九年级数学 33 垂径定理 精选练习

合集下载

北师大九年级下册数学同步测试:33垂径定理.docx

北师大九年级下册数学同步测试:33垂径定理.docx

的对称性》分层练习♦基础题1・如图,在中,半径0C与弦AB垂宜于点D 且AB二8, 005,则A. 3B. 2.5C. 2D. 12.如图,OO的直径AB=20cm, CD是(DO的弦,43丄CD,垂足为E, 0E:EB二3: 2,则CD的长是()A. 10cmB. 14c 血C・ 15cm D 16 cm3.00 的半径是13, ® AB//CD, AB二24, CD二10,则AB 与CD 的距离是()A. 7B. 17 C・ 7 或17 D・ 344•“圆材埋壁”是我国古代《九章算术》中的一个问题,“今有圆材,埋在壁屮,不知大小,以锯锯Z,深一寸,锯道长一尺,问径几何?”用现代的数学语言表示是:“如图,CD为(D0的直径,弓玄丄CD垂足为E, CE二1寸,A3二10 寸,求直径CD的长”•依题意,CD长为()A.厶寸B. 13寸C. 25寸D. 26寸25・如图,(DO的直径为10,弦AB=8, P是弦A3上一动点,那么OP长的取值范围是 _________ .6.在平面直角坐标系中,O为原点,QO的半径为7,直线y^mx - 3m+4交00于A、B两点,则线段AB的最小值为_______ ・7.如图,点P在一半径为3的。

0内,0P二羽,点人为OO上一动点,弦AB过点P,则最长为___________ , AB最短为_________ .8.如图,A3是00的直径,0D丄AC于点D BC二6cm,贝9 0D二cm.9.已知两同心圆,大圆的弦A3切小圆于M,若环形的面积为9”,求朋10.已知:如图,AB是的弦,半径OC、0D分别交AB于点E、F,且OE二OF.C Li♦能力题1 •如图,将半径为4c加的圆折叠后,圆弧恰好经过圆心,则•折痕的长为()/BA. 2 ^3 cmB. 4 >/3 cmC. >/3 cmD. A/2cm2.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13加,河面宽AB为24加,则桥高CD为()3.如图,在00中,弦AB的长为16cm 圆心。

3.3垂径定理

3.3垂径定理

九年级数学第三章同步练习*3.3 垂径定理1.如图 ,DC 是⊙O 的直径,弦AB ⊥CD 于点F ,连接BC ,DB.则下列结论错误的是( )A .AD ︵=BD ︵B .AF =BFC .OF =CFD .AC ︵=BC ︵ 2.如图,⊙O 的半径为5,AB 为弦,半径OC ⊥AB ,垂足为E ,若OE =3,则AB 的长是( )A .4B .6C .8D .103.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( )A .2.5B .3.5C .4.5D .5.5第1题图 第2题图 第3题图 第4题图 第5题图4.在直径为200 cm 的圆柱形油槽内装入一些油以后,截面如图所示,若油面AB =160 cm ,则油的最大深度为( )A .40 cmB .60 cmC .80 cmD .100 cm5.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:如果CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1寸,AB =10寸,那么直径CD 为多少寸?请你求出CD 的长.6.如图所示,AB 是⊙O 的弦(非直径),C ,D 是AB 上的两点,且AC =BD.求证:OC =OD.7.要测量一个钢板上的小孔的直径,通常采用间接的测量方法.如果将一个直径为10 mm 的标准钢珠放在小孔上,测得钢珠顶端与小孔平面的距离h =8 mm (如图),求此小孔的直径d.8.如图,AB 是⊙O 的直径,CM =DM ,下列结论不成立的是( )A .AB ⊥CD B .CB =DBC .∠ACD =∠ADC D .OM =MD 9.如图,AB 是⊙O 的直径,∠BAC =42°,D 是弦AC 的中点,则∠DOC的度数是________°.10.图是某公园新建的圆形人工湖,为测量该湖的半径,小强和小丽沿湖边选取A ,B ,C 三根木桩,使得AB ︵=BC ︵,并测得点B 到AC 的距离为15米,AC 的长为60米,请你帮他们求出人工湖的半径.11.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,以点C 为圆心、CA 为半径的圆与AB 交于点D ,则AD 的长为( ) A .95 B .215 C .185 D .5212.已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB =8 cm ,且AB ⊥CD ,垂足为M ,则AC 的长为( )A .2 5 cmB .4 5 cmC .2 5 cm 或4 5 cmD .2 3 cm 或4 3 cm13.如图 ,⊙O 过点B ,C ,圆心O 在等腰三角形ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为( ) A .6 B .13 C .13 D .213第12题图 第13题图 第14题图 第15题图 14.如图,AB ,CD 是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是⊙O 的直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA +PC 的最小值为________.15.如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE =6 cm ,BE =2 cm ,∠CEA =30°,求CD 的长. 16.如图所示,隧道的截面由圆弧AED 和矩形ABCD 构成,矩形的长BC 为12 m ,宽AB 为3 m ,隧道的顶端E(圆弧AED 的中点)高出道路(BC)7 m . (1)求圆弧AED 所在圆的半径;(2)如果该隧道内设双行道,现有一辆超高货运卡车高6.5 m ,宽2.3 m ,这辆货运卡车能否通过该隧道?详解1.C [解析] ∵CD 是⊙O 的直径,弦AB ⊥CD ,垂足为F ,∴AD ︵=BD ︵,AC ︵=BC ︵,∴F 为AB 的中点,即AF =BF ,故选项A ,B ,D 正确;而OF 与CF 不一定相等.故选C.2.C [解析] 连接OA ,如图.∵OC ⊥AB ,OA =5,OE =3, ∴AE =OA 2-OE 2=52-32=4, ∴AB =2AE =8.故选C.3.C [解析] 当M 是AB 的中点时,OM 的长最小.此时OM ⊥AB ,连接OA ,则OM =52-32=4.当M 与点A 或点B 重合时,OM 的长最大为5.因此4≤OM ≤5,只有C 项符合.4.A5.解:设CD =2x 寸,则半径OC =x 寸.∵CD 为⊙O 的直径,弦AB ⊥CD 于点E ,AB =10寸, ∴AE =BE =12AB =12×10=5(寸),连接OA ,则OA =x 寸,根据勾股定理,得x 2=52+(x -1)2, 解得x =13,∴CD =2x =2×13=26(寸).6.证明:过点O 作OE ⊥AB 于点E ,则AE =BE . 又∵AC =BD ,∴CE =DE , ∴OE 是CD 的中垂线, ∴OC =OD .7.解:如图,过点O 作OD ⊥AB 于点D ,延长DO 交⊙O 于点C ,连接OB .由垂径定理,得CD 垂直平分AB . ∴CD =h =8 mm ,OD =CD -CO =3 mm.在Rt △ODB 中,BD 2=OB 2-OD 2,即BD 2=52-32, ∴BD =4(mm),∴AB =2BD =8 mm. 答:此小孔的直径d 为8 mm.8.D [解析] ∵AB 是⊙O 的直径,CM =DM ,∴CD ⊥AB ,CB ︵=DB ︵,∴CB =DB .∵AB 垂直平分CD ,∴AC =AD ,∴∠ACD =∠ADC ,而推不出OM 与MD 相等.故选D.9.48 [解析] ∵AD =CD ,∴OD ⊥AC ,∴∠CDO =90°,∴∠DOC +∠ACO =90°.∵OA =OC ,∴∠ACO =∠A =42°,∴∠DOC =90°-∠A =48°.10.解:设点O 为圆心,连接半径OA ,OB ,设OB 交AC 于点D . ∵AB ︵=BC ︵,∴OB ⊥AC ,AD =CD =30米. 设OA =x 米,则OD =(x -15)米. 在Rt △AOD 中,有x 2-(x -15)2=302, 解得x =37.5.故人工湖的半径为37.5米. 11.C12.C [解析] 连接AC ,AO .∵⊙O 的直径CD =10 cm ,AB ⊥CD ,AB =8 cm ,∴AM =12AB =12×8=4(cm),OD =OC =5 cm.当点C 的位置如图(1)所示时,∵OA =5 cm ,AM =4 cm ,CD ⊥AB ,∴OM =OA 2-AM 2=3 cm ,∴CM =OC +OM =5+3=8(cm),∴AC =AM 2+CM 2=42+82=4 5(cm).当点C 的位置如图(2)所示时,同理可得OM =3 cm ,∵OC =5 cm ,∴MC =5-3=2(cm).在Rt △AMC 中,AC =AM 2+MC 2=42+22=2 5(cm).故选C.13.C14.7 2 [解析] A ,B 两点关于MN 对称,因而P A +PC =PB +PC ,即当B ,C ,P 在一条直线上时,P A +PC 的值最小,即BC 的长就是P A +PC 的最小值.作BH ⊥CD 交CD 的延长线于点H .易求BH =EF =7,CH =7,则BC =7 2.15.解:如图,过点O 作OP ⊥CD 于点P ,连接OC ,则CD =2CP .∵AE =6 cm ,BE =2 cm ,∴AB =8 cm , ∴OB =OC =4 cm , ∴OE =4-2=2(cm). 在Rt △OPE 中,∵∠CEA =30°,∴OP =12OE =1 cm.在Rt △COP 中,CP =42-12=15(cm), ∴CD =2CP =215 cm.16.解:(1)设圆心为点O ,半径为R m ,连接OE 交AD 于点F ,连接OA ,OD ,由垂径定理的逆定理,得OF 垂直平分AD ,AF =6 m ,OF =R -(7-3)=(R -4)m. 由勾股定理,得 AF 2+OF 2=OA 2, 即62+(R -4)2=R 2,解得R=6.5,即圆弧AED所在圆的半径为6.5 m.(2)能通过.理由如下:GH=2.3 m,圆的半径OH=6.5 m,由勾股定理,得OG= 6.52-2.32≈6.08(m),点G与BC的距离约为7-6.5+6.08=6.58(m)>6.5 m,故这辆货运卡车能通过该隧道.。

