超滤工艺设计计算表(全套工艺设计计算模板)
(完整版)D型滤池工艺设计说明计算书:18万吨每天
180000吨/天D型滤池设计计算一、已知条件设计水量:Q=180000m3/d滤池规格:共有14格,每格28㎡,分2组,每组7格。
反冲洗流程:第一阶段:单独气冲,冲洗历时3~5 min,气洗强度23L/(m2·s);第二阶段:气水同时反冲洗,历时8~10 min,气洗强度23L/(m2·s),水冲洗强度6L/(m2·s);第三阶段:清水漂洗,冲洗历时3~5 min,冲洗强度6(L/m2·s);反冲洗全过程中伴有表面扫洗,表面扫洗强度2.8 L/m2·s;冲洗时间共计t=15~20min,冲洗周期T=24h。
(取20min=1/3h)二、设计计算1、池体设计(1)、滤速:v=Q/(F×24)F——滤池总面积,14×28=392㎡v=180000/(392×24)=19.1m/h(2)、校核强制滤速v’v’=Nv/(N-1)=7×19.1/(7-1)=22.3m/h<23m/h(3)、滤池高度的确定滤板下布水区高度H1=0.9m滤板高度H2=0.03 m滤网板(承托层)高度H3=0.07 m滤网板与注塑盖板之间高度H4=1.9 mV型槽与注塑盖板之间距离为H5=0.1 mV型槽高度为H6=0.635 mV型槽顶至滤池顶高度为H7=0.965 m则滤池总高H= H1 +H2+ H3+H4 +H5+ H6+ H7=0.9+0.03+0.07+1.9+0.1+0.635+0.965=4.6 m(4)、水封池的设计按照试验数据,DA863彗星式纤维滤料清洁滤层的水头损失取ΔH=0.4 m清正常过滤时,通过长柄滤头的水头损失ΔH≤0.22 m,取0.2 m。
忽略其他水头损失,则每次反冲洗后刚开始过滤的水头损失为:=0.4+0.2=0.6mΔH开始为保证滤池正常时滤池内的液面高出滤料层,水封井出水堰顶标高与滤料层相同。
堰底板与滤池底版标高相同,水封井出水堰总高= H1 +H2+ H3=0.9+0.1+0.8=1.8 m。
水处理设计计算手册(超滤反渗透)完整版
水处理技术手册(内部资料,务需外传)编辑:审核:*****水务有限公司贰零二一年一月目录一.常用管道的允许流速 (3)二.流速、流量与管道直径的关系 (3)三.原水箱设计规则 (3)四.管道与流量的关系参考数据表 (4)五.管道内外径的关系 (4)六.原水泵设计规则 (4)七.絮凝剂、助凝剂加药设计规则(可参照exsell表格) (5)八.机械过滤器设计规则 (5)九.活性炭过滤器设计参数 (6)十.反洗水泵设计规则 (7)十一.罗茨鼓风机的选择 (7)十二.5um精密过滤器的参考数据 (7)十三.阻垢加药的设计 (8)十四.反渗透系统的设计 (8)十五.反渗透清洗系统的选择 (8)十六.中间水箱的有效容量设计规则 (9)十七.鼓风填料式除碳器的设计 (9)十八.混床的运行设计及再生工艺过程技术数据 (11)十九.混床再生周期及耗酸碱量的计算 (12)二十.各类交换床常用运行流速 (13)二十一.树脂再生周期及耗盐量的计算 (14)二十二.过滤器滤料填充计算公式及参考数据 (14)二十三.无油空压机的选择 (17)二十四.换热器的设计原理 (17)二十五.超滤系统 (17)二十六.EDI装置 (18)一.常用管道的允许流速二.流速、流量与管道直径的关系Q = π×(D÷2)2 ×V×3600Q-------------------流量(单位:m3/h)D-------------------管道直径(单位:m)V-------------------水流速(单位:m/s)3600---------------单位换算系数(单位:s/h)三.原水箱设计规则1.预处理采用全自动表头出力为1吨及1吨以下系统可按预处理每小时处理量的80%~100%;出力为1吨以上系统可按预处理每小时处理量的50%~80%;2.预处理不采用全自动表头,且反冲从原水箱抽水;原水箱可按照预处理每小时处理量1~2倍选型;3.预处理不采用全自动表头,且反冲不从原水箱抽水;原水箱可按照预处理每小时处理量的50%~100%;4.对于大型设备,修筑原水池时,原水池的容量一般按原水2个小时处理量来选择。
浸没式超滤反渗透污水处理工艺设计
浸没式超滤反渗透污水处理工艺设计吴溪【摘要】介绍了火力发电厂废水种类、来源及主要污染物,通过对某火力发电厂污水处理回用预处理系统的一体化净水器→浸没式超滤与机械澄清→多介质过滤器→压力式超滤设计方案在系统配置、特点、设备投资及运行费用比较,指出浸没式超滤与反渗透工艺在本工程中的可行性优于压力式超滤与反渗透工艺.【期刊名称】《吉林电力》【年(卷),期】2014(042)003【总页数】3页(P49-51)【关键词】污水处理;浸没式超滤;反渗透【作者】吴溪【作者单位】中国华电工程(集团)有限公司,北京 100070【正文语种】中文【中图分类】X773随着国民经济的快速发展,工业用水量大幅增加,水资源紧缺、废水排放等环境问题日益突出,火力发电厂作为用水大户进行废水回收利用,对于电厂的可持续发展及节约水资源保护环境具有一定的现实意义。
某火力发电厂原装机容量3×200 MW,新建1×200 MW设计污水处理回用系统采用浸没式超滤与反渗透组合深度处理工艺,系统采暖季产水140m3/h,非采暖季350m3/h,回用于锅炉补给及软化处理前端,减少了离子交换过程的废水排放量及酸碱用量,达到了节约用水和保护环境的目的。
1 废水种类、来源、排放量及主要污染物某火力发电厂原有装机容量3×200 MW ,新建1×200MW,废水主要包括工业冷却水排水、化学水处理系统酸碱再生污水、过滤器反洗污水、锅炉清洗污水、输煤冲洗和除尘污水、含油污水、冷却塔排污污水等。
