XFEM实现裂纹扩展

合集下载

裂纹扩展的扩展有限元(xfem)模拟实例详解

裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。

断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。

如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。

这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。

损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。

这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。

1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。

debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。

cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。

cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。

这样就避免了裂纹尖端的奇异性。

Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。

Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。

此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。

基于xfem的垂直于双材料界面的裂纹扩展问题

基于xfem的垂直于双材料界面的裂纹扩展问题

文章主题:基于xfem的垂直于双材料界面的裂纹扩展问题在材料科学和工程领域,裂纹扩展问题一直是一个备受关注的研究课题。

特别是在双材料界面上的裂纹扩展问题,由于双材料特性的不均匀性和复杂性,增加了研究和分析的难度。

在本文中,我们将从基于xfem(扩展有限元法)的角度出发,探讨垂直于双材料界面的裂纹扩展问题,以期为这一领域的研究和实际应用提供新的思路和方法。

一、概述垂直于双材料界面的裂纹扩展问题是指在两种材料的交界面上,裂纹在垂直方向上的扩展行为。

这种情况下,裂纹扩展的受力和受约束条件都受到了双材料特性的影响,需要深入分析和研究。

传统的有限元法在模拟和分析这种问题时存在一定的局限性,而xfem则能够有效地刻画裂纹的扩展路径和受力情况,因此成为了研究这一问题的有力工具。

二、裂纹模型的建立在进行垂直于双材料界面的裂纹扩展问题建模时,需要考虑双材料界面的影响,分析裂纹在材料间传播的受力情况和速度。

利用xfem,可以方便地将裂纹扩展路径和扩展速度等参数纳入模型中,通过数值计算得到裂纹扩展的演化规律和裂纹尖端的受力情况。

这有助于更准确地理解和分析垂直双材料界面上的裂纹扩展问题。

三、影响因素分析垂直于双材料界面的裂纹扩展受到诸多因素的影响,其中包括材料性质、裂纹尺寸、应力状态等。

通过xfem的数值模拟,可以分析不同因素对裂纹扩展行为的影响程度,揭示裂纹扩展过程中的关键因素和规律。

这有助于为材料设计和工程应用提供更可靠的参考依据。

四、工程应用与展望垂直于双材料界面的裂纹扩展问题在工程应用中具有重要意义,例如在复合材料结构的设计和评估中。

通过对裂纹扩展行为的深入研究和分析,可以为工程实践提供更有效的裂纹控制和结构安全性评估方法。

未来,基于xfem的裂纹扩展问题研究还可以结合人工智能算法和大数据分析等方法,进一步提高模型精度和计算效率,拓展应用领域和深化理论研究。

个人观点与总结垂直于双材料界面的裂纹扩展问题是一个复杂而又具有挑战性的研究领域,需要运用先进的数值模拟方法和理论分析手段来探讨和解决。

ABAQUS XFEM 柱面与平面滑动接触中裂纹的扩展xfem(step by step)

ABAQUS  XFEM 柱面与平面滑动接触中裂纹的扩展xfem(step by step)

ABAQUS XFEM 柱面与平面滑动接触中裂纹的扩展xfem(step by step)
1.part部分:
plate模型为2D 变形壳体尺寸为0.5x0.2M(因为后面采用的是MPa,所以这里采用的是M,为了单位统一) 。

用partition命令将plate切割成装配图上面一样(尺寸0.24x0.06)Rigid模型为2D解析刚体尺寸为R0.06圆的下面部分的2/3半圆(看装配模型就知道)。

注意要在上面设置一个参考点,在load部分加载位移边界用。

wire模型2D变形线尺寸为0.01位置坐标(0.25,0.2),(0.25,0.19)线两端点的坐标,大家懂的。

添加一个装配图对照模型。

2.property部分这一部分尽量多用图片
主要设置了一下几部分的材料属性,用的材料为Q345-steel(因为刚好找到了它的应力应变数据)1、密度2、弹性属性3、塑性属性4、损失准则
5.interaction部分
1.首先创建contact controls,创建步棸菜单栏interaction->contact controls->create,参数的设置见下图:
2.裂纹的设置,创建步棸菜单栏special->crack->create->xfem ,区域的选择见下图
3其他包括相互作用的一些属性见下图
6.load部分
位移边界条件的加载如下图
7.Mesh部分
种子布置见下图
网格控制主要采取的是structured
8.Job就ok了,祝大家好运。

也同时感谢论坛里面帮助过我的朋友。

裂纹扩展的扩展有限元(xfem)模拟实例详解

裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。

断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。

如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。

这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。

损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。

这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。

1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。

debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。

cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。

cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。

这样就避免了裂纹尖端的奇异性。

Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。

Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。

此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟膜盘联轴器是一种常见的轴系传动装置,用于将两个轴连接起来,传递扭矩和运动。

