单位圆与周期性
三角函数性质及公式总结
三角函数性质及公式总结三角函数是高中数学中重要的内容之一,其性质和公式的掌握程度直接影响到解决三角函数相关题目的能力。
下面我将对三角函数的性质和公式进行总结,帮助大家更好地掌握和应用三角函数知识。
一、正弦函数的性质和公式1. 定义:在单位圆上,角A的终边与x轴正半轴所成的弧长与单位圆半径1之比称为角A的正弦,记为sinA。
2. 基本性质:-1≤sinA≤1,对于同一角的不同终边,其正弦相等。
3. 周期性:sin(A+2πn)=sinA,其中n为整数。
4. 正弦函数的图像为一条连续变化的曲线,其最大值为1,最小值为-1,且在0、π、2π、3π等处取得转折点。
5. 正弦函数的基本公式:sin(A±B)=sinAcosB±cosAsinB。
二、余弦函数的性质和公式1. 定义:在单位圆上,角A的终边与x轴正半轴所成的弧长与单位圆半径1之比称为角A的余弦,记为cosA。
2. 基本性质:-1≤cosA≤1,对于同一角的不同终边,其余弦相等。
3. 周期性:cos(A+2πn)=cosA,其中n为整数。
4. 余弦函数的图像为一条连续变化的曲线,其最大值为1,最小值为-1,且在π/2、3π/2、5π/2等处取得转折点。
5. 余弦函数的基本公式:cos(A±B)=cosAcosB∓sinAsinB。
三、正切函数的性质和公式1. 定义:在单位圆上,角A的正切等于角A的正弦除以角A 的余弦,记为tanA=sinA/cosA。
2. 正切函数的定义域为所有余弦不为零的实数,其图像在余弦函数的零点处有无穷间断。
3. 正切函数的性质:tan(A±B)=(tanA±tanB)/(1∓tanAtanB)。
4. 正切函数的周期性:tan(A+π)=tanA,其中n为整数。
5. 正切函数的图像在每一区间(-π/2+πn,π/2+πn)上是连续的,且在π/4、3π/4、5π/4等处取得转折点。
单位圆与周期性
高中数学必修4导学案2014-2015学年第一学期 高二年级 班 姓名: 编写者: 使用时间2018-9-2课题 :§1.4.2单位圆与周期性 1 课时 学习目标:1、知识与技能(1)理解正弦函数、余弦函数的几何意义;(2)会利用单位圆研究正弦函数、余弦函数的周期性. 2、过程与方法通过研究正弦函数、余弦函数的几何意义,利用单位圆研究正弦函数、余弦函数的周期性. 3、情感态度与价值观通过单位圆的学习,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题、解决问题的能力.学习重点:周期性及一般函数周期性的定义. 学习难点:会求简单函数的周期性. 基础达标:1、终边相同的角的正、余弦值间的关系(1)sin(2) ,()x k k Z π+=∈; (2)cos(2) ,()x k k Z π+=∈. 2、周期函数的定义(1)一般地,对于函数()f x ,如果存在 ,对定义域内的 值,都有 ,则称()f x 为周期函数, 称为这个函数的周期.(2)特别地,正弦函数、余弦函数是周期函数,称 是正弦函数、余弦函数的周期.其中 是正弦函数、余弦函数正周期中最小的一个,称为 .合作交流:1、求值:(1)sin(1320)cos1110cos(1020)sin 750cos 495-︒︒+-︒︒+︒(2)2317cos()34ππ-+2、若()f x 是R 上周期为5的奇函数,且满足(1)1f =,(2)2f =,求(3)(4)f f -的值.思考探究:1、由于sin()sin 424πππ+=,所以2π是()sin f x x =的一个周期,对吗?2、所有的周期函数都有最小正周期吗?达标检测:1、下列说法不正确的是( ) A.只有个别的x 值或只差个别的x 满足()()f x T f x +=或不满足都不能说T 是()y f x =的周期B.所有周期函数都存在最小正周期C.周期函数的周期不止一个,若T 是周期,则kT()k N +∈一定也是周期D.周期函数的定义域一定是无限集,而且定义域一定无上界或者无下界2、25sin 6π=( )A.12-B.32C.12 D.32-3.下列说法中正确的是( ) A .当2x π=时,sin()sin 6x x π+≠,所以6π不是()sin f x x =的周期 B .当512x π=时,sin()sin 6x x π+=,所以6π是()sin f x x =的一个周期 C .-2π不是y =sin x 的周期 D .π是y =cos x 的一个周期4、角α的终边经过点(,4)P b -且3cos 5α=-,则b 的值为( ) A. 3 B. -3 C. 3± D. 5 5、下列函数是周期函数的是( ) ①()f x x =;②()2x f x =;③()1f x =;④1,()0为有理数,为无理数x f x x ⎧=⎨⎩.A.①②B.③C.③④D.①②③④6、角α的终边上有一点()(,),0且P a a a R a ∈≠,则cos α的值是( )A.22 B.22- C.22± D.1 7、sin390 ︒=,cos390 ︒=,390°终边与单位圆交点P 的坐标为________.8、若偶函数()y f x =是以4为周期的函数,且在区间[]6,4--上是减函数,则在上[]0,2的单调性是学习小结:学后反思:。
单位圆与周期性 ppt课件
上述两个等式说明:对于任意一个角x,每增加2π的整数倍, 其正弦函数值、余弦函数值均不变.所以正弦函数值、余弦函
数值均是随角的变化呈周期性变化的。生活中有许多周期性变
化的现象,例如,钟摆的摆心到铅垂线的距离随时间的变化呈
周期性变化。从而我们把自变量的变化呈周期性变化的函数叫 作周期函数。正弦函数、余弦函数是周期函数,(备注:同学 们回忆目前你学过那些类型的函数?)称2kπ (k∈Z,k≠0)为正弦 函数、余弦函数的周期。
例如:-4π,-2π,2π,4π等都是它们的周期. 2π是正弦函数、余弦函数正周期中最小的一个,称为 最小正周期.
一般地, 对于函数f(x),如果存在非零 实数T,对定义域内的任意一个x值,都有
f(x+T) =f(x)
我们就把f(x)称为周期函数,T称为这个函数 的周期。
一般地,对于周期函数f(x),如果它 所有的周期中存在一个最小的正数,那 么这个最小的正数就叫作f(x)的最小正周 期
注意:
(1)只有个别x的值满足,不能说是周期函数; (2)自变量加上的常数才算周期,比如:f(2x+T)=f(2x),我们说f(2x)是周期函数,但 周期是T/2; (3)如果f(x)是周期函数,T为其周期,那么,x+kT也属于其定义域,也就是说,周期函 数的定义域是一个无限集; (4)对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期, 一般我们所说的周期都是指最小正周期。事实上,如果T为周期,那么kT(k≠0)也是它 的周期. (5)部分函数虽然是周期函数,但是没有最小正周期,例如f(x)=c,(c为常数,x∈R). (6)定义域的变化会对函数的周期性长生一定的影响,例如f(x)=sinx,x ∈[0,10π]
1.4.2单位圆与周期性
4、2 单位圆与周期性(导学案)使用说明:1.先精读教材,勾画出本节内容的基本概念,找出问题并进行标注,然后再精读教材完成本学案;2.要求独立完成预习案.【学习目标】⒈理解周期性概念的形成。
⒉周期函数概念的加深理解。
⒊正弦、余弦函数的周期性。
【学习重点和难点】重点:正弦、余弦函数的周期性。
难点:求函数的最小正周期。
【预习案】复习知识当角α的终边分别在第一、二、三、四象限时,正弦函数值、余弦函数值的正负号:象限三角函数第一象限第二象限第三象限第四象限αsinαcos教材助读1.终边相同的角的正弦函数值、余弦函数值相等,即_________________________,_________________________。
2.课前自主学习⑴一般地,对于函数()x f,如果存在非零实数T,对定义域内的_______________一个x值都有_________________________,我们就把()x f称为周期函数,____________称为这个函数的周期。
如果在周期函数()x f的所有周期中存在一个最小正数,那么这个最小正数叫做()x f的最小正周期。
⑵若周期函数()x f的一个周期是T(T≠0),则___________________也为()x f的周期。
⑶正弦函数、余弦函数的周期为_____________________,最小正周期为________________。
预习自测1.函数()2xxf=满足()()3f63f-=+-,这个函数是不是以6为周期的周期函数,为什么?2.函数sinxy=是周期函数,且⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛+4f24fπππ,为什么2π不是它的周期?【探究案】基础知识探究1.已知函数)(xf)(Rx∈是周期为3的奇函数,且f(-1)=a,则f(7)=_________2.已知函数)(xf是R上的奇函数,且f(1)=2,f(x+3)=f(x) ,求f(8).3.已知角α为第二象限角,求:(1)角2α是第几象限的角;(2)角α2终边的位置。
核心素养理念下的高中数学教学设计---以《三角函数的概念》为例
核心素养理念下的高中数学教学设计---以《三角函数的概念》为例摘要:本文比较分析了新旧教材对《三角函数的概念》这节课的设计和编排,并基于数学核心素养的理念,与时俱进,以提升学生学科素养为目标,就如何运用新教材更好的设计和组织本节课的教学展开了研修。