酸碱污水来自化水车间的树脂再生过程,其中既含有酸又含有碱,通常pH值超标。
生活污水主要来自生活及办公区,其污染物主要为有机物(COD、BOD),煤厂及输煤系统冲洗水的污染物主要为煤泥。
原有机组及新建机组的废水排放量及主要污染物见表1、表2。
2 设计水质表1 原有机组废水排放量及主要污染物?表2 新建机组废水排放量及主要污染物?电厂原3×200MW机组以水库水作为供水水源;新建1×300 MW机组的锅炉补给水系统采用水库水作为供水水源,循环水补充水和其他工业用水采用城市中水作为水源,由东城区污水处理厂供水。
MBR池设计计算(精)
超滤膜初步计算1、超滤膜膜通量 Tc =选取202、设 计 流 量 Q =1000.03、超滤膜每日工作时间 t c按19.5h计19.54、膜总面积 Fc=2564.15、国产膜的通量考虑系数 1.5国产膜总面积Fc=3846.25、单只膜组(管)面积 Fa =选取4006、膜组(管)数量 n c=9.62实际膜面积4000.00核算过滤通量12.827、每平方米清洗膜所需空气量q q= 4.28、清洗模组所需空气量 q=16.809、膜反冲洗流量假定扬尘为15m的水泵30.0010、膜反冲洗水泵的流量长2100mm,宽1500mm,高2000mm120.00相关资料MBR膜池初步计算11、膜池进水BOD浓度C0200.0012、膜池有效高度 h=长2100mm,宽1900mm,高2000mm4膜池有效宽度 B=设定7.51,各单元L/(m2.h)管式超滤膜Tc 选取68 m3 / d厦门净沃帘式膜Tc 选取20~25 h厦门净沃帘式膜标准过滤通量0.39 m2膜通量需增加20%~50%m2m2/支支10取值m2L/(m2.h)10~12L/(min.m2)4.2~5.6m3/minL/(h.m2)30~40Lm3/h76.92m 3/h(按实际需要面积计算)mg/l mmm m3kgBOD/(m3.d)m3m3个代表参数取值42m 3/h 50m 3/h原因:开10停1min不产水及预留处理量最低5℃温度系数1(通量变化1.6%/℃)50 m 3/h10-15注意:MCR工艺取15-30双数,不宜超过70每单元容积m3(回流量 : 产水量)(一般取1.0~1.5),生活污水取1.210m3/min10m3/min%;密度 1.18kg/L%;密度 1.14kg/L (17%HCl 1.1kg/L)日1次L 药液浓度200ppm3.3吨天或者当跨膜压差超过5米ppm;(2) H2SO4溶液0.5%0.8吨1.8吨共用产水泵1,各单元单独使用产水泵2@5mH1用1备37.0KW @ 10 mH2用1备 3.7KW @ 10 mH1用1备7.5KW0.8MPa 1用1备 2.2KW 1MPa 1套-0.09MPa 1用1备 2.2KW -0.09MPa1套@ 10 mH 1用1备0.03KW @ 10 mH1台0.06KW 7次MC清洗1.9次R C 清洗4-20mA 1套 4-20mA 1套4-20mA 1套2套4-20mA 1套2套电导式1套2套PN101套2套PN101套2套PN101套2套PN101套2套PN101套2套PN103台6台PN103台6台元/千瓦•时10%NaOCl 1600元/吨元/吨30%NaOH1200元/吨36万度/年0.17元/吨水0.009元/吨水总计可进行可进行L/(m2.h)L/(m2.h)每日工作时间19.5h m3/(m2.d)水及预留处理量。
污水处理A2O工艺设计计算模板(脱氮除磷、吸附生物降解活性污泥)
(一)设计条件:设计处理水量Q=30000m 3/d=1250.00m 3/h=0.35m 3/s总变化系数Kz= 1.42进水水质:出水水质:进水COD Cr =350mg/L COD Cr =100mg/L BOD 5=S 0=160mg/L BOD 5=S z =20mg/L TN=40mg/L TN=15mg/L NH 4+-N=30mg/L NH 4+-N=8mg/L 碱度S ALK =280mg/L pH=7.2SS=180mg/L SS=C e =20mg/LVSS=126mg/L f=VSS/SS=0.7曝气池出水溶解氧2mg/L 夏季平均温度T1=25℃硝化反应安全系数3冬季平均温度T2=14℃活性污泥自身氧化系数Kd=0.05活性污泥产率系数Y=0.6混合液浓度X=4000mgMLSS/LSVI=15020℃时反硝化速率常数q dn,20=0.12kgNO 3--N/kgMLVSS曝气池池数n=2 若生物污泥中约含12.40%的氮用于细胞合成(二)设计计算1、好氧区容积V1计算(1)估算出水溶解性BOD 5(Se)6.41mg/L(2)设计污泥龄计算硝化速率一、生物脱氮工艺设计计算污水处理A2O工艺全套计算公式模板=-⨯⨯-=-)1TSS TSSVSS42.1kt z e S S ([][])2.7(833.011047.022)158.105.0()15(098.02pH O k O N N eO T T N --⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=--μ低温时μN(14)=0.247d -1硝化反应所需的最小泥龄θc m = 4.041d 设计污泥龄θc =12.122d(3)好氧区容积V 1=7451.9m 3好氧区水力停留时间t 1=5.96h2、缺氧区容积V 2(1)需还原的硝酸盐氮量计算微生物同化作用去除的总氮=7.11mg/L被氧化的氨氮=进水总氮量-出水氨氮量-用于合成的总氮量=24.89mg/L所需脱硝量=进水总氮量-出水总氮量-用于合成的总氮量=17.89mg/L需还原的硝酸盐氮量N T =536.56kg/d(2)反硝化速率q