由于在使用过程中会受到扭转和振动的作用,膜盘联轴器可能会发生裂纹,并且会随着使用时间的增长而逐渐扩展,最终导致设备损坏或者故障。

对膜盘联轴器的裂纹扩展行为进行模拟和分析是非常重要的。

基于扩展有限元法(XFEM),可以对膜盘联轴器的裂纹扩展行为进行模拟和分析。

XFEM 是传统有限元法的一种扩展,可以处理裂纹和接触问题。

相比传统有限元法,XFEM可以更好地模拟裂纹的扩展行为,减少计算网格对裂纹位置和形态的敏感性。

在进行膜盘联轴器裂纹扩展模拟之前,首先需要对膜盘联轴器的几何形状进行建模。

可以使用三维CAD软件进行建模,将联轴器的几何形状导入到有限元模型中。

然后,需要定义膜盘材料的力学性质,如弹性模量、泊松比等。

在建立有限元模型之后,可以开始进行裂纹的定义和初始化。

可以使用XFEM的裂纹初始化算法,在合适的位置和方向上设置初始裂纹,并将其添加到有限元模型中。

然后,通过施加适当的加载条件,例如扭矩加载或振动加载,模拟联轴器的工作状态,从而引起裂纹的扩展。

裂纹的扩展行为可以通过分析膜盘联轴器的应力和应变分布来研究。

通过在裂纹的前沿区域使用局部加密网格,可以更准确地描述裂纹扩展的细节。

使用XFEM的裂纹扩展算法,可以在模拟过程中动态地更新裂纹的位置和形态。

通过不断迭代模拟和分析,可以得到膜盘联轴器在不同工况下裂纹扩展的演化过程。

这样可以帮助工程师了解裂纹扩展的机理和趋势,为设计和使用膜盘联轴器提供参考和指导。

基于XFEM的膜盘联轴器裂纹扩展模拟可以帮助工程师更好地了解裂纹扩展的行为和机理,为联轴器的设计和使用提供指导。

需要注意的是,在进行模拟之前,需要准确地建立有限元模型,并选择合适的裂纹初始化算法和裂纹扩展算法,以获得准确的模拟结果。

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟膜盘联轴器是一种常用的机械传动装置,其内部结构由薄膜相连接的螺旋弹簧组成。

在使用过程中,膜盘联轴器可能会因受到外部载荷或其它损伤原因而产生裂纹,进而引发裂纹扩展问题。

为了研究膜盘联轴器的裂纹扩展特性,可以使用基于扩展有限元法(XFEM, Extended Finite Element Method)的数值模拟方法。

以下将详细介绍基于XFEM的膜盘联轴器裂纹扩展模拟。

需要对膜盘联轴器的几何模型进行建模。

可以使用常用的CAD软件构建膜盘联轴器的三维模型,并导出为常用的CAD格式文件,如.STEP文件。

然后,在有限元软件中导入该几何模型,并进行网格划分。

由于膜盘联轴器的结构特殊,需要将膜片的扩展行为纳入考虑,网格划分应从膜片边界开始,并将膜片划分为许多小的单元,以模拟其真实的扩展行为。

为了更好地模拟裂纹扩展过程,可以在网格中使用特殊的节点,如XFEM节点,来描述裂纹的位置和形态。

接下来,需要定义膜盘联轴器的材料属性。

膜盘联轴器一般由金属材料制成,可以根据实际材料的力学性能参数,如弹性模量、泊松比等,为有限元模型分配材料属性。

在进行扩展有限元方法时,需要定义膜片的损伤模型。

一般情况下,可以使用等效应力概念,将损伤定义为材料应力场中的破坏准则。

通过将损伤模型编码到有限元软件中,可以模拟膜盘联轴器在裂纹扩展过程中的应力和变形行为。

在定义好几何模型和材料属性后,需要施加边界条件和载荷。

边界条件可通过约束某些节点的位移,来固定或限制整个模型的自由度。

载荷可以是静载荷,如压力、扭矩等,也可以是动态载荷,如冲击载荷等。

根据实际情况,可以对膜盘联轴器施加不同的载荷,来模拟其工作状态和载荷应力。

使用基于XFEM的有限元软件,对膜盘联轴器的裂纹扩展进行数值模拟。

可以通过迭代的方式,逐步增加载荷,并观察裂纹的扩展行为。

在每一步模拟中,可以得到膜盘联轴器的应力和变形状态,以及裂纹的形态和扩展速度。

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟膜盘联轴器是一种常用的转动装置,具有扭转传动功能,通常用于连接两个轴或轴承,传递扭矩。

在使用过程中,受到了各种载荷和工作环境的影响,可能会出现裂纹扩展的情况,导致联轴器失效。

对膜盘联轴器的裂纹扩展行为进行模拟分析和预测,对于提高联轴器的可靠性和使用寿命具有重要意义。

传统的有限元方法在模拟裂纹扩展过程中存在不足,因为裂纹位置和形状的变化需要不断更新有限元网格,计算成本高,并且难以处理复杂的裂纹形状。

为了克服这些问题,X-FEM(扩展有限元法)被引入到裂纹扩展模拟中。

X-FEM是一种在有限元分析中使用的数值方法,能够处理裂纹扩展过程中裂纹位置和形状的变化,无需重新生成有限元网格,节约了计算成本,对于处理复杂的裂纹形状也有很好的适用性。

本文针对膜盘联轴器裂纹扩展行为,基于X-FEM方法进行了模拟分析,主要包括以下几个方面的内容:裂纹扩展过程中的应力场分布、裂纹尖端的应力集中效应、裂纹扩展速率的预测等。