3++垂径定理同步练习2023-2024学年鲁教版数学九年级下册

3++垂径定理同步练习2023-2024学年鲁教版数学九年级下册

3 垂径定理同步练习2023-2024学年九年级下册数学鲁教版知识点① 垂径定理1.如图,已知AB 是⊙O 的直径,CD 是⊙O 的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE 的余弦值为( )A. 7113 B. 1213 C. 712 D. 13222.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2.已知圆心O 在水面上方,且⊙O 被水面截得的弦AB 长为6米,⊙O 的半径长为4 米.若点 C 为运行轨道的最低点,则点 C 到弦 AB 所在直线的距离是 ( )A.1米B.(4−√7)米C.2米D.(4+√7)米变式1如图所示的是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分,若OM⊥CD,延长MO 交⊙O 于点E,并且CD=8m,EM=8m,则⊙O 的半径为 .变式2 如图,⊙O 是一个盛有水的容器的横截面,⊙O 的半径为 10 cm ,水的最深处到水面AB 的距离为4cm,则水面AB 的宽度为 cm.(M9205004)变式3如图所示的是一张隧道断面结构图.隧道内部为以O 为圆心,AB 为直径的圆.隧道内部共A分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离为6.4m ,点 B 到路面的距离为4.0 m.求路面CD的宽度.(结果精确到0.1m)3.如图,AB 是⊙O 的一条弦,点C,D是⊙O上的点,连接CD交AB于点E,若∠ODC+∠AED=90°.求证:AC=BC.4.如图,有一座拱桥是圆弧形的,它的跨度AB=60米,拱高 PD=18米.(1)求圆弧所在圆的半径的长;(2)当洪水泛滥到水面宽度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即当PE=4米时,是否要采取紧急措施?知识点❷垂径定理的推论5.如图,OA,OB,OC都是⊙O的半径,AC,OB交于点 D.若AD=CD=8,OD=6,则BD 的长为 ( )A.5B.4C.3D.26.如图,B为⊙O上一点,A 为BC的中点,AB=3,∠ABC=30°,则⊙O的半径为 .7. 如图,△ABC的三个顶点都在⊙O上,AB̂=AĈ,AO=5,BC=6则△ABC 的面积=8.某个工件槽的两个底角均为90°,尺寸(单位:cm)如图所示.将形状规则的铁球放入槽内,若同时具有A,B,E三个接触点,请你根据图中的数据求出该球的半径.9.如图,在平面直角坐标系中,半径为5 的⊙E与y轴交于点A(0,-2),B(0,4),与x轴交于C,D,则点 D的坐标为 ( )A.(4−2√6,0)B.(−4+2√6,0)C.(−4+√26,0)D.(4−√26,0)10.如图,在平面直角坐标系xOy中,直线y=√33x+2√33与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为 .11.为了贯彻习近平总书记“促进乡村全面振兴,实现农业农村现代化”的指示,某农机组织推——も广建立横截面为弓形的一种全新的全封闭式塑料薄膜蔬菜大棚,如图所示,已知棚高AD=2m,底部BC=4√3m,那么BC所在圆的半径为 m.12.如图,AB是⊙O 的直径,点 P 是AB 上一点,且点 P 是弦CD的中点.(1)依题意画出弦CD;(不写作法,保留作图痕迹)(2)若AP=4,CD=16,求⊙O的半径.13.如图,在⊙O中,弦AB 的长为8,点 C 在 BO 延长线上,且cos∠ABC=45,OC=12OB.(1)求⊙O 的半径;(2)求∠BAC的正切值.14.如图,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x轴于A,B两点,交y轴于C, D两点,且C为AEE的中点,AE交y轴于G点,若点A的坐标为(-1,0),AE=4.(1)求点 C 的坐标;(2)连接MG,BC,求证:MG∥BC.。

3.3垂径定理同步训练2024-2025学年浙教版数学九年级上册

3.3垂径定理同步训练2024-2025学年浙教版数学九年级上册

3.3 垂径定理同步训练2024-2025学年浙教版数学九年级上册一、单选题1.下列说法正确的是()A.长度相等的弧叫等弧B.平分弦的直径一定垂直于该弦C.三角形的外心是三条角平分线的交点D.不在同一直线上的三个点确定一个圆2.点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.7cm B.5cm C.4cm D.3.5cm3.点P为⊙O内一点,且OP=4,若⊙O的半径为6,则过点P的弦长不可能为().A.12B.2√30C.8D.10.54.如图,这是一种用于液体蒸馏或分馏物质的玻璃容器——蒸馏瓶,其底部是圆球形.球的半径为5cm,瓶内液体的最大深度CD=3cm,则截面圆中弦AB的长为()A.√34cm B.8cm C.√21cm D.2√21cm 5.下列说法正确的数量为()(1)三角形的外心到三角形三顶点距离相等(2)一组对边平行的四边形是梯形(3)垂直平分弦的直径垂直平分弦所对的弧A.0B.1C.2D.36.⊙O的直径是15cm,CD经过圆心O,与⊙O交于C、D两点,垂直弦AB于M,且OM:OC=3 :5,则AB=()A.24cm B.12cm C.6cm D.3cm7.已知⊙O的半径为2cm,弦AB长为2cm,则这条弦的中点到弦所对优弧中点的距离为()A.2cm B.√3cm C.(2-√3)cm D.(2+√3)cm 8.如图,在⊙O中,直径CD垂直弦AB,连接OA,CB,已知⊙O的半径为2√3,AB=2,则⊙BCD等于A.20°B.30°C.60°D.70°二、填空题9.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.10.一圆柱形排水管的截面如图所示,已知排水管的半径为1m,水面宽AB为1.6m.由于天气干燥,水管水面下降,此时排水管水面宽变为1.2m,则水面下降了m.第1页共6页◎第2页共6页11.如图,AB是⊙O的弦,半径OC⊙AB,AC⊙OB,则⊙BOC的度数为.12.如图,AB为⊙O的弦,半径OC⊥AB,垂足为点D.如果AB=10cm,CD=3cm,那么⊙O的半径是cm.13.如图,C、D是以AB为直径的⊙O上的两个动点(点C、D不与A、B重合),在运动过程中,弦CD的长度始终保持不变,点M是弦CD的中点,过点C作CP⊥AB于点P.若CD=3,AB=5,则PM的最大值是 .三、解答题14.估计如图中三段弧的半径的大小关系,再用圆规检验你的结论.15.如图,是一个高速公路的隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=12米,拱高CD=9米,求圆的半径.16.如图,某储藏室入口的截面是一个半径为1.2米的半圆形,一个长、宽、高分别是1.2m,1m,0.8m的箱子能放进储藏室吗?请说明理由.17.如图,在△ABC中,已知⊙ACB=130°,⊙BAC=20°,BC=2,以点C为圆心,CB 为半径的圆交AB于点D,求弦BD的长18.如图,要把破残的圆片复制完整,已知弧上的三点A、B、C.(1)用尺规作图法,找出弧BC所在圆的圆心O(保留作图痕迹,不写作法);第3页共6页◎第4页共6页(2)设△ABC是等腰三角形,底边BC=24cm,腰AB=13cm,求圆片的半径R.第5页共6页◎第6页共6页。

