(完整word版)解直角三角形思想方法中考题型

合集下载

中考总复习解直角三角形

中考总复习解直角三角形

解直角三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解三角函数的定义和正弦、余弦、正切的概念,并能运用;●掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;●掌握互为余角和同角三角函数间关系;●掌握直角三角形的边角关系和解直角三角形的概念,并能运用直角三角形的两锐角互余、勾股定理和锐角三角函数解直角三角形;●了解实际问题中的概念,并会用解直角三角形的有关知识解决实际问题.复习策略:●复习本专题应从四方面入手:(1)直角三角形在角方面的关系;(2)直角三角形在边方面的关系;(3)直角三角形的边角之间的关系;(4)怎样运用直角三角形的边角关系求直角三角形的未知元素.同时,解答这类题目时,应注重借助图形来解题,它能使已知条件、所求结论直观化,以便启迪思维,快捷解题.二、学习与应用知识点一:锐角三角函数“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对性。

我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。

知识考点梳理认真阅读、理解教材,尝试把下列知识要点内容补充完整,若有其它补充可填在右栏空白处。

详细内容请参看网校资源ID:#tbjx4#248924知识框图通过知识框图,先对本单元知识要点有一个总体认识。

(一)锐角三角函数:在Rt△ABC中,∠C是直角,如图(1)正弦:∠A的与的比叫做∠A的正弦,记作sinA,即sinA= ;(2)余弦:∠A的与的比叫做∠A的余弦,记作cosA,即cosA= ;(3)正切:∠A的与的比叫做∠A的正切,记作tanA,即tanA= ;锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(二)同角三角函数关系:(1)平方关系:sin2A+cos2A= ;(2)商数关系:tanA= .(三)互余两角的三角函数关系sinA=cos(),cosA=sin().(四)特殊角的三角函数值(五)锐角三角函数的增减性(1)角度在0°~90°之间变化时,正弦值(正切值)随角度的增大(或减小)而(或).(2)角度在0°~90°之间变化时,余弦值随角度的增大(或减小)而(或).要点诠释:∠A在0°~90°之间变化时,<sinA<,<cosA<,tanA>知识点二:解直角三角形在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.(一)三边之间的关系:a2+b2= (勾股定理)(二)锐角之间的关系:∠A+∠B= °(三)边角之间的关系:sinA= ,cosA= ,tanA=要点诠释:解直角三角形时,只要知道其中的个元素(至少有一个),就可以求出其余未知元素.知识点三:解直角三角形的实际应用(一)仰角和俯角:在视线与所成的角中,视线在上方的是仰角;视线在下方的是俯角.(二)坡角和坡度:坡面与的夹角叫做坡角.坡面的和的比叫做坡面的坡度(即坡角的值)常用i表示.(三)株距:相邻两树间的.(四)方位角与方向角:从某点的方向沿时针方向旋转到目标方向所形成的角叫做方位角.从方向或方向到目标方向所形成的小于°的角叫做方向角.经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。

(完整版)解直角三角形总结

(完整版)解直角三角形总结

解直角三角形总结解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。

1、明确解直角三角形的依据和思路在直角三角形中,我们是用三条边的比来表述锐角三角函数定义的.因此,锐角三角函数的定义本质揭示了直角三角形中边角之间的关系,是解直角三角形的基础。

如图1,在Rt△ABC中,∠C=90°,设三个内角A、B、C所对的边分别为a、b、c(以下字母同),则解直角三角形的主要依据是(1)边角之间的关系:sinA=cosB=ac, cosA=sinB=bc,tanA=cotB=ab,cotA=tanB=ba。

(2)两锐角之间的关系:A+B=90°。

(3)三条边之间的关系:。

以上每个边角关系式都可看作方程,解直角三角形的思路,就是根据已知条件,正确地选择直角三角形中边角间的关系式,通过解一元方程来求解。

2、解直角三角形的基本类型和方法我们知道,由直角三角形中已知的元素求出未知元素的过程叫作解直角三角形,而在直角三角形中,除直角以外还有三条边及两个锐角共五个元素,那么什么样的直角三角形才可解呢?如果已知两个锐角能否解直角三角形呢?事实上,解直角三角形跟直角三角形的判定与作图有着本质的联系,因为已知两个元素(至少有一个是边)可以判定直角三角形全等,也可以作出直角三角形,即此时直角三角形是确定的,所以这样的直角三角形是可解的。

由于已知两个锐角的直角三角形是不确定的,它们是无数多个相似的直角三角形,因此求不出各边的长。

所以,要解直角三角形,给出的除直角外的两个元素中,必须至少有一个是边。

这样,解直角三角形就分为两大类,即已知一条边及一个锐角或已知两条边解直角三角形。

四种基本类型和解法列表如下:已知条件解法一边及一锐角直角边a及锐角A B=90°-A,b=a·tanA,c=sinaA斜边c及锐角A B=90°—A,a=c·sinA,b=c·cosA两边两条直角边a和b ,B=90°—A,直角边a和斜边c sinA=ac,B=90°-A,例1、如图2,若图中所有的三角形都是直角三角形,且∠A=α,AE=1,求AB的长。

初三数学利用三角函数解直角三角形含答案

初三数学利用三角函数解直角三角形含答案

解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.例题精讲【例2】 如图所示,O 的直径4AB =,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C ,连接AC .(1)若30CPA ∠=︒,那么PC 的长为 .为O 的切线,tan303=︒的大小没有变化七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【答案】作DE AB ⊥于E ,作DF BC ⊥于F ,在Rt CDF ∆中30400DCF CD ∠=︒=,米,1sin304002002DF CD =⋅︒=⨯=(米)cos30400CF CD =⋅︒=米) 在Rt ADE ∆中,60ADE ∠=︒,设DE x =米, ∴tan 60AE x =︒⋅(米)在矩形DEBF 中,200BE DF ==米,在Rt 45ACB ACB ∆∠=︒中,,∴AB BC =, 200x +=,解得200x =,∴200AB AE BE =+=()米【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)【解析】过点C 作CH AD ⊥于H ,过B 作BE AH ⊥于E ,BF CH ⊥于F ,由题意得604530CBF CAH BAH ∠=︒∠=︒∠=︒,,200CH m =, 设BC x =米,在Rt BFC ∆中,由cos BF CBF BC ∠=,sin CFCBF BC∠=1cos sin 2BF BC CBF x CF BC CBF =∠==∠=,,易得 FE D BCADCB AACH ∆是等腰直角三角形,所以200AH CH ==,从而12002002AE AH EH x BE FH =-=-==,,在Rt ABE ∆中,tan30BE AE =︒,由此得12002002x ⎫=-⎪⎝⎭,解得200146.4x =≈,根据题意,电缆的实际长度约为 146.4 1.2175.7⨯≈米【答案】175.7(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.【答案】(1)图形补全如右图所示:O CA(2) ∵1:0.754:3i ==∴:4:3CH EH =在Rt CHE ∆中,5CE = ∴43CH EH ==, ∴437DH DE EH =+=+= 在Rt ODH ∆中,222HO DH OD += 即()()222477r r ++=+,解得83r =.(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【解析】(1)如图,由题意得,4530EAD FBD ∠=︒∠=︒,.∴ 451560EAC EAD DAC ∠=∠+∠=︒+︒=︒. ∵ AE BF CD ∥∥, ∴ 60FBC EAC ∠=∠=︒. ∴ 30DBC ∠=︒.又∵ DBC DAB ADB ∠=∠+∠, ∴ 15ADB ∠=︒.∴ DAB ADB ∠=∠. ∴ 2BD AB ==. 即B D ,之间的距离为2km .(2)过B 作BO DC ⊥,交其延长线于点O 在Rt DBO ∆中,260BD DBO =∠=︒,.∴2sin 6022cos60DO BO =⨯︒===⨯︒ 在Rt CBO ∆中,30tan30CBO CO BO ∠=︒=⋅︒, ∴CD DO CO =-==km ). 即C D ,之间的距离为km 【答案】(1)之间的距离为2km ; (2)之间的距离为km .332B D ,C D ,332和平路文化路中山路30°15°45°FEDCBA 和平路文化路中山路ABC DEF45°15°30°O【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?【答案】⑴ 过A 作AD BC ⊥于D ,∵220AB =,30B ∠=︒, ∴110AD =由题意A 距台风中心不超过(124)20160-⨯=km 时,将会受到台风影响, ∴该城市会受到台风影响.⑵ 在BD 上取点E ,DC 上取点F ,使160AE AF ==,则由题意知:台风中心到达点E 时,该城市即开始受台风影响;台风中心到达点F 时,该城市即结束影响.由勾股定理得,DE∴EF =∵该台风中心以15km/h 的速度移动, ∴=. ⑶ 当台风中心位于D 时,A 市所受这次台风影响的风力最大,其最大风力为11012 6.520-=级(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【解析】在Rt ABO ∆中,可求得cos15 1.80.97 1.75AO AB =⋅︒=⨯≈米,在Rt CDO ∆中,可求得sin150.468DO AB =⋅︒≈米 ∴ 1.750.468 1.28AD =-=米【答案】1.28米【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【答案】⑴ Rt AOB ∆中,90O ∠=︒,60α∠=︒∴30OAB ∠=︒,又4AB =米, ∴122OB AB ==米.sin 604OA AB =⋅==米 ⑵ 设2AC x =,3BD x =,在Rt COD ∆中,2OC x =,23OD x =+,4CD =根据勾股定理:222OC OD CD +=∴()()2222234xx ++=∴(213120x x +-=∵0x ≠∴13120x +-,∴x =2AC x == 即梯子顶端A 沿NO米 ⑶ ∵点P 和点P '分别是Rt AOB ∆的斜边AB 与Rt ''A OB ∆的斜边''A B 的中点∴PA PO =,'''P A P O = ∴PAO AOP ∠=∠,P A O A OP ''''∠=∠ ∴P A O PAO A OP AOP ''''∠-∠=∠-∠ ∴15P A O PAO POP '''∠-∠=∠=︒∵30PAO ∠=︒,∴45P A O ''∠=︒∴cos454A O A B '''=⨯︒==∴AA OA A O ''=-=米【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如图1图2图3tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高. 【解析】过点D 作DE AB ⊥于E ,依题意在Rt ADE △中,60ADE α∠=∠=︒,tan 60tan 60AE ED BC =⋅︒=⋅︒=.在Rt ACB △中,75tan75ACB AB BC β∠=∠=︒=⋅︒, ∵tan 45tan 30tan 75tan(4530)21tan 45tan 30︒+︒︒=︒+︒==-︒⨯︒∴42(284AB =⨯+=+∴8484CD BE AB AE ==-=+(米)【答案】建筑物的高为84米.课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; βαDCBAE βαDCBAACB∠=.【解析】过点C作CD PB∥,则6045ACD BCD∠=︒∠=︒,所以6045105ACB∠=︒+︒=︒【答案】105°课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).【解析】过点C 作CH AB ⊥于点H ,得矩形HBFC 连接DF∵21CF DF =,2CF =(m) ∴1DF =(m)∴2CF HB ==(m),15HC BF ==(m) 在Rt AHC ∆中,tan3015tan30AH HC =⋅︒=⨯︒=,∵210.66(m)AB AH HB =+=≈ 12(m)BE BD ED =-=F E人行道DCB AFE人行道30︒H DCBA∴,AB BE∴不需将此人行道封上.【答案】不需将此人行横道封上。