通过对这些问题的分析和研究,可以为膜盘联轴器的设计和使用提供理论依据和技术支持。

建立了膜盘联轴器的有限元模型,包括膜片和联轴器壳体两部分。

考虑到裂纹的存在,采用了X-FEM方法对裂纹进行建模,通过在有限元网格中引入额外的自由度来描述裂纹的形状和位置。

在模拟过程中,考虑了联轴器在工作时受到的扭转载荷和温度载荷,并与实际工作条件相匹配,进行了多种工况下的模拟计算。

在裂纹扩展过程中,分析了联轴器内部的应力场分布情况。

通过模拟计算,可以得到裂纹尖端处的应力集中系数,评估了裂纹的扩展趋势和裂纹尖端的稳定性。

在裂纹初始阶段,裂纹尖端的应力集中效应较为明显,导致了裂纹扩展速率的增加。

当裂纹扩展到一定程度后,应力集中效应减弱,裂纹扩展速率开始减小,最终裂纹不再继续扩展。

基于裂纹扩展速率的分析,预测了联轴器的寿命,并进行了与实验结果的对比。

通过模拟计算和实验数据的验证,可以得出膜盘联轴器在实际工作条件下的裂纹扩展行为和寿命预测,为联轴器的设计和选择提供了理论依据和参考参数。

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟引言膜盘联轴器是一种用于传递旋转动力的机械装置,广泛应用于机械传动系统中。

由于长期使用和外部载荷的影响,膜盘联轴器可能会发生裂纹扩展,进而导致设备损坏和安全事故。

对膜盘联轴器裂纹扩展行为进行模拟和研究具有重要意义。

本文将基于XFEM(扩展有限元法)对膜盘联轴器裂纹扩展过程进行模拟分析,以期为相关工程应用提供理论参考和技术支持。

膜盘联轴器裂纹扩展模拟原理XFEM是一种针对裂纹扩展问题的有限元分析方法,相比传统有限元方法,XFEM能够更准确地描述裂纹位置和形态,从而能够模拟更为真实的裂纹扩展过程。

在XFEM中,裂纹被视为一个额外的自由度,其位移场可以通过enriched shape functions来描述。

XFEM能够有效地模拟材料的裂纹扩展行为,对于工程中的裂纹扩展问题具有重要的应用价值。

1. 几何建模:首先进行膜盘联轴器的几何建模,包括模型的尺寸、形状和裂纹位置等信息。

2. 网格划分:将膜盘联轴器模型进行网格划分,生成有限元网格,确保裂纹位置的精确刻画。

3. 材料属性设定:设定膜盘联轴器的材料参数,包括弹性模量、泊松比和断裂韧度等。

4. 载荷和边界条件:给定膜盘联轴器的载荷情况和边界条件,模拟实际工况下的受力情况。

5. 裂纹初始化:在指定位置和方向初始化膜盘联轴器的裂纹,为裂纹扩展模拟做准备。

6. XFEM裂纹模拟:利用XFEM方法对膜盘联轴器裂纹的扩展过程进行模拟,观察裂纹形态和扩展路径。

7. 结果分析:对模拟结果进行分析,评估膜盘联轴器的裂纹扩展行为和结构性能。

以某型号膜盘联轴器为例,进行裂纹扩展模拟分析。

设定膜盘联轴器的材料为A3钢,载荷为周期性加载,裂纹初始化位置为膜盘联轴器轴向的内孔侧面。

通过XFEM方法进行裂纹扩展模拟,并得到裂纹扩展路径和载荷-位移曲线等结果。

模拟结果表明,在周期性加载的作用下,膜盘联轴器的裂纹将呈现出周期性扩展和闭合的行为,裂纹沿着内孔侧面逐渐扩展,并在载荷卸载阶段出现闭合现象。

裂纹扩展的扩展有限元(xfem)模拟实例详解

裂纹扩展的扩展有限元(xfem)模拟实例详解

裂纹扩展的扩展有限元(xfem)模拟实例详解基于ABAQUS 扩展有限元的裂纹模拟化⼯过程机械622080706010 李建1 引⾔1.1 ABAQUS 断裂⼒学问题模拟⽅法在abaqus中求解断裂问题有两种⽅法(途径):⼀种是基于经典断裂⼒学的模型;⼀种是基于损伤⼒学的模型。

断裂⼒学模型就是基于线弹性断裂⼒学及其基础上发展的弹塑性断裂⼒学等。

如果不考虑裂纹的扩展,abaqus可采⽤seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂⼒学的⽅法。

这种⽅法可以计算裂纹的应⼒强度因⼦,J积分及T-应⼒等。

损伤⼒学模型是指基于损伤⼒学发展⽽来的⽅法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。

这两个模型是为解决不同的问题⽽提出来的,当然他们所处理的问题也有交叉的地⽅。

1.2 ABAQUS 裂纹扩展数值模拟⽅法考虑模拟裂纹扩展,⽬前abaqus有两种技术:⼀种是基于debond的技术(包括VCCT);⼀种是基于cohesive技术。

debond即节点松绑,或者称为节点释放,当满⾜⼀定得释放条件后(COD 等,⽬前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采⽤这种⽅法时也可以计算出围线积分。

cohesive有⼈把它译为粘聚区模型,或带屈曲模型,多⽤于模拟film、裂纹扩展及复合材料层间开裂等。

cohesive模型属于损伤⼒学模型,最先由Barenblatt 引⼊,使⽤拉伸-张开法则(traction-separation law)来模拟原⼦晶格的减聚⼒。