九年级数学下册 3.3 垂径定理典型例题 (新版)北师大版

九年级数学下册 3.3 垂径定理典型例题 (新版)北师大版

《垂径定理》典型例题例1. 选择题:(1)下列说法中,正确的是()A. 长度相等的弧是等弧B. 两个半圆是等弧C. 半径相等的弧是等弧D. 直径是圆中最长的弦答案:D(2)下列说法错误的是()A. 圆上的点到圆心的距离相等B. 过圆心的线段是直径C. 直径是圆中最长的弦D. 半径相等的圆是等圆答案:B例2. 如图,已知AB是⊙O的直径,M、N分别是AO、BO的中点,CM⊥AB,DN⊥AB。

分析:要证弧相等,可证弧所对的弦相等,也可证弧所对的圆心角相等。

证明:连结OC、OD∵M、N分别是OA、OB的中点∵OA=OB,∴OM=ON又CM⊥AB,DN⊥AB,OC=OD∴Rt△OMC≌Rt△OND∴∠AOC=∠BOD例3. 在⊙O中,弦AB=12cm,点O到AB的距离等于AB的一半,求∠AOB的度数和圆的半径。

分析:根据O到AB的距离,可利用垂径定理解决。

解:过O点作OE⊥AB于E∵AB=12由垂径定理知:∴△ABO为直角三角形,△AOE为等腰直角三角形。

例4. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E。

求AB、AD的长。

分析:求AB较简单,求弦长AD可先求AF。

解:过点C作CF⊥AB于F∵∠C=90°,AC=3,BC=4∵∠A=∠A,∠AFC=∠ACB∴△AFC∽△ACB例5. 如图,⊙O中,弦AB=10cm,P是弦AB上一点,且PA=4cm,OP=5cm,求⊙O的半径。

分析:⊙O中已知弦长求半径,通常作弦心距构造直角三角形,利用勾股定理求解。

解:连OA,过点O作OM⊥AB于点M∵点P在AB上,PA=4cm即⊙O的半径为7cm。

例 6. 如图“五段彩虹展翅飞”是某省利用国债资金修建的横跨渡江的琼洲大桥已正式通车,该桥的两边均有五个红色的圆拱,最高的圆拱的跨度为110米,拱高为22米,求这个圆拱所在圆的直径。

分析:略解:如图,设圆拱所在圆的圆心为O,半径为r,CD为拱高则OC⊥AB于D答:这个圆拱所在圆的直径为159.5米。

垂径定理练习题

垂径定理练习题

北师大版九年级下3.3 垂径定理一.选择题(共10小题)1.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm2.如图,⊙O的弦AB=8,半径OC⊥AB,垂足为D,且CD=2,⊙O的半径等于()A.4 B.5 C.6 D.83.如图,AB是⊙O的弦,半径OC⊥AB于点D,连接AO并延长,交⊙O于点E,连接BE,DE.若DE=3DO,AB=5,则△ODE的面积为()A.5√58B.5√54C.2√5D.524.已知:如图,AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=30°,则CD的长为()A.4 √2B.4 C.3 √2D.5 √25.如图,CD是⊙O的直径,弦AB⊥CD,垂足为M,若CM=8,DM=12,则AB等于()A.4 √3B.8 √2C.8 √6D.4 √66.如图,AB是⊙O的直径,弦CD交AB于点P,AP=3,BP=7,∠APC=30°,则CD的长为()A.√6B.2 √6C.4 √6D.87.工程上常用钢珠来测量零件上小孔的宽口,如果钢珠的直径为10mm,钢珠上顶端离零件上表面的距离为8mm,如图,则这个零件小孔的宽口AB等于()mm.A.4 B.6 C.7 D.88.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()A.6.5米B.9米C.13米D.15米9.如图1所示是一款带毛刷的圆形扫地机器人,它的俯视图如图2所示,⊙O的直径为40cm,毛刷的一端为固定点P,另一端为点C,CP=10√2cm,毛刷绕着点P旋转形成的圆弧交⊙O于点A,B,且A,P,B三点在同一直线上.毛刷在旋转过程中,与⊙O交于点D,则CD的最大长度为()A.20√2cm B.(20−10√2)cm C.(20√2−20)cm D.10√2cm10.如图,AC是⊙O的直径,BD⊥AC,连接AB,OB,OD,作DE∥AB交⊙O于点E,若AC=8,BD=4,则DE的长为()A.4 B.4√2C.3 D.3√2二.填空题(共4小题)11.如图,AB是⊙O的弦,OC⊥AB于点D,交⊙O于点C,若AB=8,OD=3,那么⊙O的半径为______ .12.如图,一个底部呈球形的烧瓶,瓶内液体的最大深度CD=2cm,截面圆中弦AB长为10cm,那么球的半径OB长为______ .13.如图,将一个球放在空心的透明圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=16cm,球的最高点到地面的距离为36cm,则球的半径为 ______ cm.(玻璃瓶厚度忽略不计)14.筒车是我国古代发明的一种水利灌溉工具,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图1.唐代陈廷章在《水轮赋》中写道“水能利物,轮乃曲成”.如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为8米,若点C为运行轨道的最低点,点C到弦AB所在直线的距离是2,则⊙O的半径长为 ______ 米.三.解答题(共5小题)15.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?16.如图,CD为⊙O的直径,CD⊥AB,垂足为F,AO⊥BC,垂足为E,BC=2 √3.(1)求AB的长;(2)求⊙O的半径.17.如图,一座石桥的主桥拱是圆弧形,某时刻测得水面AB宽度为6米,拱高CD(弧的中点到水面的距离)为1米.(1)求主桥拱所在圆的半径;(2)若水面下降1米,求此时水面的宽度.18.如图,在⊙O中,直径AB⊥CD于点F,连接DO并延长交AC于点E,且DE⊥AC(1)求证:CE=DF;(2)求∠BOD的度数.19.如图,在⊙O中,AB,AC为互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D,E.(1)求证:四边形ADOE是正方形;(2)若AC=4,求⊙O的半径.。