关键词:三角函数的概念;核心素养;教学设计随着新课程改革的不断深入开展,基础教育数学课程的理念与教材内容的呈现方式也在不断与时俱进,以期实现“以学生发展为本,落实立德树人根本任务,培育科学精神和创新意识,提升数学学科核心素养”[1]等目标。
《普通高中数学课程标准(2017年版)》指出,要培养学生的数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等六大核心素养,也就是要让学生学会用数学的眼光观察世界,用数学思维分析世界,用数学语言表达世界。
以人教版教材为例,为了落实最新课程标准的要求,最新修订并于2019年秋季陆续投入使用的《普通高中教科书·数学(人教A版)》,相较于2004年秋季开始发行的《普通高中实验教科书·数学(人教A版)》(以下简称“旧教材”),教材的编排与内容的呈现形式有了很大的变化。
如何基于数学核心素养的理念,运用新教材更好地设计和组织教学,以更好地发展学生的思维,增强发现问题与提出问题、分析问题与解决问题的能力?下面以“三角函数的概念”为例,对比新旧教材的处理方式形成有效的发展学生数学核心素养的教学设计。
一、教材比较分析1.基于课程标准要求的“三角函数的概念”新教材内容分析以《普通高中教科书·数学必修第一册(人教A版)》为例,三角函数的概念的分为2个课时,这里重点分析第一课时内容。
函数是刻画现实世界运动变化规律的重要函数模型。
作为基本函数之一的任意角的三角函数,是刻画周期性运动规律的重要函数模型。
其中圆周运动是周期性运动的典例,前面通过对任意角和弧度值的学习,建立了角的集合与实数集的一一对应,为学习任意角的三角函数做好了铺垫。
数学素材:为什么用单位圆上点的坐标定义任意角的三角函数
为什么用单位圆上点的坐标定义任意角的三角函数在人教版《普通高中实验教科书·数学4·必修(A版)》(简称“人教A 版”)中,三角函数采用了如下定义(简称“单位圆定义法”):“如图1,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y叫做α的正弦,记作sinα,即sinα=y;(2)x叫做α的余弦,记作cosα,即cosα=x;(3)叫做α的正切,记作tanα,即tanα=(x≠0).可以看出,当α=(k∈Z)时,α的终边在y轴上,这时点P的横坐标x等于0,所以无意义.除此之外,对于确定的角α,上述三个值都是唯一确定的.所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.”1.部分教师的疑惑和意见由于种种原因,实验区有的教师对上述定义不理解,认为该定义不如以往教材采用的定义,即在角α的终边上任取一点P(x,y),P到原点的距离为r,比值,,分别定义为角α的正弦函数、余弦函数和正切函数(简称“终边定义法”).其理由主要有以下几点:第一,“单位圆定义法”中,“交点是特殊的,缺乏一般性,不符合数学定义的要求”;“终边定义法”中,“所取得点是任意的,具有一般性,符合数学定义的要求”.有的老师说,“单位圆上的点毕竟是特殊点,用它定义三角函数有失一般性”.第二,“单位圆定义法”不利于将锐角三角函数推广到任意角三角函数;“终边定义法”有利于这种推广.有的老师说,“用单位圆上点的坐标定义正弦、余弦函数带来了不少便利,其根本原因是它化简了三角函数的比值.而用单位圆上点的坐标定义正切函数,由于它未能化简三角函数的比值,所以它就没有什么特别的意义.”第三,“单位圆定义法”不利于解题.有的老师说,在解“已知角α终边上一点的坐标是(3a,4a),求角α的三角函数值”时,用“终边定义法”非常方便,而用“单位圆定义法”很不方便.为了解答老师们的疑问,我们首先从回顾三角函数的发展历史开始.2.对三角函数发展历史的简单回顾回顾三角学发展史,可以发现它的起源、发展与天文学密不可分,它是一种对天文观察结果进行推算的方法.1450年以前,三角学主要是球面三角,这是航海、立法推算以及天文观测等人类实践活动的需要,同时也是宇宙的奥秘对人类的巨大吸引力所至,这种“量天的学问”确实太诱人了.后来,由于间接测量、测绘工作的需要而出现了平面三角.三角学从天文学中独立出来的标志是德国数学家雷格蒙塔努斯(J. Regiomontanus,1436—1476)于1464年出版《论各种三角形》,这部著作首次对三角学做出了完整、独立的阐述.其中采用印度人的正弦,即圆弧的半弦,明确使用了正弦函数,讨论了一般三角形的正弦定理,提出了求三角形边长的代数解法,给出了球面三角的正弦定理和关于边的余弦定理.这部著作为三角学在平面与球面几何中的应用奠定了牢固基础.后来,哥白尼的学生雷提库斯(G. J. Rhaeticus,1514—1576)将传统的圆中的弧与弦的关系改进为角的三角函数关系,把三角函数定义为直角三角形的边长之比,从而使平面三角学从球面三角学中独立出来,并采用了六个函数(正弦、余弦、正切、余切、正割、余割).法国数学家韦达(F. Vieta,1540—1603)总结了前人的三角学研究成果,将解平面直角三角形和斜三角形的公式汇集在一起,还补充了自己发现的新公式,如正切公式、和差化积公式等,并将解斜三角形的问题转化为解直角三角形的问题等,这是对三角学的进一步系统化.总之,16世纪,三角学从天文学中分离出来,成为数学的一个独立分支.不过,值得注意的是,这时所讨论的“三角函数”仅限于锐角三角函数,而且研究锐角三角函数的目的在于解三角形和三角计算.任意角的三角函数的研究,与圆周运动的研究有直接关系.17世纪,“数学从运动的研究中引出了一个基本概念.在那以后的二百年里,这个概念在几乎所有的工作中占中心位置,这就是函数──或变量间的关系──的概念.” “正弦、余弦函数是一对起源于圆周运动,密切配合的周期函数,它们是解析几何学和周期函数的分析学中最为基本和重要的函数;而正弦、余弦函数的基本性质乃是圆的几何性质(主要是其对称性)的直接反映.”任意角的三角函数的系统化是在18世纪的微积分研究中完成的.“微积分的一般工作的结果是:初等函数被充分地认识了,并实际已将它们发展成为我们今天所见到的样子.”“三角函数的数学也系统化了.Newton和Leibniz给出了这些函数的级数展开式.两个角的和与差的三角函数sin(x+y),sin(x-y)……的公式的发展应归功于一批人……最后,Euler于1748年在关于木星和土星运动中的不等式的一篇得奖文章中给出了三角函数的一个十分系统的处理.在Euler1748年的《引论》中已经搞清了三角函数的周期性,并引入了角的弧度制.” 3.任意角的三角函数与锐角三角函数的关系从上述简单回顾可以看到,任意角的三角函数虽然与三角学(锐角三角函数)有渊源关系,某种意义上可以把前者看成是后者的进一步发展,但它们研究的是两类不同的问题.“三角学所讨论的课题是三角形的各种各样的几何量之间的函数关系” ,锐角三角函数是解三角形的工具;而任意角的三角函数却不限于此,它是一个周期函数,是研究现实世界中周期变化现象的“最有表现力的函数”.另外,从数学发展的历史看,任意角的三角函数在18世纪之所以得到系统研究(其中很重要的是函数的三角级数展开式问题),一个主要原因是三角函数具有周期性,这一特殊属性在天文学、物理学中有大量的应用.三角级数“在天文学中之所以有用,显然是由于它们是周期函数,而天文现象大都是周期的” ,而这种应用又与当时的数学研究的中心工作──微积分紧密结合,人们在研究行星运动的各种问题时,需要确定函数的Fourier展开式,而这种展开式(三角级数)的系数是用定积分表示的.所以,锐角三角函数是研究三角形各种几何量之间的关系而发展起来的,任意角三角函数是研究现实中的周期现象而发展起来的.它们研究的对象不同,表现的性质也不同.我们既不能把任意角的三角函数看成是锐角三角函数的推广(或一般化),又不能把锐角三角函数看成是任意角的三角函数在锐角范围内的“限定”.4.用“单位圆定义法”的理由用单位圆上点的坐标定义任意角的三角函数有许多优点.(1)简单、清楚,突出三角函数最重要的性质──周期性.采用“单位圆定义法”,对于任意角a,它的终边与单位圆交点P(x,y)唯一确定,这样,正弦、余弦函数中自变量与函数值之间的对应关系,即角a(弧度)对应于点P的纵坐标y──正弦,角a(弧度)对应于点P的横坐标x──余弦,可以得到非常清楚、明确的表示,而且这种表示也是简单的.另外,“x= cosa,y= sina是单位圆的自然的动态(解析)描述,由此可以想到,正弦、余弦函数的基本性质就是圆的几何性质(主要是对称性)的解析表述”,其中,单位圆上点的坐标随着角a每隔2π(圆周长)而重复出现(点绕圆周一圈而回到原来的位置),非常直观地显示了这两个函数的周期性.“终边定义法”需要经过“取点──求距离──求比值”等步骤,对应关系不够简洁;“比值”作为三角函数值,其意义(几何含义)不够清晰;“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系不一致,而且“比值”需要通过运算才能得到,任意一个角所对应的比值的唯一性(即与点的选取无关)也需要证明;“比值”的周期性变化规律也需要经过推理才能得到.以往的教学实践表明,许多学生在结束了三角函数的学习后还对三角函数的对应关系不甚了了,与“终边定义法”的这些问题不无关系.(2)有利于构建任意角的三角函数的知识结构.“单位圆定义法”以单位圆为载体,自变量a与函数值x,y的意义非常直观而具体,单位圆中的三角函数线与定义有了直接联系,从而使我们能方便地采用数形结合的思想讨论三角函数的定义域、值域、函数值符号的变化规律、同角三角函数的基本关系式、诱导公式、周期性、单调性、最大值、最小值等.