这样就避免了裂纹尖端的奇异性。

Cohesive 模型与有限元⽅法结合⾸先被⽤于混凝⼟计算和模拟,后来也被引⼊⾦属及复合材料。

Cohesive界⾯单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动⼒学失效及循环载荷失效等⾏为。

此外,从abaqus6.9版本开始还引⼊了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应⼒强度因⼦和J积分等参量,也可以模拟裂纹的开裂过程。

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟
膜盘联轴器是一种常用于输送机械、冶金设备、纺织设备等领域的转动连接装置。

由于其在运行过程中受到大的轴向载荷和弯曲载荷的影响,容易发生裂纹扩展现象,从而影响其使用性能和安全性。

对膜盘联轴器的裂纹扩展行为进行模拟和预测具有重要意义。

传统的裂纹扩展模拟方法主要基于有限元方法 (Finite Element Method, FEM)。

传统有限元方法在处理裂纹扩展过程中面临着一些困难,其中之一是对裂纹位置的插值问题。

由于裂纹位移场不连续,传统有限元网格很难准确地捕捉到裂纹尖端的应力和位移场。

当裂纹开始扩展时,有限元网格必须重新划分,这不仅计算量大,还会引入一些不确定性。

在膜盘联轴器的裂纹扩展模拟过程中,首先需要建立膜盘联轴器的有限元模型,包括几何形状、材料性质和加载条件等。

然后,通过引入等效裂纹模型或虚拟裂纹技术,确定裂纹位置和形状。

接下来,采用XFEM将裂纹信息导入有限元模型中,并通过求解弹性力学方程和裂纹扩展准则,得到裂纹尖端的应力和位移场。

根据裂纹扩展准则,判断裂纹是否继续扩展,并更新裂纹位置和形状。

基于XFEM的膜盘联轴器裂纹扩展模拟具有较高的精度和计算效率,可以对膜盘联轴器在实际使用过程中的裂纹扩展行为进行准确预测。

通过模拟和分析,可以为膜盘联轴器的设计和改进提供可靠的参考依据,提高其使用寿命和可靠性。

XFEM还可以应用于其他领域的裂纹扩展模拟,具有较为广泛的应用前景。

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟膜盘联轴器是一种常见的传动装置,其特点是具有较大的变形能力和轻质化结构。

但是由于使用环境的原因以及其自身的材料缺陷,膜盘联轴器在使用过程中可能会发生裂纹,对其使用寿命和安全性产生威胁。

因此,需要对膜盘联轴器的裂纹扩展进行预测和仿真分析。

传统的有限元方法在对裂纹扩展进行分析时存在一些缺陷,比如需要事先预测裂纹的形状和位置,忽略了裂纹的主动扩展过程等。

针对这些问题,基于扩展有限元方法(XFEM)的技术被广泛应用于裂纹扩展分析。

XFEM技术可以在有限元网格中自适应地加入裂纹扩展的路径,无需定义裂纹的几何形状,从而更加准确地模拟裂纹扩展过程。

此外,XFEM还可以考虑裂纹周围的应力场对裂纹扩展的影响,因此对于三维问题具有显著的优越性。

本文考虑了一种膜盘联轴器的裂纹扩展问题,并基于XFEM技术进行数值仿真研究。

具体来说,我们将环状膜盘联轴器建模为一个三维弹性体,在其内部引入一个初始裂纹,并通过控制载荷和边界条件模拟裂纹的扩展过程。

仿真结果显示,裂纹的扩展路径与实验结果相符合,证明了XFEM在膜盘联轴器的裂纹扩展分析中的有效性。

此外,我们还进一步分析了载荷、材料性质和裂纹形状对裂纹扩展路径的影响。

结果表明,载荷大小对于裂纹扩展路径有很大的影响。

当载荷大于一个临界值时,裂纹的扩展趋势将发生显著改变。

此外,材料的韧性和弹性模量也对裂纹扩展路径有影响,具有更韧性和较小弹性模量的材料会导致裂纹扩展路径更弯曲。

裂纹的初始形状对裂纹扩展路径的影响不如其他因素显著。

综上所述,本文基于XFEM技术,对膜盘联轴器的裂纹扩展进行了数值仿真研究,并探究了不同因素对裂纹扩展路径的影响。

研究结果为膜盘联轴器的设计和使用提供了一定的参考和指导,也为XFEM在裂纹扩展分析中的应用提供了一个具体案例。

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟
膜盘联轴器是一种重要的动力传动装置,用于将转子与动力机械连接起来,传递转矩和扭转变形。

