及其概率1. 事件的关系与运算必然事件:Ω—随机试验全部结果构成的集合。

不可能事件:φ 一般事件A :A φ⊂⊂Ω若A 若A 11111,,nnni i i i i i i i A A A A ∞=====等等。

例1 2(1(2(3(4(5))()()(AB P A P B A P -=-(6)若n A A A ,,21两两互不相容,则∑===ni i ni i A P A P 11)()((7)若n A A A ,,21相互独立,则例2 设1.0)(,4.0)(,2.0)(===AB P B P A P则5.0)()()(1)(1)(=+--=⋃-=⋃AB P B P A P B A P B A P3.古典概型古典概型:当随机试验的结果为有限个且诸结果等可能发生时,任一事件A 的概率为例3 从五个球(其中两个白球、三个红球)中任取两球,设A :取到两个白球;B :一白一红球,求)(),(B P A P(1)无放回抽样:(2)有放回抽样:每次有放回的取一球,连取两次[注]:若设X 为两次有放回取球中取到白球数,则X ~)52,2(B ,从而)(=P A P 4(1(2例103 (3,j i j i ,,≠)(i B(4例5 某工厂生产的产品以100个为一批,在进行抽样检查时,只从每批中抽取10个来检查,如果发现其中有次品,则认为这批产品是不合格的,设每批产品中的次品最多不超过4个,并且恰有)4,3,2,1(=i i 个次品的概率如下(1)求各批产品通过的概率;(2)求通过检查的各批产品中恰有i 个次品的概率。

)4,3,2,1(=i解:(1)设事件i B 是恰有i 个次品的一批产品)4,3,2,1(=i ,则由题设设事件A 是这批产品通过检查,即抽样检查的10个产品都是合格品,则我们有1)(0=B A P由全概率公式,即得8142.0)()()(40≈=∑=i i i B A P B P A P(2)由Bayes 公式,所求概率分别为5.事件的独立性(1)定义:A 、B 相互独立等价于)()()(B P A P B A P ⋅=(2)若n A A A ,,,21 相互独立,则有)()()()(2121n n A P A P A P A A A P =(3)有放回抽样中的诸事件是相互独立的。

概率论与数理统计 第七章2

概率论与数理统计 第七章2

P{θ1 ≤ θ ≤ θ 2 } ≥ 1 − α , (0 < α < 1)
称区间(θ1,θ 2 )为θ的置信水平为1 − α 该区间的置信区间 。
区间(θ1,θ2)是一个随机区间; α给出该区间含真 1− 值θ的可靠程度。α表示该区间不包含真值θ的可能性。
ch7-1 2
上海理工大学
University of Shanghai for Science and Technology
( X −u1−α
σ
2
n
,
X + u1−α
σ
2
n
)
可得所求的置信区间为
2 (12.35 ± 1.96 × ) = (12.35 ± 1.307) = (11.043,13.657) 9
ch7-1 8
上海理工大学
University of Shanghai for Science and Technology
上海理工大学
University of Shanghai for Science and Technology
College of Science
理学院
概率论与数理统计
区 间 估 计
ch7-1
1
上海理工大学
University of Shanghai for Science and Technology
1001,1004,1003,997,999,1000, , , , , , , 1004,1000,996, 1002,998,999. , , , , ,
求σ2的置信水平为 的置信水平为0.95的置信区间 的置信区间. 的置信区间 −α的置信区间如 解:本例中 µ未知, σ2的置信水平为 −α的置信区间如 本例中 未知, 的置信水平为1−α的置信区间如. (n −1)S2 (n −1)S2 2 , 2 χ1−α (n −1) χα (n −1) 其中n=12,计算得:(n−1)s2=11×6.932=76.25.又 计算得: − 其中 计算得 × 又 查自由度为11的 分布分位数表,得 α=1− 0.95=0.05, 查自由度为 的 χ 2分布分位数表 得 −

概率论——区间估计

概率论——区间估计
概率论与数理统计
概率与 概率与统计
第十九讲 区间估计
主讲教师: 主讲教师: 于红香 e-mail:fishr2001@
概率论与数理统计
第四节
区间估计
学习要求
理解区间估计的概念 会求单个正态总体的均值和方差的置信区间 会求两个正态总体的均值差和方差比的置信区间
对于概念和理论方面的内容,从高到低分别用 “理解”、“了解”、“知道”三级来表述; 对于方法,运算和能力方面的内容,从高到低分别用 “熟练掌握”、“掌握”、“能”(或“会”)三级来 表述。
N( µ, σ2 )的情况 单个总体
2 2 N( µ1, σ1 ),N( µ2 , σ2 )的情况 两个总体
课堂练习 小结 布置作业
概率论与数理统计
一、单个总体 N( µ, σ ) 的情况
2
X
N( µ, σ2 ),并设 X1,K, Xn 为来自总体的
样本 , X, S2 分别为样本均值和样本方差 .
的置信水平( 则称区间 ( θ,θ ) 是 θ 的置信水平(置信度 )为1−α 为 置信区间 的置信区间.
θ 和 θ 分别称为置信下限和置信上限 分别称为置信下限 置信上限. 置信下限和
概率论与数理统计
1. 要求 θ 以很大的可能被包含在区间( θ,θ ) 内,就是说,概率 P{θ < θ < θ} 要尽可能大 . 就是说, 即要求估计尽量可靠. 即要求估计尽量可靠 2. 估计的精度要尽可能的高 如要求区间长度 估计的精度要尽可能的高. 尽可能短,或能体现该要求的其它准则. θ − θ 尽可能短,或能体现该要求的其它准则 可靠度与精度是一对矛盾, 可靠度与精度是一对矛盾,一般是 在保证可靠度的条件下尽可能提高 精度. 精度