九年级数学下册 第三章 圆 3.3 垂径定理同步练习

九年级数学下册 第三章 圆 3.3 垂径定理同步练习

课时作业(二十一)[第三章 *3 垂径定理]一、选择题1.如图K -21-1,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,则下列结论不一定成立的是( )图K -21-1A .CM =DM B.CB ︵=DB ︵C .∠ACD =∠ADC D .OM =MD2.如图K -21-2,⊙O 的半径为5,AB 为弦,半径OC ⊥AB ,垂足为E ,若OE =3,则AB 的长是链接听课例1归纳总结( )图K -21-2A .4B .6C .8D .10 3.绍兴是著名的桥乡,如图K -21-3是石拱桥的示意图,桥顶到水面的距离CD 为8 m ,桥拱半径OC 为5 m ,则水面宽AB 为()链接听课例3归纳总结图K -21-3A .4 mB .5 mC .6 mD .8 m4.2018·临安区如图K -21-4,⊙O 的半径OA =6,以A 为圆心,OA 长为半径的弧交⊙O 于点B ,C ,则BC 的长为( )图K-21-4A.6 3 B.6 2 C.3 3 D.3 25.如图K-21-5,正方形ABCD的四个顶点均在⊙O上,⊙O的直径为2分米,若在这个圆内随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()图K-21-5A.2πB.π9C.12πD.2π6.如图K-21-6,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心、CA 长为半径的圆与AB交于点D,则AD的长为( )图K-21-6A.95B.215C.185D.527.2018·安顺已知⊙O的直径CD=10 cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB =8 cm,则AC的长为()A.2 5 cm B.4 5 cmC.2 5 cm或4 5 cm D.2 5 cm或4 3 cm二、填空题8.过⊙O内一点M的最长的弦长为10 cm,最短的弦长为8 cm,那么OM的长为________.9.如图K-21-7,在平面直角坐标系中,点O为坐标原点,点P在第一象限内,⊙P 与x轴交于点O,A,点A的坐标为(6,0),⊙P的半径为13,则点P的坐标为________.图K-21-710.如图K-21-8所示,AB,AC,BC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,如果MN=3,那么BC=________.图K-21-811.如图K-21-9,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为________.链接听课例1归纳总结图K-21-912.小敏利用课余时间制作了一个脸盆架,如图K-21-10是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40 cm,脸盆的最低点C到AB的距离为10 cm,则该脸盆的半径为________cm.链接听课例3归纳总结图K-21-10三、解答题13.2018·浦东新区二模如图K-21-11,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=5 3,求弦CD的长及圆O的半径.链接听课例1归纳总结图K-21-1114.如图K-21-12,已知O是∠EPF的平分线上的一点,以O为圆心的圆和∠EPF的两边分别交于点A,B和C,D.求证:(1)∠OBA=∠OCD;(2)AB =CD .图K -21-1215.一个半圆形桥洞截面如图K -21-13所示,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD =16 m ,OE ⊥CD 于点E .已测得sin ∠DOE =45.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?链接听课例3归纳总结图K -21-13探索存在题如图K -21-14,在半径为5的扇形AOB 中,∠AOB =90°,C 是弧AB 上的一个动点(不与点A ,B 重合),OD ⊥BC ,OE ⊥AC ,垂足分别为D ,E .(1)当BC =6时,求线段OD 的长.(2)在△DOE 中,是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.图K -21-14详解详析【课时作业】[课堂达标] 1.[答案] D2.[解析] C 连接OA ,如图. ∵OC ⊥AB ,OA =5,OE =3,∴AE =OA 2-OE 2=52-32=4, ∴AB =2AE =8.故选C.3.[解析] D 连接OA ,∵桥拱半径OC 为5 m ,∴OA =5 m .∵CD =8 m ,∴OD =8-5=3(m),∴AD =OA 2-OD 2=4 m ,∴AB =2AD =2×4=8(m).4.[解析] A 设OA 与BC 相交于点D ,连接AB ,OB .∵AB =OA =OB =6,∴△OAB 是等边三角形.又根据垂径定理可得,OA 垂直平分BC ,∴OD =AD =3,在Rt △BOD 中,由勾股定理得BD =62-32=3 3,∴BC =6 3.故选A. 5.[答案] A6.[解析] C ∵在Rt △ABC 中,∠ACB =90°,AC =3,BC =4, ∴AB =AC 2+BC 2=32+42=5. 过点C 作CM ⊥AB ,交AB 于点M , 则M 为AD 的中点.∵S △ABC =12AC ·BC =12AB ·CM ,且AC =3,BC =4,AB =5,∴CM =125.在Rt △ACM 中,根据勾股定理,得AC 2=AM 2+CM 2,即9=AM 2+(125)2,解得AM =95,∴AD =2AM =185.故选C.7.[解析] C 连接AC ,AO .∵⊙O 的直径CD =10 cm ,AB ⊥CD ,AB =8 cm ,∴AM =12AB=12×8=4(cm),OD =OC =5 cm.当点C 的位置如图(1)所示时,∵OA =5 cm ,AM =4 cm ,CD ⊥AB ,∴OM =OA 2-AM 2=3 cm ,∴CM =OC +OM =5+3=8(cm),∴AC =AM 2+CM 2=42+82=4 5(cm).当点C 的位置如图(2)所示时,同理可得OM =3 cm ,∵OC =5 cm ,∴MC =5-3=2(cm).在Rt △AMC 中,AC =AM 2+MC 2=42+22=2 5(cm).综上所述,AC 的长为4 5 cm 或2 5 cm.故选C.8.[答案] 3 cm[解析] 由题意作图,如图所示,AB 为过点M 最长的弦,CD 为过点M 最短的弦,连接OD ,则OM =OD 2-DM 2=52-42=3(cm). 9.[答案] (3,2)[解析] 过点P 作PD ⊥x 轴于点D ,连接OP . ∵A (6,0),PD ⊥OA ,∴OD =3.在Rt △OPD 中,∵OP =13,OD =3,∴PD =OP 2-OD 2=(13)2-32=2,∴P (3,2).10.[答案] 6[解析] 由AB ,AC 都是⊙O 的弦,OM ⊥AB ,ON ⊥AC ,根据垂径定理可知M ,N 分别为AB ,AC 的中点,∴BC =2MN =6.11.[答案] 2 3[解析] 过点O 作OD ⊥AB 于点D ,连接OA .∵OD ⊥AB ,∴AD =BD .由折叠的性质可知OD =12OA =1,在Rt △OAD 中,AD =OA 2-OD 2=22-12=3,∴AB =2AD =2 3.故答案为2 3. 12.[答案] 25[解析] 如图,设圆的圆心为O ,连接OA ,OC ,OC 与AB 交于点D ,设⊙O 的半径为R cm.由题意得OC ⊥AB ,∴AD =DB =12AB =20 cm.在Rt △AOD 中,∵∠ADO =90°,∴OA 2=OD 2+AD 2,即R 2=202+(R -10)2,解得R =25.故答案为25.13.解:如图,过点O 作OM ⊥CD 于点M ,连接OD , ∵∠CEA =30°,∴∠OEM =∠CEA =30°. 在Rt △OEM 中,∵OE =4,∴OM =12OE =2,EM =OE ·cos30°=4×32=2 3.∵DE =5 3,∴DM =DE -EM =3 3.∵OM 过圆心,OM ⊥CD ,∴CD =2DM =6 3. ∵在Rt △DOM 中,OM =2,DM =3 3, ∴OD =OM 2+DM 2=22+(3 3)2=31.故弦CD 的长为6 3,⊙O 的半径为31.14.证明:(1)过点O 作OM ⊥AB ,ON ⊥CD ,垂足分别为M ,N . ∵PO 平分∠EPF ,OM ⊥AB ,ON ⊥CD , ∴OM =ON .在Rt △OMB 和Rt △ONC 中, OM =ON ,OB =OC ,∴Rt △OMB ≌Rt △ONC (HL), ∴∠OBA =∠OCD .(2)由(1)得Rt △OMB ≌Rt △ONC ,∴BM =CN . ∵OM ⊥AB ,ON ⊥CD ,∴AB =2BM ,CD =2CN ,∴AB =CD .15.[解析] (1)由OE ⊥CD ,根据垂径定理求出DE ,解Rt △DOE 可求半径OD ;(2)在Rt △DOE 中,由勾股定理求出OE ,再用OE 除以水面下降的速度,即可求出时间. 解:(1)∵OE ⊥CD 于点E ,CD =16 m , ∴ED =12CD =8 m.在Rt △DOE 中,∵sin ∠DOE =ED OD =45,∴OD =10 m.(2)在Rt △DOE 中,OE =OD 2-ED 2=102-82=6(m),6÷0.5=12(时),故水面以每小时0.5 m 的速度下降,经过12小时才能将水排干.[素养提升][解析] (1)根据垂径定理可得BD =12BC ,然后只需利用勾股定理即可求出线段OD 的长;(2)连接AB ,如图,利用勾股定理可求出AB 的长,根据垂径定理可得D 和E 分别是线段BC 和AC 的中点,根据三角形中位线定理就可得到DE =12AB ,即DE 的长度保持不变.解:(1)∵OD ⊥BC ,∴BD =12BC =12×6=3.在Rt △ODB 中,OB =5,BD =3, ∴OD =OB 2-BD 2=4, 即线段OD 的长为4.(2)存在,DE 的长度保持不变.连接AB ,如图,∵∠AOB =90°,OA =OB =5, ∴AB =OB 2+OA 2=5 2. ∵OD ⊥BC ,OE ⊥AC ,∴D ,E 分别是线段BC 和AC 的中点, ∴DE 是△CBA 的中位线, ∴DE =12AB =5 22.。