例如:● P(x,y)在单位圆上|x|≤1,|y|≤1,即正弦、余弦函数的值域为[-1,1];● |OP|2=1sin2a +cos2a =1;●对于圆心的中心对称性sin(π+a)=-sina,cos(π+a)=-cosa;●对于x轴的轴对称性sin(-a)=-sina,cos(-a)=cosa;●对于y轴的轴对称性sin(π-a)=sina,cos(π-a)=-cosa;●对于直线y=x的轴对称性sin(-a)=cosa,cos(-a)=sina;● sina在[-,]内的单调性a:- 0 πx:-1010-1 sina在[-,]上单调递增,在[,]上单调递减;……另外,学生在学习弧度制时,对于引进弧度制的必要性较难理解.“单位圆定义法”可以启发学生反思:采用弧度制度量角,就是用单位圆的半径来度量角,这时角度和半径长度的单位一致,这样,三角函数就是以实数(弧度数)为自变量,以单位圆上点的坐标(也是实数)为函数值的函数,这就与函数的一般定义一致了.另外,我们还可以这样来理解三角函数中自变量与函数值之间的对应关系:把实数轴想象为一条柔软的细线,原点固定在单位点A(1,0),数轴的正半轴逆时针缠绕在单位圆上,负半轴顺时针缠绕在单位圆上,那么数轴上的任意一个实数(点)a被缠绕到单位圆上的点P(cosa,sina).(3)符合三角函数的发展历史.前述三角函数发展史已经表明,任意角的三角函数是因研究圆周运动的需要而产生的,数学史上,三角函数曾经被称为“圆函数”.所以,采用“单位圆定义法”能更真实地反映三角函数的发展进程.(4)有利于后续学习.前已述及,“单位圆定义法”使三角函数反映的数形关系更直接,为后面讨论三角函数的性质和图像奠定了很好的直观基础.不仅如此,这一定义还能为“两角和与差的三角函数”的学习带来方便,因为和(差)角公式实际上是“圆的旋转对称性”的解析表述,和(差)化积公式也是圆的反射对称性的解析表述.另外,这一定义中角的度量直接采用了弧度制,能为微积分的学习带来方便.例如,重要极限=1几乎就是定义的一个“推论”.5.教科书中的任意角的三角函数的引入方式“人教A版”首先通过“思考”,提出用直角坐标系中角的终边上点的坐标表示锐角三角函数的问题,以引导学生回忆锐角三角函数概念,体会引进象限角概念后,用角的终边上点的坐标比表示锐角三角函数的意义.教科书在定义任意角的三角函数之前,作了如下铺垫:直角三角形为载体的锐角三角函数→象限角为载体的锐角三角函数→单位圆上点的坐标表示的锐角三角函数这样做的目的主要是为了以锐角三角函数为认知基础来学习任意角的三角函数,使学生初步体会用单位圆上点的坐标表示锐角三角函数所具有的简单、方便并反映本质的好处,从而为“单位圆定义法”做好认知准备.需要注意的是,这样做并不表明任意角的三角函数与锐角三角函数之间有一般与特殊的关系.事实上,用“单位圆定义法”单刀直入给出定义,然后再在适当时机联系锐角三角函数,这也是一种不错的选择.6.几点说明(1)“单位圆定义法”与“终边定义法”本质上是一致的.正因为此,各种数学出版物中,两种定义方法都有采用.例如,由苏联科学院院士、世界著名数学家И.М.维诺格拉多夫主编,苏联百科全书出版社出版,被陈省身先生誉为“对数学的贡献,将无法估计”的、具有世界性权威的《数学百科全书》(中译本在2000年由科学出版社出版)中,采用了“单位圆定义法”;中国大百科全书出版社的《中国大百科全书·数学》(1992年版)中采用了“终边定义法”.应当说,采用哪一种定义方法是一个取舍问题,没有对错之分,并不存在商榷的问题.因此,“单位圆上的点毕竟是特殊点,用它定义三角函数有失一般性”的认识是不正确的.值得强调的是正弦、余弦和正切函数在R(正切除a=(k∈Z) 外)上处处有定义,而不是角a的终边上取点的任意性.事实上,在老师们熟悉的“终边定义法”中,给出定义后有如下说明:“根据相似三角形的知识,对于确定的角a,这三个比值(如果有的话)都不会随点P 在a的终边上的位置的改变而改变……对于确定的角a,上面三个比值都是唯一确定的.这就是说,正弦、余弦、正切都是以角为自变量,以比值为函数值的函数.”这恰恰说明了“以角a的终边与单位圆的交点坐标为‘比值’”是不失一般性的.另外,用“单位圆定义法”直截了当、简洁易懂,不需要这样的说明,就更显出其好处了.(2)《高中数学课程标准(实验)》只要求正弦、余弦和正切三个函数,其目的是削枝强干,是非常正确的.进一步地,三角函数中,正弦、余弦函数是“基本三角函数”,其余都是通过这两个函数的运算(相除、取倒数等)而得到的,或者说是从这两个函数“派生”出来的.这样理解各三角函数的关系,那么“用单位圆上点的坐标定义正切函数,由于它未能化简三角函数的比值,所以它就没有什么特别的意义”的担心也就不必要了.(3)“人教A版”在给出三角函数定义后,有如下两个例题:例1 求的正弦、余弦和正切值.例2 已知角a的终边经过点P0(-3,-4),求角a的正弦、余弦和正切值.它们的作用主要是让学生熟悉定义.例1的解答要用锐角三角函数知识,例2的解答要用一定的平面几何知识,而许多学生的平面几何基础较差,所以有一定的困难,这是教学中需要注意的.另外,例2还有让学生研究“终边定义法”的意图,教科书“边空”的“小贴士”表明了这一点:“由例2可知,只要知道角a 终边上任意一点的坐标,就可以求出角a的三角函数值.因此,利用角a终边上任意一点的坐标也可以定义三角函数.你能自己给出这种定义吗?”至于类似“已知角a终边上一点的坐标是(3a,4a),求角a的三角函数值”的问题,显然是一个细枝末节问题,与三角函数的核心知识无关.参考文献:① [美]M. 克莱因. 古今数学思想(第二册)[M]. 上海:上海科学技术出版社,1979,43②项武义. 基础数学讲义丛书?基础几何学[M]. 北京:人民教育出版社,2004,82③同①,122~123④同②,82⑤同①,182⑥详见②,84~87。
初三圆周角函数知识点归纳总结
初三圆周角函数知识点归纳总结圆周角函数是初中数学中的重要内容,对于学习三角函数和解题提供了便利。
本文将对初三圆周角函数的知识点进行归纳总结,以帮助同学们更好地理解和掌握。
一、正弦函数1. 定义:在单位圆上,从正半轴到与半径夹角为θ的弧段的纵坐标与半径的比值,称为正弦函数,记作sinθ。
2. 基本性质:- 定义域:所有实数;- 值域:[-1, 1];- 周期性:sin(θ+2π)=sinθ;- 对称性:sin(-θ)=-sinθ。
3. 常用值:- sin(0)=0;- sin(π/6)=1/2;- sin(π/4)=√2/2;- sin(π/3)=√3/2;- sin(π/2)=1。
二、余弦函数1. 定义:在单位圆上,从正半轴到与半径夹角为θ的弧段的横坐标与半径的比值,称为余弦函数,记作cosθ。
2. 基本性质:- 定义域:所有实数;- 值域:[-1, 1];- 周期性:cos(θ+2π)=cosθ;- 对称性:cos(-θ)=cosθ。
3. 常用值:- cos(0)=1;- cos(π/6)=√3/2;- cos(π/4)=√2/2;- cos(π/3)=1/2;- cos(π/2)=0。
三、正切函数1. 定义:在单位圆上,从正半轴到与半径夹角为θ的弧段的纵坐标与横坐标的比值,称为正切函数,记作tanθ。
2. 基本性质:- 定义域:所有实数,除去所有余弦函数为0的点(即θ=π/2+kπ,k为整数);- 值域:全体实数;- 周期性:tan(θ+π)=tanθ。
3. 常用值:- tan(0)=0;- tan(π/4)=1;- tan(π/6)=√3/3;- tan(π/3)=√3;四、相关性质1. 三角函数的关系:- tanθ=sinθ/cosθ;- sin²θ+cos²θ=1。
2. 三角函数的互化公式:- sin(-θ)=-sinθ;- cos(-θ)=cosθ;- tan(-θ)=-tanθ。
浅谈三角函数与单位圆
,即xy =a tan浅谈三浅谈三角函数角函数与单位圆与单位圆三角函数是三角函数是高中数学高中数学的重要内容,对培养学生的数形结合能力以及严密的逻辑推理能力都起着很大的作用。
尤其是单位圆在研究三角函数方面起着灵魂的作用,让每一位数学教学者不得不另眼相待。
学者不得不另眼相待。
一、我对教材编排的一点看法:一、我对教材编排的一点看法:1、不同版本的教材对三角函数的内容编排有很大差异:人教A 版中,三角函数采用了版中,三角函数采用了 “单位圆定义法”。
“单位圆定义法”。
如图,设α是一个任意角,它的终边与单位圆交于点P(x P(x,,y)y),那么:,那么:,那么:(1)y 叫做α的正弦,记作sin α,即sin α=y =y;;(2)x 叫做α的余弦,记作cos α,即cos α=x =x;; (3)xy 叫做α的正切,记作tan α(x≠0).(x≠0).可以看出,当α=2pp +k (k∈Z)时,α的终边在y 轴上,这时点P 的横坐标x 等于0,所以xy=a tan 无意义.除此之外,对于确定的角α,上述三个值都是唯一确定的.所以,正弦、余弦、正切都是以角为正弦、余弦、正切都是以角为自变量自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.”我们将它们统称为三角函数.”人教B 版教材采用的是终边定义法,即在角α的终边上任取一点P(x P(x,,y)y),,P 到原点的距离为r ,比值xyr x r y ,,分别定义为角α的正弦函数、余弦函数和正切函数。
而在后续的内容中又加入了正弦线、余弦线、正的内容中又加入了正弦线、余弦线、正切线切线,并且得到了结论“角α的正弦和余弦分别等于角α的终边与单位圆的的终边与单位圆的交点交点的纵坐标和横坐标。
的纵坐标和横坐标。
””而α的正切没有进行明确说明,的正切没有进行明确说明,只是只是讲了正切线,并在图中标注了T(1,tan α)。
y O x p 2、结合教学实践,我认为两种版本均有一些缺憾。