dn,T =q dn,20θT-20=(θ为温度系数,取1.08)0.076kgNO 3--N/kgMLVSS(3)缺氧区容积V 2=2534.1m 3缺氧区水力停留时间t 2=V 2/Q= 2.03h 3、曝气池总容积V =V 1+V 2=9986.0m 3系统总污泥龄=好氧污泥龄+缺氧池泥龄=16.24d4、碱度校核每氧化1mgNH 4+-N需消耗7.14mg碱度;去除1mgBOD 5产生0.1mg碱度;)1()(01c d V c K X S S Q Y V θθ+-=VT dn T X q N V ,21000⨯=)1()(124.00c d W K S S Y N θ+-=每还原1mgNO 3--N产生3.57mg碱度;剩余碱度S ALK1=进水碱度-硝化消耗碱度+反硝化产生碱度+去除BOD 5产生碱度=181.53mg/L>100mg/L(以 CaCO 3计)5、污泥回流比及混合液回流比(1)污泥回流比R 计算=80001.2混合液悬浮固体浓度X(MLSS)=4000mg/L 污泥回流比R=X/(X R -X)=100%(一般取50~100%)(2)混合液回流比R 内计算总氮率ηN =(进水TN-出水TN)/进水TN=62.50%混合液回流比R 内=η/(1-η)=167%6、剩余污泥量(1)生物污泥产量1525.5kg/d(2)非生物污泥量P S P S =Q(X 1-X e )=1020kg/d (3)剩余污泥量ΔX ΔX=P X +P S =2545.5kg/d设剩余污泥含水率按99.20%计算7、反应池主要尺寸计算(1)好氧反应池mg/L (r为考虑污泥在沉淀池中停留时间、池深、污泥厚度等因素的系数,取r SVIX R 610==+-=c d X K S S YQ P θ1)(0设2座曝气池,每座容积V单=V/n=3725.96m3曝气池有效水深h=4m 曝气池单座有效面积A单=V单/h=931.49m2采用3廊道,廊道宽b=6m曝气池长度L=A单/B=51.7m 校核宽深比b/h= 1.50校核长宽比L/b=8.62曝气池超高取1m,曝气池总高度H=5m(2)缺氧池尺寸设2座缺氧池,每座容积V单=V/n=1267.05m3缺氧池有效水深h= 4.1m 缺氧池单座有效面积A单=V单/h=309.04m2缺氧池长度L=好氧池宽度=18.0m 缺氧池宽度B=A/L=17.2m8、进出水口设计(1)进水管。
A2O法工艺计算(带公式)
一、工艺流程二、主要设计参数三、设计计算A2/O工艺计算项目设计流量(m3/d)COD (mg/l)BOD5 S0(mg/l)TSS(mg/l)VSS(mg/l)进水40000320160150105出水602020(活性污泥法)(1)判断是否可采用A2O法(用污泥负荷法)COD/TN=9.142857143>8TP/BOD5=0.025<0.06符合要求(2) 有关设计参数0.132、回流污泥浓度X R=66003、污泥回流比R=1004、混合液悬浮固体浓度X=RX R/(1+R)33005、混合液回流比R内TN去除率ηtx=(TN0-TN e)/TN0×100%=57混合液回流比R内=ηTN/(1-ηTN)×100%=133取R内=200(3)反应池容积V,m3V=QS0/NX=14918.41m3反应池总水力停留时间:t=V/Q=0.37(d)=8.88(h)各段水力停留时间和容积:厌氧:缺氧:好氧=1:1:3厌氧池水力停留时间t厌= 1.78(h)池容V厌=2983.7(m3)缺氧池水力停留时间t缺= 1.78(h)池容V缺=2983.7(m3)好氧池水力停留时间t好= 5.33(h)池容V好=8951(m3)(4)校核氮磷负荷,kgTN/(kgMLSS·d)好氧段总氮负荷=Q·TN0/(XV好)=0.0473961[kgTN/(kgMLSS·d)]厌氧段总磷负荷=Q·T P0/(XV厌)=0.0162499[kgTP/(kgMLSS·d)] (5)剩余污泥量△X,kg/d△X=P x+P sP x=YQ(S0-S e)-k d VX R1、BOD5污泥负荷N=Ps=(TSS-TSS c)*50%取污泥增殖系数Y=0.6污泥自氧化率k d=0.05将各值代入:P x=1637kg/dPs=2600kg/d△X=4237kg/d(6)碱度校核每氧化1mgNH3-N需消耗碱度7.14mg;每还原1mgNO3--N产生碱度3.57mg;去除1mgBOD5产生碱度剩余碱度SΔLK1=进水碱度-硝化消耗碱度+反硝化产生碱度+去除BOD5产生碱度假设生物污泥中含氮量以12.40%计,则:每日用于合成的总氮202.98kg/d即,进水总氮中有 5.07mg/l用于合成。
V型滤池工艺设计计(完整版)
溢流堰布置在滤池进 水渠的侧墙上,在进 水孔两侧,对称布置 。 每格堰宽: 堰上水头:h= (q/1.84/L)2/3= 校和堰上水头 堰顶高于进水渠水 位:
2.0 m/s 0.236 m 1.233 m/s
1 格计 0.173 m3/s
0.1 m 0.1 m 1.2 m 1.4 m 0.75 m
0.9 m
ξ 滤池出水渠出口DN500 弯头DN500x90° 反冲洗回用水池入口 钢管DN500
槽底坡i= 取h排=
0.475 m
0.6 m
0.05 0.1 m
h校和
0.032111111 0.021384113 0.123172491
0.042814815 0.038016201 0.054743329
取h2=
0.05 m
扫洗时闸孔开度
q扫=K*A*(2*g*h2)0.5 A=q扫/K/(2*G*h2)0.5=
0.03265953 M2 40.82441277 %,闸板开度
3、
(六)滤池冲洗系统
1、 a. b. c.