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第六章要点

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第六章要点

第六章参数估计6.1 点估计问题概述习题1总体X在区间[0,θ]上均匀分布,X1,X2,⋯,Xn是它的样本,则下列估计量θ是θ的一致估计是().(A)θ=Xn; (B)θ=2Xn;(C)θ=X¯=1n∑i=1nXi;(D)θ=Max{X1,X2,⋯,Xn}.解答:应选(D).由一致估计的定义,对任意ɛ>0,P(∣Max{X1,X2,⋯,Xn}-θ∣<ɛ)=P(-ɛ+θ<Max{X1,X2,⋯,Xn}<ɛ+θ)=F(ɛ+θ)-F(-ɛ+θ).因为FX(x)={0,x<0xθ,0≤x≤θ1,x>θ, 及F(x)=FMax{X1,X2,⋯,Xn}(x)=FX1(x)FX2(x)⋯FXn(x),所以F(ɛ+θ)=1, F(-ɛ+θ)=P(Max{X1,X2,⋯,Xn}<-ɛ+θ)=(1-xθ)n,故P(∣Max{X1,X2,⋯,Xn}-θ∣<ɛ)=1-(1-xθ)n→1(n→+∞).习题2设σ是总体X的标准差,X1,X2,⋯,Xn是它的样本,则样本标准差S是总体标准差σ的().(A)矩估计量;(B)最大似然估计量;(C)无偏估计量;(D)相合估计量.解答:应选(D).因为,总体标准差σ的矩估计量和最大似然估计量都是未修正的样本标准差;样本方差是总体方差的无偏估计,但是样本标准差不是总体标准差的无偏估计.可见,样本标准差S是总体标准差σ的相合估计量.习题3设总体X的数学期望为μ,X1,X2,⋯,Xn是来自X的样本,a1,a2,⋯,an是任意常数,验证(∑i=1naiXi)/∑i=1nai(∑i=1nai≠0)是μ的无偏估计量.解答:E(X)=μ,E(∑i=1naiXi∑i=1nai)=1∑i=1nai⋅∑i=1naiE(Xi)(E(Xi)=E(X)=μ)=μ∑i=1nai∑i=1n=μ,综上所证,可知∑i=1naiXi∑i=1nai是μ的无偏估计量.习题4设θ是参数θ的无偏估计,且有D(θ)>0, 试证θ2=(θ)2不是θ2的无偏估计.解答:因为D(θ)=E(θ2)-[E(θ)]2, 所以E(θ2)=D(θ)+[E(θ)]2=θ2+D(θ)>θ2,故(θ)2不是θ2的无偏估计.习题5设X1,X2,⋯,Xn是来自参数为λ的泊松分布的简单随机样本,试求λ2的无偏估计量.解答:因X服从参数为λ的泊松分布,故D(X)=λ, E(X2)=D(X)+[E(X)]2=λ+λ2=E(X)+λ2,于是E(X2)-E(X)=λ2, 即E(X2-X)=λ2.用样本矩A2=1n∑i=1nXi2,A1=X¯代替相应的总体矩E(X2),E(X), 便得λ2的无偏估计量λ2=A2-A1=1n∑i=1nXi2-X¯.习题6设X1,X2,⋯,Xn为来自参数为n,p的二项分布总体,试求p2的无偏估计量.解答:因总体X∼b(n,p), 故E(X)=np,E(X2)=D(X)+[E(X)]2=np(1-p)+n2p2=np+n(n-1)p2=E(X)+n(n-1)p2,E(X2)-E(X)n(-1)=E[1n(n-1)(X2-X)]=p2,于是,用样本矩A2,A1分别代替相应的总体矩E(X2),E(X),便得p2的无偏估计量p2=A2-A1n(n-1)=1n2(n-1)∑i=1n(Xi2-Xi).习题7设总体X服从均值为θ的指数分布,其概率密度为f(x;θ)={1θe-xθ,x>00,x≤0,其中参数θ>0未知. 又设X1,X2,⋯,Xn是来自该总体的样本,试证:X¯和n(min(X1,X2,⋯,Xn))都是θ的无偏估计量,并比较哪个更有效.解答:因为E(X)=θ, 而E(X¯)=E(X),所以E(X¯)=θ, X¯是θ的无偏估计量.设Z=min(X1,X2,⋯,Xn),因为FX(x)={0,x≤01-e-xθ,x>0,FZ(x)=1-[1-FX(x)]n={1-e-nxθ,x>00,x≤0,所以fZ(x)={nθe-nxθ,x>00,x≤0,这是参数为nθ的指数分布,故知E(Z)=θn, 而E(nZ)=E[n(min(X1,X2,⋯,Xn)]=θ,所以nZ也是θ的无偏估计.现比较它们的方差大小.由于D(X)=θ2, 故D(X¯)=θ2n.又由于D(Z)=(θn)2, 故有D(nZ)=n2D(Z)=n2⋅θ2n2=θ2.当n>1时,D(nZ)>D(X¯),故X¯较nZ有效.习题8设总体X服从正态分布N(m,1),X1,X2是总体X的子样,试验证1=2 X1+1 X2, 2=1 X1+ X2,=12X1+12X2,都是m的无偏估计量;并问哪一个估计量的方差最小?解答:因为X服从N(m,1), 有E(Xi)=m,D(Xi)=1(i=1,2),得E( 1)=E(23X1+13X2)=23E(X1)+13E(X2)=23m+13m=m,D( 1)=D(23X1+13X2)=49D(X1)+19D(X2)=49+19=59,同理可得:E( 2)= ,D( 2)= ,E( )= ,D( )=12.所以, 1, 2,都是m的无偏估计量,并且在 1, 2,中,以的方差为最小.习题9设有k台仪器. 已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,⋯,k), 用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2,⋯,Xk. 设仪器都没有系统误差,即E(Xi)=θ(i=1,2,⋯,k), 问a1,a2,⋯,ak应取何值,方能使用=∑i=1kaiXi估计θ时, 是无偏的,并且D( )最小?解答:因为E(Xi)=θ(i=1,2,⋯,k), 故E( )=E(∑i=1kaiXi)=∑i=1kaiE(Xi)=θ∑i=1kai,欲使E( )=θ, 则要∑i=1kai=1.因此,当∑i=1kai=1时,=∑i=1kaiXi为θ的无偏估计,D( )=∑i=1kai2σi2, 要在∑i=1kai=1的条件下D( )最小,采用拉格朗日乘数法.令L(a1,a2,⋯,ak)=D()+λ(1-∑i=1kai)=∑i=1kai2σi2+λ(1-∑i=1kai),{∂L∂ai=0,i=1,2,⋯,k∑i=1kai=1,即2aiσi2-λ=0,ai=λ2i2;又因∑i=1kai=1,所以λ∑i=1k12σi2=1, 记∑i=1k1σi2=1σ02, 所以λ=2σ02, 于是ai=σ02σi2 (i=1,2,⋯,k),故当ai=σ02σi2(i=1,2,⋯,k)时, =∑i=1kaiXi是θ的无偏估计,且方差最小.习题6.2 点估计的常用方法习题1设X1,X2,⋯,Xn为总体的一个样本,x1,x2,⋯,xn为一相应的样本值,求下述各总体的密度函数或分布律中的未知参数的矩估计量和估计值及最大似然估计量.(1)f(x)={θcθx-(θ+1),x>c0,其它, 其中c>0为已知,θ>1,θ为未知参数.(2)f(x)={θxθ-1,0≤x≤10,其它, 其中θ>0,θ为未知参数.(3)P{X=x}=(mx)px(1-p)m-x, 其中x=0,1,2,⋯,m,0<p<1,p为未知参数.解答:(1)E(X)=∫c+∞x⋅θcθx-(θ+1)dx=θcθ∫c+∞x-θdx=θcθ-1,解出θ=E(X)E(X)-c,令X¯=E(X),于是=X¯X¯-c为矩估计量,θ的矩估计值为=x¯x¯-c,其中x¯=1n∑i=1nxi.另外,似然函数为L(θ)=∏i=1nf(xi;θ)=θncnθ(∏i=1nxi)-(θ+1),xi>c,对数似然函数为lnL(θ)=nlnθ+nθlnc-(θ+1)∑i=1nlnxi,对lnL(θ)求导,并令其为零,得dlnL(θ)dθ=nθ+nlnc-∑i=1nlnxi=0,解方程得θ=n∑i=1nlnxi-nlnc,故参数的最大似然估计量为=n∑i=1nlnXi-nlnc.(2)E(X)=∫01x⋅θxθ-1dx=θθ+1,以X¯作为E(X)的矩估计,则θ的矩估计由X¯=θθ+1解出,得=(X¯1-X¯)2,θ的矩估计值为=(x¯1-x¯)2,其中x¯=1n∑i=1nxi为样本均值的观测值.另外,似然函数为L(θ)=∏i=1nf(xi;θ)=θn/2(∏i=1nxi)θ-1,0≤xi≤1,对数似然函数为lnL(θ)=n2lnθ+(θ-1)∑i=1nlnxi,对lnL(θ)求导,并令其为零,得dlnL(θ)dθ=n2θ+12θ∑i=1nlnxi=0,解方程得θ=(-n∑i=1nlnxi)2,故参数的最大似然估计量为=(n∑i=1nlnXi)2.(3)X∼b(m,p),E(X)=mp,以X¯作为E(X)的矩估计,即X¯=E(X),则参数p的矩估计为=1 X¯=1 ⋅1n∑i=1nXi,p的矩估计值为=1 x¯=1 ⋅1n∑i=1nxi.另外,似然函数为L(θ)=∏i=1nf(xi;θ)=(∏i=1nC xi) ∑i=1nxi(1- )∑i=1n( -xi),xi=0,1,⋯,m,对数似然函数为lnL(θ)=∑i=1nlnC xi+(∑i=1nxi)ln +(∑i=1n( -xi))ln(1-p),对lnL(θ)求导,并令其为零,得dlnL(θ)dθ=1 ∑i=1nxi-11- ∑i=1n( -xi)=0,解方程得 =1 n∑i=1nxi,故参数的最大似然估计量为=1 n∑i=1nXi=1 X¯.习题2设总体X服从均匀分布U[0,θ],它的密度函数为f(x;θ)={1θ,0≤x≤θ0,其它,(1)求未知参数θ的矩估计量;(2)当样本观察值为0.3,0.8,0.27,0.35,0.62,0.55时,求θ的矩估计值.解答:(1)因为E(X)=∫-∞+∞xf(x;θ)dx=1θ∫0θxdx=θ2,令E(X)=1n∑i=1nXi,即θ2=X¯,所以=2X¯.(2)由所给样本的观察值算得x¯=16∑i=16xi=16(0. +0. +0.27+0. +0.62+0. )=0. 17,所以=2x¯=0.96 .习题3设总体X以等概率1θ取值1,2,⋯,θ, 求未知参数θ的矩估计量.解答:由E(X)=1×1θ+2×1θ+⋯+θ×1θ=1+θ2=1n∑i=1nXi=X¯,得θ的矩估计为=2X¯-1.习题4一批产品中含有废品,从中随机地抽取60件,发现废品4件,试用矩估计法估计这批产品的废品率.解答:设p为抽得废品的概率,1-p为抽得正品的概率(放回抽取). 为了估计p,引入随机变量Xi={1,第i次抽取到的是废品0,第i次抽取到的是正品,于是P{Xi=1}=p,P{Xi=0}=1-p=q, 其中i=1,2,⋯,60,且E(Xi)=p, 故对于样本X1,X2,⋯,X60的一个观测值x1,x2,⋯,x60, 由矩估计法得p的估计值为=160∑i=160xi= 60=11 ,即这批产品的废品率为115.习题5设总体X具有分布律X 1 2 3pi θ2 2θ(1-θ) (1-θ)2其中θ(0<θ<1)为未知参数. 已知取得了样本值x1=1,x2=2,x3=1, 试求θ的矩估计值和最大似然估计值.解答:E(X)=1×θ2+2×2θ(1-θ)+ ×(1-θ)2=3-2θ,x¯=1/ ×(1+2+1)= / .因为E(X)=X¯,所以=(3-x¯)/2= /6为矩估计值,L(θ)=∏i=1 P{Xi=xi}=P{X1=1}P{X2=2}P{X =1}=θ4⋅2θ⋅(1-θ)=2θ5(1-θ),lnL(θ)=ln2+5lnθ+ln(1-θ),对θ求导,并令导数为零dlnLdθ=5θ-11-θ=0,得=56.习题6(1)设X1,X2,⋯,Xn来自总体X的一个样本, 且X∼π(λ), 求P{X=0}的最大似然估计.(2)某铁路局证实一个扳道员五年内所引起的严重事故的次数服从泊松分布,求一个扳道员在五年内未引起严重事故的概率p的最大似然估计,使用下面122个观察值统计情况. 下表中,r表示一扳道员某五年中引起严重事故的次数,s表示观察到的扳道员人数.习题6.3 置信区间习题1对参数的一种区间估计及一组观察值(x1,x2,⋯,xn)来说,下列结论中正确的是().(A)置信度越大,对参数取值范围估计越准确;(B)置信度越大,置信区间越长;(C)置信度越大,置信区间越短;(D)置信度大小与置信区间有长度无关.解答:应选(B).置信度越大,置信区间包含真值的概率就越大,置信区间的长度就越大,对未知参数的估计精度越低.反之,对参数的估计精度越高,置信区间的长度越小,它包含真值的概率就越低,置信度就越小.习题2设(θ1,θ2)是参数θ的置信度为1-α的区间估计,则以下结论正确的是().(A)参数θ落在区间(θ1,θ2)之内的概率为1-α;(B)参数θ落在区间(θ1,θ2)之外的概率为α;(C)区间(θ1,θ2)包含参数θ的概率为1-α;(D)对不同的样本观察值,区间(θ1,θ2)的长度相同.解答:应先(C).由于θ1,θ2都是统计量,即(θ1,θ2)是随机区间,而θ是一个客观存在的未知常数,故(A),(B)不正确.