第三章投影变换——换面法

合集下载

第3章变换投影面法

第3章变换投影面法

第3章 变换投影面法 我们知道,当空间的直线和平面对投影面处于一般位置时,它们的投影都不能直接反映真实大小、度量和定位关系,也不具有积聚性;但当它们和投影面处于特殊位置时,则它们的投影有的可直接真实地反映度量关系和定位关系或具有积聚性,如图3-1所示。

由此可知,若能把几何元素由一般位置改变成特殊位置,有些问题就容易解决,而变换投影面法就是解决这一问题常用的一种图解方法。

图3-1 特殊位置几何元素的投影图直接反映真实大小和度量示例图3-2 V H 体系变换为V 1H体系§3-1 变换投影面法的基本概念 在两投影面体系中,空间几何元素的位置保持不动,用新的投影面来代替某一旧的投影面,保留原有的另一投影面,新投影面垂直于保留的投影面,使空间几何元素对新投影面的相对位置变成有利于解题的特殊位置,然后作出几何元素在新投影面上的投影。

在新投影面与保留的原有投影面组成的新的两投影面体系中解题,必要时还可将解题结果返回到原有的两投影面体系中去。

这种方法称为变换投影面法,简称换面法。

如图3-2所示,△ABC 平面为一铅垂面,该面在V 、H 两投影面体系即V H体系中的两个投影都不反映真形。

取一个平行于△ABC 且垂直于H 面的V 1面来代替V 面,则新的V 1面和保留的H 面相交成新的投影轴X 1,构成一个新的两投影面体系即V 1H 。

△ABC 平面在V 1H 体系中V 1面上的投影△a ′1b ′1c ′1就反映了△ABC 平面的真形。

再将V 1面绕新投影轴X 1旋转展开到与H 面成一个平面,从而得出V 1H体系的投影图。

显然新投影面V 1是不能任意选择的,首先要使空间几何元素在新的投影面上的投影能够有利于解题,并且新投影面V 1和保留的H 面仍要构成一个由两个互相垂直的投影面组成的两投影面体系,这样才能应用前面所讲述的正投影原理作图。

因此,用换面法时,新投影面的选择必须符合下面两个基本条件: (1)新投影面必须垂直于保留的投影面,以构成新的两投影面体系。

第3章 变换投影面法

第3章 变换投影面法

将一般位置平面变换为投影面垂直面的作图 步骤如下: 1.在空间平面内作一投影面平行线(下图 中作了一条水平线) 2.设置与投影面平行线成垂直的新投影 面(如下图中设置的V1面)
要注意理解新投影面垂直于空 间平面内的一条线,也就垂直于 空间平面。
例:将△ABC平面变换为投 影面垂直面。 作图步 骤如图 示:
点的二次变换的分析: 图中先变换的是V1面,接着作第二次变换。 此时的H1面与V1面垂直,被替换是H面,而 V1面为不变投影面。
O2X2为新的投影轴,O1X1则成了旧投影轴。
(点击图形演示动画)
例:作出A点的二次变换投影图。
作图分析:两次变换的规律是一样的, 要注意的是在作第二次变换时定准点的 新投影的位置。
求一般位置直线 的实长和一般位 置平面的实形的 方法有多种,这 一节介绍的是用 变换投影面的方 法求得实长和实 形。
3.1
变换投影面法的基本概念
正投影的“真实性”表明,当空间的 直线或平面与投影面成平行时,其投影能 够反映直线的实长和平面的实形。变换投 影面的基本方法是,设置新的投影面来代 替原来的某一投影面,并使新投影面与空 间几何元素处于有利于解题的特殊位置。 变换投影面法的应用1: 在V、H两投影面体系中,AB为一 般位置直线,其两面投影均不能反映实 长。
从下图可以看到,所设置的新投影面应符 合以下两点原则: 1.新投影面必须垂直于原投影面体系中的一 个投影面,并与它组成新的投影面体系。必 要时可作连续变换。 2.新投影面应处于有利于解题的位置。 关于换面法的术语解释: 1.旧投影面—指图中的V、H面 2.旧投影—指几何元素在V、H面上的投影
3.被替换的投影面—图中的新面V1与H面垂 直,替换了旧投影面V,因此V面为被替换 的投影面,V面上的投影称为被替换的投影 4.不变的投影面及不变投影—指图中的H面 以及几何要素在H面上的投影