三角函数的“单位圆定义法”与“终边定义法”
三⾓函数的“单位圆定义法”与“终边定义法”"单位圆定义法"与"终边定义法"本质上是⼀致的,采⽤哪⼀种定义⽅法是⼀个取舍问题,没有对错之分.三⾓函数的两种定义⽅法都是可⾏的,我们没必要⾮要分出孰优孰劣,我们⼤可以采取"兼容并包兼收并蓄"的态度来提⾼对三⾓函数定义及三⾓函数的认识。
从映射的⾓度来开展三⾓函数定义的教学,可以有效培养学⽣的逻辑思维能⼒。
在具体的教学实践中它可以很好的帮助学⽣解决已知⼀个⾓的中边上的⼀点的坐标来求这个⾓的的三⾓函数值的问题,和理解参数⽅程。
从这⼀点来看,利⽤⾓的终边上任意⼀点的坐标出发来定义三⾓函数更好⼀些。
为什么要学习利⽤单位圆来定义三⾓函数?⽤单位圆上点的坐标定义任意⾓的三⾓函数有许多优点,可以使抽象的问题变得直观,使学⽣能够深⼊浅出地理解三⾓函数的⼀些性质,主要体现以下⽅⾯。
1、简单、清楚,突出三⾓函数最重要的性质──周期性.采⽤"单位圆定义法",对于任意⾓?,它的终边与单位圆交点P(x,y)唯⼀确定,这样,正弦、余弦函数中⾃变量与函数值之间的对应关系,即⾓(弧度)对应于点P的纵坐标y──正弦;⾓(弧度)对应于点P的横坐标x──余弦。
可以得到⾮常清楚、明确的表⽰,⽽且这种表⽰也是简单的。
另外,"x= cos,y= sin ?是单位圆的⾃然的动态(解析)描述,由此可以想到,正弦、余弦函数的基本性质就是圆的⼏何性质(主要是对称性)的解析表述",其中,单位圆上点的坐标随着⾓?每隔2π(圆周长)⽽重复出现(点绕圆周⼀圈⽽回到原来的位置),⾮常直观地显⽰了这两个函数的周期性。
"终边定义法"需要经过"取点──求距离──求⽐值"等步骤,对应关系不够简洁;"⽐值"作为三⾓函数值,其意义(⼏何含义)不够清晰; "从⾓的集合到⽐值的集合"的对应关系与学⽣熟悉的⼀般函数概念中的"数集到数集"的对应关系不⼀致,⽽且"⽐值"需要通过运算才能得到,任意⼀个⾓所对应的⽐值的唯⼀性(即与点的选取⽆关)也需要证明;"⽐值"的周期性变化规律也需要经过推理才能得到.以往的教学实践表明,许多学⽣在结束了三⾓函数的学习后还对三⾓函数的对应关系不甚了了,与"终边定义法"的这些问题不⽆关系。
【北师大版】高中数学必修四全册学案(全册共340页 附答案)
【北师大版】高中数学必修四全册学案(全册共340页附答案)目录§1周期现象§2角的概念的推广§3弧度制4.1 单位圆与任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与正弦函数、余弦函数的基本性质4.4 单位圆的对称性与诱导公式(一)4.4 单位圆的对称性与诱导公式(二)5.1 正弦函数的图像5.2 正弦函数的性质§6余弦函数的图像与性质7.1 正切函数的定义7.2 正切函数的图像与性质7.3 正切函数的诱导公式§8函数y=A sin(ωx+φ)的图像与性质(一)§8函数y=A sin(ωx+φ)的图像与性质(二)§9三角函数的简单应用章末复习课第二章平面向量§1从位移、速度、力到向量2.1 向量的加法2.2 向量的减法3.1 数乘向量3.2 平面向量基本定理§4平面向量的坐标§5从力做的功到向量的数量积§1周期现象内容要求 1.了解周期现象,能判断简单的实际问题中的周期(重点).2.初步了解周期函数的概念,能判断简单的函数的周期性(难点).知识点周期现象(1)概念:相同间隔重复出现的现象.(2)特点:①有一定的规律;②不断重复出现.【预习评价】1.(正确的打“√”,错误的打“×”)(1)地球上一年春、夏、秋、冬四季的变化是周期现象.(√)(2)钟表的分针每小时转一圈,它的运行是周期现象.(√)2.观察“2,0,1,7,2,0,1,7,2,0,1,7,…”寻找规律,则第25个数字是________.解析观察可知2,0,1,7每隔四个数字重复出现一次,具有周期性,故第25个数字为2. 答案 2题型一周期现象的判断【例1】判断下列现象是否为周期现象,并说明理由.(1)地球的自转;(2)连续抛掷一枚骰子,朝上一面的点数;(3)钟表的秒针的转动;(4)某段高速公路每天通过的车辆数.解(1)地球每天自转一圈,并且每一天内的任何时段总会重复前一天内相同时段的动作,因此是周期现象.(2)连续抛掷一枚骰子,朝上一面的点数有可能为1,2,…,6,并且前一次出现的点数,下一次可能出现,也可能不出现,故出现的点数是随机的,因此不是周期现象.(3)钟表的秒针的转动,每一分钟转一圈,并且每分钟总是重复前一分钟的动作,因此是周期现象.(4)某段高速公路每天通过的车辆数,会因时间、天气、交通状况等因素而发生变化,没有一个确定的规律,因此不是周期现象.规律方法周期现象的判断关键:首先要认真审题,明确题目的实际背景,然后应牢牢抓住“间隔相同,现象(或值)重复出现”这一重要特征进行判断.【训练1】判断下列现象是否为周期现象:(1)每届奥运会的举办时间;(2)北京天安门广场的国旗,日出时升旗,日落时降旗,则其每天的升旗时间;(3)中央电视台每晚7:00的新闻联播.解(1)奥运会每4年一届,所以其举办时间呈周期现象.(2)北京每天的日出、日落随节气变化,并非恒定,相邻两天的升旗时间间隔是变化的,不是常数,所以不是周期现象.(3)每24小时,新闻联播重复一次,所以是周期现象.题型二周期现象的应用【例2】一个地区不同日子里白昼的时长是不同的,所给表是某地一年中10天测量的白昼时间统计表(时间近似到0.1小时):坐标系中画出这些数据的散点图,并估计该地区一年中大约有多少天白昼时间大于15.9小时.(2)白昼时间的变化是否具有周期现象?你估计该地区来年6月21日的白昼时间是多少?解(1)散点图如图所示,因为从4月27日至8月13日的白昼时间均超过15.9小时,所以该地区一年白昼时间超过15.9小时的大约有3+31+30+31+12=107(天).(2)由散点图可知,白昼时间的变化是周期现象,该地区来年6月21日的白昼时间为19.4小时.规律方法收集数据、画散点图,分析、研究数据特点从而得出结论是用数学方法研究现实问题的常用方法.【训练2】受日月的引力,海水会发生涨落,这种现象叫做潮汐.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下表是某日各时的浪高数据:几次?时间最长的一次是什么时候?有多长时间?解由题中表可知,一天内能开放三次,时间最长的一次是上午9时至下午3时,共6个小时.【例3】2017年5月1日是星期一,问2017年10月1日是星期几?解按照公历记法,2017年5、7、8这三个月份都是31天,6、9月份各30天.从2017年5月1日到2017年10月1日共有153天,因为每星期有7天,故由153=22×7-1知,从2017年5月1日再过154天恰好与5月1日相同都是星期一,这一天是公历2017年10月2日,故2017年10月1日是星期日.【迁移1】试确定自2017年5月1日再过200天是星期几?解由200=28×7+4知自2017年5月1日再过200天是星期五.【迁移2】从2017年5月1日到2017年10月1日经过了几个星期五?几个星期一?解因为从2017年5月1日到2017年10月1日的153天中有21个完整的周期零6天,在每个周期中有且仅有一个星期五和一个星期一,故共经过了22个星期五,21个星期一.【迁移3】试确定自2017年5月1日再过7k+3(k∈Z)天后那一天是星期几?解每隔七天,周一至周日依次循环,故7k天后为周一,7k+3天后为星期四.规律方法应用周期性解决实际问题的两个要点特别提醒计算两个日期的间隔时间时要注意有的月份30天,有的月份31天,二月份有28天(或29天).课堂达标1.下列自然现象:月亮东升西落,气候的冷暖,昼夜变化,火山爆发.其中是周期现象的有( )A.1个B.2个C.3个D.4个解析月亮东升西落及昼夜变化为周期现象;气候的冷暖与火山爆发不是周期现象,故选B.答案 B2.如果今天是星期五,则58天后的那一天是星期( )A.五B.六C.日D.一解析每隔七天循环一次,58=7×8+2,故58天后为周日.答案 C3.共有50架飞机组成编队,按侦察机、直升机、轰炸机、歼击机的顺序轮换编队,则最后一架飞机是________飞机.解析周期为4,50=12×4+2,所以最后一架是直升机.答案直升机4.某物体作周期运动,如果一个周期为0.4秒,那么运动4秒,该物体经过了________个周期.解析4÷0.4=10,所以经过了10个周期.答案105.某班有48名学生,每天安排4名同学进行卫生值日,按一周上五天课,一学期二十周计算,该班每位同学一学期要值日几次?解共有48名学生,每天安排4名,则12个上课日就轮完一遍.一学期有5×20=100(个)上课日,而12×8=96(个)上课日,所以一个学期内该班每位同学至少值日8次,有部分同学要值日9次.课堂小结1.对于某些具有重复现象的事件,研究其规律,可预测未来在一定时间该现象发生的可能性及发生规律,具有一定的研究价值.2.利用散点图可以较直观地分析两变量之间的某种关系,然后再利用这种关系选择一种合适的函数去拟合这些散点,从而可以避免因盲目选择函数模型而造成的不必要的失误.基础过关1.下列是周期现象的为( ) ①闰年每四年一次;②某交通路口的红绿灯每30秒转换一次; ③某超市每天的营业额; ④某地每年6月份的平均降雨量. A .①②④B .②④C .①②D .①②③解析 ①②是周期现象;③中每天的营业额是随机的,不是周期现象;④中每年6月份的降雨量也是随机的,不是周期现象. 答案 C2.把17化成小数,小数点后第20位是( )A .1B .2C .4D .8解析 17=0.1·42857·,小数点后“142857”呈周期性变化,且周期为 6.∵20=3×6+2,∴第20位为4. 