习题3设总体的期望μ和方差σ2均存在,如何求μ的置信度为1-α的置信区间?解答:先从总体中抽取一容量为n的样本X1,X2,⋯,Xn.根据中心极限定理,知U=X¯-μσ/n→N(0,1)(n→∞).(1)当σ2已知时,则近似得到μ的置信度为1-α的置信区间为(X¯-uα/2σn,X¯+uα/2σn).(2)当σ2未知时,用σ2的无偏估计S2代替σ2, 这里仍有X¯-μS/n→N(0,1)(n→∞),于是得到μ的1-α的置信区间为(X¯-uα/2Sn,X¯+uα/2Sn),一般要求n≥ 0才能使用上述公式,称为大样本区间估计.习题4某总体的标准差σ=3cm, 从中抽取40个个体,其样本平均数x¯=6 2c ,试给出总体期望值μ的95%的置信上、下限(即置信区间的上、下限).解答:因为n=40属于大样本情形,所以X¯近似服从N(μ,σ2n)的正态分布,于是μ的95%的置信区间近似为(X¯±σnuα/2),这里x¯=6 2,σ= ,n= 0≈6. 2,uα/2=1.96, 从而(x¯±σnuα/2)=(6 2± 0×1.96)≈(6 2±0.93),故μ的95%的置信上限为642.93, 下限为641.07.习题5某商店为了了解居民对某种商品的需要,调查了100家住户,得出每户每月平均需求量为10kg, 方差为9,如果这个商店供应10000户,试就居民对该种商品的平均需求量进行区间估计(α=0.01), 并依此考虑最少要准备多少这种商品才能以0.99的概率满足需求?解答:因为n=100属于大样本问题,所以X¯近似服从N(μ,σ2/n),于是μ的99%的置信区间近似为(X¯±Snuα/2), 而x¯=10,s= ,n=100,uα/2=2.58,习题7某城镇抽样调查的500名应就业的人中,有13名待业者,试求该城镇的待业率p的置信度为0.95置信区间.解答:这是(0-1)分布参数的区间估计问题. 待业率p的0.95置信区间为( 1, 2)=(-b-b2-4ac2a,-b+b2-4ac2a).其中a=n+uα/22,b=-2nX¯-(uα/2)2, c=nX¯2,n= 00,x¯=1 00,uα/2=1.96.则( 1, 2)=(0.015,0.044).习题8设X1,X2,⋯,Xn为来自正态总体N(μ,σ2)的一个样本,求μ的置信度为1-α的单侧置信限.解答:这是一个正态总体在方差未知的条件下,对μ的区间估计问题,应选取统计量:T=X¯-μS/n∼t(n-1).因为只需作单边估计,注意到t分布的对称性,故令P{T<tα(n-1)}=1-α和P{T>tα(n-1)}=1-α.由给定的置信度1-α, 查自由度为n-1的t分布表可得单侧临界值tα(n-1). 将不等式T<tα(n-1)和T>tα(n-1), 即X¯-μS/n<tα(n-1)和X¯-μS/n>tα(n-1)分别变形,求出μ即得μ的1-α的置信下限为X¯-tα(n-1)Sn.μ的1-α的置信上限为X¯+tα(n-1)Sn,μ的1-α的双侧置信限(X¯-tα/2(n-1)Sn,X¯+tα/2(n-1)Sn).习题6.4 正态总体的置信区间习题1已知灯泡寿命的标准差σ=50小时,抽出25个灯泡检验,得平均寿命x¯= 00小时,试以95%的可靠性对灯泡的平均寿命进行区间估计(假设灯泡寿命服从正态分布).解答:由于X∼N(μ,502), 所以μ的置信度为95%的置信区间为(X¯±uα/2σn),这里x¯= 00,n=2 ,σ=50,uα/2=1.96, 所以灯泡的平均寿命的置信区间为(x¯±uα/2σn)=( 00± 02 ×1.96)=( 00±19.6)=( 0. , 19.6).习题2一个随机样本来自正态总体X,总体标准差σ=1.5, 抽样前希望有95%的置信水平使得μ的估计的置信区间长度为L=1.7, 试问应抽取多大的一个样本?解答:因方差已知,μ的置信区间长度为L=2uα/2⋅σn,于是n=(2σLuα/2)2.由题设知,1-α=0.95,α=0.05,α2=0.025. 查标准正态分布表得u0.025=1.96,σ=1.5,L=1.7,所以,样本容量n=(2×1. ×1.961.7)2≈11.96.向上取整数得n=12, 于是欲使估计的区间长度为1.7的置信水平为95%, 所以需样本容量为n=12.习题3设某种电子管的使用寿命服从正态分布. 从中随机抽取15个进行检验,得平均使用寿命为1950小时,标准差s为300小时,以95%的可靠性估计整批电子管平均使用寿命的置信上、下限.解答:由X∼N(μ,σ2), 知μ的95%的置信区间为(X¯±Sntα/2(n-1)),这里x¯=19 0,s= 00,n=1 ,tα/2(14)=2.145, 于是(x¯±sntα/2(n-1))=(19 0± 001 ×2.1 )≈(19 0±166.1 1)=(17 . ,2116 .15).即整批电子管平均使用寿命的置信上限为2116.15, 下限为1783.85.习题4人的身高服从正态分布,从初一女生中随机抽取6名,测其身高如下(单位:cm): 149 158.5 152.5 165 157 142求初一女生平均身高的置信区间(α=0.05).解答:X∼N(μ,σ2),μ的置信度为95%的置信区间为(X¯±Sntα/2(n-1)),这里x¯=1 ,s=8.0187, t0.025(5)=2.571, 于是(x¯±sntα/2(n-1))=(1 ± .01 76×2. 71)≈(1 ± . 16)≈(1 . ,162. 2) .习题5某大学数学测验,抽得20个学生的分数平均数x¯=72,样本方差s2=16, 假设分数服从正态分布,求σ2的置信度为98%的置信区间.解答:先取χ2分布变量,构造出1-α的σ2的置信区间为((n-1)S2χα/22(n-1),(n-1)S2χ1-α/22(n-1)).已知1-α=0.98,α=0.02,α2=0.01,n=20, S2=16.查χ2分布表得χ0.012(19)=36.191,χ0.992(19)=7.633,于是得σ2的98%的置信区间为(19×16 6.191,19×167.6 ),即(8.400,39.827).习题6随机地取某种炮弹9发做试验,得炮口速度的样本标准差s=11(m/s).设炮口速度服从正态分布,求这种炮弹的炮口速度的标准差σ的置信度为0.95的置信区间.解答:已知n=9,s=11(m/s),1-α=0.95.查表得χ0.0252(8)=17.535, χ0.9752(8)=2.180,σ的0.95的置信区间为(8sχ0.0252(8),8sχ0.9752(8)), 即(7.4,21.1).习题7设来自总体N(μ1,16)的一容量为15的样本,其样本均值x1¯=1 .6;来自总体N(μ2,9)的一容量为20的样本,其样本均值x2¯=1 .2;并且两样本是相互独立的,试求μ1-μ2的90%的置信区间.解答:1-α=0.9,α=0.1, 由Φ(uα/2)=1-α2=0.95, 查表,得uα/2=1.645,再由n1=15,n2=20, 得σ12n1+σ22n2=161 +920=9160≈1.2 2,uα/2σ12n1+σ22n2=1.6 ×1.2 2≈2.0 ,x¯1-x¯2=1 .6-13.2=1.4,所以,μ1-μ2的90%的置信区间为(1.4-2.03,1.4+2.03)=(-0.63,3.43).习题8物理系学生可选择一学期3学分没有实验课,也可选一学期4学分有实验的课. 期未考试每一章节都考得一样,若有上实验课的12个学生平均考分为84,标准差为4,没上实验课的18个学生平均考分为77,标准差为6,假设总体均为正态分布且其方差相等,求两种课程平均分数差的置信度为99%的置信区间.解答:设有实验课的考分总体X1∼N(μ1,σ2), 无实验课的考分总体X2∼N(μ2,σ2). 两方差相等但均未知,求μ1-μ2的99%的置信区间,应选t分布变量,T=X1¯-X2¯-(μ1-μ2)SW1n1+1n2∼t(n1+n2-2),其中SW=(n1-1)S12+(n2-1)S22n1+n2-2.μ1-μ2的1-α的置信区间为习题10设两位化验员A,B独立地对某种聚合物含氯量用相同的方法各作10次测定,其测定值的样本方差依次为 sA2=0.5419,sB2=0.6065. 设σA2,σB2分别为A,B所测定的测定值的总体方差,又设总体均为正态的,两样本独立,求方差比σA2/σB2的置信水平为0.95的置信区间.解答:选用随机变量F=SA2σA2/SB2σB2∼F(n1-1,n2-1),依题意,已知sA2=0.5419, sB2=0.6065, n1=n2=10.对于1-α=0.95, 查F分布表得F0.025(9,9)=1F0.025(9,9)=14.03, 于是得σA2σB2的0.95的置信区间为(sA2sB21Fα/2(9,9),sA2sB2Fα/2(9,9))≈(0.222,3.601).总习题解答习题1设总体X服从参数为λ(λ>0)的指数分布,X1,X2,⋯,Xn为一随机样本,令Y=min{X1,X2,⋯,Xn}, 问常数c为何值时,才能使cY是λ的无偏估计量.解答:关键是求出E(Y). 为此要求Y的密度fY(y).因Xi的密度函数为fX(x)={λe-λx,x>00,x<0;Xi的分布函数为FX(x)={1-e-λx,x>00,x≤0,于是FY(y)=1-[1-FX(y)]n={1-e-nλy,y>00,y≤0.两边对y求导得fY(y)=ddyFY(y)={nλe-nλy,y>00,y≤0,即Y服从参数为nλ的指数分布,故E(Y)=nλ.为使cY成为λ的无偏估计量,需且只需E(cY)=λ, 即cnλ=λ, 故c=1n.习题2设X1,X2,⋯,Xn是来自总体X的一个样本,已知E(X)=μ, D(X)=σ2.(1)确定常数c, 使c∑i=1n-1(Xi+1-Xi)2为σ2的无偏估计;(2)确定常数c, 使(X¯)2-cS2是μ2的无偏估计(X¯,S2分别是样本均值和样本方差).解答:(1)E(c∑i=1n-1(Xi+1-Xi)2)=c∑i=1n-1E(Xi+12-2XiXi+1+Xi2)=c∑i=1n-1{D(Xi+1)+[E(Xi+1)]2-2E(Xi)E(Xi+1)+D(Xi)+[E(Xi)+[E(Xi)]2}=c(n-1)(σ2+μ2-2μ2+σ2+μ2)=2(n-1)σ2c.令2(n-1)σ2c=σ2, 所以c=12(n-1).(2)E[(X¯)2-cS2]=E(X¯2)-cE(S2)=D(X¯)+[E(X¯)]2-cσ2=σ2n+μ2-cσ2.令σ2n+μ2-cσ2=μ2, 则得c=1n.习题3设X1,X2,X3,X4是来自均值为θ的指数分布总体的样本,其中θ未知. 设有估计量T1=16(X1+X2)+13(X3+X4),T2=X1+2X2+3X3+4X45,T3=X1+X2+X3+X44.(1)指出T1,T2,T3中哪几个是θ的无偏估计量;(2)在上述θ的无偏估计中指出一个较为有效的.解答:(1)θ=E(X),E(Xi)=E(X)=θ,D(X)=θ2=D(Xi),i=1,2,3,4.E(T1)=E(16(X1+X2)+13(X3+X4))=(26+23)θ=θ,E(T2)=15E(X1+2X2+3X3+4X4)=15(1+2+3+4)θ=2θ,E(T3)=14E(X1+X2+X3+X4)=θ,因此,T1,T3是θ的无偏估计量.(2)D(T1)=236θ2+29θ2=1036θ2, D(T3)=116⋅4θ2=14θ2=936θ2,所以D(T3)<D(T1), 作为θ的无偏估计量,T3更为有效.习题4设从均值为μ, 方差为σ2(σ>0)的总体中,分别抽取容量为n1,n2的两独立样本,X1¯和X2¯分别是两样本的均值,试证:对于任意常数a,b(a+b=1),Y=aX1¯+bX2¯都是μ的无偏估计;并确定常数a,b, 使D(Y)达到最小.解答:E(Y)=E(aX1¯+bX2¯)=aE(X1¯)+bE(X2¯)=(a+b)μ.因为a+b=1, 所以E(Y)=μ.因此,对于常数a,b(a+b=1),Y都是μ的无偏估计,D(Y)=a2D(X1¯)+b2D(X2¯)=a2σ2n1+b2σ2n2.因a+b=1, 所以D(Y)=σ2[a2n1+1n2(1-a)2], 令dD(Y)da=0, 即2σ2(an1-1-an2)=0, 解得a=n1n1+n2,b=n2n1+n2是惟一驻点.又因为d2D(Y)da2=2σ2(1n1+1n2)>0, 故取此a,b二值时,D(Y)达到最小.习题5设有一批产品,为估计其废品率p, 随机取一样本X1,X2,⋯,Xn, 其中Xi={1,取得废品0,取得合格品, i=1,2,⋯,n,证明: =X¯=1n∑i=1nXi是p的一致无偏估计量.解答:由题设条件E(Xi)=p⋅1+(1-p)⋅0=p,D(Xi)=E(Xi2)-[E(Xi)]2=p⋅12+(1-p)02-p2=p(1-p),E( )=E(X¯)=E(1n∑i=1nE(Xi))=1n∑i=1nE(Xi)=1n∑i=1np=p.由定义, 是p的无偏估计量,又D( )=D(X¯)=D(1n∑i=1nXi)=1n2∑i=1nD(Xi)=1n2∑i=1np(1-p)=1n2np(1-p)=pqn.