机械制图(多学时)课件3 第三章 投影变换

机械制图(多学时)课件3 第三章 投影变换

N
空间及投影分析:
n● c●
当直线AB垂直于投 影面时,MN平行于投影
a
m

面,这时它的投影m1n1=
MN,且m1n1⊥c1d1。
XV
A
H
M CN
D B
a
●m

n
c1
P1
n1
a1(m1b1)
c
d1
请注意各点的投影如
何返回?
求m点是难点。
b
d b
.
H X1
V1
圆半径=MN
d1

a1≡b1≡m1

.
●n1
d b H
V1 C c1
a1d1
c
b1
X1
互联网+立体化教材配套资料
第四节 平面的投影变换
例3:把三角形ABC变换成投影面垂直面。
a
作图过程:
1.在平面内取一条水平线AD。
X
V H
2.将AD变换成新投影面的垂直线。 a
反映平面对哪个投影 面的夹角?
b d c
b cd
H ●α ● ● X1V1 c1 a1d1 d1
互联网+立体化教材配套资料
a1(b1)
第三节 直线的投影变换
三、一般位置直线变换成投影面垂直线
空间分析:一次换面把直线变成投影面平行线;二次换面把投影面平
行线变成投影面垂直线。
X2
a2b2 ax2
V
b H2
a
b1 V1
B A
a1
b
X
a
X1
作图:
a
X
V H
a H1 X1 V1 a1●

第三章投影变换----换面法

第三章投影变换----换面法

b a
H X1 V1 a1′
b1′ a2 (b2)
V1 H2 X2
X1 // ab
X2 a b1
1
[例题]
求两直线AB与CD的公垂线 。
b 1 2
1 2 22 d2 c'1 2'1 1'1 d'1 c2
12 a 2b2

k'
求点K到直线AB之距。
b' l'
在什么情况下所 求其实长 如何确定 求线段的投影直 接反映其实长? 新投影轴的位置 AB P KL// P A 将AB//线 K L 将AB线 B 过点K作直线与 空间分析 投影分析 AB垂直相交并
V H
当两平面的 X a 交线AB垂直 d 于新投影面 d1′ c 1′ 时它们在该 投影面上的 a ′ 1 投影反映其 夹角 b1′
a2 (b2)
例 试完成矩形ABCD的两面投影,已知AB平行于 △EFG, B、C分别属于MN、AS。
a′
X V
d′ a
m
n′ b′ s′ c′ e′ m′ b e n
二、将一般位置线变换成投影面垂直线
X2 (a2)b2 V a' H2 A b' X a B a1 V1 b1
两次换面
Hb
将一般位置线 投影面平行线
X1 将投影面平行线 投影面垂直线
将一般位置线变换成投影面垂直线
作图
V X H a'
b'
将一般位置线 投影面平行线
将投影面平行线 投影面垂直线
解决此类问题,较简单的方法通常是 换面法
解决此类问题的方法通常是:分析、 确定解题方案及投影图上实现。 分析是十分重要的,首先根据给 出已知条件和求解要求,想出已知空 间几何模型,然后进行空间思维,想 象出最终结果的空间几何模型,再分 析确定从已知几何模型到最终结果几 何模型的空间解题步骤。

机械制图 第2版 第3章 换面法

机械制图 第2版 第3章 换面法

第三章 换面法
一、点的一次换面 1.更换V面
V a'
V1 A a1'
a'
X
a
X
a
X1
H
H
换面规律:
X1 V1
a1'
1) 新投影和不变投影的连线垂直于新轴;
2)新投影到新轴的距离等于旧投影到旧轴的距离
2.更换H面
第三章 换面法
X1
V a'
A
a1 H1
X1 H1
a1
V
a'
X
a H
X
a
第三章 换面法
b'
c'
a' X
b
d'
O d
a
c
d'1
H V1 a'1
X1
b'1(c’1)
所求夹角
B
C b(c)
D
d A a
P
分析:
△ABC与△ABD的交线 AB→垂直线
第三章 换面法
本次作业共1页
第三章 换面法
本章学习目标:
熟悉换面法的基本原理,掌握用一次换面法求一般位置直线实长、 投影面垂直面实形&倾角的方法 。
主要内容:
支撑知识点
换面法的基本知识 点的一次换面 直线的一次换面 平面的一次换面
扩展知识点
1.换面法概念 2.换面原则 1.更换V面 2.更换H面 1.一般直线→新投影面平行线 2.投影面平行线→新投影面垂直线
投影面垂直面→新投影面平行面
第三章 换面法 换面法的基本知识
V b'
X
a'
A
a1' V1