答案 C3.按照规定,奥运会每4年举行一次.2016的夏季奥运会在巴西举办,那么下列年份中不举办夏季奥运会的应该是( ) A .2020 B .2024 C .2026D .2028解析 C 中2026不是4的倍数,选C. 答案 C4.把一批小球按2个红色,5个白色的顺序排列,第30个小球是________色. 解析 周期为7,30=4×7+2,所以第30个小球与第2个小球颜色相同,为红色. 答案 红5.如图所示,变量y与时间t(s)的图像如图所示,则时间t至少隔________ s时y=1会重复出现1次.答案 26.若今天是星期一,则第7天后的那一天是星期几?第120天后的那一天是星期几?(注:今天是第一天)解每星期有7天,从星期一到星期日,呈周期性变化,其周期为7.∴第7天后的那一天是星期一.∵120=17×7+1,∴第120天后的那一天是星期二.7.水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?解因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升,)所以水车1小时内最多盛水160×12=1 920(升).能力提升8.钟表分针的运动是一个周期现象,其周期为60分钟,现在分针恰好指在2点处,则100分钟后分针指在( )A.8点处B.10点处C.11点处D.12点处解析由于100=1×60+40,所以100分钟后分针所指位置与40分钟后分针所指位置相同,现在分针恰好指在2点处,经过40分钟分针应指在10点处,故选B.答案 B9.设钟摆每经过1.8秒回到原来的位置.在图中钟摆达到最高位置A点时开始计时,经过1分钟后,钟摆的大致位置是( )A.点A处B.点B处C.O、A之间D.O、B之间解析 钟摆的周期T =1.8 秒,1分钟=(33×1.8+0.6)秒,又T 4<0.6<T2,所以经过1分钟后,钟摆在O 、B 之间. 答案 D10.今天是星期六,再过100天后是星期________. 解析 100=14×7+2,∴再过100天是星期一. 答案 一11.一个质点,在平衡位置O 点附近振动,如果不考虑阻力,可将此振动看作周期运动,从O 点开始计时,质点向左运动第一次到达M 点用了0.3 s ,又经过0.2 s 第二次通过M 点,则质点第三次通过M 点,还要经过的时间可能是________ s.解析 质点从O 点向左运动,O →M 用了0.3 s ,M →A →M 用了0.2 s ,由于M →O 与O →M 用时相同,因此质点运动半周期T2=0.2+0.3×2=0.8(s),从而当质点第三次经过M 时用时应为M →O →B →O →M ,所用时间为0.3×2+0.8=1.4(s). 答案 1.412.游乐场中的摩天轮匀速旋转,每转一圈需要12分钟,其中心O 距离地面40.5米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请解答下列问题:(1)你与地面的距离随时间的变化而变化,这个现象是周期现象吗? (2)转四圈需要多少时间?(3)你第四次距地面最高需要多少时间? (4)转60分钟时,你距离地面是多少? 解 (1)是周期现象,周期12分钟/圈. (2)转四圈需要时间为4×12=48(分钟).(3)第1次距离地面最高需122=6(分钟),而周期是12分钟,所以第四次距地面最高需12×3+6=42(分钟).(4)∵60÷12=5,∴转60分钟时你距离地面与开始时刻距离地面相同,即40.5-40=0.5(米).13.(选做题)下面是一个古希腊的哲学家、数学家、天文学家毕达哥拉斯的故事:有一次毕达哥拉斯处罚学生,让他来回数在黛安娜神庙的七根柱子(这七根柱子的标号分别为A,B,C,…,G),如图所示,一直到指出第1 999个数的柱子的标号是哪一个才能够停止.你能帮助这名学生尽快结束这个处罚吗?解通过观察可发现规律:数“2,3,4,…,1 997,1 998,1 999”按标号为“B,C,D,E,F,G,F,E,D,C,B,A”这12个字母循环出现,因此周期是12.先把1去掉,(1 999-1)÷12=166……6,因此第1 999个数的柱子的标号与第167个周期的第6个数的标号相同,故数到第1 999个数的柱子的标号是G.§2角的概念的推广内容要求 1.理解正角、负角、零角与象限角的概念(知识点1 角的概念(1)角的概念:角可以看成平面内一条射线绕着端点O从一个位置OA旋转到另一个位置OB 所形成的图形.点O是角的顶点,射线OA,OB分别是角α的始边和终边.(2)按照角的旋转方向,分为如下三类:(正确的打“√”,错误的打“×”)(1)按逆时针方向旋转所成的角是正角(√)(2)按顺时针方向旋转所成的角是负角(√)(3)没有作任何旋转就没有角对应(×)(4)终边和始边重合的角是零角(×)(5)经过1小时时针转过30°(×)知识点2 象限角如果角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.【预习评价】1.锐角属于第几象限角?钝角又属于第几象限角?提示锐角属于第一象限角,钝角属于第二象限角.2.第二象限的角比第一象限的角大吗?提示不一定.如120° 是第二象限的角,390°是第一象限的角,但120°<390°.知识点3 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与周角的整数倍的和.【预习评价】(正确的打“√”,错误的打“×”)(1)终边相同的角一定相等(×)(2)相等的角终边一定相同(√)(3)终边相同的角有无数多个(√)(4)终边相同的角它们相差180°的整数倍(×)题型一角的概念的推广【例1】写出下图中的角α,β,γ的度数.解要正确识图,确定好旋转的方向和旋转的大小,由角的概念可知α=330°,β=-150°,γ=570°.规律方法 1.理解角的概念的三个“明确”2.表示角时的两个注意点(1)字母表示时:可以用希腊字母α,β等表示,“角α”或“∠α”可以简化为“α”.(2)用图示表示角时:箭头不可以丢掉,因为箭头代表了旋转的方向,也即箭头代表着角的正负.【训练1】(1)图中角α=________,β=________;(2)经过10 min,分针转了________.解析(1)α=-(180°-30°)=-150°β=30°+180°=210°.(2)分针按顺时针过了周角的16,即-60°.答案(1)-150°210°(2)-60°题型二终边相同的角【例2】已知α=-1 910°.(1)把α写成β+k×360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)-1 910°=250°-6×360°,其中β=250°,从而α=250°+(-6)×360°,它是第三象限角.(2)令θ=250°+k×360°(k∈Z),取k=-1,-2就得到满足-720°≤θ<0°的角,即250°-360°=-110°,250°-720°=-470°.所以θ为-110°,-470°.规律方法将任意角化为α+k·360°(k∈Z,且0°≤α<360°)的形式,关键是确定k.可用观察法(α的绝对值较小时适用),也可用除以360°的方法.要注意:正角除以360°,按通常的除法进行,负角除以360°,商是负数,且余数为正值.【训练2】写出终边在阴影区域内(含边界)的角的集合.解 终边在直线OM 上的角的集合为M ={α|α=45°+k ·360°,k ∈Z }∪{α|α=225°+k ·360°,k ∈Z }={α|α=45°+2k ·180°,k ∈Z }∪{α|α=45°+(2k +1)·180°,k ∈Z } ={α|α=45°+n ·180°,n ∈Z }.同理可得终边在直线ON 上的角的集合为{α|α=60°+n ·180°,n ∈Z }, 所以终边在阴影区域内(含边界)的角的集合为 {α|45°+n ·180°≤α≤60°+n ·180°,n ∈Z }.【探究1】 在四个角-20°,-400°,-2 000°,1 600°中,第四象限角的个数是( ) A .0 B .1 C .2D .3解析 -20°是第四象限角,-400°=-360°-40°与-40°终边相同,是第四象限角,-2 000°=-6×360°+160°与160°终边相同,是第二象限角,1 600°=4×360°+160°与160°终边相同,是第二象限角,故第四象限角有2个. 答案 C【探究2】 写出终边落在第一象限和第二象限内的角的集合.解 根据终边相同的角一定是同一象限的角,又可以先写出第一象限锐角范围和第二象限钝角的范围,再加上360°的整数倍即可. 所以表示为:第一象限角的集合:S ={β|β=k ·360°+α,0°<α<90°,k ∈Z },或S ={β|k ·360°<β<k ·360°+90°,k ∈Z }.第二象限角的集合:S ={β|β=k ·360°+α,90°<α<180°,k ∈Z },或S ={β|k ·360°+90°<β<k ·360°+180°,k ∈Z }.【探究3】 已知α为第二象限角,那么2α,α2分别是第几象限角?解 ∵α是第二象限角,∴90+k ×360°<α<180°+k ×360°,180°+2k ×360°<2α<360°+2k ×360°,k ∈Z .∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k 2×360°<α2<90°+k2×360°,k ∈Z .当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ×360°<α2<90°+n ×360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ×360°<α2<270°+n ×360°,此时,α2为第三象限角.