滤池出水管
宽= 高= 实际面积=
0.5 m/s 0.385 m2 2.000 m 3.500 m 7.00 m2
210 m3
93.64 m3
出水渠有效容 积满足反冲洗 水量要求
冲洗排水量 Q排=
冲洗排水槽:每格滤 池设一条排水槽,
槽宽B排= 排水槽槽长,B排=
设进水渠流速 进水渠断面积
超滤工艺设计介绍
4. 陶氏超滤系统设计
❈ 超滤膜应用存在的误区
一. 对原水水质的了解、把握不足
¾ 废水,特别是工业废水,其成分复杂,水质不够稳定。 超滤或者微滤虽然具有很好的过滤效果,但本身比较容 易受到无机盐结垢、油及有机物污堵的影响,因此适当、 充分的前处理是必不可少的
¾ 我国大部分地表水系污染较严重,部分地区存在早晚比 较大波动现象
2.5bar 5~12 Nm3/h.支 ≤1.0MPa 无油洁净压缩空气
2009-4-14
24
3.陶氏超滤介绍
❈ 陶氏超滤膜典型清洗工艺条件(续)
化 清洗频率
建议最少按24小时1次,一般根据中试试验结果或现场调试确定
学 分
化学分散洗时间
5-10分钟(视实际水源确定)
散 清 化学清洗பைடு நூலகம்剂 洗
酸洗:0.1﹪HCl(视实际水源情况可适当增减) 碱洗:0.05﹪NaOH+0.1% NaOCl(视实际水源情况可适当增减)
超滤工艺设计介绍超滤工艺流程超滤系统工艺流程图超滤工艺超滤工艺流程图超滤膜生产工艺超滤设计超滤设计导则超滤设计手册超滤设计软件
陶氏超滤工艺设计介绍
DOW Water Solutions EDI,UF and MBR 韦昌健 Jimmy Wei
大纲
1. 公司简介 2. 超滤基础介绍 3. 陶氏超滤介绍 4. 陶氏超滤系统设计 5. UFlow 计算软件介绍 6. 问题
Chemicals
Backwash Pump
Feed Pump
Raw Water
Filter
200-300 μm
Air
Effluent
31
3.陶氏超滤介绍 ❈ 陶氏超滤系统的运行过程-反洗1
100吨超滤、反渗透方案 .docx
一、概述本纯水处理项目主要为顺酉干装置、苯乙烯装置使用,原水来源为长江净化出水(达到循环水补充水水质要求)与苯乙烯装置工艺凝液,凝液实则为与石油苯类类接触的蒸汽凝液经汽提、过滤、除油除铁后的除盐水。
该凝液(部分为地暖、洗浴用水换热后使用后)在经过除油除铁系统后,一部分进入循环水系统,另一部分再经过脱盐水换热器冷却后进入原水箱,水量的分配主要依据原水箱的温度。
二、设计条件1、水源及水质原水来源为长江净化出水,原水水质(略)。
2、处理水量及岀水指标本次纯水项目产水量按100t/h设计,岀水水质达到中压锅炉给水指标,水质指标见下表:3、本项目主体工艺一级反渗透+混床,其中反渗透按两套装置设计,单台装置产水量按50t/h,混床按三套设计(考虑混床再生周期,两用一备),单套产水量50t/h o4、设计、供货范围及要求4.1、根据甲方提出的纯水处理方案及主体工艺制定详细的处理方案、流程图、水量平衡图、平面布置图(含工艺、电仪、土建等),并列出相关辅助工程及项目相关的工作;从原水箱至除氧器出水,包含上述苯乙烯凝液除油除铁系统;系统中对应的原水泵、高压泵、中间水泵等均为二用一备;4. 2、纯水装置厂房设计(含土建建筑结构、电气、给排水、设备基础等), 设计单位具备相关资质,土建施工由甲方负责,厂房选址在中心化验室南侧空地上,详见公司总图。
4.3、供货范围包含设备、电气、仪表、管材、管件等,请选型并列出详细供货清单,除油除铁系统、除氧器在供货范围之内,厂房内电气、照明等同样在供货范围之内,原水箱、中间水箱、脱盐水箱由甲方制作,设计方确认容积(甲方初步定为各200方)并提供施工图纸;4.4、考虑到长江水的季节变化,原水水质(长江净化水、苯乙烯冷凝液)浊度、C0D会波动,反渗透膜在选择时,建议考虑抗污染型,品牌以陶氏、东丽、GE品牌为主,高压泵采用南方品牌的304材质泵。
涉及到超滤膜组件采用有机陶瓷膜原件,经久耐用运行成本低,PLC编程器为西门子、ABB系列,电气釆用施耐德品牌。
(完整word版)A2O工艺设计计算
目录设计总说明 (1)设计任务书 (2)一.设计任务 (2)二.任务目的 (2)三.任务要求 (2)四. 设计基础资料 (2)(一)水质 (2)(二)水量 (3)(三)设计需要使用的有关法规、标准、设计规范和资料 (3)第一章 A2/O工艺介绍 (4)1。
基本原理 (4)2。
工艺特点 (5)3.注意事项 (5)第二章 A2/O工艺生化池设计 (6)1.设计最大流量 (6)2.进出水水质要求 (6)3.设计参数计算 (6)4. A2/O工艺曝气池计算.......................................................................。
..7 5。
反应池进、出水系统计算. (8)6。
反应池回流系统计算 (10)7.厌氧缺氧池设备选择 (11)第三章 A2/O工艺需氧量设计 (13)1.需氧量计算 (13)2。
供气量 (13)3。
所需空气压力 (14)4。
风机类型 (15)5。
