医学统计学必背重点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论
2选1
总体:总体(population)指特定研究对象中所有观察单位的测量值。可分为有限总体和无限总
体。总体中的所有单位都能够标识者为有限总体,反之为无限总体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。样本应具有代
表性。所谓有代表性的样本,是指用随机抽样方法获得的样本。
3选1
小概率事件:我们把概率很接近于0(即在大量重复试验中出现的频率非常低)的事件称为小概率事件
P值:结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。p值是将观察结果认为有效即具有总体代表性的犯错概率。一般结果≤0.05被认为是有统计学意义
小概率原理:一个事件如果发生的概率很小的话,那么可认为它在一次实验中是不会发生的,数学上称之小概率原理。统计学中,一般认为等于或小于0.05或0.01的概率为小概率。
资料的类型(3选1)
(1)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为
计量资料(measurement data)。计量资料亦称定量资料、测量资料。.其变量值是定量的,表
现为数值大小,一般有度量衡单位。如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、
脉搏(次/分)、血压(KPa)等。
(2)计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料
(count data)。计数资料亦称定性资料或分类资料。其观察值是定性的,表现为互不相容的
类别或属性。如调查某地某时的男、女性人口数;治疗一批患者,其治疗效果为有效、无效
的人数;调查一批少数民族居民的A、B、AB、O 四种血型的人数等。
(3)等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察
单位数,称为等级资料(ordinal data)。等级资料又称有序变量。如患者的治疗结果可分为治
愈、好转、有效、无效或死亡,各种结果既是分类结果,又有顺序和等级差别,但这种差别
却不能准确测量;一批肾病患者尿蛋白含量的测定结果分为+、++、+++等。
等级资料与计数资料不同:属性分组有程度差别,各组按大小顺序排列。
等级资料与计量资料不同:每个观察单位未确切定量,故亦称为半计量资料。
2选1
抽样误差(sampling error )是指样本统计量与总体参数的差别。在总体确定的情
况下,总体参数是固定的常数,统计量是在总体参数附近波动的随机变量。
系统误差:由于测量仪器结构本身的问题、刻度不准确或测量环境改变等原因,在多次测量时所产生的,总是偏大或总是偏小的误差,称为系统误差。它带有规律性,经过校正和处理,通常可以减少或消除。
统计的步骤(考填空题,四个空)
统计工作的步骤
1.设计:设计内容包括资料收集、整理和分析全过程总的设想和安排。设计是整个研
究中最关键的一环,是今后工作应遵循的依据。
2.收集资料:应采取措施使能取得准确可靠的原始数据。
3.整理资料:简化数据,使其系统化、条理化,便于进一步分析计算。
4.分析资料:计算有关指标,反映事物的综合特征,阐明事物的内在联系和规律。分
析资料包括统计描述和统计推断。
实验设计的基本原则(考填空题,三个空)
随机化原则、对照的原则(对照的类型,对照的设置)、重复的原则。
2选1
参数:参数(paramater)是指总体的统计指标,如总体均数、总体率等。总体参数
是固定的常数。多数情况下,总体参数是不易知道的,但可通过随机抽样抽取有代表性的样
本,用算得的样本统计量估计未知的总体参数。
统计量:统计量(statistic)是指样本的统计指标,如样本均数、样本率等。样本
统计量可用来估计总体参数。总体参数是固定的常数,统计量是在总体参数附近波动的随机
变量。
第二章
频数表的制作步骤以及频数分布表的用途(问答题)
频数分布表的编制步骤:
例:某市1982年50名7岁男童的身高(cm)资料如下,试编制频数表。
114.4117.2122.7124.0114.0110.8118.2116.7118.9118.1
123.5118.3120.3116.2114.7119.7114.8119.6113.2120.0
119.8116.8119.8122.5119.7120.7114.3122.0117.0122.5
119.7124.9126.1120.0124.6120.0121.5114.3124.1117.2
120.2120.8126.6121.5126.1117.7124.1128.3121.8118.7
1、找出观察值中的最大值(largest value)、最小值(smallest value),求极差(range)。
极差等于最大值减最小值。本例最大值=128.3,最小值=110.8,则极差=128.3-110.8=17.5(cm )
2、确定分组数和组距(class interval)。
组数的多少是根据例数的多少来确定的,以能够反映出频数分布的特征为原则,一般分10—15组。组距为相邻两组的间隔,组距=极差/组数。本例拟分10组,则组距=17.5/10=1.75≈2,为划记方便,可取稍大或稍小的数(当然本例组距也可取1.5)。
3、确定组段。
第一组段包括要最小值,取较最小值稍小且划分方便的数,本例取“110~”。最后组段包括最大值并写出其上限值。
4、划记。
将各观察值以划“正”字的方法,一笔代表一例,划在相应组段中。例如第一个数l14.4应在组段“114~”处划,第二个数117.2应在“116~”处划,以此类推。
5、统计各组段的频数。全部数据划记完后,清点各组段的人数。
根据编制出的频数表即可了解该数值变量资料的频数分布特征。
频数分布表的用途
1、描述资料的分布特征和分布类型。
频数分布有两个重要特征:集中趋势和离散趋势。大部分观察值向某一数值集中的趋势称为集中趋势,常用平均数指标来表示,各观察值之间大小参差不齐。频数由中央位置向两侧逐渐减少,称离散趋势,是个体差异所致,可用一系列的变异指标来反映。
2、便于进一步计算有关指标或进行统计分析。当数据较多且需手工计算时,常先编制频数表,再进行统计计算。
3、发现特大、特小的可疑值。
如果频数表的一端或两端出现连续几个组段的频数为零后,又出现少数几个特大值或特小值,使人怀疑其是否准确,需进一步检查和核对并做相应处理。
4、据此绘制频数分布图。
描述数据分布集中趋势的指标和描述数据分布离散程度的指标(考选择或者填空)
2.描述数据分布集中趋势的指标