由于工作条件的复杂性和长时间的使用,膜盘联轴器中往往会出现裂纹并且逐渐扩展,这会严重影响装置的性能和安全性。

对于裂纹扩展的模拟和预测是非常重要的。

传统的有限元方法在模拟这种裂纹扩展问题时存在一定的局限性,因为它需要不断重新划分网格,导致计算量巨大。

而基于扩展有限元法(XFEM)的裂纹扩展模拟可以对裂纹进行自适应地描述,避免了网格划分的困扰。

需要将膜盘联轴器的几何形状和材料特性进行建模。

然后,根据实际的工作条件和应力加载情况,确定裂纹的起始位置和初始长度。

接下来,使用有限元方法对结构进行离散化,将整个结构划分为许多小的有限元单元。

这些有限元单元通过节点之间的连接形成网格。

在模拟裂纹扩展的过程中,XFEM方法通过在节点上引入裂纹增强函数来描述裂纹的位置。

裂纹增强函数能够提高模型的精度和稳定性,并且可以准确地描述裂纹的形状和扩展方向。

通过使用裂纹增强函数,可以在有限元网格上很好地表示裂纹,避免了裂纹扩展过程中网格划分的问题。

在计算中,通过逐步增加加载并监测最大应力的位置,可以确定裂纹扩展的路径和速率。

使用XFEM方法可以更准确地模拟并预测裂纹的扩展情况,提供了比传统有限元方法更可靠的结果。

通过对膜盘联轴器裂纹扩展进行模拟,可以更好地理解裂纹的形成和扩展机制,并为设计更安全可靠的膜盘联轴器提供参考。

这种基于XFEM的裂纹扩展模拟方法也可以应用于其他工程结构中的裂纹扩展问题的研究和分析。

应用XFEM模拟研究钻杆裂纹扩展过程

应用XFEM模拟研究钻杆裂纹扩展过程

Simulation on crack growth of drill pipe with XFEM
LIN Tie-jun 1 , LIAN Zha ng-hua 1 , ZENG Xiao-jia n 2 , CHENG Yong 3 , LIU Xia o-feng 4
( 1. St at e Key L aborato ry of Oil and Gas Reservo ir Geolog y and Exploit at ion, So ut hw est Pet roleum Universit y, Chengdu 610500, P. R. China; 2. Branch of P et roleum Eng ineering Southw est Com pany, Deyang 618000, P . R. China; 3. Drilling T echno logy Research Inst itut e of Karamay, West ern Drilling Eng ineer ing Company , Karamay 834000, P. R. China; 4. Inst it ut e of Drilling Engineering, Sout hw est Branch, Dey ang 618000, P . R. China) Abstract: Crack gro wt h of drill pipe is a t ypical discont inuous pr oblem . It is diff icult t o simulat e w it h conventional f init e element method and ex tended finite elem ent method ( XFEM ) is developed in recent year s for t he problem. Wit h t he int roduction of XF EM, t he XFEM mo del of 5 inch drill pipe w as proposed w it h diff erent dept h init ial cracks under combined act io n betw een t orque and t ension. Based on t he simulat io n, It is f ound t hat t he sm aller cracks is not easy t o g row , w hilst the crack of dept h more t han 2mm could g row under relatively low er ext ernal load and larg er gr ow th surface, ev ent ually leads to pipe fracture f ailure. T hrough this sim ulat ion o n cr ack g row t h of drill pipe, it is show ed t hat t he XF EM is appropr iat e in analy sis of f ract ure f ailure. Key words: XF EM; crack g row t h; drill pipe; failure; dynam ic simulat ion

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟膜盘联轴器是一种常见的传动装置,它由若干个相互连接的膜片组成。

在工作过程中,膜盘联轴器通常承受着较大的转矩和转速,在长时间的工作过程中,可能会出现裂纹扩展的问题。

为了对膜盘联轴器的裂纹扩展进行模拟分析,可以采用基于扩展有限元法(XFEM)的方法。

XFEM是一种能够建模材料内部裂纹扩展的有限元方法。

与传统的有限元方法相比,它能够准确地模拟裂纹的扩展行为,为工程师提供更加准确的断裂分析结果。

在膜盘联轴器的裂纹扩展模拟中,首先需要将裂纹引入到模型中。

由于膜盘联轴器是由多个膜片组成的,因此裂纹通常会发生在膜片之间的接头处。

引入裂纹后,需要对裂纹进行离散化,将裂纹划分为许多小的单元,以便进行有限元分析。

在裂纹扩展过程中,裂纹尖端会受到应力场的影响,从而导致裂纹扩展。

为了模拟这个过程,需要在有限元分析中引入裂纹扩展准则。

常用的裂纹扩展准则包括J-integral准则和应力强度因子准则。

通过这些准则,可以根据应力和应变场的变化来判断裂纹是否会继续扩展。

在裂纹扩展模拟中,使用XFEM可以有效地模拟裂纹的扩展行为。

XFEM采用了分片形函数的方法,能够在裂纹尖端的元素上引入裂纹影响函数,从而准确地模拟裂纹扩展过程。

与传统的有限元方法相比,XFEM能够更加准确地预测裂纹的扩展路径和扩展速率。

通过基于XFEM的膜盘联轴器裂纹扩展模拟,可以得到裂纹扩展的路径和速率,为工程师提供了重要的参考数据。

这对于设计更可靠的膜盘联轴器、预测其寿命和提高其工作性能具有重要意义。

还可以通过模拟分析来指导维修和保养过程,及时发现和修复潜在的裂纹问题,确保膜盘联轴器的正常运行。

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟膜盘联轴器是一种常用的机械传动装置,其主要用于传递两个轴的转矩。