曝气器数量计算 (15)6.空气管路计算 (16)第四章 A2/O工艺生化池单元设备一览 (17)第五章参考文献 (18)第六章致谢 (19)附1 水污染课程设计感想 (20)附2 A2/O工艺生化池图纸 (22)设计总说明随着经济快速发展和城市化程度越来越高,中心城区和小城镇建设步伐不断加快,城市生活污水对城区及附近河流的污染也越来越严重。
为了改善人民的生活环境,各地政府大力投入资金,力图改变现今水体的水质。
本设计为污水处理厂生化池单元,要求运用A2/O工艺进行设计,对生化池的工艺尺寸进行设计计算,最后完成设计计算说明书和设计图。
污水处理水量为10000t/d。
污水水质:CODCr 250mg/L,BOD5100mg/L,NH3-N30mg/L,SS120mg/L,磷酸盐(以P计)5mg/L。
出水水质达到广东省地方标准《水污染物排放限值(DB44/26-2001)》最高允许排放浓度一级标准,污水经二级处理后应符合以下具体要求:CODCr ≤40mg/L,BOD5≤20mg/L,NH3-N≤10mg/L,SS≤20mg/L,磷酸盐(以P计)≤0。
AO工艺设计计算表(完整版)
取
3.0
X-生物反
应池内混
合液悬浮
固体
(MLSS)平
均浓度, μ-硝化菌
生长速
率,d-1
Na-生物反 应池中氨
氮浓度, KN-硝化作
用中氮的
半速率常
数,
mg/L,一 T-设计温
度,℃
计算值:
V0= θco=
μ=
HRT=
三
缺氧区容 积
12726.5 m3 14.3 d
0.210 d-1 10.2 h
15 mg/L 8 mg/L
式中: V0-好氧池 容 Q-污积水,设m3 计流量, mS30/-生d 物反 应池进水 五日生化 需氧量浓 度,mg/L Se-生物反 应池进水 五日生化 需氧量浓 度,mg/L θco-好氧池 设计污泥 龄值,d F-安全系 数,1.53.0 Yt-污泥总 产率系 数, kgMLSS/kg BOD5,宜根 据试验资 料确定, 无试验资 料时,系 统有初沉 池时取 0.3-0.5,
150
式中Kd-衰
减系数,
d-1,20℃
时为0.04-
0.075
设计温度 下
=
θT—温 度系数, 采用1.021.06
0.039 d-1
13.3 mg/L
6.3 mg/L
式中r-考
虑污泥在
沉淀池中
停留时间
、池深、
污泥厚度
等因素的
系数
=
8000 mg/L
221.4
悬浮物含
量 污泥回流
比
=100%*X/(
Vn=
Kde(T)=
△Xv= HRT= 总容积V=
1871.0 m3 kgNO3-
超滤系统工艺设计
超滤系统工艺设计超滤膜以膜两侧旳压力差为驱动力,以超滤膜为过滤介质,在一定旳压力下,当原液流过膜表面时,超滤膜表面密布旳许多细小旳微孔只容许水及小分子物质通过而成为透过液,而原液中体积不小于膜表面微孔径旳物质则被截留在膜旳进液侧,成为浓缩液,因而实现对原液旳净化、分离和浓缩旳目旳。
超滤使用错流过滤技术,通过部分进水推向膜旳净水侧,悬浮物、细菌和病毒保持悬浮状态,并不断从膜表面移除。
由于错流技术可以解决含高浓度悬浮物旳给水,因此该技术一般可用于膜生物反映器,将微生物从被解决旳污水中分离,微生物可回流至生化池,而透过液可以再生运用或排放。
超滤错流膜与二沉池相比旳长处如下:(1)超滤错流膜对微生物形成一种绝对旳屏障,可以制止生物量流失,这不仅对净水有利,对保持生化池中旳生物量、避免污泥膨胀也有利。
(2)超滤错流膜对悬浮物形成一种绝对旳屏障,由于悬浮物吸附许多种类污染物(例如重金属、PAH、油脂等),因此膜旳综合出水水质更好。
在排放越来越严格旳今天,这是绝对有利旳。
(3)如果透过液作为再生水回用,不需要过多旳精力做进一步解决。
外置式错流式超滤膜组件特点如下:很高旳污泥浓度(MLSS=1000~40000mg/l);进水条件变化旳适应力强;水平(卧式)放置;紧凑、简洁式安装;工艺、安装简朴;湍流,能有效控制滤饼层旳生成;持续旳浓水回流,一次过滤时间很长;构造结实可靠,产水水质稳定;膜系统易于停机放置;维护保养简朴;清洗简朴,可以实现全自动运营;避免了老式沉淀池浮现污泥膨胀和浮渣旳问题。
4.5.1超滤膜选型设计计算根据超滤旳影响因素和超滤膜组件特点可知:超滤旳工作压力为0.1~0.6MPa,实际操作时应在极限通量附近进行,此时操作压力约为0.5~0.6MPa,超滤通量一般为1~100L/(m2·h),本设计通过实际测量实验得知超滤通量为J v=70 L/(m2·h)(实际参数)。
(1)超滤系统流量设计计算:超滤系统流量Q=原水流量Q d+深度解决回用水Q h其中深度解决回用水Q h旳设计详见深度解决设计,这里先给出数值Q h=50m3/h 由此可知超滤系统流量Q=300m3/h+50m3/h=350m3/h=14.6m3/h(2)超滤膜设计计算:膜需要总面积S=Q/J v=14.6×1000L/h/70 L/(m2·h)=209m24.5.2超滤膜选型设计参数表4.5.3超滤构筑物设计参数表4.5.4超滤系统设备(1)供料泵(2)循环泵(3)清洗泵(4)清洗水箱(5)超滤膜(6)电磁流量计(7)电磁流量计(8)电磁流量计(9)pH计(10)压力传感器(11)压力传感器。