3.3垂径定理(解析版)九年级下册

3.3垂径定理(解析版)九年级下册

3.3垂径定理分层练习考查题型一利用垂径定理求线段长1.(2023•宜昌)如图,OA ,OB ,OC 都是O 的半径,AC ,OB 交于点D .若8AD CD ,6OD ,则BD 的长为()A .5B .4C .3D .2【分析】根据垂径定理的推论得OB AC ,再根据勾股定理得22228610OA AD OD ,即可求出答案.【解答】解:8AD CD ∵,OB AC ,在Rt AOD 中,22228610OA AD OD ,10OB ,1064BD .故选:B .2.(2023•和县二模)如图,点C 是O 的弦AB 上一点.若6AC ,2BC ,AB 的弦心距为3,则OC 的长为()A.3B.4C.11D.13【分析】根据垂径定理可以得到CD的长,根据题意可知3OD ,然后根据勾股定理可以求得OC的长.【解答】解:作OD AB于点D,如图所示,由题意可知:6OD ,BC ,3AC ,2AB,8,AD BD4,2CD2222,3213OC OD CD故选:D.3.(2022秋•齐河县期末)如图,OCD ,3OE ,则BD的直径AB 弦CD于点E,连接BD.若8的长为()A10B.23C.17D.25【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD,求出BE,再根据勾股定理求出BD即可.【解答】解:连接OD ,AB CD ∵,AB 过圆心O ,8CD ,4CE DE ,90OED DEB ,3OE ∵,2222345OD OE DE ,5OB OD ,532BE OB OE ,由勾股定理,得2222242025BD BE DE ,故选:D .4.(2022秋•泗洪县期末)如图,O 的半径为5,弦8AB ,OC AB ,垂足为点P ,则CP 的长等于()A .2B .2.5C .3D .4【分析】如图,连接AO ,由垂径定理得,142AP AB ,由题意知5OA OC ,由勾股定理得,223OP OA AP ,根据CP OC OP ,计算求解即可.【解答】解:如图,连接AO ,由垂径定理得,142AP AB ,由题意知5OA OC ,由勾股定理得,223OP OA AP ,2CP OC OP ,故选:A .考查题型二利用垂径定理求半径、直径长5.(2022秋•金城江区期末)如图,线段CD 是O 的直径,CD AB 于点E ,若AB 长为16,DE 长为4,则O 半径是()A .5B .6C .8D .10【分析】连接OB ,由垂径定理可得8BE AE ,设O 半径为r ,结合题意可得4OE r ,在Rt OBE 中,由勾股定理可得222OE BE OB ,然后代入求值即可获得答案.【解答】解:如下图,连接OB ,∵线段CD 是O 的直径,CD AB 于点E ,16AB , 1116822BE AE AB ,设O 半径为r ,即OB OD r ,又4DE ∵,4OE OD DE r ,在Rt OBE 中,可有222OE BE OB ,即222(4)8r r ,解得10r ,O 半径是10.故选:D .6.(2023秋•聊城期中)如图,AB ,CD 是O 的两条平行弦,且4AB ,6CD ,AB ,CD 之间的距离为5,则O 的直径是()A 13B .213C .8D .10【分析】作OM AB 于M ,延长MO 交CD 于N ,连接OB ,OD ,由垂径定理,勾股定理即可求解.【解答】解:作OM AB 于M ,延长MO 交CD 于N ,连接OB ,OD ,设OM x ,122MB AB ,132DN CD ,222OB OM MB ∵,2222OB x ,222OD ON DN ∵,222(5)3OD x ,OB OD ∵,224(5)9x x ,3x ,223413OB ,13OB ,O 直径长是213故选:B .7.(2023秋•福州期中)如图,已知O 的弦8AB ,半径OC AB 于D ,2DC ,则O 的半径为.【分析】设O 的半径为R ,则2OD R ,先根据垂径定理得到4AD BD ,再利用勾股定理得到222(2)4R R ,然后解方程即可.【解答】解:设O 的半径为R ,则2OD R ,OC AB ∵,142AD BD AB ,90ODA ,在Rt AOD 中,222(2)4R R ,解得5R ,即O 的半径为5.故答案为:5.考查题型三弦心距8.(2022秋•台山市期末)如图,O 的半径为2,弦23AB ,则圆心O 到弦AB 的距离为()A .1B 2C 3D .2【分析】过O 作OC AB 于C ,连接OA ,根据垂径定理求出AC ,再根据勾股定理求出OC 即可.【解答】解:过O 作OC AB 于C ,连接OA ,OC AB ∵,OC 过圆心O ,23AB 3AC BC 90OCA ,由勾股定理得:22222(3)1OC OA AC ,即圆心O 到弦AB 的距离为1,故选:A .9.(2022秋•凤阳县期末)如图,在O 中,OC AB 于点C .若O 的半径为10,16AB ,则OC 的长为()A .4B .5C .6D .8【分析】如图,连接OA .利用垂径定理,勾股定理求解即可.【解答】解:如图,连接OA .OC AB ∵,182AC CB AB ,10OA ∵,90ACO ,22221086OC OA AC ,故选:C .考查题型四最值10.(2022秋•济源期末)如图,O 的半径为102,弦AB 的长为162,P 是弦AB 上一动点,则线段OP长的最小值为()A .10B .82C .5D .62【分析】过O 点作OH AB 于H ,连接OB ,如图,根据垂径定理得到8AH BH ,再利用勾股定理计算出OH ,然后根据垂线段最短求解.【解答】解:过O 点作OH AB 于H ,连接OB ,如图,111628222AH BH AB ,在Rt BOH 中,2222(102)(82)62OH OB BH ,线段OP 长的最小值为62.故选:D .11.(2023秋•淮滨县期中)如图,O 的直径为10,弦AB 的长为8,点P 在AP 上运动,则OP 的最小值是()A .2B .3C .4D .5【分析】根据“点到直线的最短距离是垂线段的长度”知当OP AB 时,OP 的值最小.连接OA ,在直角三角形OAP 中由勾股定理即可求得OP 的长度.【解答】解:当OP AB 时,OP 的值最小,则142AP BP AB ,如图所示,连接OA ,在Rt OAP 中,4AP ,5OA ,则根据勾股定理知3OP ,即OP 的最小值为3,故选:B .12.(2023秋•鼓楼区校级期中)如图,M 的半径为4,圆心M 的坐标为(6,8),点P 是M 上的任意一点,PA PB ,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最大值为()A .13B .14C .12D .28【分析】由Rt APB 中2AB OP 知要使AB 取得最大值,则PO 需取得最大值,连接OM ,并延长交M 于点P ,当点P 位于P 位置时,OP 取得最大值,据此求解可得.【解答】解:连接PO ,PA PB ∵,90APB ,∵点A 、点B 关于原点O 对称,AO BO ,2AB PO ,若要使AB 取得最大值,则PO 需取得最大值,连接OM ,并延长交M 于点P ,当点P 位于P 位置时,OP 取得最大值,过点M 作MQ x 轴于点Q ,则6OQ 、8MQ ,10OM ,又4MP r ∵,10414OP MO MP ,221428AB OP ;故选:D .考查题型五利用垂径定理求面积13.(2023•铜梁区校级一模)如图,AB 是O 的弦,半径OC AB 于点D ,连接AO 并延长,交O 于点E ,连接BE ,DE .若3DE DO ,65AB ,则ODE 的面积为()A .9B .15C 952D .95【分析】根据垂径定理,三角形中位线定理以及勾股定理求出OD ,再根据三角形面积公式进行计算即可.【解答】解:AE ∵是O 的直径,90ABE ,AB OC ∵,OC 是O 的半径,12AD BD ABOA OE ∵,OD 是ABE 的中位线,12OD BE ,由于3DE DO ,可设OD x ,则3DE x ,2BE x ,在Rt BDE 中,由勾股定理得,222BD BE DE ,即222(2)(3)x x ,解得3x 或3x (舍去),即3OD ,S △12DOE OD BD 132故选:C .14.(2023•肇源县一模)如图,O 的半径是2,直线l 与O 相交于A 、B 两点,M 、N 是O 上的两个动点,且在直线l 的异侧,若45AMB ,则四边形MANB 面积的最大值是()A .22B .4C .2D .82【分析】过点O 作OC AB 于C ,交O 于D 、E 两点,连接OA 、OB 、DA 、DB 、EA 、EB ,根据圆周角定理推出OAB 为等腰直角三角形,求得222AB OA 【解答】解:过点O 作OC AB 于C ,交O 于D 、E 两点,连接OA 、OB 、DA 、DB 、EA 、EB ,如图,45AMB ∵,290AOB AMB ,OAB 为等腰直角三角形,222AB OA ,MAB NAB MANB S S S ∵四边形,当M 点到AB 的距离最大,MAB 的面积最大;当N 点到AB 的距离最大时,NAB 的面积最大,即M 点运动到D 点,N 点运动到E 点,此时四边形MANB 面积的最大值 11111224222222DAB EAB DAEB S S S AB CD AB CE AB CD CE AB DE 四边形.故选:C .15.(2023春•沙坪坝区校级月考)如图,AB 是O 的弦,半径OC AB 于点D ,连接AO 并延长,交O于点E ,连接BE ,DE .若3DE DO ,5AB ,则ODE 的面积为()A .58B .554C .5D .52【分析】根据垂径定理,得出52AD BD ,再根据直径所对的圆周角为直角,得出90ABE ,再根据平行线的判定,得出//OD BE ,再根据中位线的判定,得出OD 为ABE 的中位线,再根据中位线的性质,得出2BE OD ,再根据勾股定理,得出222BD BE DE ,解出得到52OD ,根据12ODE S OD BD 即可求解.【解答】解:OC AB ∵,5AB , 52AD BD ,AE ∵是O 的直径,90ABE ,OC AB ∵,//OD BE ,O ∵为AE 的中点,OD 为ABE 的中位线,2BE OD ,3DE DO ∵,在Rt ABE 中,222BD BE DE ∵, 2225494OD OD ,解得:52OD, 25BE OD ,11555522228ODE S OD BD .故选:A .考查题型六垂径定理的应用16.(2023秋•长葛市期中)如图,圆弧形桥拱的跨度24AB 米,拱高8CD 米,则拱桥的半径为()A .6.5米B .9米C .13米D .15米【分析】根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.【解答】解:根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O连接OA .根据垂径定理,得12AD m ,设圆的半径是r m ,根据勾股定理,得22212(8)r r ,解得13r .故选:C .17.(2022秋•郾城区期末)如图,一座石桥的主桥拱是圆弧形,某时刻测得水面AB 宽度为6米,拱高CD(弧的中点到水面的距离)为1米,若水面下降1米,则此时水面的宽度为()A .5米B .6米C .7米D .8米【分析】以O 为圆心,连接OC 、OA 、OB ,根据三线合一定理可得OD AB ,AC BC ,设OD r ,则1OC OD CD r ,再根据勾股定理即可求出半径;水面下降为EF ,连接OE ,根据水面下降1米,可得3OG m ,再根据勾股定理即可求得答案.【解答】解:如图,以O 为圆心,连接OC 、OA 、OB ,由题意可得,D 为弧AB 的中点,AOD BOD ,OA OB ∵,OD AB ,AC BC ,设OD r ,则1OC OD CD r ,在Rt AOC 中,222OA OC AC ,132AC AB ,22(1)9r r ,解得:5r ,主桥拱所在圆的半径5m ;由题意得,水面下降为EF ,连接OE ,∵水面下降1米,1413()OG OC m ,则2222534()EG OE OG m ,28EF EG m ,即水面的宽度为8m .故选:D .18.(2023•滕州市二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2,已知圆心O 在水面上方,且O 被水面截得弦AB 长为4米,O 半径长为3米.若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是()A .1米B .2米C .(35) 米D .(35) 米【分析】连接OC ,OC 交AB 于D ,由垂径定理得122AD BD AB(米),再由勾股定理得5OD (米),然后求出CD 的长即可.【解答】解:连接OC ,OC 交AB 于D ,由题意得:3OA OC 米,OC AB ,122AD BD AB (米),90ADO ,2222325OD OA AD (米),(35)CD OC OD 米,即点C 到弦AB 所在直线的距离是(35) 米,故选:C .1.(2022秋•沈河区校级期末)如图所示,在O 中,AB 为弦,OC AB 交AB 于点D ,且OD DC .P为O 上任意一点,连接PA ,PB ,若O 的半径为3,则PAB S 的最大值为()A .34B .33C .332D .334【分析】连接OA ,如图,利用垂径定理得到AD BD , AC BC ,再根据OD DC 可得到132OD OA ,所以32AD ,由勾股定理,则3AB .PAB 底AB 不变,当高越大时面积越大,即P 点到AB 距离最大时,APB 的面积最大.则当点P 为AB 所在优弧的中点时,此时13122PD PO OD,APB 的面积最大,然后根据三角形的面积公式计算即可.【解答】解:连接OA ,如图,OC AB ∵,AD BD ,OD DC ∵,1322OD OA ,2232AD OA OD ,23AB AD .当点P 为AB 所对的优弧的中点时,APB 的面积最大,此时333322PD PO OD.APB 的面积的最大值为:11339332224AB PD .故选:A .2.(2023•碑林区校级模拟)如图,已知CD 为O 的直径,CD AB 于点F ,AE BC 于点E .若AE 过圆心O ,1OA .则四边形BEOF 的面积为()A 3B 3C .3D 3【分析】根据垂径定理求出AF BF ,CE BE , AD BD,求出2AOD C ,求出2AOD A ,求出30A ,解直角三角形求出OF 和BF ,求出OE 、BE 、BF ,根据三角形的面积公式求出即可.【解答】解:如图,连接OB ,CD ∵为直径,CD AB ,AD BD ,2AOD C ,CD AB ∵,AE BC ,90AFO CEO ,AOF COE ∵,OA OC ,()AFO CEO AAS ,C A ,2AOD A ,90AFO ∵,30A ,1AO ∵,1122OF AO ,332AF OF ,同理32CE ,12OE ,CD AB ∵,AE BC ,CD 、AE 过O ,由垂径定理得:32BF AF ,32BE CE , 四边形BEOF 的面积11311332222224BFO BEO S S S.故选:B .第21页共21页3.(2023•广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为()A .20mB .28mC .35mD .40m【分析】设主桥拱半径R ,根据垂径定理得到372AD,再利用勾股定理列方程求解,即可得到答案.【解答】解:由题意可知,37AB m ,7CD m ,设主桥拱半径为R m ,(7)OD OC CD R m ,OC ∵是半径,OC AB ,137()22AD BD AB m ,在RtADO 中,222AD OD OA ,22237((7)2R R ,解得15652856R.故选:B .。