∴α2为第一或第三象限角. 【探究4】 已知α为第一象限角,求180°-α2是第几象限角.解 ∵α为第一象限角,∴k ·360°<α<k ·360°+90°,k ∈Z , ∴k ·180°<α2<k ·180°+45°,k ∈Z , ∴-45°-k ·180°<-α2<-k ·180°,k ∈Z ,∴135°-k ·180°<180°-α2<180°-k ·180°,k ∈Z .当k =2n (n ∈Z )时,135°-n ·360°<180°-α2<180°-n ·360°,为第二象限角;当k =2n +1(n ∈Z )时,-45°-n ·360°<180°-α2<-n ·360°,为第四象限角.∴180°-α2是第二或第四象限角.规律方法 1.象限角的判定方法(1)根据图像判定.利用图像实际操作时,依据是终边相同的角的概念,因为0°~360°之间的角与坐标系中的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内,在直角坐标平面内,0°~360°范围内没有两个角终边是相同的.2.α,2α,α2等角的终边位置的确定方法不等式法:(1)利用象限角的概念或已知条件,写出角α的范围. (2)利用不等式的性质,求出2α,α2等角的范围.(3)利用“旋转”的观点,确定角终边的位置.例如,如果得到k ×120°<α3<k ×120°+30°,k ∈Z ,可画出0°<α3<30°所表示的区域,再将此区域依次逆时针或顺时针转动120°(如图所示).易错警示 由α的范围确定2α的范围时易忽视终边在坐标轴上的情况.课堂达标1.-361°的终边落在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 因为-361°的终边和-1°的终边相同,所以它的终边落在第四象限,故选D. 答案 D2.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( ) A .A =B B .B =C C .A =CD .A =D解析 直接根据角的分类进行求解,容易得到答案. 答案 D3.将-885°化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是________________. 答案 195°+(-3)×360°4.与-1 692°终边相同的最大负角是________. 解析 ∵-1 692°=-5×360°+108°, ∴与108°终边相同的最大负角为-252°. 答案 -252°5.如图所示,写出终边落在阴影部分的角的集合.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.课堂小结1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转量”决定角的“绝对值大小”.2.区域角的表示形式并不唯一,如第二象限角的集合,可以表示为{α|90°+k×360°<α<180°+k×360°,k∈Z},也可以表示为{α|-270°+k×360°<α<-180°+k×360°,k∈Z}.基础过关1.下列各组角中,终边相同的是( )A.495°和-495°B.1 350°和90°C.-220°和140°D.540°和-810°解析-220°=-360°+140°,∴-220°与140°终边相同.答案 C2.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有( )A.B C A B.B A CC.D A∩C) D.C∩D=B解析锐角、0°~90°的角、小于90°的角及第一象限角的范围,如下表所示.答案 D3.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.答案 C4.已知角α=-3 000°,则与角α终边相同的最小正角是______.解析∵-3 000°=-9×360°+240°,∴与-3 000°角终边相同的最小正角为240°.答案240°5.在-180°~360°范围内,与2 000°角终边相同的角是______.解析因为2 000°=200°+5×360°,2 000°=-160°+6×360°,所以在-180°~360°范围内与2 000°角终边相同的角有-160°,200°两个.答案-160°,200°6.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.7.写出与25°角终边相同的角的集合,并求出该集合中满足不等式-1 080°≤β<-360°的角β.解与25°角终边相同的角的集合为S={β|β=k·360°+25°,k∈Z}.令k=-3,则有β=-3×360°+25°=-1 055°,符合条件;令k=-2,则有β=-2×360°+25°=-695°,符合条件;令k =-1,则有β=-1×360°+25°=-335°,不符合条件. 故符合条件的角有-1 055°,-695°.能力提升8.以下命题正确的是( ) A .第二象限角比第一象限角大B .A ={α|α=k ·180°,k ∈Z },B ={β|β=k ·90°,k ∈Z },则ABC .若k ·360°<α<k ·360°+180°(k ∈Z ),则α为第一或第二象限角D .终边在x 轴上的角可表示为k ·360°(k ∈Z ) 解析 A 不正确,如-210°<30°.在B 中,当k =2n ,k ∈Z 时,β=n ·180°,n ∈Z . ∴AB ,∴B 正确.又C 中,α为第一或第二象限角或在y 轴的非负半轴上, ∴C 不正确.显然D 不正确. 答案 B9.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P之间的关系为( ) A .M =P B .M P C .M PD .M ∩P =∅解析 对集合M 来说,x =(2k ±1)·45°,即45°的奇数倍;对集合P 来说,x =(k ±2)·45°,即45°的倍数. 答案 B10.已知角α、β的终边相同,那么α-β的终边在________. 解析 ∵α、β终边相同, ∴α=k ·360°+β(k ∈Z ).∴α-β=k ·360°,故α-β终边会落在x 轴非负半轴上. 答案 x 轴的非负半轴上11.若α为第一象限角,则k ·180°+α(k ∈Z )的终边所在的象限是第________象限. 解析 ∵α是第一象限角,∴k 为偶数时,k ·180°+α终边在第一象限;k 为奇数时,k ·180°+α终边在第三象限. 答案 一或三12.求终边在直线y =x 上的角的集合S .解 因为直线y =x 是第一、三象限的角平分线,在0°~360°之间所对应的两个角分别是45°和225°,所以S ={α|α=k ·360°+45°,k ∈Z }∪{α|α=k ·360°+225°,k∈Z }={α|α=2k ·180°+45°,k ∈Z }∪{α|α=(2k +1)·180°+45°,k ∈Z }={α|α=n ·180°+45°,n ∈Z }.13.(选做题)已知角α、β的终边有下列关系,分别求α、β间的关系式: (1)α、β的终边关于原点对称; (2)α、β的终边关于y 轴对称.解 (1)由于α、β的终边互为反向延长线,故α、β相差180°的奇数倍(如图1),于是α-β=(2k -1)·180°(k ∈Z ).(2)在0°~360°内,设α的终边所表示的角为90°-θ,由于α、β关于y 轴对称(如图2),则β的终边所表示的角为90°+θ.于是α=90°-θ+k 1·360°(k 1∈Z ),β=90°+θ+k 2·360°(k 2∈Z ).两式相加得α+β=(2k +1)·180°(k ∈Z ).§3 弧度制内容要求 1.了解弧度制的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数(重点).2.掌握弧度制下的弧长公式,会用弧度解决一些实际问题(难点).知识点1 弧度制 (1)角度制与弧度制的定义(2)如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=lr. 【预习评价】(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位(√) (2)1°的角是周角的1360,1 rad 的角是周角的12π(√)(3)1°的角比1 rad 的角要大(×)(4)1 rad 的角的大小和所在圆的半径的大小有关(×) 知识点2 角度制与弧度制的换算 常见角度与弧度互化公式如下:请填充完整下表,一些特殊角的角度数与弧度数的对应关系有:设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则1.一个扇形的半径为2 cm ,圆心角为π6,则该扇形所对的弧长l =________cm.答案π32.一个扇形的半径为2 cm ,其对应的弧长为2.则该扇形的面积为________cm 2. 答案 2知识点4 利用弧度制表示终边相同的角在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z ),其中α的单位必须是弧度. 【预习评价】1.与30°终边相同的角为( ) A .2k π+π3(k ∈Z )B .2k π+π6(k ∈Z )C .360°k +π3(k ∈Z )D .2k π+30°(k ∈Z )答案 B2.