超滤设备的处理方法及工艺流程介绍的资料下载
超滤设备的处理方法及工艺流程介绍的资料下载超滤通常采用中空纤维膜,原水在中空纤维装置的外侧或内腔加压流动,姗J构成外压式与内压式。
超滤是动态过滤过程,被截留物质可随浓缩液而排除,不致堵塞膜表面。
在超滤过程中,由于被截留的杂质在膜表面上不断积累,会产生浓差极化现象,使膜的透水量下降。
合理地选择运行条件和清洗工艺,可完全控制超滤的浓差极化问题。
超滤设备的出力与操作温度有关,水的黏度随温度变化而变化,温度每升高1℃,透水量增加2. 15%。
超滤系统实例1.原水水质(见表4-20)2.超滤预处理超滤预处理步骤为:混凝→澄清→过滤及加氯杀菌处理后→超滤((UF)→反渗透(RO)系统。
原水中含有铁锈、菌藻残留物、固体颗粒及破碎矾花等杂质,为防止这些物质对超滤的机械污堵,超滤预处理包括粗滤和精滤两部分。
粗滤采用四套逆流高效纤维过滤器,直径3000mm,单套产水210t/h;精滤采用两套20µm缠绕式滤芯过滤器,单套产水160t/h及加氯杀菌处理。
该技术指导资料由莱特莱德大连超滤设备厂家提供3.逆流高效纤维过滤器的运行管理压差超过0. 2MPa或浊度超过2NTU时,过滤器退出运行进行气水洗。
另外,过滤器在运行过程中不得停运,以防滤层紊乱及搅动影响产水质量。
过滤器的日常清洗通过上进水下进气的方式对流冲洗,保持进气强度在60L/(s·m³)左右,使纤维束充分搅动,达到截留物彻底脱落的目的。
同时在运行之初,缓慢升压,废水外排,直到产水合格后并人系统。
高效过滤器长期运行后,由于菌藻类滋生繁殖、胶体与纤维束的静电吸引、有机物的污染等因素,造成运行周期短,截污能力下降,水气洗关后压降不明显,需要进行化学清洗。
清洗采用3 % NaOH、 0. 5 5 % NaCLO 混合液,加热到30℃,浸泡滤料24h后进行气水合洗,至pH≤8时结束,清洗后产水还原率可达98%以上,截污容量大于1 0kg/m³。
超滤系统工艺设计知识讲解
超滤系统工艺设计超滤系统工艺设计超滤膜以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的。
超滤使用错流过滤技术,通过部分进水推向膜的净水侧,悬浮物、细菌和病毒保持悬浮状态,并不断从膜表面移除。
因为错流技术能够处理含高浓度悬浮物的给水,因此该技术通常可用于膜生物反应器,将微生物从被处理的污水中分离,微生物可回流至生化池,而透过液可以再生利用或排放。
超滤错流膜与二沉池相比的优点如下:(1)超滤错流膜对微生物形成一个绝对的屏障,可以阻止生物量流失,这不仅对净水有利,对保持生化池中的生物量、防止污泥膨胀也有利。
(2)超滤错流膜对悬浮物形成一个绝对的屏障,因为悬浮物吸附许多种类污染物(例如重金属、PAH、油脂等),因此膜的综合出水水质更好。
在排放越来越严格的今天,这是绝对有利的。
(3)如果透过液作为再生水回用,不需要过多的精力做进一步处理。
外置式错流式超滤膜组件特点如下:很高的污泥浓度(MLSS=1000~40000mg/l);进水条件变化的适应力强;水平(卧式)放置;紧凑、简洁式安装;工艺、安装简单;湍流,能有效控制滤饼层的生成;连续的浓水回流,一次过滤时间很长;构造坚固可靠,产水水质稳定;膜系统易于停机放置;维护保养简单;清洗简单,可以实现全自动运行;避免了传统沉淀池出现污泥膨胀和浮渣的问题。
4.5.1超滤膜选型设计计算根据超滤的影响因素和超滤膜组件特点可知:超滤的工作压力为0.1~0.6MPa,实际操作时应在极限通量附近进行,此时操作压力约为0.5~0.6MPa,超滤通量一般为1~100L/(m2·h),本设计经过实际测量试验得知超滤通量为J v=70 L/(m2·h)(实际参数)。
反渗透、超滤设计计算导则,水通量、选泵、选膜参数,陶氏,美国海德能设计参数
反渗透、超滤设计计算导则水通量、选泵、选膜参数陶氏,美国海德能设计参数1 反渗透和纳滤设计规范 (2)1.1 原始设计资料 (2)1.2 参数选择 (2)2 超滤设计规范 (7)2.1 设计原始资料 (7)2.2 参数选择.................................................................. 错误!未定义书签。
3 微滤设计规范 (13)3.1 微滤膜的应用范围 (13)3.2 常用微滤器的设计 (13)1 反渗透和纳滤设计规范反渗透和纳滤的设计流程是:首先根据水质类型、进出水指标选择膜的厂家、型号,然后在通过相应的膜计算软件进行模拟计算,得出最终的设计结果。