由切比雪夫不等式,任给ɛ>0P{∣ -p∣≥ɛ}=P{∣X¯-p∣≥ɛ}≤1ɛ2D(X¯)=1ɛ2p(1-p)n→0,n→∞所以limn→∞P{∣ -p∣≥ɛ}=0, 故=X¯是废品率p的一致无偏估计量.习题6设总体X∼b(k,p), k是正整数,0<p<1,k,p都未知,X1,X2,⋯,Xn是一样本,试求k和p的矩估计.解答:因总体X服从二项分布b(k,p), 故{a1=E(X)=kpa2=E(X2)=D(X)+[E(X)]2=kp(1-p)+(kp)2,解此方程组得p=a1+a12-a2a1,k=a12a1+a12-a2.用A1=1n∑i=1nXi=X¯,A2=1n∑i=1nXi2分别代替a1,a2, 即得p,k的矩估计为=X¯-S2X¯,k=[X¯2X¯-S2],其中S2=1n∑i=1n(Xi-X¯)2,[x]表示x的最大整数部分.习题7求泊松分布中参数λ的最大似然估计.解答:总体的概率函数为P{X=k}=λkk!e-λ,k=0,1,2,⋯.设x1,x2,⋯,xn为从总体中抽取的容量为n的样本,则似然函数为L(x1,x2,⋯,xn;λ)=∏i=1nf(xi;λ)=∏i=1nλxixi!e-λ=λ∑i=1nxi∏i=1nxi!e-nλ, lnL=(∑i=1nxi)lnλ-nλ-∑i=1nlnxi!,令dlnLdλ=1λ∑i=1nxi-n=0, 得λ的最大是然估计为λ=1n∑i=1nxi=x¯,即x¯=1n∑i=1nxi就是参数λ的最大似然估计.习题8已知总体X的概率分布P{X=k}=C2k(1-θ)kθ2-k,k=0,1,2,求参数的矩估计.解答:总体X为离散型分布,且只含一个未知参数θ, 因此,只要先求离散型随机变量的数学期望E(X), 然后解出θ并用样本均值X¯代替E(X)即可得θ的矩估计.由E(X)=∑k=02kC2k(1-θ)kθ2-k=1×2(1-θ)θ+2(1-θ)2=2-2θ, 即有θ=1-E(X)2.用样本均值X¯代替上式的E(X), 得矩估计为=1-X¯2.习题9设总体X的概率密度为f(x)={(θ+1)xθ,0<x<10,其它,其中θ>-1是未知参数,X1,X2,⋯,Xn为一个样本,试求参数θ的矩估计和最大似然估计量. 解答:因E(X)=∫01(θ+1)xθ+1dx=θ+1θ+2. 令E(X)=1n∑i=1nXi=X¯, 得θ+1θ+2=X¯, 解得θ的矩估计量为θ=2X¯-11-X¯.设x1,x2,⋯,xn是样本X1,X2,⋯,Xn的观察值,则似然函数L(x1,x2,⋯,xn,θ)=∏i=1n(θ+1)xiθ=(θ+1)n(x1x2⋯xn)θ(0<xi<1,i=1,2,⋯,n),取对数得lnL=nln(θ+1)+θ∑i=1nlnxi, 从而得对数似然方程dlnLdθ=nθ+1+∑i=1nlnxi=0,解出θ, 得θ的最大似然估计量为θ=-n∑i=1nlnXi.由此可知,θ的矩估计和最大似然估计是不相同的.习题10设X具有分布密度f(x,θ)={θxe-θx!,x=0,1,2,⋯0,其它,0<θ<+∞,X1,X2,⋯,Xn是X的一个样本,求θ的最大似然估计量.解答:似然函数L(θ)=∏i=1nθxie-θxi!=e-nθ∏i=1nθxixi!,lnL(θ)=-nθ+∑i=1nxilnθ-∑i=1nln(xi!),ddθ(lnL(θ))=-n+1θ∑i=1nxi,令ddθ(lnL(θ))=0, 即-n+1θ∑i=1nxi=0⇒θ=1n∑i=1nxi,故θ最大似然估计量为θ=X¯=1n∑i=1nXi.习题11设使用了某种仪器对同一量进行了12次独立的测量,其数据(单位:毫米)如下:232.50 232.48 232.15 232.53 232.45 232.30232.48 232.05 232.45 232.60 232.47 232.30试用矩估计法估计测量值的均值与方差(设仪器无系统误差).解答:设测量值的均值与方差分别为μ与σ2,因为仪器无系统误差,所以θ= =X¯=1n∑i=1nXi=232+112∑i=1n(Xi-232)=232+1/12×4.76≈232.3967.用样本二阶中心矩B2估计方差σ2, 有2=1n∑i=1n(Xi-X¯)2=1n∑i=1n(Xi-a)2-(X¯-a)2=112∑i=112(Xi-232)2-(232.3967-232)2=0.1819-0.1574=0.0245.习题12设随机变量X服从二项分布P{X=k}=Cnkpk(1-p)n-k,k=0,1,2,⋯,n,X1为其一个样本,试求p2的无偏估计量.解答:\becauseX∼b(n,p),∴E(X)=np, D(X)=np(1-p)=E(X)-np2⇒p2=1n[E(X)-D(X)]=1n[E(X)-E(X2)+(EX)2]⇒p2=1n[E(X(1-X))]+1nn2p2=1nE(X(1-X))]+np2⇒p2=E[X(X-1)]n(n-1), 由于E[X(X-1)]=E[X1(X1-1)],故2=X1(X1-1)n(n-1).习题13设X1,X2,⋯,Xn是来自总体X的随机样本,试证估计量X¯=1n∑i=1nXi和Y=∑i=1nCiXi(Ci≥0为常数,∑i=1nCi=1)都是总体期望E(X)的无偏估计,但X¯比Y有效.解答:依题设可得E(X¯)=1n∑i=1nE(Xi)=1n×nE(X)=E(X),E(Y)=∑i=1nCiE(Xi)=E(X)∑i=1nCi=E(X).从而X¯,Y均为E(X)的无偏估计量,由于D(X¯)=1n2∑i=1nD(Xi)=1nD(X),D(Y)=D(∑i=1nCiXi)=∑i=1nCi2D(Xi)=D(X)∑i=1nCi2.应用柯西—施瓦茨不等式可知1=(∑i=1nCi)2≤(∑i=1nCi2)(∑i=1n12)=n∑i=1nCi2, ⇒1n≤∑i=1nCi2,所以D(Y)≥D(X¯), 故X¯比Y有效.习题14设X1,X2,⋯,Xn是总体X∼U(0,θ)的一个样本,证明:θ1=2X¯和θ2=n+1nX(n)是θ的一致估计.解答:因E( 1)= , D( 1)= 2 n; E( 2)= ,D( 2)=θn(n+2),X(n)=max{Xi}.依切比雪夫不等式,对任给的ɛ>0, 当n→∞时,有P{∣θ1-θ∣≥ɛ}≤D( 1)ɛ2=θ23nɛ2→0,(n→∞)P{∣θ2-θ∣≥ɛ}≤D( 2)ɛ2=θ2n(n+1)ɛ2→0,(n→∞)所以,θ1和θ2都是θ的一致估计量.习题15某面粉厂接到许多顾客的订货,厂内采用自动流水线灌装面粉,按每袋25千克出售. 现从中随机地抽取50袋,其结果如下:25.8, 24.7, 25.0, 24.9, 25.1, 25.0, 25.2,24.8, 25.4, 25.3, 23.1, 25.4, 24.9, 25.0,24.6, 25.0, 25.1, 25.3, 24.9, 24.8, 24.6,21.1, 25.4, 24.9, 24.8, 25.3, 25.0, 25.1,24.7, 25.0, 24.7, 25.3, 25.2, 24.8, 25.1,25.1, 24.7, 25.0, 25.3, 24.9, 25.0, 25.3,25.0, 25.1, 24.7, 25.3, 25.1, 24.9, 25.2,25.1,试求该厂自动流水线灌装袋重总体X的期望的点估计值和期望的置信区间(置信度为0.95). 解答:设X为袋重总体,则E(X)的点估计为E(X)=X¯=1 0(2 . +2 .7+⋯+25.1)=24.92kg.因为样本容量n=50, 可作为大样本处理,由样本值算得x¯=24.92, s2≈0.4376, s=0.6615, 则E(X)的置信度为0.95的置信区间近似为(X¯-uα/2Sn,X¯+uα/2Sn),查标准正态分布表得uα/2=u0.025=1.96, 故所求之置信区间为(24.92-1.96×0.661 0,2 .92+1.96×0.661 0)=(2 .7 7,2 .10 ),即有95%的把握,保证该厂生产的面粉平均每袋重量在24.737千克至25.103千克之间.习题16在一批货物的容量为100的样本中,经检验发现有16只次品,试求这批货物次品率的置信度为0.95的置信区间.解答:这是(0-1)分布参数区间的估计问题.这批货物次品率p的1-α的置信区间为( 1, 2)=(12a(-b-b2-4ac),12a(-b+b2-4ac)).其中a=n+uα/22,b=-(2nX¯+uα/22), c=nX¯2.由题意,x¯=16100=0.16,n=100,1-α=0.95,u0.025=1.96. 算得a=100+1.962=103.842,b=-(2×100×0.16+1.962)=-35.842,c=100×0.162=2. 6.p的0.95的置信区间为( 1, 2)=(12a(-b±b2-4ac)), 即(12×10 . 2( . 16±221.2 2 )),亦即(0.101,0.244).习题17在某校的一个班体检记录中,随意抄录25名男生的身高数据,测得平均身高为170厘米,标准差为12厘米,试求该班男生的平均身高μ和身高的标准差σ的置信度为0.95的置信区间(假设测身高近似服从正态分布).解答:由题设身高X∼N(μ,σ2), n=2 , x¯=170, s=12,α=0.05.(1)先求μ置信区间(σ2未知),取U=X¯-μS/n∼t(n-1),tα/2(n-1)=t0.025(24)=2.06.故μ的0.95的置信区间为(170-122 ×2.06,170+122 ×2.06)=(170-4.94,170+4.94)=(165.06,174,94).(2)σ2的置信区间(μ未知),取U=(n-1)S2σ2∼χ2(n-1),χα/22(n-1)=χ0.0252(24)=39.364, χ1-α/22(n-1)=χ0.9752(24)=12.401,故σ2的0.95的置信区间为(24×12239.364,24×12212.401)≈(87.80,278.69), σ的0.95的置信区间为(87.80,278.69)≈(9.34,16.69).习题18为研究某种汽车轮胎的磨损特性,随机地选择16只轮胎,每只轮胎行驶到磨坏为止. 记录所行驶的路程(以千米计)如下:41250 40187 43175 41010 39265 41872 42654 4128738970 40200 42550 41095 40680 43500 39775 40440假设这些数据来自正态总体N(μ,σ2). 其中μ,σ2未知,试求μ的置信水平为0.95的单侧置信下限.解答:由P{μ>X¯-Sntα(n-1)=1-α, 得μ的1-α的单侧置信下限为μ¯=X¯-Sntα(n-1).由所给数据算得x¯≈41119.38,s≈1345.46,n=16.查t分布表得t0.05(15)=1.7531, 则有μ的0.95的单侧置信下限为μ¯=41119.38-1345.464×1.7531≈40529.73.习题19某车间生产钢丝,设钢丝折断力服从正态分布,现随机在抽取10根,检查折断力,得数据如下(单位:N):578,572,570,568,572,570,570,572,596,584.试求钢丝折断力方差的置信区间和置信上限(置信度为0.95).解答:(1)这是一个正态总体,期望未知,对方差作双侧置信限的估计问题,应选统计量χ2=(n-1)S2σ2∼χ2(n-1).σ2的1-α的置信区间是((n-1)S2χα/22(n-1),(n-1)S2χ1-α/22(n-1)).由所给样本值得x¯=575.2, (n-1)s2=∑1=110(xi-x¯)2=681.6;根据给定的置信度1-α=0.95(即α=0.05).查自由度为10-1=9的χ2分布表,得双侧临界值χα/22(n-1)=χ0.0252(9)=19.0, χ1-α/22(n-1)=χ0.9752(9)=2.7,代入上公式得σ2的95%的置信区间为(681.619.0,681,62.70)=(35.87,232.44),即区间(35.87,232.44)包含σ2的可靠程度为0.95.(2)这是一个正态总体期望未知时,σ2的单侧区间估计问题,σ2的置信度为1-α=95%(α=0.05)的单侧置信上限为(n-1)S2χ1-α2(n-1)=∑i=110(xi-x¯)2χ1-α2(n-1),已算得(n-1)S2=∑i=110(xi-x¯)2=681.6, 根据自由度1-α=0.95.查自由度10-1=9的χ2分布表得单侧临界值χ1-α2(n-1)=χ0.952(9)=3.325,代入上式便得σ2的0.95的置信上限为681.63.325=205, 即有95%的把握,保证σ2包含在区间(0,205)之内,当然也可能碰上σ2超过上限值205的情形,但出现这种情况的可能性很小,不超过5%.习题20设某批铝材料比重X服从正态分布N(μ,σ2),现测量它的比重16次,算得x¯=2.705,s=0.029,分别求μ和σ2的置信度为0.95的置信区间。