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。

(完整)【解直角三角形】专题复习(知识点+考点+测试)(2),推荐文档

(完整)【解直角三角形】专题复习(知识点+考点+测试)(2),推荐文档

一、直角三角形的性质《解直角三角形》专题复习1、直角三角形的两个锐角互余A几何表示:【∵∠C=90°∴∠A+∠B=90°】2、在直角三角形中,30°角所对的直角边等于斜边的一半。

1D几何表示:【∵∠C=90°∠A=30°∴BC= AB 】23、直角三角形斜边上的中线等于斜边的一半。

几何表示:【∵∠ACB=90° D 为 AB 的中点 ∴ CD= 1 AB=BD=AD 】2C B4、勾股定理:直角三角形两直角边的平方和等于斜边的平方 几何表示:【在 Rt△ABC 中∵∠ACB=90° ∴ a 2 + b 2 = c 2 】5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项, 每条直角边是它们在斜边上的射影和斜边的比例中项。

即:【∵∠ACB=90°CD⊥AB∴ CD 2 = AD • BDAC 2 = AD • AB BC 2 = BD • AB 】6、等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高。

( a • b = c • h )由上图可得:AB • CD=AC • BC二、锐角三角函数的概念如图,在△ABC 中,∠C=90°sin A = ∠A 的对边 =a斜边 c cos A = ∠A 的邻边 =b斜边 c tan A = ∠A 的对边 =a∠A 的邻边 b cot A = ∠A 的邻边 =b ∠A 的对边 a锐角 A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数锐角三角函数的取值范围:0≤sinα≤1,0≤cosα≤1,tanα≥0,cotα≥0.三、锐角三角函数之间的关系(1) 平方关系(同一锐角的正弦和余弦值的平方和等于 1) sin 2 A + cos 2 A = 1 (2) 倒数关系(互为余角的两个角,它们的切函数互为倒数) tanA • tan(90°—A)=1; cotA • cot(90°—A)=1; (3) 弦切关系tanA= sin A cos A cotA= cos Asin A (4) 互余关系(互为余角的两个角,它们相反函数名的值相等) sinA=cos(90°—A),cosA=sin(90°—A)30°23 60°C仰角俯角北东南iα1tanA=cot(90°—A),cotA=tan(90°—A)四、特殊角的三角函数值A说明:锐角三角函数的增减性,当角度在 0°~90°之间变化时. (1) 正弦值随着角度的增大(或减小)而增大(或减小) B(2)余弦值随着角度的增大(或减小)而减小(或增大) A(3) 正切值随着角度的增大(或减小)而增大(或减小) (4) 余切值随着角度的增大(或减小)而减小(或增大)2五、 解直角三角形2 在 Rt△中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三 角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

(完整word版)九年级数学解直角三角形专题

(完整word版)九年级数学解直角三角形专题

做教育做良知中小学 1 对 1 课外指导《解直角三角形》专题一、复习目标:1.掌握直角三角形中锐角三角函数的定义。

2.熟记 30°, 45°, 60°角的各三角函数值,会计算含特别角三角函数的代数式的值。

3.能娴熟运用勾股定理、直角三角形中两锐角互余及三角函数定义解直角三角形。

4.会用解直角三角形的相关知识解简单的实质问题。

二、复习要点:先结构直角三角形,再综合应用勾股定理和锐角三角函数解决简单的实质问题。

三、复习难点:把实质问题转变为解直角三角形的数学识题。

四、复习过程: B(一)知识回首1.三角函数定义 :我们规定斜边∠A 的对边A C∠A 的邻边A的对边A的对边①叫∠ A 的正弦 . 记作sin A斜边斜边A的邻边A的邻边②叫∠ A 的余弦 . 记作cos A斜边斜边A的对边A的对边③叫∠ A 的正切 . 记作 tanA=A的邻边A的邻边2.特别角的三角函数值角度30°45°60°函数值sin 1 2 32 2 2cos 3 2 12 2 2tan α31 3 33.互为余角的函数关系式 :90°- ∠A与∠ A 是互为余角 .有 sin(90A) cos A cos(90A) sin A经过这两个关系式, 能够将正 , 余弦互化 .如 sin 40cos50cos38 12sin 51 48专题练习做教育做良知中小学 1 对 1 课外指导1. 如图,从地面上的点 A 看一山坡上的电线杆PQ,测得杆顶端点P 的仰角是 45°,向前走 6m抵达 B 点,测得杆顶端点 P 和杆底端点Q的仰角分别是 60°和 30°。

(1)求∠ BPQ的度数;(2)求该电线杆 PQ的高度(结果精准到 1m)。

备用数据: 3 1.7, 2 1.42.热气球的探测器显示,从热气球底部 A 处看一栋高楼顶部的俯角为 30°,看这栋楼底部的俯角为 60°,热气球 A 处于地面距离为 420 米,求这栋楼的高度.3.如图,小俊在 A 处利用高为 1.5 米的测角仪 AB 测得楼 EF 顶部 E 的仰角为 30°,而后行进 12 米抵达 C 处,又测得楼顶 E 的仰角为 60°,求楼 EF 的高度.(结果精准到 0.1 米)做教育做良知中小学1对1课外指导4.为解决江北学校学生上学过河难的问题,乡政府决定修筑一座桥,建桥过程中需丈量河的宽度(即两平行河岸AB 与MN 之间的距离).在丈量时,选定河对岸沿河岸 AB 前行 30 米后抵达 B 处,在 B 处测得∠≈1.41,≈1.73,结果保存整数)MN 上的点 C 处为桥的一端,在河岸点 A 处,测得∠ CAB=30 °,CBA=60 °,请你依据以上丈量数据求出河的宽度.(参照数据:5.为保护渔民的生命财富安全,我国政府在南海海疆新建了一批观察点和避风港.某日在观察点 A 处发此刻其北偏西 36.9 °的 C处有一艘渔船正在作业,同时检测到在渔船的正西 B 处有一股强台风正以每小时40 海里的速度向正东方向挪动,于是立刻通知渔船到位于其正东方向的避风港 D 处进行闪避.已知避风港 D 在观察点 A 的正北方向,台风中心 B 在观察点 A 的北偏西67.5 °的方向,渔船C与观察点 A 相距 350 海里,台风中心的影响半径为 200 海里,渔船的速度为每小时18 海里,问渔船可否顺利闪避本次台风的影响?(sin36.9 °≈ 0.6 ,tan36.9 ≈0.75 ,sin67.5 ≈0.92 ,tan67.5 ≈2.4 )6.如图,某校数学兴趣小组为测得大厦 AB 的高度,在大厦前的平川上选择一点 C,测得大厦顶端 A 的仰角为 30°,再向大厦方向行进 80 米,抵达点 D 处( C、D、B 三点在同向来线上),又测得大厦顶端 A 的仰角为 45°,请你计算该大厦的高度.(精准到0.1 米,参照数据:≈ 1.414,≈ 1.732)7.如图,爬山缆车从点 A 出发,路过点 B 后抵达终点 C,此中 AB段与 BC段的运转行程均为200m,且 AB段的运行路线与水平面的夹角为30°, BC段的运转路线与水平面的夹角为42°,求缆车从点A运转到点 C 的垂直上涨的距离.(参照数据: sin42 °≈ 0.67 , cos42 °≈ 0.74 , tan42 °≈ 0.90 )8.张老师利用歇息时间组织学生丈量山坡上一棵大树CD 的高度,如图,山坡与水平面成30°角(即∠MAN=30 °),在山坡底部 A 处测得大树顶端点 C 的仰角为45°,沿坡眼行进20 米,抵达 B 处,又测得树顶端点 C 的仰角为60°(图中各点均在同一平面内),求这棵大树CD 的高度(结果精准到0.1 米,参照数据:≈1.732)9.如图,我南海某海疆 A 处有一艘打鱼船在作业时突遇特狂风波,船长立刻向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到打鱼船正西方向的 B 处,该渔政船收到渔政求救中心指令后前往营救,但两船之间有大片暗礁,没法直线抵达,于是决定立刻调整方向,先向北偏东60°方向以每小时30 海里的速度航行半小时抵达C 处,同时打鱼船低速航行到 A 点的正北 1.5 海里D 处,渔政船航行到点 C 处时测得点 D 在南偏东53°方向上.( 1)求 CD 两点的距离;( 2)渔政船决定再次调整航向前往营救,若两船航速不变,而且在点 E 处相会集,求∠ECD的正弦值.(参照数据:sin53°≈, cos53°≈,tan53°≈)10. 如图,两幢建筑物 AB 和 CD,AB⊥ BD,CD⊥ BD,AB=15cm,CD=20cm, AB和 CD之间有一景观池,小南在 A 点测得池中喷泉处 E 点的俯角为42°,在 C 点测得 E 点的俯角为45°(点 B、E、D 在同向来线上),求两幢建筑物之间的距离 BD(结果精准到0.1m ).(参照数据: sin42 °≈ 0.67 ,cos42°≈ 0.74 ,tan42 °≈ 0.90 )11.如图,在楼房AB 和塔 CD 之间有一棵树EF ,从楼顶 A 处经过树顶 E 点恰巧看到塔的底部 D 点,且俯角α为 45°.从距离楼底 B 点 1 米的 P 点处经过树顶 E 点恰巧看到塔的顶部 C 点,且仰角β为30°.已知树高EF=6米,求塔CD 的高度.(结果保存根号)12.如下图,港口 B 位于港口 O 正西方向 120km 处,小岛 C 位于港口 O 北偏西 60°的方向.一艘游船从港口 O 出发,沿OA 方向(北偏西 30°)以 vkm/h 的速度驶离港口 O,同时一艘快艇从港口 B 出发,沿北偏东 30°的方向以 60km/h 的速度驶向小岛C,在小岛 C 用 1h 加装补给物质后,立刻按本来的速度给游船送去.( 1)快艇从港口 B 到小岛 C 需要多长时间?( 2)若快艇从小岛 C 到与游船相遇恰巧用时1h,求 v 的值及相遇处与港口O 的距离.5做教育做良知中小学 1 对 1 课外指导13.如下图,港口 B 位于港口 O 正西方向 120km 处,小岛 C 位于港口 O 北偏西 60°的方向.一艘游船从港口 O 出发,沿 OA 方向(北偏西30°)以 vkm/h 的速度驶离港口O,同时一艘快艇从港口 B 出发,沿北偏东 30°的方向以 60km/h 的速度驶向小岛C,在小岛 C 用 1h 加装补给物质后,立刻按本来的速度给游船送去.( 1)快艇从港口 B 到小岛 C 需要多长时间?( 2)若快艇从小岛 C 到与游船相遇恰巧用时1h,求 v 的值及相遇处与港口 O 的距离.14.一数学兴趣小组为了丈量河对岸树AB 的高,在河岸边选择一点C,从 C 处测得树梢 A 的仰角为45°,沿 BC 方向退后10 米到点 D,再次测得 A 的仰角为30°,求树高.(结果精准到0.1 米,参照数据:≈1.414,≈1.732)15.如图是一座人行天桥的表示图,天桥的高度是10 米, CB ⊥DB ,坡面 AC 的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为 i=:3.若新坡角下需留 3 米宽的人行道,问离原坡角( A 点处) 10 米的建筑物能否需要拆掉?(参照数据:≈1.414,≈1.732)616.如图,一艘轮船航行到 B 处时,测得小岛 A 在船的北偏东60°的方向,轮船从 B 处继续向正东方向航行 200 海里抵达 C 处时,测得小岛 A 在船的北偏东30°的方向.己知在小岛四周 170 海里内有暗礁,若轮船不改变航向持续向前行驶,试问轮船有无触礁的危险?(≈1.732)17.2015 年 4 月 25 日 14 时 11 分,尼泊尔发生8.1 级地震,震源深度20 千米.中国营救队快速赶往灾区营救,探测出某建筑物废墟下方点 C 处有生命迹象.在废墟一侧某面上选两探测点 A 、 B, AB 相距 2 米,探测线与该面的夹角分别是30°和 45°(如图).试确立生命所在点C 与探测面的距离.(参照数据≈1.41,≈1.73)18.某海疆有 A ,B 两个港口, B 港口在 A 港口北偏西30°方向上,距 A 港口 60 海里,有一艘船从 A 港口出发,沿东北方向行驶一段距离后,抵达位于 B 港口南偏东75°方向的 C 处,求该船与 B 港口之间的距离即CB 的长(结果保存根号).19.如图,某渔船在海面上朝正西方向以20 海里 /时匀速航行,在 A 处观察到灯塔 C 在北偏西 60°方向上,航行 1 小时抵达 B 处,此时察看到灯塔 C 在北偏西 30°方向上,若该船持续向西航行至离灯塔距离近来的地点,求此时渔船到灯塔的距离(结果精准到 1 海里,参照数据:≈1.732)20.小红将笔录本电脑水平搁置在桌子上,显示屏OB与底板OA所在的水平线的夹角为120 °时,感觉最舒坦(如图 1),侧面表示图为图2;使用时为了散热,她在底板下垫入散热架ACO ' 后,电脑转到AO ' B ' 地点(如图3),侧面表示图为图 4.已知 OA=OB=24cm ,O' C OA 于点C, O ' C =12cm.(1)求CAO '的度数;(2)显示屏的顶部B '比本来高升了多少?( 3)如图 4,垫入散热架后,要使显示屏O ' B' 与水平线的夹角仍保持120°,则显示屏O 'B ' 应绕点 O ' 按顺时针方向旋转多少度?。