1.1 原始设计资料1.1.1 齐全的设计资料反渗透设计所需提供的原水参数:阳离子:Ca2+、Mg2+、K+、Na+、NH4+、Ba2+、Sr2+阴离子:CO32-、HCO3-、SO42-、Cl-、F-、NO3-、其它:水源类型、温度、pH、游离CO2、Fe、SiO2、溶解性总固体、电导率、浊度1.1.2 简单的设计资料当原水水质不全,做反渗透估算时需提供的原水参数:水源类型、溶解性总固体、电导率、水温、pH值1.2 参数选择1.2.1 膜型号的选择1. 各型号反渗透膜的适用范围2. 各型号纳滤膜的适用范围1.2.2 设计软件参数选择1. 设计水温:一般15℃2. 膜数量计算通常4”膜的设计产水量为250L/h ;8”寸膜的设计产水量为1000L/h单支膜设计产水量产水量膜数量=3. 系统回收率系统回收率参照《反渗透水处理设备》GB/T 19249-2003设计,同时根据具体的设计调整➢ 小型设备(日产水量≤100m 3/d ,4m 3/h )≥30%➢ 中型设备(日产水量≤100~1000m 3/d ,4~40m 3/h )≥50% ➢ 大型设备(日产水量≥1000m 3/d ,40m 3/h )≥70% 4. 水通量➢ Hydranautics➢ DOW➢KOCH1.2.3 工艺设计参数选取1. RO/NF系统设计预处理水量:=反渗透/纳滤产水÷回收率高压泵:根据RO计算软件的设计结果选型,一级高压泵出口压力=3年计算结果+0~1bar二级高压泵出口压力=3年计算结果+1~2bar 膜数量及排列方式:根据RO计算软件进行模拟2. 清洗系统➢清洗泵的选择扬程<5kg,3~4kg(30~40m)流量:按压力容器的个数选择,单支压力容器×并联的个数8英寸或8.5英寸压力容器,流量为133~151L/min(7~9t/h)6英寸压力容器,流量为57~76L/min(3~5t/h)4英寸压力容器,流量为34~38L/min(2t/h)➢清洗水箱的选择对于正常污染时,按下式计算,对于严重污染时,可将溶液体积加倍每根4"×40"膜元件配制2.2加仑(0.00836m3)溶液每根8"×40"膜元件配制8.7加仑(0.033m3)溶液➢清洗用保安过滤器通常采用孔径为5至10微米的过滤器以除去清洗出来的污垢。
超滤设计计算表格(超实用)
超滤膜计算一、设计产水量的计算:选定每29min进行一次反洗。
反洗时间t2=40s,反洗前后各一次正洗,正洗时间t3=10s 即一个运行周期为:30min每天正、反洗次数为M=24*60/30=48次每天冲洗(包括正洗及反洗)时间为t冲洗=(t2+2t3)*M=2880s每天真正的产水时间t=24*3600-t冲洗=83520s=1392min客户需要连续产水量为Q=10m³/h,而实际产水时间为1392minQ*24*60/t=10.3m³/h故每小时需产出需要的产水量为Qx=本工艺采用超滤产水进行反冲洗,考虑反洗水量为产水水量的2倍,正洗水用原水。
故小时反洗水量QF=2Qx*t2/3600=0.2m³/h每小时的真正产水量及设计产水量为:Qs=Qx+QF=10.6m³/h取整后:11m³/h二、超滤膜组件数量的计算:设计通量按设计导则取50l/m³*h所需膜面积S为:S=Qs/V=211.5㎡本工艺采用陶氏SFP-2640超滤膜组件,组件膜面积为20㎡组件长度1356mm组件直径165mm组件数N=10.6支取整后:12.0支三、超滤原水泵的选择:设计回收率取90%按每套产水量及回收率的计算,每套超滤原水泵的流量为:Q原=11.7m³/h原水泵的扬程选择约为:30米(选用恒流控制)四、反冲洗设计:2*Q原=23.5m³/h单套系统反冲洗水量为:原水泵的扬程选择约为:20米(选用恒流控制)五、正洗设计:正洗与原水泵共用六、化学清洗设计:清洗管道直径为DN100mm长约为:20m化学清洗水量取100l/m³*h水泵流量Q化=24.0m³/h化学清洗水泵扬程:20m选择50μm的精密过滤器清洗水箱体积:V洗=(膜组件体积×膜组件数量+管路体积)×1.2=0.6m³取整后1m³。
超滤和纳滤设计配置价格等 2
一、外置式膜生化反应器工艺设计外置式膜生化反应器由反硝化池、硝化池和外置式超滤单元组成,其工艺流程设计如下:图3.2-2 膜生化反应器设计流程图调节池内的渗滤液通过袋式过滤器进入外置式膜生化反应器系统。
外置式膜生化反应器由反硝化池、硝化池和外置式超滤单元三个系统组成。
(1)反硝化、硝化调节池内的渗滤液由生化进水泵提升经过布水系统进入反硝化和硝化。
为保护后续的超滤膜,进水前设袋式过滤器,以去除进水中的较大颗粒物。
反硝化和硝化反应器由一座有效容积为160m3的反硝化池和两座有效容积为400m3的硝化池组成,硝化池内曝气采用专用设备射流鼓风曝气,通过高活性的好氧微生物作用,污水中的大部分有机物污染物在硝化池内得到降解,同时氨氮在硝化微生物作用下氧化为硝酸盐。
硝化池至前置反硝化池设有混合液回流泵(硝氮回流),硝氮回流至反硝化池内在缺氧环境中还原成氮气排出,达到脱氮的目的。
膜生化反应器部分对氨氮的去除率为99%以上。
反硝化池内设液下搅拌装置,以达到搅拌及混合均匀的目的。
纳滤系统硝 氮 回 流二外置式膜生化反应器工艺计算1.反硝化、硝化容积计算(按总规模110m3/d设计)(略)2.3.合计超滤膜厂家:Membrane Technology GmbH &CO KG4.MBR工艺参数表三、纳滤系统设计1.纳滤工艺原理本项目采用的纳滤为卷式纳滤膜,其属于致密膜范畴,为卷式有机复合膜,最大优点在于过滤级别高、对一价盐离子几乎不作截留、出水水质好。
纳滤分离作为一项新型的膜分离技术,技术原理近似机械筛分,但是纳滤膜本体带有电荷性,因此其分离机理只能说近似机械筛分,同时也有溶解扩散效应在内。