终边在x 轴上的角的集合用弧度制表示为________. 答案 {α|α=k π,k ∈Z }题型一 角度与弧度的互化【例1】 将下列角度与弧度进行互化: (1)20°;(2)-15°;(3)7π12;(4)-115π.解 (1)20°=20×π180 rad =π9 rad.(2)-15°=-15×π180 rad =-π12 rad.(3)712π rad =712×180°=105°. (4)-115π rad =-115×180°=-396°.规律方法 角度制与弧度制互化的原则、方法以及注意点(1)原则:牢记180°=π rad ,充分利用1°=π180rad 和1 rad =⎝ ⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =α·180°;n °=n ·π180rad.(3)注意点:①用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写;②用“弧度”为单位度量角时,“常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数;③度化弧度时,应先将分、秒化成度,再化成弧度. 【训练1】 将下列各角度与弧度互化: (1)512π;(2)-76π;(3)-157°30′. 解 (1)512π=512×180°=75°;(2)-76π=-76×180°=-210°;(3)-157°30′=-157.5°=-157.5×π180rad=-78π rad.题型二 用弧度制表示终边相同的角【例2】 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解 (1)∵-1 480°=-74π9=-10π+16π9,0≤16π9<2π,∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0),∴β1=-2π9,β2=-209π.【训练2】 用弧度制表示终边在图中阴影区域内角的集合(包括边界)并判断 2 015°是不是这个集合的元素.解 因为150°=5π6.所以终边在阴影区域内角的集合为S =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪5π6+2k π≤β≤3π2+2k π,k ∈Z . 因为2 015°=215°+5×360°=43π36+10π,又5π6<43π36<3π2.所以2 015°=43π36∈S ,即2 015°是这个集合的元素.方向1 求弧长【例3-1】 已知扇形OAB 的圆心角α为120°,半径长为6.求的长;解 ∵α=120°=23π,r =6,∴的长l =23π×6=4π.方向2 求圆心角【例3-2】 已知扇形周长为10,面积是4,求扇形的圆心角. 解 设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +r θ=10,12θ·r 2=4⇒⎩⎪⎨⎪⎧r =4,θ=12或⎩⎪⎨⎪⎧r =1,θ=8(舍).故扇形圆心角为12.方向3 求面积的最值【例3-3】 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r . ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.规律方法 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.课堂达标1.与120°角终边相同的角为( ) A .2k π-2π3(k ∈Z )B.11π3C .2k π-10π3(k ∈Z )D .(2k +1)π+2π3(k ∈Z )解析 120°=2π3且2k π-10π3=(2k -4)π+2π3(k ∈Z ),∴120°与2k π-10π3(k ∈Z ),终边相同.答案 C2.-23π12化为角度应为( )A .-345°B .-15°C .-315°D .-375°解析 -23π12=-2312×180°=-345°.答案 A3.已知扇形的半径为12,弧长为18,则扇形圆心角为________.解析 由弧长公式l =αR 得α=l R =1812=32.答案 324.下列结论不正确的是________(只填序号).①π3 rad =60°;②10°=π18 rad ;③36°=π5 rad ;④5π8 rad =115°. 解析5π8 rad =58×180°=112.5°,∴④错. 答案 ④5.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.课堂小结1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.基础过关1.在半径为10的圆中,240°的圆心角所对弧长为( )A.403πB.203π C.2003π D.4003π 解析 240°=240×π180 rad =43π rad ,∴弧长l =|α|·r =43π×10=403π,故选A.答案 A2.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C3.若α=-3,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 ∵-π<-3<-π2,∴-3是第三象限角.答案 C4.若三角形三内角之比为4∶5∶6,则最大内角的弧度数是____________. 答案 25π5.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.解析 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .答案 346.把下列各角化为2k π+α(0≤α<2π,k ∈Z ) 的形式且指出它是第几象限角,并写出与它终边相同的角的集合.(1)-46π3;(2)-1 485°;(3)-20.解 (1)-46π3=-8×2π+2π3,它是第二象限角,终边相同的角的集合为。
单位圆的概念-解释说明
单位圆的概念-概述说明以及解释1.引言1.1 概述概述:单位圆是数学中非常重要的概念之一,它是一个圆心在原点且半径为1的圆。
单位圆的性质及其在数学中的应用广泛而深远,对于几何、三角学、复数、以及其他领域都有着重要的作用。
本文将深入探讨单位圆的定义、性质以及在数学中的应用,并探讨单位圆对数学的意义和未来的发展。
通过对单位圆的研究,我们可以更深入地理解数学的基本概念,以及它在现实生活和科学研究中的广泛应用。
文章结构部分的内容可以包括对整篇文章的组织和每个部分的简要介绍,以便读者了解文章的框架和主要内容。
文章结构部分可以简要描述引言、正文和结论部分的内容安排,以及各部分的主要论点和观点。
同时也可以说明每个部分的重点和意义,为读者提供对整篇文章的概览。
} }}}请编写文章1.2 文章结构部分的内容1.3 目的文章的目的是探讨单位圆在数学中的重要性和应用,介绍单位圆的定义、性质以及在数学中的具体应用。
通过深入分析单位圆的概念和特点,帮助读者更好地理解和运用单位圆,进一步掌握数学知识。
同时,也旨在强调单位圆在数学领域中的重要地位,展现其对数学发展的意义和潜在的应用前景,为读者提供更加丰富和全面的数学知识视野。
2.正文2.1 单位圆的定义:单位圆是一个圆心在坐标原点O(0,0),半径为1的圆。
在平面直角坐标系中,单位圆的方程可以表示为x²+ y²= 1。
这个定义表明单位圆的所有点到圆心的距离都是1,因此它是一个特殊的圆,在数学中具有重要的地位。
单位圆的定义是数学中基础的概念之一,它为后续的数学理论和方法提供了重要的基础。
在几何学、三角学、微积分等领域中都有着重要的应用,是许多数学问题的基础。
单位圆的定义也为我们理解和应用圆的性质和相关概念奠定了基础。
通过对单位圆的定义的理解,我们可以进一步学习单位圆的性质和它在数学中的具体应用,从而加深对数学的理解和认识。
单位圆的定义对于深入学习数学理论和解决实际问题具有重要的意义,是数学学习中不可或缺的一部分。
高中数学:三角函数的诱导公式 (95)