初三中考一轮复习(15)解直角三角形题型分类含答案(全面非常好)

初三中考一轮复习(15)解直角三角形题型分类含答案(全面非常好)

教学过程解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rtz\ABCt\ /C=9d, /A、ZEk /C的对边分别为a、b、c,则/A的正弦可表示为:sinA= , /A的余弦可表示为cosA= /A的正切: tanA= ,它们统称为/ A的锐角三角函数二、特殊角的三角函数值:三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在图上标上仰角和俯角i视线水平线⑵坡度坡角:如图:斜坡AB的垂直度h和水平宽度l的比叫做坡度,用i表示, 即1= 坡面与水平面得夹角为用字母%表示,则i=tan %=上。

11 T⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA^Z K OB 表木OC 表木O味示(也可称东南方向)北_ A南例2 在Rtz\ABOt\ /C=90° , AB=2BC现给出下歹U结论:①sinA= § ;②cosB=■1 ;③tanA=殍;④tanB=#,其中正确的结论是(只需填上正确结论的序号)解:如图所示:故答案为:②③④.对应训练2.计算6tan45 -2cos60 °的结果是()A. 4 3B. 4C. 5 3D. 52. D考点三:化斜三角形为直角三角形例3 在△ABC^, AB=AC=5 sin /ABC=0.8,贝U BC=故答案为:6.对应训练3.如图,四边形ABCD勺对角线AG BD相交于点Q且B阡分AC若BD=8 AC=6/BOC=120,则四边形ABCD勺面积为 .(结果保留根号)3.12 .3考点四:解直角三角形的应用4.如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AR现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,/PAB=38.5 , / PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A, B为参照点,结果精确到0.1米)(参考数据:sin38.5 =0.62 , cos38.5 =0.78 , tan38.5 =0.80 , sin26.5 =0.45, cos26.5 =0.89 , tan26.5 =0.50)4.解:设PD=x^,・.PDL AB,・•・/ADPN BDP=90 ,在Rt^PAD中,tan / PAD=^ ,AD・•・ AD=-—= 5x, tan38.5o0.8 4在RtWBD中,tan/PBD-DB又.78=80.0 米,55x+2x=80.0 ,4解得:x=24.6,即P[> 24.6 米,・•. DB=2x=492答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.【聚焦中考】1.6cos30 °的值是1,但22.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:收,则AB的长为( )A.12B.4石米C. 5痣米D. 673米B2. A3.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处处,望见渔船D在南偏东60方向,若海监船的速度为50海里/小时,则A, B之间的距离为(取4=1.7,结果精确到0.1海里).5. 67.56.如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里, A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37 =0.8, sin37 =0.6, sin66 =0.9, cos66 =0.4)6.解:如图,作ADLBC的延长线于点D.北D C B在Rt^ADB中,AD=ABcos/BAD=72< cos66 =72X 0.4=28.8 (海里),BD=ABsin / BAD=72 sin66 =72X 0.9=64.8 (海里).在Rt/XADC^, AC=—AD— ^88- 空=36(海里),cos DAC cos37o0.8CD=ACsin / CAD=36 sin37 =36X 0.6=21.6 (海里).BC=BD-CD=64.8-21.6=43.2 (海里).A岛上维修船需要时间t A=^ ^=1.8 (小时).20 20B岛上维修船需要时间t B=坨432=1.5 (小时).28.8 28.8- t A> t B,.•・调度中心应该派遣B岛上的维修船.10.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CDW l垂直,测得CD的长等于21米,在l上点D的同侧取点A B,使/ CAD=30 , / CBD=60 .(1)求AB的长(精确到0.1米,参考数据:石=1.73, 72=1.41 );(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒, 这辆校车是否超速?说明理由.S DC10.解:(1)由题意得,在Rtz\ADC^, AD= CD”马=21 阴=36.33 (米),tan30o .33在Rt^BDC^ , BD=_CD V=Z1 =75/3 = 12.11 (米),tan60 3贝U AB=AD-BD=36.33-12.11=24.22= 24.2 (米)。

解直角三角形思想方法中考题型

解直角三角形思想方法中考题型

思想方法 中考题型一、方程思想根据题意设适当的未知数,从已知和未知中寻求等量关系,构造出方程或方程组,从而使问题获解.例1 如图1,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50米.现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求缆绳AC 的长(答案可带根号).解:过A 点作AB ⊥CD 交CD 的延长线于点B ,设AB =x 在Rt △ABC 中,因为∠ACB =∠CAE =30°,所以AC =2ABC =2x ,在Rt △ABD 中,因为∠ADB =∠EAD =45°,所以DB =AB =x 因为CD =50,所以 解得x =25(。

答:缆绳AC 的长为()5013+米.说明 先得出边角之间的关系,再构造方程求解,这是直角三角形的边角关系应用的常见方法,应值得注意.二、数形结合思想将数量和图形巧妙结合来寻找解题思路例2 如图2,A 、B 、C 表示建筑在一座比较险峻的名山上的三个缆车站的位置,AB 、BC 表示连接三个缆车站的钢缆。

已知A 、B 、C 所处位置的海拔高度分别为124m 、400m 、1100m ,如图建立直角坐标系,即A(a ,124)、B(b ,400)、C(c ,1100),若直线AB 的解析式为y =12 x +4,直线BC 与水平线BC 1的交角为45°.⑴分别求出A 、B 、C 三个缆车站所在位置的坐标;⑵求缆车从B 站出发到达C 站单向运行的距离(精确到1m).A(240,124)、B(792,400)、C(2192,1100);(2)(米).三、转化思想抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法.例3 如图3,学校旗杆附近有一斜坡.小明准备测量学校旗杆AB 的高度,他发现当斜坡正对着太阳时,旗杆AB 的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC =20米,斜坡坡面上的影长CD =8米,太阳光线AD 与水平地面成26°角,斜坡CD 与水平地面成30°的角.求旗杆AB 的高度(精确到1米).(tan26°=0.43)解: 延长AD 、BC 交于点E ,过点D 作DF ⊥CE 于F .则依据题意可知, ∠E = °,∠DCE = °。

初三解直角三角形.docx

初三解直角三角形.docx

辅导讲义(1) 三边关系:a 2+b 2=c 2,(2) 角关系:ZA+ZB=—,sin B = — ,cos A =—,cos B = —, tan A c c c c 二、同步题型分析直角三角形的性质已知:如图,ADDBC,F 是AB 中点,DF 交CB 延长线于点E, CE = CD ,则图中与ZADE 相等的 有 ,与ZADE 互余的角有 ___ •解题分析:(1)注意题中直线的平行关系,利用平行线的性质找出相等角(2)利用等腰三角形的性质,判定哪些三角形是直角三角形,再利用Rt △的两个锐角互余进行处理1. 几何题注意先标清题屮给出的条件,寻找突破门;sin A (3)边角关系:AB(亍2.灵活运用平行线性质;3.注意等腰三角形三线合一.瑪例题3如图,A、C是ZMON的0M边上两点,A3丄0W于B,CD丄ON于D, 若OA=-,OB=CD,OD+AB=1 求ZMON的度数.2解题分析:(1)注意分析OD+AB二1二20A,可联想到三角形中的性质,延长0D至II,使得DII二AB,连CII;(2)利用三角形全等,可确定OA=CH=| OH,可得ZA=30°;(3)本题主要注意截长补短方法的运用.1.先标出己知条件,通过己知条件推导岀其中隐含的条件,再灵活运用这些条件解题;2.注意截长补短方法的运用;3.在Rt△屮,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30。