第3章 投影变换

第3章 投影变换
a) 直观图
图3-3 点的一次投影变换(变换H面)
X1 H1 XV H ax1 a1
X
ax
a
b) 投影图
用正垂面H1来代替H面,H1面和V面组成新投影体系V/H1,投影体系由V/H 变换为V/H1。新旧两体系具有同一个V面,因此a1ax1=Aa′ =aax。
无名湖畔论坛
b'
XH b k
V
O a
c
b1' a1'
k1'
作图过程如图4-21所示。
c1'
无名湖畔论坛 图3-21 过点A作直线与BC垂直相交
【例3-2】已知AB、CD是两条交叉直线,求两直线最短距 c' 离及其投影。
B
分析: 连接两交叉直线的线段中,只有它们 的公垂线最短。
M A C N
a
c
无名湖畔论坛 图3-10 一般位置平面变换为正垂面直观图
作图: 将一般位置平面变为正垂面的投影图。
b' a' k' 平面有积聚性的投影
步骤: ①找平面内的水平线;
c'
V XH
b1' a1' (k1')
②建新轴V1/H垂直于 ak,AK变成正垂线; ③平面变成垂直面, 有积聚性,反映平面 与H面的夹角。
无名湖畔论坛
一般位置平面变换为投影面的平行面,必须经过二次换面。
b'
a' k'
平 行
c'
X
V H
b1' a1' (k1') b2 a2 c1 '
b k a c
图3-13 一般位置平面变换为水平面

机械制图第三章 换面法

机械制图第三章 换面法
3、通过连续两次换面,将 一般位置直线变换为投影 面的垂直线。
V1 ⊥H X1
O2
X O1
平行
作图:
O
二、将一般位置直线变为投影面垂直线
(2次)
投影图: b'
a'
O2X2⊥
a1’b1’
V XH
b O O1

O2
b2
▲ a2
a
b1'
V1
H2 X2
O1X1 ∥ab
H V1 X1
a1'
2、第二次变换H2→H, 将投影面平行线AB变换 为O2投X2影⊥面a1的’b垂1’。直线,即:X1
二、更换水平投影面
V a'
用H1面更 换H面
a'
X1
X1 V H1
ax1
ax1
X ax
A
O1
O a1
X
V H
ax
O O1
a1
a
a
H
H1面应与V面垂直
点的投影变换规律: 1、点的新投影和不变投影的连线垂直于新投影轴; 2、点的新投影到新轴的距离等于旧投影到旧轴的距离.
三、连续两次更换投影面
有时需要连续两次更换投
以实现的。
3、故先设新投影面将直线变换为投影面的平行线,再次设新投 影面将平行线变换为投影面的垂直线,以实现题意要求。
二、将一般位置直线变为投影面垂直线
H2⊥V1
1、设新投影面V1,将一般和直线
位置直线变换为投影面的平
行线(即:正平线)。
X2
2、再设新投影面H2,将 投影面的平行线(即:正 平线)变换为投影面的垂 直线。
第三章 换面法
1、换面法的目的、概念、基本原则。 2、点的投影变换规律。

变换投影面法

变换投影面法

X
V H
ax
⑶在aax1的延长线沿V1的一侧,
截取一段距离a1'ax1,使其等于
a
被更换的投影a’至旧投影轴OX
的距离a'ax,即a1'ax1=a'ax,求 出a1'。
H X1 V1
o o1
ax1
a1'
6
二、点的二次变换 1)V面和H面交替变换; 2)每后一次变换把前次变换的结果作为旧体系。
7
第三节 直线的投影变换 一、把一般位置直线变换为投影面平行线 二、将投影面平行线变为投影面垂直线 三、把一般位置直线变换成投影面垂直线
V X
X2
a2 (b2)
b H2
ax2
V1
a bX
b1
B A
a1
aX
bX1
b
aX1
a
H
X1
b
a
XV H
aX
bX b
a
H
aX1
X1
V1