《概率论与数理统计》7

《概率论与数理统计》7

未知参数 , ,, 的函数.分别令
12
k
L(1,,k ) 0,(i 1,2,...,k)
或令
i
ln L(1,,k ) 0,(i 1,2,...,k)
i
由此方程组可解得参数 i 的极大似然估计值 ˆi.
例5 设X~b(1,p), X1, X2 , …,Xn是来自X的一个样本,
求参数 p 的最大似然估计量.
解 E( X ) ,E( X 2 ) D( X ) [E( X )]2 2 2
由矩估计法,
【注】
X
1
n
n i 1
X
2 i
2
2
ˆ X ,
ˆ
2
1 n
n i 1
(Xi
X )2
对任何总体,总体均值与方差的矩估计量都不变.
➢常见分布的参数矩估计量
(1)若总体X~b(1, p), 则未知参数 p 的矩估计量为
7-1
第七章
参数估计
统计 推断
的 基本 问题
7-2
参数估 计问题
(第七章)
点估计 区间估 计
假设检 验问题 (第八章)
什么是参数估计?
参数是刻画总体某方面概率特性的数量.
当此数量未知时,从总体抽出一个样本, 用某种方法对这个未知参数进行估计就 是参数估计.
例如,X ~N ( , 2),
若, 2未知, 通过构造样本的函数, 给出
k = k(A1, A2 , …, A k)
用i 作为i的估计量------矩估计量.
例1 设总体X服从[a,b]上的均匀分布,a,b未知,
X1, X2 , …,Xn为来自总体X的样本,试求a,b的 矩估计量.
解 E(X ) a b , D(X ) (b a)2

概率论与数理统计第6章参数区间估计2,3节

概率论与数理统计第6章参数区间估计2,3节


n
E(X
k
)