这是它在很低压力下仍具有较高的大分子与二价盐截留效果的重要原因。
与超滤或反渗透相比,纳滤过程对单价离子和分子量低于200的有机物截留较差,而对二价或多价离子及分子量在500以上的有机物有较高截留率,而对与分子量小于500的有机污染物以及一价盐离子则几乎不作截留。
完整版)A2O工艺设计计算
完整版)A2O工艺设计计算0.14kgBOD5/(kgMLSS·d)是污泥负荷,计算得到N=0.14kgBOD5/(kgMLSS·d)。
2.回流污泥浓度XR=10,000mg/L。
3.污泥回流比R=50%。
4.混合液悬浮固体浓度(污泥浓度)X=3333.3mg/L。
5.TN去除率ηTN=51.5%。
6.内回流倍数R=106.2%。
四、A2/O曝气池计算1.反应池容积V=m3.2.反应水力总停留时间t=14h。
3.各段水力停留时间和容积:厌氧池停留时间t=2.33h,池容V=7087.7m3;缺氧池停留时间t=2.33h,池容V=7087.7m3;好氧池停留时间t=9.34h,池容V=.6m3.4.校核氮磷负荷:好氧段TN负荷为0.024kgTN/(kgMLSS·d),厌氧段TP负荷为0.017kgTP/(kgMLSS·d)。
以上是A2/O工艺生化池设计的相关参数计算。
根据进出水水质要求,设计最大流量为0.850 m3/s,进出水水质指标及处理程度在表1中给出。
根据计算结果,进行反应池容积、反应水力总停留时间、各段水力停留时间和容积、氮磷负荷等方面的校核。
剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
根据给定的数据,可计算出该生物处理系统的各项设计参数。
首先,根据污水的水量和污泥的含水率,可以计算出每天需要处理的污泥量为5395kg/d,剩余污泥量为2006.6kg/d,即83.6m3/h。
接下来,根据反应池总容积和每组反应池的容积,可以确定需要设置两组反应池,每组反应池容积为m3,有效水深为5m,超高为1m,总高为6m。
此外,还需要设置6条廊道,每条廊道宽10m,长度为71m,符合污水生物处理新技术的长比宽在5~10间,宽比高在1~2间的要求。
反应池进、出水系统的设计中,进水管取DN800mm管径,回流污泥管和出水管分别取DN800mm和DN1200mm管径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.89
化学分散清洗装置(水质较差时选用,与反洗加药装置二选一)
NaClO加药量(有效氯) %
0.10
反洗次数
次/d
1.00
总NaClO反洗加药箱
L
153.00 单套清洗NaClO流量(10%) m3/h0.46源自计量泵流量L/h459
酸洗同碱洗,可用同一套装置
化学清洗装置
化学清洗
跨膜压差比初始运行压力上升1.0bar,或K值下降25%~35%。
清洗强度
m3/h*支
1.00
清洗时间
min
60-90
化学清洗时间
min
90.00
单套清洗流量
m3/h
9.00
NaClO加药量(有效氯) %
0.20
NaClO清洗水箱
气擦洗装置
L
622.50
气洗频率
次/d
2.0
单支进气量
Nm3/h
12.0
气洗时间
s
60.0
进气压力
bar
<1
风量
m3/min
1.80
滤速 滤料填充高度
组件水容 积
16L 20L 35L 39L
0.15-0.2mpa
0.1-0.2 选5m
36.00
总反洗时间
min
72.00
每天真正产水时间
min
1,368.00
实际产水量
m3/h
26.32
小时反洗水量
m3
1.25
预处理自耗水量
m3
0.3
系统真正产水量
m3/h
27.82
校核系统回收率
%
89.88
膜组计算
温度校正系数
%
90.00
单支膜水通量
m3/支
3.21
投运膜元件数量
支
9.00
单套膜组数量
陶氏膜超滤设计计算书
项目
单位
数据
项目
单位
数据
设计原始条件
产水流量
m3/h
25.0
设计温度
℃
20.0
透水率
L/m2*h
70.0
膜面积
m2/支
51.0
水反洗强度
L/m2*h 100.0
预处理自耗水率
%
1.0
反洗周期
min
40.0
反洗历时
min
2.0
投运膜组数量
套
1
投运进水泵数量
台
1
水量计算
反洗次数
次/d
预处理系统(过滤器)
m/s
10.0
直径
m
1.2
膨胀系数
设备高
m
1.9
%
0.4
m
2.0
水箱
12.50
型号 SFP2640 SFX2660 SFX2680 SFX2860 SFX2880 SFD2660 SFD2860 SFD2880
面积 20m2 33m2 44m2 51m2 70m2 33m2 52m2 70m2
支/套
9.00
泵组计算
原水泵
m3/h
27.82
单套反洗泵流量
m3/h
45.90
NaClO加药量 (100%)
ppm
总NaClO反洗加药箱
L
反洗加药装置
15.00
反洗次数
次/d
82.62 单套清洗NaClO流量(100%) kg/h
36.00 0.69
计量泵流量
L/h
6.885 单套清洗NaClO流量(10%) kg/h