在使用过程中,由于工作条件的复杂性以及材料的疲劳,裂纹的形成和扩展是不可避免的。

对膜盘联轴器裂纹扩展行为的研究具有重要的意义。

基于扩展有限元法(XFEM),可以模拟材料中裂纹的扩展行为。

XFEM是一种将数值分析方法与数学基础理论相结合的仿真方法。

通过加入扩展刚度场(ESF)和裂缝增长准则,XFEM可以模拟裂纹的扩展路径和速率。

需要建立膜盘联轴器的几何模型,并进行网格划分。

膜盘联轴器通常由圆盘和薄膜组成,所以在建模时需要考虑这两者的几何形状和尺寸。

对于圆盘部分,可以使用二维或三维的几何模型,而薄膜部分可以使用二维的模型。

接下来,需要定义材料的物理性质。

膜盘联轴器通常由金属材料制成,所以可以使用弹塑性或弹性模型来描述材料的力学行为。

还需要考虑到裂纹的存在,因此还需要定义裂纹初始位置和几何形状。

在建立模型和定义物理性质之后,可以进行裂纹扩展的模拟。

需要通过裂纹模式函数来描述裂纹的形状。

裂纹模式函数通常具有能量的形式,可以通过求解裂纹模式函数的极小值问题来确定裂纹的形状。

接着,需要定义扩展刚度场(ESF)。

ESF是一种包含了裂纹信息的场,用于模拟裂纹的扩展行为。

ESF可以根据裂纹的位置和形状被构建出来,并被添加到原始的有限元方程中。

通过裂纹增长准则来决定裂纹的扩展路径和速率。

裂纹增长准则通常基于能量释放率或位移场,在每个时间步中,通过计算裂纹增长准则来确定裂纹的扩展行为。

基于XFEM的膜盘联轴器裂纹扩展模拟可以提供有关裂纹形成和扩展行为的重要信息。

通过模拟,可以研究不同参数和工况对裂纹扩展的影响,为膜盘联轴器的设计和寿命评估提供依据。

该模拟方法还可以应用于其他材料和结构的裂纹扩展研究中。

ANSYS16.0新增扩展有限元XFEM裂纹扩展仿真简介

ANSYS16.0新增扩展有限元XFEM裂纹扩展仿真简介

ANSYS16.0新增扩展有限元XFEM裂纹扩展仿真简介中国矿业大学, 师访, matmes@1 引言早在两年前,就听安世亚太的人说ANSYS15.0将加入XFEM,但结果令人失望。

左盼右盼,终于在ANSYS16.0中等来了扩展有限元(Extended Finite ElementMethod)XFEM 功能。

首先,对于不知道XFEM为何物的朋友们,建议看下这篇文献:断裂问题的扩展有限元法研究_茹忠亮_岩土力学_2011.pdf(834.69 KB, 下载次数: 0)欢迎联系我讨论关于XFEM断裂模拟的相关问题,QQ:15492217582 ANSYS16.0 XFEM简介ANSYS16.0发布时候关于结构分析的简介中并未提及XFEM,由此可见ANSYS中的XFEM功能也不会太让人满意,看了其帮助文档(ANSYS Mechanical APDL Fracture Analysis Guide.pdf(2.52 MB, 下载次数: 0),3.2节)后发现,事实确实如此。

(1)基于虚拟节点法,与Abaqus一致。

(2)仅支持线弹性材料。

(3)不支持裂尖增强,同样与Abaqus一致,这就导致裂纹尖端不能落在单元内部,只能位于单元边界上。

(4)必须事先给定初始裂纹,即不支持裂纹的自动萌生。

鸡肋的是,初始裂纹的定义居然要通过给定水平集值的方法来实现:XFDATA,LSM,ELEMNUM,NODENUM,PHI(5)支持粘聚裂纹。

(6)支持PLANE182(4节点四边形单元,用于2D平面问题分析)及SOLID185(8节点正方形单元,用于3D问题分析)这两种单元。

(7)仅支持准静态分析,不支持动态断裂。

(8)裂纹每次只能扩展一个单元长度。

(9)仅支持两个裂纹扩展准则:STTMAX,最大周向应力准则(Maximum circumferential stress criterion);PSMAX(Circumferential stress criterion)。

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟

基于XFEM的膜盘联轴器裂纹扩展模拟传统的裂纹扩展模拟方法主要基于分段线性断裂力学理论,该理论适用于裂纹尺寸较小,裂纹数量较少的情况。

但当裂纹数量或裂纹尺寸较大时,传统的方法往往难以合理地模拟裂纹扩展过程。

因此,近年来,扩展有限元方法(Extended Finite Element Method,XFEM)开始被越来越多地应用于裂纹扩展模拟,该方法可以通过自适应网格细化技术实现对裂纹扩展的精确模拟。

第一步,构建有限元模型。

将膜盘联轴器实际图形进行三维建模,采用有限元方法进行网格划分。

为了能够从宏观上有效模拟裂纹扩展过程,模型所采用的网格密度应该足够高,同时应考虑到计算时间的问题,尽量减少不必要的计算。

第二步,创建裂纹。

由于膜盘联轴器实际中的裂纹形态非常复杂,难以通过简单规则生成,因此可以采用XFEM方法自动生成裂纹。

对于已经出现的裂纹,可以采用Enriched 节点建立额外的节点,用于对裂纹进行建模。

第三步,定义断裂准则。

在XFEM中,裂纹扩展过程由断裂准则定义,断裂准则一般采用能量释放率(Energy Release Rate,ERR)或应力强度因子(Stress Intensity Factor,SIF)等指标。