垂径定理精选题35道

垂径定理精选题35道

垂径定理精选题35道一.选择题(共15小题)1.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.82.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.3.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD 的长为()A.B.2C.2D.84.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.45.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4 cm6.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC 的长为()A.cm B.cm C.cm或cm D.cm或cm7.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.18.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5 9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.610.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,OC=3,则EC的长为()A.B.8C.D.11.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6B.8C.10D.1212.点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.3cm B.4cm C.5cm D.6cm13.⊙O的半径为5,M是圆外一点,MO=6,∠OMA=30°,则弦AB的长为()A.4B.6C.6D.814.如图,CD为⊙O直径,CD⊥AB于点F,AE⊥BC于E,AE过圆心O,且AO=1.则四边形BEOF的面积为()A.B.C.D.15.△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A.B.C.D.二.填空题(共14小题)16.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为.17.如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O 于点D,则CD的最大值为.18.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.19.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D 两点,点E为⊙G上一动点,CF⊥AE于F,则弦AB的长度为;当点E在⊙G 的运动过程中,线段FG的长度的最小值为.20.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.21.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.22.已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.23.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为cm.24.如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=cm.25.如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.26.已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为cm.27.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为.28.如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为.29.如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为.三.解答题(共6小题)30.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.31.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.32.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.33.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,BC=3.(1)求AB的长;(2)求⊙O的半径.34.如图,四边形ABCD内接于⊙O,OC=4,AC=4.(1)求点O到AC的距离;(2)求∠ADC的度数.35.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.垂径定理精选题35道参考答案与试题解析一.选择题(共15小题)1.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.8【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.2.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.【分析】PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.3.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD 的长为()A.B.2C.2D.8【分析】作OH⊥CD于H,连接OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连接OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=∠APC=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.4.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4【分析】连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF=CF,进而证得DF=BC,根据三角形中位线定理求得OF=BC=DF,从而求得BC=DF=2,利用勾股定理即可求得AC.【解答】解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.【点评】本题考查了垂径定理,三角形全等的判定和性质,三角形中位线定理,熟练掌握性质定理是解题的关键.5.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4 cm【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4(cm),OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3(cm),∴CM=OC+OM=5+3=8(cm),∴AC===4(cm);当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC===2(cm).故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.6.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC 的长为()A.cm B.cm C.cm或cm D.cm或cm【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:如图,连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.1【分析】根据垂径定理以及勾股定理即可求答案.【解答】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AD=4,由勾股定理可知:52=42+(5﹣x)2∴x=2,∴CD=2,故选:C.【点评】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.8.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5【分析】由垂线段最短可知当OM⊥AB时最短,当OM是半径时最长.根据垂径定理求最短长度.【解答】解:如图,连接OA,作OM⊥AB于M,∵⊙O的直径为10,∴半径为5,∴OM的最大值为5,∵OM⊥AB于M,∴AM=BM,∵AB=6,∴AM=3,在Rt△AOM中,OM====4;此时OM最短,所以OM长的取值范围是4≤OM≤5.故选:B.【点评】本题考查了垂径定理、勾股定理,解决本题的关键是确定OM的最小值,所以求OM的范围问题又被转化为求弦的弦心距问题,而解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.6【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°﹣∠BOC)=30°,∵⊙O的半径为4,∴BD=OB•cos∠OBC=4×=2,∴BC=4.故选:B.【点评】此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.注意掌握辅助线的作法,注意数形结合思想的应用.10.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,OC=3,则EC的长为()A.B.8C.D.【分析】根据垂径定理求出AC=BC,根据三角形的中位线求出BE,再根据勾股定理求出EC即可.【解答】解:连接BE,∵AE为⊙O直径,∴∠ABE=90°,∵OD⊥AB,OD过O,∴AC=BC=AB==4,∵AO=OE,∴BE=2OC,∵OC=3,∴BE=6,在Rt△CBE中,EC===2,故选:D.【点评】本题考查了垂径定理,勾股定理,三角形的中位线等知识点,能根据垂径定理求出AC=BC是解此题的关键.11.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6B.8C.10D.12【分析】连接OC,根据题意OE=OC﹣1,CE=3,结合勾股定理,可求出OC的长度,即可求出直径的长度.【解答】解:连接OC,∵弦CD⊥AB于E,CD=6,AE=1,∴OE=OC﹣1,CE=3,∴OC2=(OC﹣1)2+32,∴OC=5,∴AB=10.故选:C.【点评】本题主要考查了垂径定理、勾股定理,解题的关键在于连接OC,构建直角三角形,根据勾股定理求半径OC的长度.12.点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.3cm B.4cm C.5cm D.6cm【分析】根据直径是圆中最长的弦,知该圆的直径;最短弦即是过点P且垂直于过点P 的直径的弦;根据垂径定理即可求得CP的长,再进一步根据勾股定理,可以求得OP的长.【解答】解:如图所示,CD⊥AB于点P.根据题意,得:AB=10cm,CD=6cm.∵AB是直径,且CD⊥AB,∴CP=CD=3cm.根据勾股定理,得OP===4(cm).故选:B.【点评】此题综合运用了垂径定理和勾股定理.正确理解圆中,过一点的最长的弦和最短的弦是解题的关键.13.⊙O的半径为5,M是圆外一点,MO=6,∠OMA=30°,则弦AB的长为()A.4B.6C.6D.8【分析】过O作OC⊥AB于C,连接OA,根据含30°角的直角三角形的性质得出OC=MO=3,根据勾股定理求出AC,再根据垂径定理得出AB=2AC,最后求出答案即可.【解答】解:过O作OC⊥AB于C,连接OA,则∠OCA=90°,∵MO=6,∠OMA=30°,∴OC=MO=3,在Rt△OCA中,由勾股定理得:AC===4,∵OC⊥AB,OC过O,∴BC=AC,即AB=2AC=2×4=8,故选:D.【点评】本题考查了含30°角的直角三角形的性质,勾股定理,垂径定理等知识点,能熟记垂直于弦的直径平分弦是解此题的关键.14.如图,CD为⊙O直径,CD⊥AB于点F,AE⊥BC于E,AE过圆心O,且AO=1.则四边形BEOF的面积为()A.B.C.D.【分析】根据垂径定理求出AF=BF,CE=BE,=,求出∠AOD=2∠C,求出∠AOD=2∠A,求出∠A=30°,解直角三角形求出OF和BF,求出OE、BE、BF,根据三角形的面积公式求出即可.【解答】解:∵CD为直径,CD⊥AB,∴=,∴∠AOD=2∠C,∵CD⊥AB,AE⊥BC,∴∠AFO=∠CEO=90°,在△AFO和△CEO中∴△AFO≌△CEO(AAS),∴∠C=∠A,∴∠AOD=2∠A,∵∠AFO=90°,∴∠A=30°,∵AO=1,∴OF=AO=,AF=OF=,同理CE=,OE=,连接OB,∵CD⊥AB,AE⊥BC,CD、AE过O,∴由垂径定理得:BF=AF=,BE=CE=,∴四边形BEOF的面积S=S△BFO+S△BEO=××+=,故选:C.【点评】本题考查了垂径定理,圆周角定理,解直角三角形等知识点,能够综合运用定理进行推理是解此题的关键.15.△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A.B.C.D.【分析】在Rt△ABC中,由勾股定理可直接求得AB的长;过C作CM⊥AB,交AB于点M,由垂径定理可得M为AE的中点,在Rt△ACM中,根据勾股定理得AM的长,从而得到AE的长.【解答】解:在Rt△ABC中,∵AC=3,BC=4,∴AB==5.过C作CM⊥AB,交AB于点M,如图所示,由垂径定理可得M为AE的中点,∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AE=2AM=.故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二.填空题(共14小题)16.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为4.【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【解答】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴OD==4.故答案为4.【点评】题考查了垂径定理、勾股定理,本题非常重要,学生要熟练掌握.17.如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.【分析】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出即可.