.如图,已知在AABC中,ZACB = 90°, AC = BC, AE 丄BE于E, AE = -BD . 2求证:BZ)平分ZABC.4解题分析:(1)延长AE、BC,相交点F,连接CE;(2)灵活利用:在Rt△中,斜边上的小线等于斜边的一半;(3)同时注意垂直平分线定理的运用. 詈衣采弑一弑./1.己知:如图所示,AE、BD相交于点C, M、F、G分别是AD、BC、中点,AB = AC, DC = DE .求证:MF = MG .解题分析:连接AF、DG.灵活运用刚学的相关知识(在Rt△屮,斜边上的中线等于斜边的一半)进行处理.2.如图,在AA3C^,Z3 = 40o,ZC = 20°,AD 丄C4于人交BC于D .求证:CD = 2AB.解题分析:取CD 中点连接AM.灵活运用刚学的相关知识(在Rt △中,斜边上的中线等于斜边的一半)进行处理.3. 如图,正\ABC 的边长为1, P 是AB±不与A,3重合的任意一点,PQ 丄BC , QR 丄AC, RS 1 AB t Q,R,S为垂足,设BP = x, AS = y.求(1) y 与x 之间的函数关系式;(2) 当SP =丄时,求AP 的长; 4(3) 当点P 与S 重合时,与4R 的长各为多少?解题分析:在Rt △中,如果一个锐角等于30。

中考热点专题15 解直角三角形(含答案)

中考热点专题15 解直角三角形(含答案)

热点15 解直角三角形(时间:100分钟 总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.在△ABC 中,∠=90°,cosB 的值为( )A .12B D 2.在Rt △ABC 中,若各边的长度都扩大10倍,那么锐角B 的正切值( )A .扩大10倍B .扩大5倍C .保持不变D .缩小10倍3.在Rt △ABC ,∠C=90°,若∠B=2∠A ,则tanA 等于( )A B .3 C .2 D .124.已知a 为锐角,tan (90°-a ),则a 的度数为( )A .30°B .45°C .60°D .75°5.在△ABC 中,sinB=cos (90°-C )=12,那么△ABC 是( ) A .等腰直角三角形 B .等边三角形 C .直角三角形 D .等腰三角形6.下面语句正确的是( )A .若a 为锐角,一定有sina<cosaB .若三角形三边之比为12,则三角形是直角三角形C .Rt △ABC 中,∠C=90°,若tanA=34,则a=4,b=3 D 在Rt △ABC 中,∠C=90°,则sin 2A+cos 2B=17.下列比较大小正确的是( )A .tan47°>cos17°>sin63°B .tan47°>sin63°>cos17°C .sin63°>tan47°>cos17°D .cos17°>tan46°>sin63°8.若∠A 为锐角,且sinA>cosA ,则∠A 的取值范围是( )A .0°<∠A<45°;B .45°<∠A<90°;C .30°<∠A<60°;D .60°<∠A<90°9.如图1,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC=35,则BC 的长是( )A.4cm B.6cm C.8cm D.10cm(1) (2) (3)10.如果tana=2,则3sin cos4sin2cosa aa a-+的值为()A.13B.56C.12D.4二、填空题(本大题共8小题,每小题3分,共24分)11.在Rt△ABC中,三边长之比BC:AC:AB=12:5:13,则tanA=_________.12.若锐角△ABC中,AC=6,BC=10,AB=10,则cosA=_____.13.在Rt△ABC中,∠C=90°,cosA=35,a=2,则b+c=_______.14.计算:tan1°·tan2°·tan3°·…·tan89°=______.15.如图2,矩形ABCD中(AD>AB),AB=a,∠BDA=θ,作AE交BD于E,且AE=AB,•试用a与θ表示AD=________.16.如图3,小明将一矩形纸片ABCD沿CE折叠,B点恰好落在AD边上,•设此点为F,若AB:BC=4:5,则cos∠DCF的值为_______.17.当0°<a<90°时,化简.18.在△ABC中,∠C=90°,tanA=125,三角形周长为45,CD是斜边AB上的高,则CD长为_______.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分,解答题应写出文字说明、证明过程或演算步骤)19.(1)cos45cos90sin30︒︒︒-tan0sin90︒︒+cos230°+sin245°.(2)cos30°-sin90°+si n250°-tan36°·cot36°+c os250.20.若a为锐角,且2cos2a+7sina-5=0,求a的度数.21.如图,在Rt△ABC中,∠C=90°,∠A=15°.Array(1)作AB边的垂直平分线DE交AC于点D,交AB于点E,连结BD(尺规作图,不写作法,保留作图痕迹);(2)在(1)的基础上,若BC=1,则AD=_______,tanA=______.22.已知△ABC的边a、b、c满足关系式(2b2=4(c+a)(c-a),且有5a-3c=0,•求sinA+sinB+sinC的值.23.某片绿地的形状如图所示,其中∠A=60°,AB⊥BC,CD⊥AD,AB=200m,CD=100m,求AD、BC的值.24.在△ABC中,AB=AC,D为BC上一点,由D分别作DE⊥AB于F,DF⊥AC于F,设DE=•a,DF=b,且实数a、b满足9a2-24ab+16b2=0,并有a2b=48;若锐角∠A使得方程14x2-•x·sinA+34=0有相等的两个实数根.(1)试求实数a、b的值.(2)试求线段BC的长.25.如图所示,等腰三角形与正三角形的形状有差异,•我们把它与正三角形的接近程序称为“正度”,在研究“正度”时,应保证相似三角形的“正度”相等,设等腰三角形的底和腰分别是a、b,底角和顶角分别为α、β,要求“正度”的值是非负数.同学甲认为:可用式子│a-b│表示“正度”,│a-b│的值越小,表示等腰三角形越接近正三角形.同学乙认为:可用式子│α-β│来表示“正度”,│α-β│的值越小,表示等腰三角形越接近正三角形.探究:(1)他们的方案哪个较为合理,为什么?(2)对你认为不够合理的方案,请加以改进(给出式子即可).(3)请再给出一种衡量“正度”的表达式.答案:一、选择题1.C 2.C 3.B 4.A 5.D 6.B 7.A 8.B 9.A 10.C二、填空题11.125 12.310 13.4 14.1 15.tan a θ 16.45 17.1-cosa 18.9013三、解答题19.解:(1)原式= 0212- 01+2+)2= 315424+= (2)原式=2-1+(si n 250°+cos 250)-1=2-1+1-1=2-1. 20.解:2(1-si n 2a )+7sina-5=0,2sin 2a -7sina+3=0,∴sina=12或sina=3(舍). ∴sina=12,故a=30°. 21.解:(1)略.(2)DE 是AB 的垂直平分线⇒AD=BD ⇒∠ABD=15°601DBC BC ⇒∠=︒⎫⇒⎬=⎭BD=2,⇒AD=2, ∴故tanA=BC AC =. 22.解:4b 2+4a 2=4c 2⇒a 2+b 2=c 2,即△ABC 为直角三角形,∠C 为直角.而5a=3c ⇒a=35c ⇒sinA=a c =35,sinB=45b c =,sinC=1. ∴sinA+sinB+sinC=3455+=125. 23.解:延长BC 、AD 交于点E ,则Rt △ABE 中, AE=200cos cos60AB A =︒=400,在Rt △CDE 中,∠E=30°,DE=tan 30CD ︒,CE=100sin 30︒=200.故AD=AE-DE=(m ),BC=BE-CE=()m .24.解:(1)9a 2-24ab+16b 2=0⇒(3a-4b )2=0⇒3a=4b .由a 2b=48⇒a=4,b=3.(2)14x 2-x ·34=0.∴△=s in 2A 34=0.∴⇒∠A=60°.∴∠B=∠C=60°.∠A=∠B=∠C=60°⇒,⇒. 25.解:(1)乙同学比较合理,因│α-β│越小,则α与β越接近60°,•因而该等腰三角形越接近于正三角形,且能保证相似三角形的“正度”相等.同学甲的方案不合理,不能保证相似三角形“正度”相等,如边长为4,4,2和边长为8,8,4•的两个相似三角形中│2-4│≠│4-8│.(2)对甲同学的方案可改为||a b ka -,||a b kb-等(k 为正数)来表示“正度”. (3)还可用│α-60°│,│β-60°│等来表示“正度”.。