课时分层作业(三) 单位圆与任意角的正弦函数、余弦函数的定义 单位圆与周期性(建议用时:60分钟)[合格基础练]一、选择题 1.有下列说法:①终边相同的角的同名三角函数的值一定相等; ②终边不同的角的同名三角函数的值一定不等; ③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-xx 2+y2.其中正确的个数为( )A .0B .1C .2D .3B [根据任意角的三角函数定义知①正确;对于②,我们可举出反例sin π3=sin 2π3;对于③,可举出sin π2>0,但π2不是第一、二象限角;对于④,应是cos α=x x 2+y 2(因为α是第二象限角,已有x <0),故选B.]2.若α的终边过点(2sin 30°,-2cos 30°),则sin α的值为( ) A .12 B .-12 C .-32D .-33C [因为sin 30°=12,cos 30°=32.所以α的终边过点(1,-3),所以r =1+(-3)2=2, 所以sin α=y r =-32,故选C.]3.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形C .直角三角形D .以上三种情况都可能B [因为sin αcos β<0,α,β∈(0,π), 所以sin α>0,cos β<0,所以β为钝角.]4.若角α的终边上有一点P (0,3),则下列式子无意义的是( ) A.sin αcos α B .sin α C .cos αD .都有意义A [由三角函数的定义sin α=y r ,cos α=x r ,sin αcos α=y x ,可知sin αcos α无意义.] 5.设角α终边上一点P (-4a,3a )(a <0),则2sin α+cos α的值为( ) A .25 B .25或-25 C .-25D .与a 有关C [∵a <0,∴r =(-4a )2+(3a )2=5|a |=-5a , ∴cos α=x r =45,sin α=y r =-35,∴2sin α+cos α=-25.] 二、填空题6.已知点P (sin α,cos α)在第三象限,则角α的终边在第______象限. 三 [因为点P (sin α,cos α)在第三象限,则sin α<0且cos α<0,故角α的终边在第三象限.]7.求值:cos 13π6+sin ⎝ ⎛⎭⎪⎫-5π3=________.3 [原式=cos ⎝ ⎛⎭⎪⎫2π+π6+sin ⎝ ⎛⎭⎪⎫2π-5π3=cos π6+sin π3=32+32= 3.]8.已知f (x )是R 上的奇函数,且f (1)=2,f (x +3)=f (x ),则f (8)=________. -2 [∵f (x +3)=f (x ),∴f (x )是周期函数,3就是它的一个周期,且f (-x )=-f (x ).∴f (8)=f (2+2×3)=f (2)=f (-1+3)=f (-1)=-f (1)=-2.]三、解答题9.判断下列各式的符号. (1)sin 105°·cos 230°; (2)cos 16π3·sin π; (3)cos 4·cos 5.[解] (1)∵105°是第二象限角.∴sin 105°>0. 又∵230°是第三象限角.∴cos 230°<0. ∴sin 105°·cos 230°<0. (2)∵sin π=0,∴cos163π·sin π=0. (3)∵4为第三象限角,∴cos 4<0.又∵5是第四象限角, ∴cos 5>0,∴cos 4·cos 5<0.10.已知角α的终边过点(3m -9,m +2),且cos α<0,sin α>0,求m 的取值范围.[解] 因为cos α<0,所以α的终边在第二或第三象限,或x 轴的非正半轴上. 又因为sin α>0,所以α的终边在第一或第二象限,或y 轴的非负半轴上. 所以α是第二象限角,即点(3m -9,m +2)在第二象限. 所以⎩⎨⎧3m -9<0,m +2>0,解得-2<m <3,即m 的取值范围是(-2,3).[等级过关练]1.已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于( ) A .-114 B .114 C .-4 D .4C [cos α=m m 2+9=-45,解得m =-4(m =4不合题意,舍去).]2.若角α满足sin α·cos α<0,cos α-sin α<0,则α在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限B [由sin α·cos α<0知α是第二或第四象限角,由cos α-sin α<0,得cos α<sin α,所以α是第二象限角.]3.若α=π6+2k π(k ∈Z ),则cos 3α=________. 0 [cos 3α=cos 3⎝ ⎛⎭⎪⎫π6+2k π=cos ⎝ ⎛⎭⎪⎫π2+6k π=cos π2=0.]4.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________.2 [∵y =3x ,sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图像上,且m <0,n <0,n =3m .∵|OP |=m 2+n 2=10|m |=-10m =10. ∴m =-1,n =-3,∴m -n =2.] 5.已知cos α<0,sin α>0. (1)求角α的集合;(2)求角α2的终边所在的象限; (3)试判断sin α2,cos α2的符号.[解] (1)∵cos α<0,∴角α的终边可能位于第二或第三象限或x 轴的非正半轴上.∵sin α>0,∴角α的终边可能位于第一或第二象限或y 轴非负半轴上,∴角α的终边只能位于第二象限.故角α的集合为⎩⎨⎧α⎪⎪⎪⎭⎬⎫π2+2k π<α<π+2k π,k ∈Z .(2)∵π2+2k π<α<π+2k π(k ∈Z ), ∴π4+k π<α2<π2+k π(k ∈Z ).当k =2n (k ∈Z )时,π4+2n π<α2<π2+2n π(n ∈Z ),∴α2是第一象限角;当k=2n+1(n∈Z)时,5π4+2nπ<α2<3π2+2nπ(n∈Z),∴α2是第三象限角.即α2的终边落在第一象限或第三象限.(3)由(2)可知,当α2是第一象限角时,sinα2>0,cosα2>0;当α2是第三象限角时,sinα2<0,cosα2<0.。
高中数学三角函数正弦函数和余弦函数的定义与诱导公式单位圆与任意角的正弦函数余弦函数的定义
12/8/2021
第二十八页,共四十四页。
类型 3 函数的周期性
已知 f(x+1)=-f(x),求证:f(x)是周期函数,并求 出它的一个周期.
【证明】 ∵f(x+2)=f[(x+1)+1]=-f(x+1)=f(x). ∴f(x)是周期函数,且 2 是它的一个周期.
12/8/2021
第二十九页,共四十四页。
第一章 三角函数(sānjiǎhánshù)
12/8/2021
第一页,共四十四页。
§4 正弦函数和余弦函数的定义
与诱导公式(gōngshì)
4.1 单位圆与任意角的正弦函数、 余弦函数的定义
4.2 单位圆与周期性
12/8/2021
第二页,共四十四页。
课前基础(jīchǔ)梳理
自主学习(xuéxí) 梳理知识
12/8/2021
第三页,共四十四页。
|学 习 目 标| 1.了解单位圆与正弦、余弦函数的关系. 2.掌握任意角的正弦、余弦的定义. 3.掌握正弦函数、余弦函数在各个象限内的符号. 4.了解周期函数的概念及正余弦函数的最小正周期.掌握 终边相同角的三角函数值相同.
12/8/2021
第四页,共四十四页。
当 m>0 时,r=2m,sinα=yr=- 23,cosα=xr=12. ∴sinα+cosα=1-2 3; 当 m<0 时,r=-2m,sinα=--23mm= 23,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
可编辑ppt
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
5
可编辑ppt
一般地, 对于函数f(x),如果存在非零 实数T,对定义域内的任意一个x值,都有
f(x+T) =f(x)
我们就把f(x)称为周期函数,T称为这个函数 的周期。
6
可编辑ppt
一般地,对于周期函数f(x),如果它 所有的周期中存在一个最小的正数,那 么这个最小的正数就叫作f(x)的最小正周 期
一般我们所说的周期都是指最小正周期。事实上,如果T为周期,那么kT(k≠0)也是它
的周期.
(5)部分函数虽然是周期函数,但是没有最小正周期,例如f(x)=c,(c为常数,x∈R).
(6)定义域的变化会对函数的周期性长生一定的影响,例如f(x)=sinx,x ∈[0,10的定义域为 R,且对任意x ∈R,都有f(x+4)=f(x), 则f(x)的周期是 ( )
化的现象,例如,钟摆的摆心到铅垂线的距离随时间的变化呈
周期性变化。从而我们把自变量的变化呈周期性变化的函数叫 作周期函数。正弦函数、余弦函数是周期函数,(备注:同学 们回忆目前你学过那些类型的函数?)称2kπ (k∈Z,k≠0)为正弦 函数、余弦函数的周期。
例如:-4π,-2π,2π,4π等都是它们的周期. 2π是正弦函数、余弦函数正周期中最小的一个,称为 最小正周期.
单位圆与周期性
1
可编辑ppt
角
4
和角
5 4
的终边与单位圆的交点的纵坐标有什么关系?
y
O
r=1
x
相等
它们的正弦函数值有什么关系? 相等
2
可编辑ppt
角 2和角
3
8
3
呢?
角 和角
3
5 3
呢?
角
2 3
和角
14
3呢?
3
可编辑ppt
由上述问题的讨论,不难得出:终边相同 的角的正弦函数值相等,即
(2)sinα= 1/3,则
sin(4π +α)=( )
9
可编辑ppt
例2已知函数f(x)是周期为4 的奇函数,且当0≤x≤2时, f(x)=x2,求f(-2015)的值。
10
可编辑ppt
正弦函数、余弦函数的一个重要性质是
终边相同的角的正弦函数值、余弦函数值相 等。它是化简三角函数的一个重要公式。
sin(2kπ+x)=sinx (k∈Z) 同理,对于余弦函数也有同样的结论: 终边相同的角的余弦函数值相等,即 cos(2kπ+x)=cosx (k∈Z)
4
可编辑ppt
上述两个等式说明:对于任意一个角x,每增加2π的整数倍, 其正弦函数值、余弦函数值均不变.所以正弦函数值、余弦函 数值均是随角的变化呈周期性变化的。生活中有许多周期性变
7
可编辑ppt
注意:
(1)只有个别x的值满足,不能说是周期函数;
(2)自变量加上的常数才算周期,比如:f(2x+T)=f(2x),我们说f(2x)是周期函数,但
周期是T/2;
(3)如果f(x)是周期函数,T为其周期,那么,x+kT也属于其定义域,也就是说,周期函
数的定义域是一个无限集;
(4)对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期,