a1
bX1
●.
b1
作图 X1轴与ab垂直 X2轴与a1 b1 垂直
a2 (b2)
11
第四节 平面的投影变换 一、把一般位置平面变换为投影面垂直面 二、把投影面垂直面变为投影面平行面 三. 把一般位置平面变换成投影面平行面
8
一、把一般位置直线变换为投影面平行线
例:求直线AB的实长及与H面的夹角。
空间分析:用V1面代替V面,在V1/H投影体系中,必须
满足二个条件:
1)V1⊥H
b
2)AB// V1。
a
a
V
b
A
V1a1
b1
B

投影变换

投影变换
第三章 投影变换 3.1 投影变换的方法 3.2 变换投影面法
1
1. 投影变换的方法 1.1 变换投影面法(换面法) 变换投影面法(换面法)
几何元素保持不动,而改变投影面的位置, 几何元素保持不动,而改变投影面的位置, 使新的投影面与几何元素处于有利于解题 的位置。 的位置。 新投影面的选择应符合以下两条件: 新投影面的选择应符合以下两条件: (1)新投影面投影面必须处于有利于解题 ) 的位面必须垂直于原来投影面体系中 ) 的一个投影面。组成一个新的两投影面体系。 的一个投影面。组成一个新的两投影面体系。 1.2 旋转法 投影面保持不动, 投影面保持不动,而将几何元素绕某一轴 旋转到相对于 投影面处于有利于解题的位置。 投影面处于有利于解题的位置。
投影变换的方法
3

chap3投影变换-换面法

chap3投影变换-换面法

X1 H1 V
.
?a1
a??
V X
H
a?
2. 点的两次换面
V
a??
a2
H2 ?
A
?
X2
V1
?a′1
X
a?
H
X1
点的两次换面作图方法
a??

V X
H
a?
.
?a2
.
H X1 V1
?
a
′1
H2 V1 X2
先换V面,再换H面
三、直线的换面
1. 把一般位置直线变换成投影面平行线(一次换面) 例:求实长与α角
c?
b?
a?
X
O
a
c
b
三角形实形
c? c?
a?
d?
b? a?
d?
X
dc
X O
b?
O
b d
a
b
c
a
两平面夹角
直线与平面的 交点
一、换面法的概念
新投影面的选择原则:
V1
a? A
a?1
1. 新投影面必须垂直于不变投影
V
b?
面,以构成新的投影体系。
B
b?1
2. 投影变换后使物体处于有利解
a
题的位置;
Hb
换面法:保持物体的空间位置不动,用新投影面代替原投影 面,使物体相对新投影面处于有利于解题的位置,形成新的 投影图。
n●? c●?
N
分析:当直线AB垂直于投影面
时,MN平行于投影面,其投影
m ?1n ?1=MN, 且m ?1n?1⊥c?1d?1, mn ∥X1轴。
a? ●m?
b?

第三章 40换面法

第三章 40换面法

例10 已知点E在平面ABC上,距离A、B为15,求E点的投影。 a2′
15
b2′ d2
e2 ′ c2 ′
b′ e′ a′ V X H a d′ c′ b e
e1
d c
34
例11 求两平面之间的夹角
c' b' 交线 R T V Hc a H X1 V1 a' 交线
X
d' b d d'1
d2 b'1 a2b2
(1)新投影面必须和空间几何元素处于有利解题的位置。 新投影面必须和空间几何元素处于有利解题的位置。 新投影面必须垂直于原投影体系中的某一个投影面。 (2)新投影面必须垂直于原投影体系中的某一个投影面。
6
二、
1. 点的一次变换
点的投影变换规律
V a 1′
a′ A X a H
7
V1
X1
V V1 a1 ′ A
27
c′
综合前两次换面:将一般位置平面变为投影面平行面 综合前两次换面:将一般位置平面变为投影面平行面
a2′ b2′ d2 b′ d′ a′ V X H a c′ b d c
28
c2 ′
变换思路: 变换思路:
实距 新投影面 把 直 求 线 点 变 到 为 投 直 影 线 面 的 垂 距 直 离 线
位 置
旋转
38
直 线
α α
一、点绕投影面垂直线为轴旋转的旋转 旋转中心
O
旋转轴 轨迹圆 旋转半径 旋转点
C
a' a1'
V
x a1 a 投影图
o
绕铅垂线O旋转 点C绕铅垂线 旋转 绕铅垂线
二、求直线段实长
39