2019年中考数学复习第5章图形的相似与解直角三角形第20课时锐角三角函数与解直角三角形精讲试题word版本

2019年中考数学复习第5章图形的相似与解直角三角形第20课时锐角三角函数与解直角三角形精讲试题word版本

第20课时锐角三角函数与解直角三角形题号,30三角形一般与圆综合考查毕节中考真题试做30°,45°,60°角的三角函数值1.(2018·毕节中考)计算:⎝⎛⎭⎪⎫-13-1-12+3 tan 30°-(π-3)0+||1-3.解:原式=(-3)-23+3×33-1+(3-1)=-3-23+3-1+3-1=-5.解直角三角形2.(2017·毕节中考)如图,在▱ABCD中,过点A作AE⊥DC,垂足为点E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sin D=45,求AF的长.(1)证明:∵四边形ABCD是平行四边形,∴AB ∥CD,AD ∥BC,AD =BC. ∴∠D +∠C =180°,∠ABF =∠BEC. ∵∠AFB +∠AFE =180°,∠AFE =∠D, ∴∠C =∠AFB. ∴△ABF ∽△BEC ; (2)解:∵AE ⊥DC,AB ∥DC, ∴∠AED =∠BAE =90°.在Rt △ADE 中,AE =AD·sin D =5×45=4.在Rt △ABE 中,根据勾股定理,得 BE =AE2+AB2=42+82=4 5. ∵△ABF ∽△BEC, ∴AF BC =AB BE , 即AF 5=845,∴AF =2 5.毕节中考考点梳理锐角三角函数的概念特殊角的三角函数值\ 锐角α α解直角三角形1.(2018·柳州中考)如图,在Rt △ABC 中,∠C =90°,BC =4,AC =3,则sin B =ACAB =( A )A .35B .45C .37D .34(第1题图)(第3题图)2.若∠A+∠B =90°,则下列各式成立的是( D )A .sin A =cos AB .tan A +tan B =1C .sin A =sin BD .sin A =cos B3.(2018·广州中考)如图,旗杆高AB =8 m ,某一时刻,旗杆影子长BC =16 m ,则tan C =__12__.4.(2018·滨州中考)在△ABC 中,∠C =90°,若tan A =12,则sin B =55.(2018·贵阳中考)如图①,在Rt △ABC 中,以下是小亮探究a sin A 与bsin B之间关系的方法:∵sin A =a c ,sin B =bc,∴c =a sin A ,c =bsin B ,∴a sin A =b sin B. 根据你掌握的三角函数知识.在图②的锐角△ABC 中,探究a sin A ,b sin B ,c sin C之间的关系,并写出探究过程.解:a sin A =b sin B =c sin C .证明如下:过A 作AD ⊥BC 于点D,过B 作BE ⊥AC 于点E.在Rt △ABD 中,sin B =ADc ,即AD =c si n B.在Rt △ADC 中,sin C =ADb ,即AD =b sin C.∴c sin B =b sin C,即b sin B =csin C .同理可得a sin A =csin C ,则a sin A =b sin B =csin C.6.(2018·遵义中考)如图,吊车在水平地面上吊起货物时,吊绳BC 与地面保持垂直,吊臂AB 与水平线的夹角为64°,吊臂底部A 距地面1.5 m .(计算结果精确到0.1 m ,参考数据sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05)(1)当吊臂底部A 与货物的水平距离AC 为5 m 时,吊臂AB 的长为______m ; (2)如果该吊车吊臂的最大长度AD 为20 m ,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)解:(1)在Rt △ABC 中,∠BAC =64°,AC =5, ∴AB =ACcos 64°≈5÷0.44≈11.4.∴吊臂AB 的长为11.4 m .故应填:11.4; (2)过点D 作DH ⊥地面于点H,交水平线于点E.在Rt △ADE 中,AD =20,∠DAE =64°,EH =1.5,∴DE =sin 64°×AD ≈20×0.90=18.0,即DH =DE +EH ≈18.0+1.5=19.5.答:从地面上吊起货物的最大高度是19.5 m .中考典题精讲精练30°,45°,60°角的三角函数值例1 (2018·广安中考)计算:⎝ ⎛⎭⎪⎫13-2+|3-2|-12+6 cos 30°+(π-3.14)0.【解析】对照30°,45°,60°角的三角函数值表,然后按照实数的运算方法计算出结果.【答案】解:原式=9+2-3-23+6×32+1=12.解直角三角形例2 (2018·潍坊中考)如图,点M 是正方形ABCD 边CD 上一点,连接AM,作DE ⊥AM 于点E,BF ⊥AM 于点F,连接BE.(1)求证:AE =BF ;(2)已知AF =2,四边形ABED 的面积为24,求∠EBF 的正弦值.【解析】(1)由正方形的性质,可得BA =AD,∠BAD =90°.由DE ⊥AM,BF ⊥AM,可得∠ABF =∠DAE.对于△ABF 和△DAE,可由AAS 得到△ABF ≌△DAE,结论可证;(2)设AE =x,由(1)中结论可得BF =x,DE =AF =2.利用S 四边形ABED=S △ABE +S △ADE 可列方程求出x 得到EF 的长.在Rt △BFE 中利用勾股定理可求出BE 的长.最后利用正弦的定义可求结果.【答案】(1)证明:∵四边形ABCD 为正方形, ∴BA =AD,∠BAD =90°. ∵DE ⊥AM 于点E,BF ⊥AM 于点F, ∴∠AFB =∠DEA =90°,∴∠ABF +∠BAF =90°,∠DAE +∠BAF =90°, ∴∠ABF =∠DAE. 在△ABF 和△DAE 中, ⎩⎪⎨⎪⎧∠AFB=∠DEA,∠ABF=∠DAE,AB =DA ,∴△ABF ≌△DAE(AAS ),∴BF =AE ; (2)解:设AE =x,则BF =x,DE =AF =2. ∵四边形ABED 的面积为24, ∴12·x·x +12·x·2=24, 解得x 1=6,x 2=-8(舍去),∴EF =x -2=4. 在Rt △BEF 中,BE =42+62=213, ∴sin ∠EBF =EF BE =4213=21313.解直角三角形的应用例3 (2018·烟台中考)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40 km /h .数学实践活动小组设计了如下活动:在l 上确定A,B 两点,并在AB 路段进行区间测速.在l 外取一点P,作PC ⊥l,垂足为点C.测得PC =30 m ,∠APC =71°,∠BPC =35°.上午9时测得一汽车从点A 到点B 用时6 s ,请你用所学的数学知识说明该车是否超速.(参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70,sin 71°≈0.95,cos 71°≈0.33,tan 71°≈2.90)【解析】先根据角的正切分别得出AC =PC tan ∠APC,BC =PC tan ∠BPC,再根据线段的和与差得出AB 的长,继而根据速度=路程时间,求得该车通过AB 路段的车速.若该车通过AB 路段的车速超过40 km /h ,则该车超速;否则,该车没有超速.【答案】解:在Rt △APC 中,AC =PC tan ∠APC =30 tan 71°≈30×2.90=87. 在Rt △BPC 中,BC =PC tan ∠BPC =30 tan 35°≈30×0.70=21, 则AB =AC -BC =87-21=66, ∴该汽车的实际速度为666=11(m /s ).又∵40 km /h ≈11.1 m /s ,11<11.1, ∴该车没有超速.1.计算:|-2|-(2 019+2)0+⎝ ⎛⎭⎪⎫12-1+2 cos 30°-27.解:原式=2-1+2+2×32-33=3+3-3 3 =3-2 3.2.如图,在△ABC 中,∠BAC =90°,AB =AC,点D 为边AC 的中点,DE ⊥BC 于点E,连接BD,则tan ∠DBC 的值为( A )A .13B .2-1C .2- 3D .143.(2018·扬州中考)如图,在平行四边形ABCD 中,DB =DA,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E,连接AE.(1)求证:四边形AEBD 是菱形;(2)若DC =10,tan ∠DCB =3,求菱形AEBD 的面积. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥CE,∴∠DAF =∠EBF. ∵∠AFD =∠BFE,AF =FB, ∴△AFD ≌△BFE,∴AD =BE.∵AD ∥EB,∴四边形AEBD 是平行四边形. 又∵DB =DA,∴四边形AEBD 是菱形; (2)解:∵四边形ABCD 是平行四边形, ∴CD =AB =10,AB ∥CD, ∴∠ABE =∠DCB,∴tan ∠ABE =tan ∠DCB =3. ∵四边形AEBD 是菱形, ∴AB ⊥DE,AF =FB,EF =DF, ∴tan ∠ABE =EFBF =3.∵BF =102,∴EF =3102,∴DE =310. ∴S 菱形AEBD =12AB·D E =1210×310=15.4.如图,一块三角形空地上种植草皮绿化,已知AB =20 m ,AC =30 m ,∠A =150°,草皮的售价为a 元/m 2,则购买草皮至少需要( C )A .450a 元B .225a 元C .150a 元D .300a 元(第4题图)(第5题图)5.一个公共房门前的台阶高出地面 1.2 m ,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( B )A .斜坡AB 的坡度是10° B .斜坡AB 的坡度是tan 10°C .AC =1.2 tan 10° mD.AB=1.2cos 10°m6.(2018·重庆中考A卷)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7 m,升旗台坡面CD的坡度i=1∶0.75,坡长CD=2 m,若旗杆底部到坡面CD的水平距离BC=1 m,则旗杆AB的高度约为(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6)( B )A.12.6 mB.13.1 mC.14.7 mD.16.3 m。

(word完整版)中考复习专题——解直角三角形

(word完整版)中考复习专题——解直角三角形

中考复习之——解直角三角形1.了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半.掌握有两个角互余的三角形是直角三角; 2。

探索勾股定理及其逆定理,并掌握运用它们解决一些简单的实际问题;3。

利用相似的直角三角形,探索并认识锐角三角函数(sin A 、cos A 、tan A );知道30、45、60角的三角函数值;4.会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角; 5。

能用锐角三角函数解直角三角形,并用相关知识解决一些简单的实际问题.三.知识回顾1.知识脉络2.基础知识(1)勾股定理及其逆定理①勾股定理:直角三角形中,两直角边的平方和等于斜边的平方. 即:如果直角三角形的两条直角边分别为a 、b ,斜边为c ,那么a 2+b 2=c 2.②勾股定理的逆定理:如果三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形. (2)锐角三角函数 ①锐角三角函数的定义如图7—1,在Rt △ABC 中,∠C =90,则sin A =A ∠的对边斜边=ac ,cos A =A ∠的邻边斜边=b c ,tan A =A A ∠∠的对边的邻边=ab.sin A 、cos A 、tan A 分别叫做锐角∠A 的正弦、余弦、正切,统称为锐角∠A 的三角函数. ②锐角三角函数的取值范围0<sin A 〈1,0〈cos A <1,tan A >0. ③各锐角三角函数间的关系斜边c∠A 的对边a∠A 的邻边图7-1 直角三角形边的关系:勾股定理边角关系:锐角三角函数解直角三角形角的关系:两个锐角互余锐角三角函数的应用sin A =cos (90−A),cos A =sin (90−A).④特殊角的三角函数值sin cos tan3012323345222216032123(3)解直角三角形①解直角三角形的的定义:已知边和角(其中必有一条边),求所有未知的边和角。