E(X
k)
i1
i1
二、有效性
未知参数 的无偏估计量不是唯一的.
设 ^1 和 ^2 都是参数 的无偏估计量,
θˆ 1
θˆ 2
集中
分散
蓝色是采用估^ 计量 1 , 用 14 个样本值得到的 14 个估计值. 紫色是采用估^ 计量 2 , 用 14 个样本值得到的 14 个估计值.
若limD(ˆ)0, 则ˆ是的一致估 . 计量 n
回顾例子.设总体X的概率密度为
f(x)6x3 (x),0x;
0, 其他
X1, X2,…, Xn 是取自总体X 的简单随机样本, (1) 求的矩估计量 ˆ;
(2) 求ˆ的方差D(ˆ).
解:矩估计 ˆ量 2X. D(ˆ)4D(X)4D(X)2
若滚珠直径服从正态分布X ~ N( , 2), 并且已知 = 0.16(mm),求滚珠直径均值的置信水平为95%
的置信区间.
解:由上面求解的置信水平为1- 的置信区间
Xσn 0 uα/,2 Xσn 0 uα/2
已 n 知 1,0 0 0 .1,6 0 .0,5 x110i110xi 14.92,
若进行n次独立重复抽样,得到n个样本观测值,
每个样本观测 个值 随确 机(定 ˆ1区 ,ˆ2一 )间 .那么
每个区间的 可真 能 , 或 值 包不 含包 的含 真 , 值
根据伯努利大数定理, 在这n个随机区间中,
包含 真值1 的 0(1 0 约 )% 占 ,不包含 10 的 % 0. 约
便得 k的 到 最大似 ˆk(X 1,然 X 2, ,估 X n).计
第二节 判别估计量好坏的标准

概率论与数理统计完整公式

概率论与数理统计完整公式

概率论与数理统计完整公式概率论与数理统计是数学的一个分支,研究随机现象和随机变量之间的关系、随机变量的分布规律、经验规律及参数估计等内容。

在概率论与数理统计的学习中,有许多重要的公式需要掌握。

以下是概率论与数理统计的完整公式。

一、概率论公式:1.全概率公式:设A1,A2,…,An为样本空间S的一个划分,则对任意事件B,有:P(B)=P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P(B│An)·P(An)2.贝叶斯公式:对于样本空间S的一划分A1,A2,…,An,其中P(Ai)>0,i=1,2,…,n,并且B是S的任一事件,有:P(Ai│B)=[P(B│Ai)·P(Ai)]/[P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P (B│An)·P(An)]3.事件的独立性:若对事件A,B有P(AB)=P(A)·P(B),则称事件A,B相互独立。

4.概率的乘法公式:对于独立事件A1,A2,…,An,有:P(A1A2…An)=P(A1)·P(A2)·…·P(An)5.概率的加法公式:对事件A,B有:P(A∪B)=P(A)+P(B)-P(AB)6.条件概率的计算:对事件A,B有:P(A,B)=P(AB)/P(B)7.古典概型的概率计算:设事件A在n次试验中发生k次的次数服从二项分布B(n,p),则其概率可表示为:P(X=k)=C(n,k)·p^k·(1-p)^(n-k),其中C(n,k)=n!/[k!(n-k)!]二、数理统计公式:1.样本均值的期望和方差:样本的均值X̄的期望和方差分别为: E(X̄) = μ,Var(X̄) = σ^2 / n,其中μ 为总体的均值,σ^2 为总体方差,n 为样本容量。

2.样本方差的期望:样本方差S^2的期望为:E(S^2)=σ^2,其中σ^2为总体方差。

概率论与数理统计第九章区间估计

概率论与数理统计第九章区间估计

1, n2
1)
S12
2 1
S
2 2
2 2
F (n1 1, n2 1)} 2

P{ S12
1
2 1
S12
1
} 1
S
2 2
F1 2 (n1 1, n2
1)
2 2
S
2 2
F
(n1 1, n2 1)
2
因此方差比
2 1
2 2
的置信水平为1-a置信区间为
二、.方差比
2 1
2 2
的置信区间
例5 研究由机器A和机器B生产的钢管的内径,随机抽取
机地取Ⅰ型子弹10发,得到枪口速度的平均值为
x1 =500(m/s),标准差 s1 =1.10(m/s), 随机地取Ⅱ型
子弹20发, 得到枪口速度的平均值为x 2 =496(m/s),标
准差 s2 =1.20(m/s),假设两总体都可认为近似地服从正
态分布。且由生产过程可认为方差相等。求两总体均值
差-
机器A生产的管子18只,测得样本方差 s12=0.34( ); 抽取机器B生产的管子13只,测得样本方差 s2 2 =0.29(mm2), 设两样本相互独立,且设由机器A和机器B生产的管子内
径分别服从正态分布
N(1,
2)和
1
N(2, 22),这里
i
,
2 i
(i
1,2)
均未知,试求两个总体样本方差比
2 1
1 均值差
的置信区间
2
方差比
2 1
2 2
的置信区间
一、均值差
的置信区间
1 因为
所以
均为已知
X
Y~N (1

概率论与数理统计(二)02197

概率论与数理统计(二)02197

《概率论与数理统计(二)》课程习题集 西南科技大学成人、网络教育学院 版权所有习题【说明】:本课程《概率论与数理统计(二)》(编号为02197)共有单选题,计算题,综合业务题, 填空题等多种试题类型,其中,本习题集中有[单选题,计算题,综合业务题, 填空题]等试题类型未进入。

一、单选题 1.设A ,B为随机事件,P(A)>0,P (B|A )=1,则必有( A )A.P(A ∪B)=P(B)B.A ⊂BC.P(A)=P(B)D.P(AB)=P(A)2. 设随机事件A 与B 互不相容,P(A)=0.2,P(B)=0.3,则P(A|B)=( A )A. 0 B 0.2 C 0.4 D 0.53. 设事件{X=K}表示在n 次独立重复试验中恰好成功K 次,则称随机变量X 服从 ( B ) A.两点分布 B.二项分布 C.泊松分布D.均匀分布4. 某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( C ) A.()343 B.()34142⨯C.()14342⨯D.C 4221434()5. 袋中有2个白球,3个黑球,从中依次取出3个,则取出的三个都是黑球的概率为( A ) A.101B.41C. 52 D.536. 将两封信随机地投入四个邮筒中,则向后面两个邮筒投信的概率为 ( A )A .2242 B .2412C C C .24A 2! D .4!2!7. 设A ,B 为两个随机事件,且P (A )>0,则P (A ∪B |A )= ( D ) A.P (AB )B.P (A )C.P (B )D.18. 某人连续向一目标射击,每次命中目标的概率为23,他连续射击直到命中为止,则射击次数为4的概率是 ( C ) A.42()3B.321()33⨯ C.312()33⨯D.33412()33C 9. 10粒围棋子中有2粒黑子,8粒白子,将这10粒棋子随机地分成两堆,每堆5粒,则两堆中各有1粒黑子的概率为 ( A ) A.95 B.85 C.94 D. 51 10. 设A 、B 是两个随机事件,则()A B A =( B ) A .ABB .AC .BD .AB11. 设事件A 与B 互不相容,且P(A)>0,P(B)>0,则有 ( A ) A.P(A ⋃B)=P(A)+P(B) B.P(AB)=P(A)P(B) C.A=BD.P(A|B)=P(A)12. 设A ,B 为随机事件,且A ⊂B ,则B A 等于 ( B ) A.A B.B C.ABD.B A13. 已知P(A)=0.3,P(B)=0.5,P(A ∪B)=0.6,则P(AB)= ( A ) A. 0.15 B. 0.2 C. 0.8 D. 114. 设随机事件A 与B 互不相容,P(A)=0.4,P(B)=0.2,则P(A|B)= ( A ) A. 0 B 0.2 C 0.4 D 0.515. 从0,1,…,9十个数字中随机地有放回地连续抽取四个数字,则“8”至少出现一次的概率为 ( B ) A. 0.1 B 0.3439 C 0.4 D 0.656116. 某种动物活到25岁以上的概率为0.8,活到30岁的概率为0.4,则现年25岁的这种动物活到30岁以上的概率是 ( D ) A .0.76 B .0.4 C .0.32 D .0.517. 对于任意两个事件A 与B,必有P(A-B)=( C )A .()()-P A P BB .()()()P A P B P AB -+C .()()P A P AB -D .()()P A P B +18. 同时抛掷3枚质地均匀的硬币,则恰好3次都为正面的概率是 ( A ) A .0.125 B .0.25 C .0.375 D .0.5 19. 设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是( B )。

概率论与数理统计第7章参数估计习题及答案

概率论与数理统计第7章参数估计习题及答案

概率论与数理统计第7章参数估计习题及答案第7章参数估计 ----点估计⼀、填空题1、设总体X 服从⼆项分布),(p N B ,10<计量=pXN. 2、设总体)p ,1(B ~X,其中未知参数 01<则 p 的矩估计为_∑=n 1i i X n 1_,样本的似然函数为_ii X 1n1i X )p 1(p -=-∏__。

3、设 12,,,n X X X 是来⾃总体 ),(N ~X 2σµ的样本,则有关于 µ及σ2的似然函数212(,,;,)n L X X X µσ=_2i 2)X (21n1i e21µ-σ-=∏σπ__。

⼆、计算题1、设总体X 具有分布密度(;)(1),01f x x x ααα=+<<,其中1->α是未知参数,n X X X ,,21为⼀个样本,试求参数α的矩估计和极⼤似然估计.解:因?++=+=101α2α1α102++=++=+|a x 令2α1α++==??)(X X EXX --=∴112α为α的矩估计因似然函数1212(,,;)(1)()n n n L x x x x x x ααα=+∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=??ni i X nL 101ααln ln 得,α的极⼤似量估计量为)ln (?∑=+-=ni iXn11α2、设总体X 服从指数分布 ,0()0,x e x f x λλ-?>=??其他,n X X X ,,21是来⾃X 的样本,(1)求未知参数λ的矩估计;(2)求λ的极⼤似然估计.解:(1)由于1()E X λ=,令11X Xλλ=?=i x nn L x x x eλλ=-∑=111ln ln ln 0nii ni ni ii L n x d L n n x d xλλλλλ====-=-=?=∑∑∑故λ的极⼤似然估计仍为1X。