第3章 投影变换---换面法

第3章 投影变换---换面法

广东技术师范学院天河学院教案2012 年月日第周单元教案首页第三章投影变换——换面法第一节换面法的基本概念一、换面法的基本概念空间几何元素的位置保持不变,用新的投影面来代替旧的投影面,使空间几何元素对新的投影面的相对位置变成有利于解题的位置,然后找出其在新投影面上的投影。

这种方法称为换面法。

用换面解题时应遵循下列两原则:⒈选择新投影面时,应使几何元素处于有利于解题的位置;⒉新投影面必须垂直于原投影面体系中不被变换的投影面,并与它组成新投影面体系,必要时可连续变换。

(a) (b)图3.1 将一般位置直线变换成投影面平行线如图3.1,新投影面必须垂直于不变换的投影面,即V1⊥H,X1为新投影轴。

这时,不变换投影面上的投影a、b与V1面上的新投影a1'、b1'的投影连线a a1'⊥X1、b b1'⊥X1。

并且a1'、b1'到X1的距离等于被代替的投影a'、b'到被代替的投影轴的距离,即a1'a X1=a'a X=A a=Z A, b1'b X1=b'b X=B b=Z B。

第二节点的换面二、点的投影变换规律(一)点的一次变换点是一切几何形体的基本元素。

因此,必须首先掌握点的投影变换规律。

现在来研究更换正立投影面时,点的投影变换规律。

图3表示点A在V/H 体系中,正面投影为a′,水平投影为a。

现在令H面不变,取一铅垂面V1(V1⊥H)来代替正立投影面V,形成新投影面体系V1/H。

将点A向V1投影面投射,得到新投影面上的投影a′1。

这样,点A在新、旧两体系中的投影(a,a′1)和(a,a′)都为已知。

其中a′1为新投影,a′为旧投影,而a为新、旧体系中共有的不变投影。

它们之间有下列关系:1. 由于这两个体系具有公共的水平面H,因此点A到H面的距离(即z坐标),在新旧体系中都是相同的,即a′ax=Aa=a′1ax1。

2. 当V1面绕X1轴重合到H面时,根据点的投影规律可知aa′1必定垂直于X1轴。

这和aa′⊥X轴的性质是一样的。

投影变换

投影变换
以新的投影面置 换某一旧的投影 面,建立起一个 新的二面体系, 使某一直线或平 面由一般位置变 换为特殊位置。
旧的 V面
新的 V面
二.换面法
1)直线的一次换面
新投影与保
留投影的连线
a
垂直于新投影
b
轴;
V
XH
a
新投影到新
投影轴的距离
等于旧投影到
旧投影轴的距
b
a
离。
b1
直线的换面
a1
二.换面法
1)直线的一次换面 2)直线的二次换面
k'
a'
X HV a
k
c'
e' b' b
e
c X1
b1' L a'1
k1'
c1'
15
2020年4月5日星期日
第三章 投影变换
一.投影变换的目的与方法 二.换面法 三.例题
a
a
a
一.投影变换的目的与方法
1)投影变换的目的是将原 体系中的某一个处于一般位 置下的几何元素,改造为特 殊位置的元素,以利于图解。
2)投影变换所采用的方法: 置换投影面法(换面法) 旋转几何元素法(旋转法)
换面法 旋转法
二.换面法
一般位置
直线经过一次
b
变换可变为平 V
行线;
XH
一般位置直
线需先变换成
平行线后才能
再变换为垂直
b
线。
a a
a b1
直线的换面
b2(a2)
a1
二.换面法
平面的换面
1)平面的一次换面
注意:必 需先在该面上 取一条投影面 的平行线作为 变换依据。