中考数学真题 解直角三角形

中考数学真题 解直角三角形

解直角三角形一.选择题1,(2015威海,第2题4分)【答案】D【解析】根据三角函数的定义,边AC=BCtan26其按键顺序正确的是【备考指导】本题考查了解直角三角形的知识,解答本题的关键是利用三角函数的知识解直角三角形,求解相关线段的长度,难度一般.2.(2015·湖南省衡阳市,第12题3分)如图,为了测得电视塔的高度AB,在D 处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB(单位:米)为().A. B.51 C. D.1013. (2015?浙江滨州,第12题3分)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB 大小的变化趋势为( )A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D考点:反比例函数,三角形相似,解直角三角形5. (2015?绵阳第10题,3分)如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11﹣2)米B.(11﹣2)米C.(11﹣2)米D.(11﹣4)米考点:解直角三角形的应用..分析:出现有直角的四边形时,应构造相应的直角三角形,利用相似求得PB、PC,再相减即可求得BC长.解答:解:如图,延长OD,BC交于点P.∵∠ODC=∠B=90°,∠P=30°,OB=11米,CD=2米,∴在直角△CPD中,DP=DC?cot30°=2m,PC=CD÷(sin30°)=4米,∵∠P=∠P,∠PDC=∠B=90°,∴△PDC∽△PBO,∴=,∴PB===11米,∴BC=PB﹣PC=(11﹣4)米.故选:D.点评:本题通过构造相似三角形,综合考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念.6.(2015?山东日照,第10题4分)如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值()A.B. C.D.考点:解直角三角形..分析:延长AD,过点C作CE⊥AD,垂足为E,由tanB=,即=,设AD=5x,则AB=3x,然后可证明△CDE∽△BDA,然后相似三角形的对应边成比例可得:,进而可得CE=x,DE=,从而可求tan∠CAD==.解答:解:如图,延长AD,过点C作CE⊥AD,垂足为E,∵tanB=,即=,∴设AD=5x,则AB=3x,∵∠CDE=∠BDA,∠CED=∠BAD,∴△CDE∽△BDA,∴,∴CE=x,DE=,∴AE=,∴tan∠CAD==.故选D.点评:本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,是基础知识要熟练掌握,解题的关键是:正确添加辅助线,将∠CAD放在直角三角形中.7.(2015?山东聊城,第10题3分)湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为°(如图).已知测量仪器CD的高度为1米,则桥塔AB的高度约为()A.34米B.38米C.45米D.50米考点:解直角三角形的应用-仰角俯角问题..分析:Rt△ADE中利用三角函数即可求得AE的长,则AB的长度即可求解.解答:解:过D作DE⊥AB于E,∴DE=BC=50米,在Rt△ADE中,AE=DE?tan41,5°≈50×=44(米),∵CD=1米,∴BE=1米,∴AB=AE+BE=44+1=45(米),∴桥塔AB的高度为45米.点评:本题考查仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.8(2015山东济宁,9,3分)如图,斜面AC的坡度(CD与AD的比)为1:2,AC=米,坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高度为( )A.5米B.6米C. 8米D. 米【答案】A考点:解直角三角形二.填空题1. (2015?浙江滨州,第14题4分)如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为 .【答案】24考点:菱形的性质,解直角三角形2. (2015?绵阳第18题,3分)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为3.考点:旋转的性质;等边三角形的性质;解直角三角形..专题:计算题.分析:先根据等边三角形的性质得AB=AC,∠BAC=60°,再根据旋转的性质得AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,于是可判断△ADE为等边三角形,得到DE=AD=5;过E点作EH⊥CD于H,如图,设DH=x,则CH=4﹣x,利用勾股定理得到52﹣x2=62﹣(4﹣x)2,解得x=,再计算出EH,然后根据正切的定义求解.解答:解:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵△ABD绕A点逆时针旋转得△ACE,∴AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,∴△ADE为等边三角形,∴DE=AD=5,过E点作EH⊥CD于H,如图,设DH=x,则CH=4﹣x,在Rt△DHE中,EH2=52﹣x2,在Rt△DHE中,EH2=62﹣(4﹣x)2,∴52﹣x2=62﹣(4﹣x)2,解得x=,∴EH==,在Rt△EDH中,tan∠HDE===3,即∠CDE的正切值为3.故答案为:3.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和解直角三角形.3.(2015?广东广州,第15题3分)如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC= .考点:线段垂直平分线的性质;解直角三角形.分析:根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cos C.解答:解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,故答案为.点评:本题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.4. (2015?四川省内江市,第22题,6分)在△ABC中,∠B=30°,AB=12,AC=6,则BC= 6.考点:含30度角的直角三角形;勾股定理..分析:由∠B=30°,AB=12,AC=6,利用30°所对的直角边等于斜边的一半易得△ABC 是直角三角形,利用勾股定理求出BC的长.解答:解:∵∠B=30°,AB=12,AC=6,∴△ABC是直角三角形,∴BC===6,故答案为:6.°点评:此题考查了含30°直角三角形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.5.(2015?山东东营,第14题3分)4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为,B处的俯角为.如果此时直升机镜头C处的高度CD为200米,点A、D、B在同一直线上,则AB两点的距离是米.【答案】200(+1)【解析】试题分析:∵∠CDA=∠CDB=90°,∠A=30°,∠B=45°,∴AD=CD=200,BD=CD=200,∴AB=AD+BD=200(+1)(米);考点:解直角三角形的应用.6.(2015湖南邵阳第17题3分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000 米.考点:解直角三角形的应用-坡度坡角问题..分析:过点B作BC⊥水平面于点C,在Rt△ABC中,根据AB=200米,∠A=30°,求出BC的长度即可.解答:解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.点评:本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数的知识进行求解.7.(2015湖北荆州第15题3分)15.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为137 米(结果保留整数,测角仪忽略不计,≈,,)考点:解直角三角形的应用-仰角俯角问题.专题:计算题.分析:根据仰角和俯角的定义得到∠ABD=30°,∠ACD=45°,设AD=xm,先在Rt△ACD中,利用∠ACD的正切可得CD=AD=x,则BD=BC+CD=x+100,然后在Rt△ABD中,利用∠ABD的正切得到x=(x+100),解得x=50(+1),再进行近似计算即可.解答:解:如图,∠ABD=30°,∠ACD=45°,BC=100m,设AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+100,在Rt△ABD中,∵tan∠ABD=,∴x=(x+100),∴x=50(+1)≈137,即山高AD为137米.故答案为137.点评:本题考查了解直角三角形﹣的应用﹣仰角俯角:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.8.(2015?江苏南昌,第13题3分)如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC =BD =15cm , ∠CBD =40°,则点B 到CD 的距离为 cm (参考数据:sin 20°≈ , com 20°≈, sin 40°≈ ,com 40°≈ .精确到0.1cm ,可用科学计算器).答案:解析:如右图,作BE ⊥CD 于点E .∵BC =BD , BE ⊥CD , ∴∠CBE =∠DBE =20°,在Rt △BCD 中,cos ,BEDBE=BDÐ ∴cos BE2015?,∴BE ≈15×=9.(2015?江苏南昌,第14题3分)如图,在△ABC 中,AB =BC =4,AO=BO ,P 是射线CO 上的一个动点,∠AOC =60°,则当△PAB 为直角三角形时,AP 的长为 .答案:解析:如图,分三种情况讨论:图(1)中,∠APB =90°,∵AO =BO , ∠APB =90°,∴PO =AO =BO又∠AOC =60°, ∴△APO ∴AP =2;图(2)中,∠APB =90°,∵AO =BO , ∠APB =90°,∴PO =AO =BO =2,(1)BA (2)BA又∠AOC=60°, ∴∠BAP=30°,在Rt△ABP中,AP=cos30°×4=图(3)中,∠ABP=90°, ∵BO=AO=2 , ∠BOP=∠AOC=60°,∴PB=AP==∴AP的长为2,或10. (2015?浙江金华,第16题4分)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时,点A,B,C在同一直线上,且∠ACD=90°.图2是小床支撑脚CD折叠的示意图,在折叠过程中,ΔACD变形为四边形ABC'D',最后折叠形成一条线段BD".(1)小床这样设计应用的数学原理是▲(2)若AB:BC=1:4,则tan∠CAD的值是▲【答案】(1)三角形的稳定性和四边形的不稳定性;(2)815.【考点】线动旋转问题;三角形的稳定性;旋转的性质;勾股定理;锐角三角函数定义.【分析】(1)在折叠过程中,由稳定的ΔACD变形为不稳定四边形ABC'D',最后折叠形成一条线段BD",小床这样设计应用的数学原理是:三角形的稳定性和四边形的不稳定性。

中考数学点对点-解直角三角形问题(解析版)

中考数学点对点-解直角三角形问题(解析版)
在Rt△ABD中,AB=20,∠ABD=30°,
∴AD=AB×sin30°=20 10(海里),
BD=AB×cos30°=20 10 10×1.73=17.3,
∵BD⊥AC,BF⊥CE,CE⊥AC,
∴∠BDC=∠DCF=∠BFC=90°,
∴四边形BDCF为矩形,
∴DC=BF﹣9.7,FC=BD=17.3,
如图,连接BC.
∵∠ADC和∠ABC所对的弧长都是 ,
∴根据圆周角定理知,∠ADC=∠ABC.
在Rt△ACB中,根据锐角三角函数的定义知,
sin∠ABC ,
∵AC=2,BC=3,
∴AB ,
∴sin∠ABC ,
∴sin∠ADC .
【例题3】(2020•荆门)如图,海岛B在海岛A的北偏东30方向,且与海岛A相距20海里,一艘渔船从海岛B出发,以5海里/时的速度沿北偏东75°方向航行,同时一艘快艇从海岛A出发,向正东方向航行.2小时后,快艇到达C处,此时渔船恰好到达快艇正北方向的E处.
(2)在Rt△BEF中,解直角三角形求出EF,BF,在Rt△ABD中,解直角三角形求出AD,BD,证明四边形BDCF为矩形,得出DC,FC,求出CE的长,则可得出答案.
【解析】(1)过点B作BD⊥AC于点D,作BF⊥CE于点E,
由题意得,∠NAB=30°,∠GBE=75°,
∵AN∥BD,
∴∠ABD=∠NAB=30°,
∠B=90°-∠A,a=c·sinA, b=c·cosA
五、特殊值的三角函数
三角函数

30°
45°
60°
90°
sinα
0
1
cosα
1
0
tanα
0
1

中考专题复习解直角三角形(含答案)

中考专题复习解直角三角形(含答案)

中考专题复习解直⾓三⾓形(含答案)中考数学专题解直⾓三⾓形第⼀节锐⾓三⾓函数1、勾股定理:直⾓三⾓形两直⾓边、的平⽅和等于斜边的平⽅。

2、如下图,在Rt△ABC中,∠C为直⾓,则∠A的锐⾓三⾓函数为(∠A可换成∠B):定义表达式取值范围关系正弦(∠A为锐⾓)余弦(∠A为锐⾓)正切(∠A为锐⾓)(倒数)余切(∠A为锐⾓)3、任意锐⾓的正弦值等于它的余⾓的余弦值;任意锐⾓的余弦值等于它的余⾓的正弦值。

4、任意锐⾓的正切值等于它的余⾓的余切值;任意锐⾓的余切值等于它的余⾓的正切值。

5、30°、45°、60°特殊⾓的三⾓函数值(重要)三⾓函数30°45°60°116、正弦、余弦的增减性:当0°≤≤90°时,sin随的增⼤⽽增⼤,cos随的增⼤⽽减⼩。