概率论与数理统计(王明慈第二版)第6章参数区间估计2,3节

概率论与数理统计(王明慈第二版)第6章参数区间估计2,3节

第三节 正态总体参数的区间估计
基本内容: 一、区间估计的概念 二、正态总体均值的区间估计 三、正态总体方差的区间估计
一、区间估计的概念
定义 设总体 X 的分布中含有未知参数,对于 给定的概率 1- (0 < < 1), 若存在两个统计量 ˆ1(X1, X2, , Xn )与ˆ2(X1, X2, , Xn ), 使得

P
i
n 1
tα/
2
(n
-
1),
x
s n
tα/
2(n
1)
得到的95%的置信区间为
(14.92-0.138, 14.92+0.138) 即(14.782, 15.058) (mm)
三、正态总体方差 2 的区间估计
1. 已知均值= 0的正态总体 X, 求未知参数 2 1- 的置信区间
解:设总体 X ~ N( , 2), 有
k 1,2,L ,m
第三步: 解含m个参数ˆ1,ˆ2,L的,mˆ个m 方程组, 得
ˆk ˆk X1, X2, , Xn k 1,2, ,m
以ˆk作为参数 的k 估计量.
第四步:将 θˆk中的X1 , X2 , , Xn换成x1 , x2 , , xn, 便得到θk的矩估计值θˆk ( x1 , x2 , , xn ).
例3. 设X1,X2,X3是来自总体X的样本, 且
总体均值E(X)= 未知, 则下列4个关于 的
统计量中哪个更有效?( C )
A. X1 X 2 3X 3 ; 55 5
C. X1 X 2 X3 ; 333
B. X1 X 2 X 3 ; 424
D. X1 X 2 X 3 . 362
分析:利用P181的7题结论,可选C.

北京理工大学《概率论与数理统计》课件-第11章

北京理工大学《概率论与数理统计》课件-第11章

区间估计的基本概念前面介绍了参数的点估计,讨论了估计量的优良性准则,给出了寻求估计量最常用的矩估计法和最大似然估计法.参数的点估计是用一个确定的值去估计未知参数,看似精确,实际上把握不大,没有给出误差范围,为了使估计的结论更可信,需要引入区间估计.Neyman(1894–1981)引例在估计湖中鱼数的问题中,若根据一个实际样本,得到鱼数N的最大似然估计为1000条.实际上,N的真值可能大于1000,也可能小于1000.为此,希望确定一个区间来估计参数真值并且满足:1.能以比较高的可靠程度相信它包含参数真值.“可靠程度”是用概率来度量的.2.区间估计的精度要高.可靠度:越大越好估计你的年龄八成在21-28岁之间区间:越小越好被估参数可靠度范围、区间一、置信区间的定义(Confidence Interval )对于任意θ∈Θ,满足设总体X 的分布函数F (x ,θ)含有一个未知参数θ,θ∈Θ,对于给定常数α(0<α<1),若由抽自X 的样本X 1,X 2,…,X n 确定两个统计量112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<≥-112ˆ(,,,)nX X X θ212ˆ(,,,)nX X X θ和则称随机区间是θ的置信水平为1−α的置信区间.12ˆˆ(,)θθ和分别称为置信下限和置信上限.1ˆθ2ˆθ(1)当X 连续时,对于给定的α,可以求出置信区间满足此时,找区间使得至少为1−α,且尽可能接近1−α.12ˆˆ(,)θθ112212ˆˆ{(,,,)(,,,)}1nnP X X X X X X θθθα<<=-12ˆˆ(,)θθ112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<=-12ˆˆ()P θθθ<<(2)当X 离散时,对于给定的α,常常找不到区间满足12ˆˆ(,)θθ说明:(2)估计的精度要尽可能高. 如要求区间长度尽可能短,或者能体现该要求的其他准则.(1)要求θ以很大的可能被包含在区间内,即概率尽可能的大.可靠度与精度是一对矛盾,一般是在保证可靠度的条件下尽可能提高精度.12ˆˆ()P θθθ<<12ˆˆ(,)θθ21ˆˆθθ-(3)对于样本(X 1,X 2,…,X n )112212ˆˆ((,,,),(,,,))n n X X X X X X θθ以1−α的概率保证其包含未知参数的真值.随机区间112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<=-即有:(4)对于样本观测值(x 1,x 2,…,x n )可以理解为:该常数区间包含未知参数真值的可信程度为1−α.112212ˆˆ((,,,),(,,,))n n x x x x x x θθ常数区间只有两个结果,包含θ和不包含θ.此时,不能说:112212ˆˆ{(,,,)(,,,)}1n n P x x x x x x θθθα<<=-没有随机变量,自然不能谈概率如:取1−α=0.95.若反复抽样100次,样本观测值为112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<=-1121ˆˆ((,,),(,,))i i i in n x x x x θθ于是在100个常数区间中,包含参数真值的区间大约为95个,不包含真值的区间大约为5个.12,,,ii i nx x x1,2,,100i =对应的常数区间为1,2,,100i =对一个具体的区间而言,它可能包含θ,也可能不包含θ,包含θ的可信度为95%.1121ˆˆ((,,),(,,))i i i i nnx x x x θθ二、构造置信区间的方法枢轴量法1.寻求一个样本X 1,X 2,…,X n 和θ的函数W =W (X 1,X 2,…,X n ;θ),使得W 的分布不依赖于θ和其他未知参数,称具有这种性质的函数W 为枢轴量(Pivotal quantity ).3.若由不等式a <W (X 1,X 2,…,X n ;θ)<b 得到与之等价的θ的不等式2.对于给定的置信水平1−α,定出两个常数a 和b ,使得P {a <W (X 1,X 2,…,X n ;θ)<b }=1−α112212ˆˆ(,,,)(,,,)n n X X X X X X θθθ<<即有P {a <W (X 1, X 2,…, X n ;θ)<b }关键:1.枢轴量W (X 1, X 2,…, X n ;θ)的构造2.两个常数a ,b 的确定一般从θ的一个良好的点估计出发构造,比如MLE因此,是θ的一个置信水平为1−α的置信区间.112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα=<<=-12ˆˆ(,)θθf (w )ababab1−α1−α1−α希望置信区间长度尽可能短.对于任意两个数a 和b ,只要使得f (w )下方的面积为1−α,就能确定一个1−α的置信区间.f(w)abab ab1−α1−α1−α当W 的密度函数单峰且对称时,如:N (0,1),t 分布等,当a =−b 时求得的置信区间的长度最短.如:b =z α/2或t α/2(n )当W 的密度函数不对称时,如χ2分布,F 分布,习惯上仍取对称的分位点来计算未知参数的置信区间.χ21−αα/2α/222()n αχ21-2()n αχ单个正态总体参数的区间估计一、单个正态总体的情形X 1, X 2,…, X n 为来自正态总体N (μ,σ2)的样本,置信水平1−α.样本均值样本方差11nii X X n ==∑2211()1nii S X X n ==--∑0-4-3-2-1012340.050.10.150.20.250.30.350.4是枢轴量W 是样本和待估参数的函数,其分布为N (0,1),完全已知由于是μ的MLE ,且是无偏估计,由抽样分布定理知X ~(0,1)X W N nμσ-=1.均值μ的置信区间(方差σ2已知情形)单峰对称-4-3-2-1012340.050.10.150.20.250.30.350.4即等价变形为选择两个常数b =−a =z α/222{}1X P z z nααμασ--<<=-22{}1P X z X z nnαασσμα-<<+=-1−αα/2α/2z α/2−z α/2简记为因此,参数μ的一个置信水平为1−α的置信区间为22(,)X z X z nnαασσ-+2()X z nασ±置信区间的长度为22n l z nασ=说明:2.置信区间的中心是样本均值;4.样本容量n 越大,置信区间越短,精度越高;1.l n 越小,置信区间提供的信息越精确;5.σ越大,则l n 越大,精度越低.因为方差越大,随机影响越大,精度越低.3.置信水平1−α越大,则z α/2越大.因此,置信区间长度越长,精度越低;22n l z nασ=22(,)X z X z nnαασσ-+2.均值μ的置信区间(方差σ2未知情形)想法:用样本标准差S 代替总体标准差σ.是枢轴量包含了未知未知参数σ,~(0,1)X W N nμσ-=此时,因此不能作为枢轴量.~(1)X T t n Snμ-=-由抽样分布理论知:使即枢轴量~(1)X T t n Snμ-=-22((1)(1))1X P t n t n Snααμα---<<-=-22{(1)(1)}1P t n T t n ααα--<<-=-选择两个常数b =−a =t α/2 (n -1)等价于因此,方差σ2未知情形下均值μ的一个置信水平为1−α的置信区间为22{(1)(1)}1S S P X t n X t n nnααμα--<<+-=-22((1),(1))X t n X t n nnαα--+-例1.现从中一大批糖果中随机取16袋,称得重量(以克记)如下:506508 499 503 504 510 497 512 514 505 493 496 506 502 509 496设每袋糖果的重量近似服从正态分布. 试求总体均值μ的置信水平为0.95的置信区间.解:这是单总体方差未知,总体均值的区间估计问题.均值μ的置信水平1−α的置信区间为22((1),(1))x t n x t n nnαα--+-根据给出的数据,算得这里10.95,16n α-==/20.025(1)(15) 2.1315t n t α-==503.75, 6.2022x s ==因此,μ的一个置信水平为0.95的置信区间为6.20226.2022(503.75 2.1315,503.75 2.1315)1616(500.4,507.1)-⨯+⨯=此区间包含μ的真值的可信度为95%.22((1),(1))x t n x t n nnαα--+-3.方差σ2的置信区间(均值μ未知)σ2的常用点估计为S 2,且是无偏估计。

《概率论与数理统计》第三版_科学出版社_课后习题答案.所有章节

《概率论与数理统计》第三版_科学出版社_课后习题答案.所有章节

第二章 随机变量 2.12.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。

故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314k k lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--= 2.6解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=X 2 3 4 5 6 7 8 9 10 11 12P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.7 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e - (2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.8解:设应配备m 名设备维修人员。

《概率论与数理统计》课件第七章 参数估计

《概率论与数理统计》课件第七章 参数估计
添加标题
03
若存在, 是否惟一?
添加标题
1
2
3
4
5
6
对于同一个未知参数,不同的方法得到的估计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用标准
(1)无偏性
(3)一致性
(2)有效性
7.2 估计量的评选标准
无偏性
一致性
有效性
一 、无偏性
定义1 设 是未知参数θ的估计量
09
则称 有效.
10

11
例4 设 X1, X2, …, Xn 是X 的一个样本,
添加标题
问那个估计量最有效?
添加标题
解 ⑴
添加标题
由于
添加标题
验证
添加标题
都是
添加标题
的无偏估计.
都是总体均值
的无偏估计量.