三章投影变换

三章投影变换

d
N
e
d
章目录
上一页
下一页
(五) 投影面垂直面变为投影面平行面
c1
V1
a1 b1
X1
章目录
上一页
下一页
c′
c1 b1
a1
章目录
上一页
下一页
(六) 把一般位置平面为投影面平行面
a2
b2
实形
d2
c2
d
d
章目录
上一页
下一页
例题:已知E点在平面ABC上, 距离A、B为15,求点E的投影。
为了较容易地解决有关的作图问题,将几何元素与投影面 的相对位置变换成处于有利解题位置的方法称为投影变换。
投影变换的两种形式:
(1)变换投影面法(换面法)——空间几何元素保持不 动,设立新的投影面,使其相对新投影面变成特殊位置, 然后用其新投影解题。
(2)旋转法——投影面保持不动,将几何元素绕某一轴 旋转到有利解题的位置。
第三章 投影变换
第一节 投影变换的目的及种类 第二节 换面法 第三节 旋转法
§3-1 投影变换的目的及其种类
第一节 投影变换的目的及其种类
当直线或平面相对于投影面处特殊位置(平行或垂直) 时,它们的投影可能反映线段的实长、平面的实形以及与投影 面的倾角,从而便于求解几何元素的实长(形)、距离、夹角 和交点(线)等问题。
上一页
下一页
a2b2
c'1
2'1
d'1
b'1
a'1
1'1
章目录
上一页
下一页
(四) 一般位置平面变为投影面垂直面
b
a
d
b1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HX1P1
c●1
X2轴的位置第?三章投与影变其换—平—行换面法
例:用换面法求出△ABC平面的实际形状。 作图分析:由于△ABC平面为一
铅垂面 ,则O1X1轴应平行于平面的 积聚性投影。
作 图 过 程 如 图 所 示:
第三章投影变换——换面法
例 3 已知直线AB与CDE平面平行,且相距20mm,
求直线AB的 水平投影。
b1 a1
c1
c'
e1 d1
a'
e' XHV d' c
b'
e
da b
第三章投影变换——换面法
例4:求点C到直线AB的距离,并求垂足D。
空间及投影分析:
作图:
求C点到直线AB的距离, c
b
就是求垂线CD的实长。
如下图:当直线AB 垂直于投影面时,CD平
XV H
行于投影面,其投影反映 c
b’
a
cd
b
b
直线 与平面的交点
返回
第一节 概述
特殊位置的直线:可直接反映实长、倾角问题
a
b
a(b)
X
OX
O
a
b 实长
实长
b
a
第三章投影变换——换面法
特殊位置的平面:可直接反映实形、倾角问题
c 实形
a
b
X
O
a
cb
a c b
X
O
b
a
类似形 c
正平面
第三章投影变换——换面法
正垂面
特殊位置的几何元素:可直接反映度量、定位问题
一. 换面法的基本概念
旧面
新面 c1'
V1
c1 ' b1'
新轴 a1'
b1'
a1' 旧轴
不变面
X1
X1
V/H 体系变为V1/H 体系
换面法—空间几何元素的位置保持不动,用新的投影面来 代替旧的投影面,使对新投影面的相对位置变成有利解题 的位置,然后找出其在第新三章投投影影变换面——上换面的法 投影。
c●1α


a1 d1 b1
反映平面对哪 个投影面的夹角?
第三章投影变换——换面法
4. 把一般位置平面变换成投影面平行面
空间分析:
一次换面, 把一般位置平面变换成新投影面的垂直面; 二次换面,再变换成新投影面的平行面。
作 图: c
AB是水平
线
a
b
●a2
XV
Ha
b2● b . a1 b1.