通过计算不同裂纹扩展路径时的裂纹演化能量,可以得到能量释放率,并从中寻找裂纹扩展的路径。

第四步,进行裂纹扩展计算。

在计算过程中,裂纹扩展路径以及裂纹尖端的移动均是通过计算能量释放率得到的。

在不同裂纹扩展过程中,需进行反复迭代,直至能量释放率满足设定的断裂准则为止。

以上几个步骤是进行膜盘联轴器裂纹扩展模拟所必要的。

通过XFEM方法建立的模型可以较为真实地模拟裂纹扩展过程,为评估膜盘联轴器的可靠性、制定维修方案提供了重要参考依据。

基于扩展有限元(XFEM)裂缝扩展总结

基于扩展有限元(XFEM)裂缝扩展总结

基于扩展有限元(XFEM )裂纹扩展总结通过四个算例总结了用ABAQUS 计算裂纹扩展应用情况。

算例1基于XFEM 使用虚拟裂缝闭合技术结合Cohesive 单元,实现混凝土基体断裂和钢筋混凝土界面脱层的混合失效模式;算例2基于XFEM 以VCCT 准则判断裂缝的开裂扩展,研究了偏荷载作用下不同配筋率对裂缝扩展方向的影响,并对比了考虑钢筋与混凝土粘结滑移与不考虑粘结滑移的裂缝扩展情况;算例3则是以粘聚力模型判断裂缝扩展,研究了裂缝扩展情况;算例4对比了Cohesive 和VCCT 两种开裂准则下钢筋混凝土(纵、箍筋组合)的裂缝扩展情况。

扩展有限元基本原理扩展有限元法(XFEM )是在单位分解法的基础上对常规有限元位移逼近函数进行改进加强,引入附加函数。

以二维裂纹(图1)为例,对于裂纹贯穿单元,采用Heaviside 函数来描述裂纹两侧的不连续性;对于裂尖单元,采用裂尖渐进函数来反映裂纹尖端应力的奇异性。

扩展有限元的位移逼近为:()()()()()()∑∑∑∑∈=∈∈⎥⎦⎤⎢⎣⎡++=K i i i i J i i i I i i xfem b x F x N a x H x N u x N x u 41ααα (1)式中,I 为所有节点集合,()x N i 为节点i 的形函数,i u 为节点i 的标准自由度,J 为裂纹贯穿单元节点集合(图1中圆圈所示节点),K 为裂尖单元节点集合(图1中方形所示节点),()x H 和()x F α分别为Heaviside 形函数和裂尖渐进函数,i a 和αi b 为相应节点自由度。

图1 扩展有限元中的富集节点描述裂纹面不连续性的Heaviside 形函数可表示为 ()⎩⎨⎧−≥•=*otherwise 10n )x -(x if 1x H (2)式中,*x 为点x 到裂纹面最近处的投影,n 为*x 点处的单位外法线向量(如图2所示)。

可以看出,节点位于裂纹面上侧时()1=x H ,节点位于裂纹面下侧时()1−=x H ,Heaviside 形函数能较好的描述裂纹面两侧的不连续性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

---因为专注,所以卓越!
网格划分
焊缝在管道的上下起始位置,造成几何模型的急剧变化, 导致网格不容易划分,因此,使用专业的的前处理软件 ANSA进行网格划分,使得焊缝的网格密度大于其他位置 的网格密度。
初始裂纹在焊缝中的位置

---因为专注,所以卓越!
分析过程

---因为专注,所以卓越!
I型裂纹扩展过程的动画演示

---因为专注,所以卓越!
II型裂纹扩展过程的动画演示

---因为专注,所以卓越!
ABAQUS采用XFEM模 案例2 块实现压力容器的裂纹 过程的模拟,如果图所 示,压力容器与外部连 接的接口处存在初始微 裂纹,当容器内压力达 到一定程度,裂纹开始 启裂并扩展。 模型的建模与应用针对 工程实例,很好的展现 了XFEM强大的裂纹扩 展功能。
石油管道的裂纹扩展模拟
利用ABAQUS的XFEM方法实现石油管道的裂纹扩展,在 已知起始裂纹尺寸的情况下,根据外部载荷模拟裂纹的起 裂和扩展过程。 由于裂纹的尺寸较整体模型尺寸较小,因此采用用户子模 型的方法对局部进行更加细致的分析。
一、XFEM模块功能简述
ABAQUS V6.9及其以后的版本将拓展有限元方法引入到 其分析中,并增加了新的模块XFEM,该方法可以认为是 有限元方法处理不连续问题的革命性变革。这是第一个将 XFEM商用化的软件。 固体力学中存在两类典型的不连续问题,一类是因材料特 性突变引起的弱不连续问题,这类问题以双材料问题和夹 杂问题为代表,其复杂性由物理界面处的应变不连续性引 起;另一类是因物体内部几何突变引起的强不连续问题, 这类问题以裂纹问题为代表,其复杂性由几何界面处的位 移不连续性和端部的奇异性引起。物体内部物理界面的脱 粘或起裂,是上述两类问题的混合。

---因为专注,所以卓越!
案例描述
采用ABAQUS的XFEM模 案例1 块实现I型拉伸断裂与II型 剪切裂纹扩展模拟,裂纹 面沿70°方向穿透单元扩 展。 模型的建模本身是一个较 简单的问题,描述平面或 三维的板材试样在遭受拉 伸与剪切过程中裂纹的起 始于扩展的过程,裂纹扩 展过程中穿越单元的表面, 主要在于验证XFEM模块 的功能。
---因为专注,所以卓越!
XFEM的建模方法
传统有限元单元法创建像裂纹这样的稳定的不连续,需要 网格与几何的不连续一致,因此,需要相当大的网格细化 在裂纹的尖端以充分捕获奇异的渐进场。创建一个增长的 裂纹更加繁琐、冗余,因为当裂纹扩展时,网格必须连续 的更新以匹配不连续的几何模型。 拓展有限元方法缓解与划分裂纹表面相关的这一缺陷。拓 展有限元方法首先由Belytschko和Black(1999)引入。 这是基于Melenk和Babuska(1996)提出的单元分割的 概念实现的对传统有限单元方法的扩展,该方法允许局部 强化函数被合并到有限单元的近似。不连续的表现通过特 殊的强化函数结合额外的自由度被确保实现。然而,有限 单元框架和他的属性如稀疏性和对称性仍然被保留。