D
C
A
B
因为
所以
更有效.
例5 设总体 X 的概率密度为
关于一致性的两个常用结论
1. 样本 k 阶矩是总体 k 阶矩的一致性估计量.
是 的一致估计量.
由大数定律证明
用切比雪夫不 等式证明
似然函数为
其中
解得参数θ和μ的矩估计量为
2

3

1

6
,故
5
,表明L是μ的严格递增函数,又
4
第二个似然方程求不出θ的估计值,观察
添加标题
所以当
01
添加标题
从而参数θ和μ的最大似然估计值分别为
03
添加标题
时L 取到最大值
02
添加标题

概率论与数理统计第七章

概率论与数理统计第七章
组成 . 设这5个数是: 1.65 1.67 1.68 1.78 1.69
估计 为1.68,这是点估计.
估计在区间[1.57, 1.84]内,这是区间估计.
一、点估计概念及讨论的问题
例1 已知某地区新生婴儿的体重X~ N(,2),
, 2未知,

随机抽查100个婴儿
得100个体重数据
9, 7, 6, 6.5, 5, 5.2, … 而全部信息就由这100个数组成.
求:两个参数a,b的矩估计
解: 写出方 V E 程 (X a(X )r组 ) ˆˆ2
其 中uˆˆ2Xn1in1(Xi X)2
但是
E
(
X
)
Var ( X )
a
b 2 (b a)2
12
即有
(ab2ba)2 12
X
ˆ
2
由方程组求解出a,b的矩估计:
a ˆX 3 ˆ b ˆX 3 ˆ
其中 ˆ:ˆ2 n 1i n1 ( XiX)2
(4) 在最大值点的表达式中, 用样本值代入 就得参数的极大似然估计值 .
两点说明:
1、求似然函数L( ) 的最大值点,可以应
用微积分中的技巧。由于ln(x)是x的增函
数,lnL( )与L( )在 的同一值处达到 它的最大值,假定是一实数,且lnL( ) 是 的一个可微函数。通过求解所谓“似 然方程”: dlnL() 0
E(X1m)=E(X2m)==E(Xnm)= E(Xm)=am . 根据大数定律,样本原点矩Am作为 X1m,X2m, ,Xnm的算术平均值依概率收敛到均 值am=E(Xm).即:
n 1i n1Xim pE(Xm)am
例1 设总体X的概率密度为
f(x)(1)x,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本确定的两个统计量:
qˆ1 qˆ1(X1X2,..., Xn ) , qˆ2 qˆ2 (X1X2,..., Xn ) ,
对给定的a (0 < a < 1),有
P{qˆ1 q qˆ2} 1a ,
则称随机区间 (qˆ1 , qˆ2)是q 的置信概率为1- a 的置信区间, qˆ1 , qˆ2 分别称为置信下限和上限,1-a 称为置信水平.
试估计大豆平均产量的范围(假定大豆产量按正态分布),置信
概率1-a = 0.95. 解: 属 2未知时的区间估计问题. 算得 x = 41.125, s = 6.04,
查表得 ta (n 1) t0.05 (23) 2.0687 ,
2
2
故200米2面积平均产量的0.95置信区间为
(41.125 2.0687 6.04) (38.575, 43.675) .
1)
(n 1)s2 2
a2
2
(n
1)
1a
,
2 的1-a 置信区间为
n ( Xi )2 n ( Xi )2
i1
2 a
(n)
2
,
i 1
2 1a
(n)
2
(n
2 a
2
1 n
1)2Si21
( Xi
,
(n(n11))S 2
2
(n)2~1)S2 (2n)
(n 2
~1a2 (n
《概率统计》
返回
下页
结束
设总体X的分布中含有未知参数q , 若由来自总体X的一个样
本确定的两个统计量:
qˆ1 qˆ1(X1X2,..., Xn ) , qˆ2 qˆ2 (X1X2,..., Xn ) ,
对给定的a (0 < a < 1),有
P{qˆ1 q qˆ2} 1a ,
则称随机区间 (qˆ1 , qˆ2)是q 的置信概率为1- a 的置信区间, qˆ1 , qˆ2 分别称为置信下限和上限,1-a 称为置信水平.
说明:① (qˆ1 , qˆ2) 是随机区间,而不是具体区间!
② 如a =0.05时, 表示若从总体中抽得容量相同的100组样本, 则在确定的100个置信区间中将有95个包含q 的真值,不包含q
真值的区间只有5个.
③ q 是确定值,不能理解为它落在某随机区间…
《概率统计》
返回
下页
结束
二、求置信区间的方法
1. 若 X~N( , 2): X1,X2,…,Xn ,则
U X ~ N(0,1) n
X ~ t(n 1)
S/ n
(n
1)S 2 2
~
2(n 1)
2
n i1
(Xi )2 2
~
2(n)
U统计量
2.
P|U | ua 1a
2
P{| t | ta (n)} 1a
2
P({12a
(n)
2
2 a
(n)})
1a
2
2
《概率统计》
返回
下页
结束
三、单个正态总体均值与方差 2的区间估计 X
~ N(0, 1)
⒈ 2已知时, 的1-a置信区间
/ n
选取统计量 X ~ N (0,1) . / n
X ~ t(n 1)
S/ n
确定分位点 对给定的置信概率1-a,有
P
|
X
/
n
|
ua
2
1a
.
变换不等式
P X ua
2
n
X
ua
2
1a .
n
由此可得总体均值的1-a 置信区间为 X ua

2
. n
说明: 其他参数的区间估计类似, 过程不再详述.
《概率统计》
返回
下页
结束
⒉ 2未知时, 的1-a置信区间
X ~ t(n 1) ,
S/ n
对给定的置信概率1-a,有
X ~ N(0, 1) / n
11))
2
《概率统计》
返回
下页
结束
例2. 从车床加工的一批零件中随机抽取16个进行试验,测得 零件长度如下(单位: cm):
2.15 2.10 2.12 2.10 2.14 2.11 2.15 2.13 2.13 2.11 2.14 2.13 2.12 2.13 2.10 2.14
试求零件长度标准差的置信区间(a = 0.05, 设总体为正态).
2
S
.
n
例1.为估计36亩大豆的产量,以200米2面积上的大豆作为 总体的一个个体,从中任意抽得24个个体,分别测得大豆的产 量如下(单位:千克/200米2):
50 , 42 , 32, 46, 35, 44, 45, 38, 35, 54, 42, 36, 41, 34, 39, 50, 43, 36, 34, 49, 35, 46, 38, 43
24
《概率统计》
返回
下页
结束
⒊ 已知时, 2 的1-a置信区间
1
2
n
(Xi )2
i 1
~ 2(n) ,
P 12a2
(n)
n i 1
(Xi )2 2
a2
(n)
2
1a
,
2 的1-a 置信区间为
⒋ 未知时, 2 的1-a置信区间
(n 1)S 2 ~ 2 (n 1) , 2
P
12a2
(n
⒈ 选取统计量
选取样本(X1,…,Xn)的一个函数g(X1,…,Xn;q),其中只含所求 置信区间的未知参数q,且分布已知.
⒉ 确定分位点
对于给出的置信水平1-a,确定g(X1,…,Xn;q)的双侧分位点.
⒊ 变换不等式
利用不等式变形得到未知参数q 的置信区间.
《概率统计》
返回
下页
结束
附:常用统计量及双侧分位点
,
2
~
2(n
1)
,
的0.95置信区间为
§7.2 参数的区间估计
区间估计:就是用样本来确定一个区间,使这个 区间以很大的概率包含所估计的未知参数,这样的区 间称为置信区间.
一、单正态总体参数的区间估计 二、两正态总体均值差等的区间估计
《概率统计》
返回
下页
结束
§7.2 参数的区间估计
一、参数的区间估计法
设总体X的分布中含有未知参数q , 若由来自总体X的一个样
X ~ t(n 1)
S/ n
P
|
X S/
n
|
ta
2
(n
1)
1a
,
P X ta (n 1)
2
S n
X ta (n 1)
2
S
1a ,
n
由此可得总体均值的1-a
置信区间为
X
ta
(n
1)
2
S n
.
《概率统计》
返回
下页
结束
⒉ 2未知时, 的1-a置信区间
…由此可得总体均值的1-a 置信区间为 X ta (n 1)
解: 未知时 的区间估计. 算得 x =2.15, s2 =0.000293,
查表得
x12a (n 1)
x2 0.975
(15)
6.262
,
xa2
(n
1)
x2 0.025
(16)
27.488
,
2
2
2的0.95置信区间为
(n
a2
2
1) S 2 (n 1)
,
(n 1)S2
12a2(n(n112))S
相关文档
最新文档