c

c2 平面的实形
第三章投影变换——换面法
返回
1. 把一般位置直线变换成投影面平行线
例:求直线AB的实长及与H面的夹角。
空间分析:用P1面代替V面,在P1/H投影体系中,AB//P1。
a
V
b
A
P1a1
b1
B
作图:
a
XV H
b b
a
Hb
换H面行吗? 不行!
a
.
H
X1 P1
a●1
b●1
新投影轴的位置?
与ab平行。
第三章投影变换——换面法
第三章 投影变换——换面法
一、投影变换及换面法的基本概念 二、点的换面作图规则
三、换面法的四个基本作图
四、应用及举例
第三章投影变换——换面法
返回
求解距离、夹角、实形、交点的最佳投影分析
b’ a’
a
b
两点之间距离
c’
c’
a’
b’
a’
d’
dc
a
c
ba
三角形实形
两平面夹角
第三章投影变换——换面法
c’
d’ b’ a’
c V
d
a b
A
D
X
B
a
d
b
H
思考: 若变第三换章H投面影变,换需——在换面面内法 取 什么位置直线?正平线!
P1 C c1
a1 d1
c
b1
X1
例:把三角形ABC变换成投影面垂直面。
b
a
d
作 图 过 程:
c
★ 在平面内取一条水平
XV H
线AD。
a
b
★ 将AD变换成新投影
d.
面的垂直线。
c
H X1 P1
a d
b
距离
实长。
AD C
B
abd
P
c
ad
.
H X1 P1
a1 d. 1
b 1. a2b2d2
c1
P1 P2
c2
X2
过c1作线平行于x2轴。
第三章投影变换——换面法
例5:已知两交叉直线AB和CD的公垂线的长度 为MN, 且AB为水平线,求CD及MN的投影。 M N
作图:
n● c●
a m ●
XVH
a
●m

n
c
请注意各点的投 影如何返回?
●d
空间及投影分析:
当直线AB垂直于投影
面时,MN平行于投影面,
b
这时它的投影m1n1=MN,且
m1n1⊥c1d1。
A
d
b .
d1 ●
a1≡b●1≡m1
.
●n1
HX1P1
c●1
第三章投影变换——换面法
M CN
D B a1m1b1
c1
P1
n1
d1
圆半径=MN
例6:求平面ABC和ABD的夹角。
例1 已知等腰三角 形ABC的底边 为AB,试用 换面法求出等 腰三角形ABC 的正面投影。
cHc
a' e
a
a1'
第三章投影变换——换面法
b
b1' e1´
c1'
3. 把一般位置平面变换成投影面垂直面
功用:可求解平面与投影面的倾角, 点与平面的距离, 两平行面间的距离等。
问题的关键:在平面上作一条投影面平行线,新 轴必须垂直与该平行线反映实长的那个投影。
空间及投影分析:
垂所时直求所在于。由得投该几两影投何交图影线定中面之理,, 间知两它的:平们夹两面的角面投的。角影交为积线两聚垂平成直面直于同线投时,影与直面第线时三间,平的则面夹两垂角平直为面相交
2. 把一般位置直线变换成投影面垂直线
空间分析: 一次换面把直线变成投影面平行线; 二次换面把投影面平行线变成投影面垂直线。
V X
X2
a2b2 b P2
ax2
P1
a
b1
B A
a1
作图:
b
a
XV
H
b
a
b
H1
a
X1 P1a1●
●.
b1
a2b2
H
X1 X2轴的位置?
与a1 b1 垂直
第三章投影变换——换面法
a
c
b m c
e
f
b d
e
a(b)
f
c(d)
m b
a c
距离
a
点到直线的距离
第三章投影变换——换面法
一、基本概念
改变空间几何元素与投影面的相对位 置,使它们相互之间处于某一特殊位置的 情况,从而使问题简化、得到解决——投 影变换。
二、投影变换的方法 1. 辅助投影面法(换面法) 2. 旋转法
第三章投影变换——换面法
返回
二、点的换面及规律
1. 点的一次变换
V1
a1 '
X1
第三章投影变换——换面法
返回
2. 点的两次变换
a2
X2
a' 旧
水平书写好
不变 X2
新V1 H2 a2

新 不变
新与旧是相对的
第三章投影变换——换面法
返回
三、换面法的四个基本作图 1. 把一般位置直线变为投影面平行线 2. 把一般位置直线变为投影面垂直线 3. 把一般位置平面变为投影面垂直面 4. 把一般位置平面变为投影面平行面
第三章投影变换——换面法
3. 把一般位置平面变换成投影面垂直面
空间分析:
如果把平面内的一条直线变换成新投影面的垂 直线,那么该平面则变换成新投影面的垂直面。
作图方法:
在平面内取一条 投影面平行线,经一 次换面后变换成新投 影面的垂直线,则该 平面变成新投影面的 垂直面。 一般位置直线变换成 投影面垂直线,需经 几次变换?能否只进 行一次变换?
相关文档
最新文档