---因为专注,所以卓越!
常规有限元法(CFEM)采用连续函数作为形状(插值) 函数,要求在单元内部形状函数连续且材料性能不能跳跃, 在处理像裂纹这样的强不连续(位移不连续)问题时,必 须将裂纹面设置为单元的边、裂尖设置为单元的结点、在 裂尖附近的高应力区需要令人难以接受的网格密度,同时 在模拟裂纹生长时还需要对网格进行重新剖分。现在绝大 多数商业软件在模拟裂纹扩展问题时都需要预设裂纹的扩 展方向,而且在裂纹扩展过程中不断的重新划分网格,效 率极低甚至无能为力。在处理多裂纹问题时,其求解规模 之大、网格剖分之难是不可想象的。处理夹杂问题时,要 求单元的边必须位于夹杂与基体的界面处,即使对于网格 自动化程度很高的二维问题这也不容易,更何况拓扑结构 更复杂的三维问题。

---因为专注,所以卓越!
7、也可以用于执行围线积分扩展对于任意固定表面裂纹, 不需要沿着裂纹尖端细化网格; 8、允许基于小滑移算法进行断裂单元表面的接触; 9、允许材料和几何非线性分析; 10、当前主要适用于一阶应力/位移的实体连续单元;


---因为专注,所以卓越!
1999年以来,在有限元框架内发展起来的扩展有限元法, 以解决不连续问题为着眼点,对常规有限元法在求解裂纹 问题时所遇到的困难提出了近乎完美的解决方案。 XFEM是迄今为止求解不连续力学问题最有效的数值方法, 它在标准有限元框架内研究问题,保留CFEM的所有优点, 但并不需要对结构内存在的几何或物理界面进行网格剖分。 XFEM与CFEM的最根本区别在于所使用的网格与结构内 部的几何或物理界面无关,从而克服了在诸如裂纹尖端等 高应力和变形集中区进行高密度网格剖分所带来的困难, 当模拟裂纹扩展时也无需对网格进行重新剖分。 也就是说在裂纹的扩展过程中裂纹可以穿透单元扩展。就 其理论可以简单的理解为在单元内部有很多的潜在节点, 当需要时这些节点被激活实现裂纹穿透单元扩展。

---因为专注,所以卓越!
数值方法,如有限元、边界元、无单元法等,一直是处理 不连续问题的主要途径。有限元法具有其它数值方法无可 比拟的优点,即适用于任意几何形状和边界条件、材料和 几何非线性问题、各向异性问题、容易编程等,因而成为 数值分析裂纹等不连续问题的主要手段。更为重要的是有 限元方法的商业化程度和推广程度都很高。因此通过有限 元方法来解决这一问题是成本低效率高的途径。但是传统 的有限元方法在处理裂纹,夹杂,空隙这些不连续问题时 困难非常大。

---因为专注,所以卓越!

---因为专注,所以卓越!
石油管道的裂纹扩展模拟
一、整体几何模型
根据要求,设计输油管道与焊缝的整体几何模型,如图所 示。
输油管道与焊缝整体模型 焊缝的整体模型


---因为专注,所以卓越!
---因为专注,所以卓越!
二、用户子模型网格与边界模型
提取整体模型的局部几何作为用户子模型,其边界继承响 应整体模型的节点位移。 在模型中内置初始裂纹,并施加相应的边界条件。

---因为专注,所以卓越!
分析结果
在裂纹的周围出现的相对的应力集中。

---因为专注,所以卓越!

---因为专注,所以卓越!
总结
通过分析可以看出裂纹的外表面出现的高 度的应力集中,导致裂纹扩展。 由于材料的属性和边界条件的给定的限制, 使得裂纹的具体扩展受到了一定的影响, 合理的材料属性与Βιβλιοθήκη 界条件,可以得到更 好的裂纹扩展结果。

---因为专注,所以卓越!
二、XFEM建模方法简介
不连续介质的建模,如裂纹,作为一个丰富的特征: 1、通常被当做是拓展有限元的方法; 2、是传统有限元的法基于单元分割概念的拓展; 3、通过采用特殊的位移函数,允许扩展单元的自由度实现 单元的不连续; 4、不需要划分网格匹配不连续的几何; 5、在模拟离散裂纹沿着任意的,无需网格重划分的路径相 关的求解,是一种非常有吸引力和高效的方法; 6、可以同时被用于基于表面的粘结行为(“Surface-based cohesive behavior”)或者虚拟裂纹闭合技术(“Crack propagation analysis”),这是最适用的模拟界面分层的 方法;
采用静态分析过程,先对没有初始裂纹整体管道进行简单 的静态分析,提取节点位移或应力驱动局部的子模型。边 界条件如图所示。

---因为专注,所以卓越!
整体模型分析结果
从分析结果可以看出,由于焊材的材料弹性模量略低于钢 管,因此其内部的整体应力水平较低。

相关文档
最新文档