7、正切、余切的增减性:当0°<<90°时,tan随的增⼤⽽增⼤,cot随的增⼤⽽减⼩。

第⼆节解⾓直⾓三⾓形1、解直⾓三⾓形的定义:已知边和⾓(两个,其中必有⼀条边)→求所有未知的边和⾓。

依据:①边的关系:;②⾓的关系:∠A+∠B=90°;③边⾓关系:(见前⾯三⾓函数的定义)。

2、应⽤举例:(1)仰⾓:视线在⽔平线上⽅的⾓;俯⾓:视线在⽔平线下⽅的⾓。

(2)坡⾯的铅直⾼度和⽔平宽度的⽐叫做坡度(坡⽐)。

⽤字母表⽰,即。

坡度⼀般写成的形式,如等。

把坡⾯与⽔平⾯的夹⾓记作(叫做坡⾓),那么。

【重点考点例析】考点⼀:锐⾓三⾓函数的概念例1 如图所⽰,△ABC的顶点是正⽅形⽹格的格点,则sinA的值为()A.12B.55C.1010D.255对应训练1.在平⾯直⾓坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.12考点⼆:特殊⾓的三⾓函数值例2 计算:cos245°+tan30°?sin60°=.对应训练(2012?南昌)计算:sin30°+cos30°?tan60°.考点三:化斜三⾓形为直⾓三⾓形例3 如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.对应训练3.如图,在Rt △ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三⾓形.若AB=2,求△ABC 的周长.(结果保留根号)考点四:解直⾓三⾓形的应⽤例4 黄岩岛是我国南海上的⼀个岛屿,其平⾯图如图甲所⽰,⼩明据此构造出该岛的⼀个数学模型如图⼄所⽰,其中∠B=∠D=90°,AB=BC=15千⽶,CD=32千⽶,请据此解答如下问题:(1)求该岛的周长和⾯积;(结果保留整数,参考数据2≈1.414,3≈1.73 ,6≈2.45)(2)求∠ACD的余弦值.对应训练6.超速⾏驶是引发交通事故的主要原因之⼀.上周末,⼩明和三位同学尝试⽤⾃⼰所学的知识检测车速.如图,观测点设在A 处,离益阳⼤道的距离(AC)为30⽶.这时,⼀辆⼩轿车由西向东匀速⾏驶,测得此车从B处⾏驶到C处所⽤的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳⼤道60千⽶/⼩时的限制速度?(计算时距离精确到1⽶,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千⽶/⼩时≈16.7⽶/秒)【聚焦中考】1.如图,在8×4的矩形⽹格中,每格⼩正⽅形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.32.把△ABC三边的长度都扩⼤为原来的3倍,则锐⾓A的正弦函数值()A.不变B.缩⼩为原来的13C.扩⼤为原来的3倍D.不能确定3.计算:tan45°+ 2cos45°= .4.在△ABC中,若∠A、∠B满⾜|cosA- 12|+(sinB-22)2=0,则∠C= .5.校车安全是近⼏年社会关注的重⼤问题,安全隐患主要是超速和超载.某中学数学活动⼩组设计了如下检测公路上⾏驶的汽车速度的实验:先在公路旁边选取⼀点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21⽶,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1⽶,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千⽶/⼩时,若测得某辆校车从A到B⽤时2秒,这辆校车是否超速?说明理由.6.如图,某校教学楼AB的后⾯有⼀建筑物CD,当光线与地⾯的夹⾓是22°时,教学楼在建筑物的墙上留下⾼2⽶的影⼦CE;⽽当光线与地⾯夹⾓是45°时,教学楼顶A在地⾯上的影⼦F与墙⾓C有13⽶的距离(B、F、C在⼀条直线上)(1)求教学楼AB的⾼度;(2)学校要在A、E之间挂⼀些彩旗,请你求出A、E之间的距离(结果保留整数).(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)【备考真题过关】⼀、选择题1.如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,则sinB的值是()A.23B.35C.34D.452.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tanB的值是()A.45B.35C.34D.433.如图,在Rt △ABC中,∠C=90°,AB=6,cosB= 23,则BC的长为()A.4 B.25C.181313D.1213134.2cos60°的值等于()A.1 B.2C.3D.25.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.12B.22C.32D.16.如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则C( )A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°.7.在“测量旗杆的⾼度”的数学课题学习中,某学习⼩组测得太阳光线与⽔平⾯的夹⾓为27°,此时旗杆在⽔平地⾯上的影⼦的长度为24⽶,则旗杆的⾼度约为()A.24⽶B.20⽶C.16⽶D.12⽶8.如图,某⽔库堤坝横断⾯迎⽔坡AB的坡⽐是1:3,堤坝⾼BC=50m,则应⽔坡⾯AB的长度是()A.100m B.1003m C.150m D.503m1.如图,为测量某物体AB的⾼度,在D点测得A点的仰⾓为30°,朝物体AB⽅向前进20⽶,到达点C,再次测得点A的仰⾓为60°,则物体AB的⾼度为()A.10⽶B.10⽶C.20⽶D.⽶2.⼩明想测量⼀棵树的⾼度,他发现树的影⼦恰好落在地⾯和⼀斜坡上,如图,此时测得地⾯上的影长为8⽶,坡⾯上的影长为4⽶.已知斜坡的坡⾓为30°,同⼀时刻,⼀根长为1⽶、垂直于地⾯放置的标杆在地⾯上的影长为2⽶,则树的⾼度为()A.(6+)⽶B.12⽶C.(4﹣2)⽶D.10⽶3.如图,从热⽓球C处测得地⾯A、B两点的俯⾓分别是30°、45°,如果此时热⽓球C处的⾼度CD为100⽶,点A、D、B在同⼀直线上,则AB两点的距离是()A.200⽶B.200⽶C.220⽶D.100()⽶⼆、填空题9.在△ABC中∠C=90°,AB=5,BC=4,则tanA= .10.tan60°= .11.若∠a=60°,则∠a的余⾓为,cosa的值为.12.如图,为测量旗杆AB的⾼度,在与B距离为8⽶的C处测得旗杆顶端A的仰⾓为56°,那么旗杆的⾼度约是⽶(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)三、解答题13.如图,定义:在直⾓三⾓形ABC中,锐⾓α的邻边与对边的⽐叫做⾓α的余切,记作ctanα,即ctanα== ACBC,根据上述⾓的余切定义,解下列问题:(1)ctan30°= ;(2)如图,已知tanA=34,其中∠A为锐⾓,试求ctanA的值.14.⼀副直⾓三⾓板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.15.为促进我市经济的快速发展,加快道路建设,某⾼速公路建设⼯程中需修隧道AB,如图,在⼭外⼀点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,精确到个位)16.如图,某⾼速公路建设中需要确定隧道AB的长度.已知在离地⾯1500m,⾼度C处的飞机,测量⼈员测PABQ24.5°49°41°北东南西得正前⽅A 、B 两点处的俯⾓分别为60°和45°,求隧道AB 的长.17.如图,⾃来⽔⼚A 和村庄B 在⼩河l 的两侧,现要在A ,B 间铺设⼀知输⽔管道.为了搞好⼯程预算,需测算出A ,B 间的距离.⼀⼩船在点P 处测得A 在正北⽅向,B 位于南偏东24.5°⽅向,前⾏1200m ,到达点Q 处,测得A 位于北偏东49°⽅向,B 位于南偏西41°⽅向.(1)线段BQ 与PQ 是否相等?请说明理由;(2)求A ,B 间的距离.(参考数据cos41°=0.75)练习作业:1. 已知在Rt △ABC 中,∠C =90°,根据表中的数据求其它元素的值:a b c ∠A ∠B 12 30° 4 45° 260°5 35 4 28 CD=3,AD=12,求证:AD ⊥BD .3.计算ooo5sin 302cos60tan 45-- oo o o2cos 45tan 30sin 45tan 60-+?4.如图所⽰,已知:在△ABC中,∠A=60°,∠B=45°,AB=443,?求△ABC的⾯积(结果可保留根号).例5.已知:如图所⽰,在△ABC中,AD是边BC上的⾼,E?为边AC?的中点,BC=14,AD=12,sinB=45,求:(1)线段DC的长;(2)tan∠EDC的值.例6.如图,在△ABC中,∠BAC=120°,AB=10,AC=5,求sinB?sinC的值.。

2024年广东省中考数学总复习专题20:解直角三角形

2024年广东省中考数学总复习专题20:解直角三角形

2024年广东省中考数学总复习专题20
解直角三角形一、锐角三角函数的定义
在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b

正弦:sin A=∠的对边
=
斜边
A a
c;余弦:cos A=
∠的邻边
=
斜边
A b
c;正切:tan A=
∠的对边
=
邻边
A a
b.
根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.
二、特殊角的三角函数值
三、解直角三角形
1.在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.
2.解直角三角形的常用关系:在Rt△ABC中,∠C=90°,则:1)三边关系:a2+b2=c2;2)两锐角关系:∠
A+∠B=90°;3)边与角关系:sin A=cos B=a
c,cos A=sin B=
b
c,tan A=
a
b;4)sin
2A+cos2A=1.
3.科学选择解直角三角形的方法口诀:
第1页(共12页)。

中考数学解直角三角形

中考数学解直角三角形

中考数学解直角三角形一、定义:在一个直角三角形中,斜边上的高分两个直角三角形,其中一个与原三角形相似,另一个与原三角形轴对称。

二、解直角三角形的步骤:1、判断三角形的形状:在一个三角形中,最大的角是90°,所以只要有一个角是90°的三角形就是直角三角形。

2、已知直角边a和斜边c,求另一条直角边b:公式: a2 + b2 = c2或 b = √c2 – a2 (在实数范围内进行运算)。

3、已知直角三角形的一个锐角α和斜边c,求另一直角边b:公式: sinα = a / c或 a = c × sinα,求b: tanα = a / b 或 b = a / tanα。

4、判断一个三角形是否是直角三角形的方法:①有一个角是90°的三角形是直角三角形;②两边的平方和等于第三边的平方的三角形是直角三角形;③一边的中线等于这条中线的二分之一的三角形是直角三角形。

解直角三角形中考题在平面几何中,解直角三角形是中考必考知识点之一,也是初中数学的重点内容之一。

下面从以下几个方面来探讨解直角三角形在中考中的常见题型和解法。

一、锐角三角函数锐角三角函数是解直角三角形的基础知识,主要考查学生对三角函数的掌握程度。

一般题型为:已知一个锐角,求其它锐角的三角函数值。

例题:在Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA=____,cosA=____,tanA=____。

解析:根据勾股定理可求得AB=5,再根据锐角三角函数的定义可求得答案。

二、解直角三角形解直角三角形是解直角三角形中最重要的题型,主要考查学生对勾股定理、锐角三角函数的掌握以及应用能力。

一般题型为:已知一直角三角形中的两个边长或一个边长和另一个角的三角函数值,求未知边的长度。

例题:在Rt△ABC中,∠C=90°,BC=3,sinA=0.6,求AC的长。

解析:根据已知条件可求得∠B的三角函数值,再利用勾股定理可求得AC的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思想方法中考题型一、方程思想根据题意设适当的未知数,从已知和未知中寻求等量关系,构造出方程或方程组,从而使问题获解.例1如图1,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,又知河宽CD为50米.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,求缆绳AC的长(答案可带根号).解:过A点作AB⊥CD交CD的延长线于点B,设AB=x在Rt△ABC中,因为∠ACB=∠CAE=30°,所以AC=2ABC=2x,BC=3AB=3x在Rt△ABD中,因为∠ADB=∠EAD=45°,所以DB=AB=x因为CD=50,所以解得x=25(1+3)。

答:缆绳AC的长为()5013+米.说明先得出边角之间的关系,再构造方程求解,这是直角三角形的边角关系应用的常见方法,应值得注意.二、数形结合思想将数量和图形巧妙结合来寻找解题思路例2如图2,A、B、C表示建筑在一座比较险峻的名山上的三个缆车站的位置,AB、BC表示连接三个缆车站的钢缆。