【解答】解:连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=×1=,即CD的最大值为,故答案为:.【点评】本题考查了垂线段最短,勾股定理和垂径定理等知识点,能求出点C的位置是解此题的关键.18.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.【分析】连接OC,由垂径定理得出CE=CD=2,设OC=OA=x,则OE=x﹣1,由勾股定理得出CE2+OE2=OC2,得出方程,解方程即可.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,CD⊥AB,∴CE=CD=2,∠OEC=90°,设OC=OA=x,则OE=x﹣1,根据勾股定理得:CE2+OE2=OC2,即22+(x﹣1)2=x2,解得:x=;故答案为:.【点评】本题考查了垂径定理、勾股定理、解方程;熟练掌握垂径定理,并能进行推理计算是解决问题的关键.19.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D 两点,点E为⊙G上一动点,CF⊥AE于F,则弦AB的长度为2;当点E在⊙G的运动过程中,线段FG的长度的最小值为﹣1.【分析】作GM⊥AC于M,连接AG.因为∠AFC=90°,推出点F在以AC为直径的⊙M上推出当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM,想办法求出FM、GM即可解决问题;【解答】解:作GM⊥AC于M,连接AG.∵GO⊥AB,∴OA=OB,在Rt△AGO中,∵AG=2,OG=1,∴AG=2OG,OA==,∴∠GAO=30°,AB=2AO=2,∴∠AGO=60°,∵GC=GA,∴∠GCA=∠GAC,∵∠AGO=∠GCA+∠GAC,∴∠GCA=∠GAC=30°,∴AC=2OA=2,MG=CG=1,∵∠AFC=90°,∴点F在以AC为直径的⊙M上,当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM=﹣1.故答案为2,﹣1.【点评】本题考查垂径定理、直角三角形30度角的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.20.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为(﹣1,﹣2).【分析】连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点D的坐标即可.【解答】解:连接CB,作CB的垂直平分线,如图所示:在CB的垂直平分线上找到一点D,CD=DB=DA==,所以D是过A,B,C三点的圆的圆心,即D的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),【点评】此题考查垂径定理,关键是根据垂径定理得出圆心位置.21.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.【分析】由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,此时线段EF=2EH=20E•sin∠EOH=20E•sin60°,因此当半径OE最短时,EF最短,连接OE,OF,过O点作OH⊥EF,垂足为H,在Rt△ADB中,解直角三角形求直径AD,由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,在Rt△EOH中,解直角三角形求EH,由垂径定理可知EF=2EH.【解答】解:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,如图,连接OE,OF,过O点作OH⊥EF,垂足为H,∵在Rt△ADB中,∠ABC=45°,AB=2,∴AD=BD=2,即此时圆的直径为2,由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,∴在Rt△EOH中,EH=OE•sin∠EOH=1×=,由垂径定理可知EF=2EH=.故答案为:.【点评】本题考查了垂径定理,圆周角定理,解直角三角形的综合运用.关键是根据运动变化,找出满足条件的最小圆,再解直角三角形.22.已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是2或14cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可,小心别漏解.【解答】解:①当弦AB和CD在圆心同侧时,连接OA,OC,过点O作OE⊥AB于点E并延长交CD于点F.如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF﹣OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.【点评】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.23.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为4cm.【分析】连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=4cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=CE=4cm,故答案为:4【点评】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.24.如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=8cm.【分析】根据垂径定理,可得AC的长,根据勾股定理,可得OC的长,根据线段的和差,可得答案.【解答】解:由垂径定理,AC=AB=12cm.由半径相等,得OA=OD=13cm.由勾股定理,得OC===5.由线段的和差,得CD=OD﹣OC=13﹣5=8cm,故答案为:8.【点评】本题考查了垂径定理,利用垂径定理得出直角三角形OAC是解题关键,又利用了勾股定理.25.如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为2.【分析】设直线AB交y轴于C,过O作OD⊥AB于D,先求出A、C坐标,得到OA、OC长度,可得∠CAO=30°,Rt△AOD中求出AD长度,从而根据垂径定理可得答案.【解答】解:设直线AB交y轴于C,过O作OD⊥AB于D,如图:在y=x+中,令x=0得y=,∴C(0,),OC=,在y=x+中令y=0得x+=0,解得x=﹣2,∴A(﹣2,0),OA=2,Rt△AOC中,tan∠CAO===,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×=,∵OD⊥AB,∴AD=BD=,∴AB=2,故答案为:2.【点评】本题考查一次函数、锐角三角函数及垂径定理等综合知识,解题的关键是利用tan∠CAO=得到∠CAO=30°.26.已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为1或7cm.【分析】作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,利用平行线的性质OF⊥CD,根据垂径定理得到AE=BE=4,CF=DF=3,则利用勾股定理可计算出OE=3,OF=4,讨论:当点O在AB与CD之间时,EF=OF+OE;当点O不在AB与CD 之间时,EF=OF﹣OE.【解答】解:作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,∵AB∥CD,OE⊥AB,∴OF⊥CD,∴AE=BE=AB=4cm,CF=DF=CD=3cm,在Rt△OAE中,OE===3cm,在Rt△OCF中,OF===4cm,当点O在AB与CD之间时,如图1,EF=OF+OE=4+3=7cm;当点O不在AB与CD之间时,如图2,EF=OF﹣OE=4﹣3=1cm;综上所述,AB与CD之间的距离为1cm或7cm.故答案为1或7.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.注意分类讨论.27.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为4.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故答案为4.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.28.如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为3.【分析】根据垂径定理由CD⊥AB得到CH=CD=4,再根据勾股定理计算出OH=3.【解答】解:连接OC,∵CD⊥AB,∴CH=DH=CD=×8=4,∵直径AB=10,∴OC=5,在Rt△OCH中,OH==3,故答案为:3.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.29.如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为20.【分析】延长AO交BC于D,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长;过O作BC的垂线,设垂足为E;在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长;由垂径定理知BC=2BE,由此得解.【解答】解:延长AO交BC于D,作OE⊥BC于E;∵∠A=∠B=60°,∴∠ADB=60°;∴△ADB为等边三角形;∴BD=AD=AB=12;∴OD=4,又∵∠ADB=60°,∴DE=OD=2;∴BE=10;∴BC=2BE=20;故答案为20.【点评】此题主要考查了等边三角形的判定和性质以及垂径定理的应用.三.解答题(共6小题)30.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.【分析】(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;【解答】解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.【点评】本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧.31.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.【分析】(1)先根据同角的余角相等得到∠CNM=∠B,利用等量代换得到∠AND=∠B,利用同弧所对的圆周角相等得到∠D=∠B,则得∠AND=∠D,利用等角对等边可得出结论;(2)先根据垂径定理求出AE的长,连接AO,设OE的长为x,则DE=NE=x+1,OA =OD=2x+1,在Rt△AOE中根据勾股定理可得出x的值,进而得出结论.【解答】(1)证明:∵CD⊥AB∴∠CEB=90°∴∠C+∠B=90°,同理∠C+∠CNM=90°∴∠CNM=∠B∵∠CNM=∠AND∴∠AND=∠B,∵,∴∠D=∠B,∴∠AND=∠D,∴AN=AD;(2)解:设OE的长为x,连接OA∵AN=AD,CD⊥AB∴DE=NE=x+1,∴OD=OE+ED=x+x+1=2x+1,∴OA=OD=2x+1,∴在Rt△OAE中OE2+AE2=OA2,∴x2+42=(2x+1)2.解得x=或x=﹣3(不合题意,舍去),∴OA=2x+1=2×+1=,即⊙O的半径为.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.32.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.【分析】(1)由OD⊥AC知AD=DC,同理得出CE=EB,从而知DE=AB,据此可得答案;(2)作OH⊥AB于点H,连接OA,根据题意得出OH=3,AH=4,利用勾股定理可得答案.【解答】解:(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=AB,∵AB=8,∴DE=4.(2)过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.【点评】本题主要考查垂径定理,解题的关键是掌握垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了中位线定理与勾股定理.33.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,BC=3.(1)求AB的长;(2)求⊙O的半径.【分析】(1)连接AC,如图,利用垂径定理可判断CD垂直平分AB,则CA=CB=3,同理可得AE垂直平分BC,所以AB=AC=3;(2)先证明△ABC为等边三角形,则AE平分∠BAC,所以∠OAF=30°,然后利用含30度的直角三角形三边的关系求出OA即可.【解答】解:(1)连接AC,如图,∵CD⊥AB,∴AF=BF,即CD垂直平分AB,∴CA=CB=3,∵AO⊥BC,∴CE=BE,即AE垂直平分BC,∴AB=AC=3;(2)∵AB=AC=BC,∴△ABC为等边三角形,∴∠BAC=60°,∴AE⊥BC,∴AE平分∠BAC,即∠OAF=30°,在Rt△OAF中,∵OF=AF=×=,∴OA=2OF=,即⊙O的半径为.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.34.如图,四边形ABCD内接于⊙O,OC=4,AC=4.(1)求点O到AC的距离;(2)求∠ADC的度数.【分析】(1)作OM⊥AC于M,根据等腰直角三角形的性质得到AM=CM=2,根据勾股定理即可得到结论;(2)连接OA,根据等腰直角三角形的性质得到∠MOC=∠MCO=45°,求得∠AOC=90°,根据圆内接四边形的性质即可得到结论.【解答】解:(1)作OM⊥AC于M,∵AC=4,∴AM=CM=2,∵OC=4,∴OM==2;(2)连接OA,∵OM=MC,∠OMC=90°,∴∠MOC=∠MCO=45°,∵OA=OC,∴∠OAM=45°,∴∠AOC=90°,∴∠B=45°,∵∠D+∠B=180°,∴∠D=135°.【点评】本题考查了垂径定理,勾股定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.35.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.【分析】过O点作半径OD⊥AB于E,如图,利用垂径定理得到AE=BE=4,再利用勾股定理计算出OE,然后计算出DE的长即可.【解答】解:过O点作半径OD⊥AB于E,如图,∴AE=BE=AB=×8=4(m),在Rt△AEO中,OE===3(m),∴ED=OD﹣OE=5﹣3=2(m),答:筒车工作时,盛水桶在水面以下的最大深度为2m.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.。