已知A、B、C所处位置的海拔高度分别为124m、400m、1100m,如图建立直角坐标系,即A(a,124)、B(b,400)、C(c,1100),若直线AB的解析式为y=12x+4,直线BC与水平线BC1的交角为45°.⑴分别求出A、B、C三个缆车站所在位置的坐标;⑵求缆车从B站出发到达C站单向运行的距离(精确到1m).A(240,124)、B(792,400)、C(2192,1100);(2)7002≈990(米).三、转化思想抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法.例3如图3,学校旗杆附近有一斜坡.小明准备测量学校旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC=20米,斜坡坡面上的影长CD=8米,太阳光线AD与水平地面成26°角,斜坡CD与水平地面成30°的角.求旗杆AB的高度(精确到1米).(tan26°=0.43)解:延长AD、BC交于点E,过点D作DF⊥CE于F.则依据题意可知,∠E=°,∠DCE=°。

在Rt△CFD中,得DF=4,CF=43≈6.928,在Rt△DFE中,在Rt△ABE中,答:旗杆AB的高度约为.四、建模思想所谓建模思想就是认真分析题意,将实际问题抽象、转化为数学问题,建立数学模型,再通过对数学模型的探索达到解决问题的目的.例4如图4,MN表示一段高速公路的设计路线图.在点M测得点N在它的南偏东30°的方向.测得另一点A在它的南偏东60°的方向;取MN上另一点B,在点B测得点A在它的南偏东75°的方向.以点A为圆心,500m为半径的圆形区域为某居民区.已知MB=400m,通过计算回答:如果不改变方向,高速公路是否会穿过居民区?解:过点A作AC⊥MN于点C.依题意,得∠AMC=60°-30°=30°,∠ABC=75°-30°=45°.设AC为x m,图2BA图4M30°60°75°北北NC图1F图3EDCBA测量类例5、如图,小明在江南岸选定建筑物A ,并在江北岸的B 处观察,此时,视线与江岸BE 所成的夹角是30°,小强沿江岸BE 向东走了500m ,到C 处,再观察A ,此时视线CA 与江岸所成的夹角∠ACE =60°。

根据上述信息,你能测出江宽AD 吗?若能,写出求解过程(结果可保留根号);若不能,请说明理由。

解:过A 作AD ⊥BE ,垂足为D ,设AD=x , 在Rt △ABD 中,BD= 在Rt △ACD 中,CD=又因为BC=50,所以列方程,得: 解得:x=253练6、(2011安徽,19,10分)如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度C 处的飞机上,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°.求隧道AB 的长.(参考数据:3=1.73) 635m .练7、一次数学活动中,小明利用自己制作的测角器测量小山的高度CD .已知她的眼睛与地面的距离为1.6米,小明在B 处测量时,测角器中的60AOP ∠=°(量角器零度线AC 和铅垂线OP 的夹角,如图);然后她向小山走50米到达点F 处(点B F D ,,在同一直线上),这时测角器中的45EO P ''∠=°,那么小山的高度CD 约为( )A.68米B.70米C.121米D.123米(注:数据3 1.732≈,2 1.414≈供计算时选用)例8、(2011山东德州20,10分)某兴趣小组用高为1.2米的仪器测量建筑物CD 的高度.如示意图,由距CD 一定距离的A 处用仪器观察建筑物顶部D 的仰角为β,在A 和C 之间选一点B ,由B 处用仪器观察建筑物顶部D 的仰角为α.测得A ,B 之间的距离为4米,tan 1.6α=,tan 1.2β=,试求建筑物CD 的高度. 解:设建筑物CD 与EF 的延长线交于点G ,DG=x 米. …………1分 在Rt △DGF 中,由tan DG GF α=,得tan x GF α=. ∴tan xGF α= …2分 在Rt △DGE 中,tan DG GE β=,即tan x GE β=. ∴tan x GE β= …3分∴tan x EF β=tan xα- . ………5分BCE图1 ACDBE F β αGABC东∴4 1.2 1.6x x=-. ………6分 解方程得:x =19.2. ………8分 ∴ 19.2 1.220.4CD DG GC =+=+=. 答:建筑物高为20.4米. ………10分练9、如图,小明发现在教学楼走廊上有一拖把以15o 的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75o ,如果拖把的总长为1.80m ,则小明拓宽了行路通道 m .1.28(结果保留三个有效数字,参考数据:sin150.26≈o,cos150.97≈o)航行类练10、如图,某渔船上的渔民在A 处观测到灯塔M 在北偏东60o 方向处,这艘渔船以每小时28海里的速度向正东方向航行,半小时后到达B 处,在B 处观测到灯塔M 在北偏东30o方向处,问B 处与灯塔M 的距离是多少海里?14例11、(2011山东济宁,18, 5分)日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场检测与海水采样,针对核泄漏在极端情况下对海洋的影响及时开展分析评估.上午9时,海检船位于A 处,观测到某港口城市P 位于海检船的北偏西67.5°,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B 处,这时观测到城市P 位于海检船的南偏西36.9°方向,求此时海检船所在B 处与城市P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)解:过点P 作PC ⊥AB ,垂足为C ,设PC=x 海里.在Rt △APC 中,∵tan ∠A= ,∴AC= 在Rt △PCB 中,∵tan ∠B= ,∴BC=∵AC +BC=AB=21×5,∴54215123x x+=⨯,解得.答:海检船所在B 处与城市P 的距离为100海里.练12、一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C ,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近? (参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)分析:只要过C 作AB 的垂线段CD 就构造了直角三角形,然后再根据题目所给的条件进行计算,从而求出BD 的距离,那就是最短距离练13、问题可变为:如果小岛C 周围 海里内有暗礁,轮船继续向东航行有触礁危险。

练14、再变为:如果轮船行驶时,小岛C 周围 米以内会受到噪音的影响.那么轮船以 海里/时的速度继续向东航行时,岛C 受噪音影响的时间为多少?75°15°北东60o 30o M16筑坝类练15、(2011甘肃兰州)某水库大坝的横断面是梯形,坝内斜坡的坡度i=1∶3,坝外斜坡的坡度i=1∶1,则两个坡角的和为 。

【答案】75练16、一座建于若干年前的水库大坝的背水面的整个坡面是长为90米、宽为5米的矩形. 横断面如图所示。

现需将其整修并进行美化,方案如下:① 将背水坡AB 的坡度由1∶0.75改为1∶3;② 用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地 种草与栽花 ⑴ 求整修后背水坡面的面积;⑵ 如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少..需要多少元? 解题关键:搞清坡度的意义,将梯形问题转化为直角三角形问题 720米 216000元辅助练习:练17、如图,某边防巡逻队在一个海滨浴场岸边的A 点处发现海中的B 点有人求救,便立即派三名救生员前去营救.1号救生员从A 点直接跳入海中;2号救生员沿岸边(岸边看成是直线)向前跑到C 点,再跳入海中; 3号救生员沿岸边向前跑3 0 0米到离B 点最近的D 点,再跳人海中.救生员在岸上跑的速度都是6米/秒,在水中游泳的速度都是2米/秒.若∠BAD=4 5°,∠BCD=6 0°,三名救生员同时从A 点出发,请说明谁先到达营救地点B . (参考数据2≈1.4,3≈1.7) 2号练18、(2011湖北武汉)如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A .12秒.B .16秒.C .20秒.D .24秒.【答案】B练19、(2011内蒙古乌兰察布,16,4分)某厂家新开发的一种电动车如图,它的大灯A 射出的光线AB,AC 与地面MN 所夹的锐角分别为8︒和10︒,大灯A 与地面离地面的距离为1m 则该车大灯照亮地面的宽度BC 是 m .(不考虑其它因素)【答案】1.4练20、(2011浙江绍兴,20,8分)为倡导“地摊生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图,车架档AC 与CD 的长分别为45cm ,60cm ,且它们相互垂直,座杆CE 的长为20cm ,点,,A C E 在同一条直线上,且75CAB ∠=︒,如图2. (1)求车架档AD 的长(75 )(2)求车座点E 到车架档AB 的距离(63)FBADCE(精确到1cm ,参考数据:sin750.959cos750.2588tan75 3.7321︒≈︒≈︒≈,,)第19题图第20题图2练21、(2011湖南常德,24,8分)青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A 处测得懒羊羊所在地B 处的俯角为60°,然后下到城堡的C 处,测得B 处的俯角为30°.已知AC=40米,若灰太狼以5m/s 的速度从城堡底部D 处出发,几秒钟后能抓到懒羊羊?(结果精确到个位)7例22、(2011四川宜宾,22,7分)如图,飞机沿水平方向(A ,B 两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M 到飞行路线AB 的距离MN .飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N 处才测飞行距离),请设计一个求距离MN 的方案,要求: (1)指出需要测量的数据(用字母表示,并在图中标出); (2)用测出的数据写出求距离MN 的步骤.【答案】解:⑴如图,测出飞机在A 处对山顶的俯角为α,测出飞机在B 处对山顶的俯角为β,测出AB 的距离为d ,连接AM ,BM . ⑵第一步,在AMN Rt ∆中,AN MN =αtan ∴αtan MNAN = 第二步,在BMN Rt ∆中,BNMN=βtan ∴βtan MN BN =其中BN d AN +=,解得αββαtan tan tan tan -⋅⋅=d MN .练23、(2011湖北黄冈,21,8分)如图,防洪大堤的横断面是梯形,背水坡AB 的坡比1:3i =(指坡面的铅直高度与水平宽度的比).且AB=20 m .身高为1.7 m 的小明站在大堤A 点,测得高压电线杆端点D 的仰角为30°.已知地面CB 宽30 m ,求高压电线杆CD 的高度(结果保留三个有效数字,3≈1.732)21.7103+≈36.0练24、小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30º 角,且此时测得1米杆的影长为2米,求电线杆的高度CDNMAB第23题图(22题图)21图60°30°ABDC(第22题解答图)练25、如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是()(A)2cm(B)(C)6cm(D)8cm练26、如图,在直角坐标平面内,O为原点,点A的坐标为(100),,点B在第一象限内,5BO=,3sin5BOA=∠.则cos BAO∠= .练27、如图,一束光线照在坡度为1平行的光线,则这束与坡面的夹角α是度.练28、某段笔直的限速公路上,规定汽车的最高行驶速度不能超过60 km/h(即503m/s).交通管理部门在离该公路100 m处设置了一速度监测点A,在如图11所示的坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.(1)请在图中画出表示北偏东45°方向的射线AC,并标出点C的位置;(2)点B坐标为,点C坐标为;(3)一辆汽车从点B行驶到点C所用的时间为15 s,请通过计算,判断该汽车1.7)(第25题)(第27题)。

相关文档
最新文档