初中数学浙教版九年级上册3.3垂径定理 同步练习

初中数学浙教版九年级上册3.3垂径定理 同步练习

初中数学浙教版九年级上册3.3垂径定理同步练习一、单选题(共10题;共20分)1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=AP=8,则⊙O的直径为()A. 10B. 8C. 5D. 32.如图,是的弦,半径于点,下列判断中错误的是()A. B. C. D.3.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了1.4m,则此时排水管水面宽为( )A. 1.2mB. 1.4mC. 1.6mD. 1.8m4.如图,M(0,﹣3)、N(0,﹣9),半径为5的⊙A经过M、N,则A点坐标为()A. (-5,-6)B. (4,-6)C. (-6,-4)D. (-4,-6)5.嘉兴南湖不仅是党的诞生地,它优美的风光还吸引全国各地的旅客前来观赏.如图是南湖的一座三孔桥,某天测得最大桥拱的水面宽为,桥顶到水面的距离为,则这座桥桥拱半径为A. B. C. D.6.如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,距拖拉机中心50米的范围内均会受到噪音影响,已知有两台相距40米的拖拉机正沿ON方向行驶,它们的速度均为10米/秒,则这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间为()A. 6秒B. 8秒C. 10秒D. 18秒7.如图2,在平面直角坐标系中,点的坐标为(1,4)、(5,4)、(1、),则外接圆的圆心坐标是A. (2,3)B. (3,2)C. (1,3)D. (3,1)8.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度是( )A. 4cmB. 3cmC. 2cmD. 1cm9.如图,点A、B、C是圆O上的三点,且四边形OABC是平行四边形,OD⊥AB交圆O于点D,则∠OAD 等于( )A. 72.5°B. 75°C. 80°D. 60°10.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A. 13寸B. 20寸C. 26寸D. 28寸二、填空题(共4题;共5分)11.如图,在圆O中,弦AB=4,点C在AB上移动,连接OC,过点C做CD⊥OC交圆O于点D,则CD的最大值为________。

北师大版数学九年级下册3.3 初中数学 《垂径定理》习题

北师大版数学九年级下册3.3 初中数学 《垂径定理》习题

《垂径定理》习题一、选择题1.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4 B.6 C.7 D.82.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.2 B.3 C.4 D.53.过⊙O内一点M的最长弦为10cm,最短弦长为8cm,则OM的长为()A.9cm B.6cm C.3cm D.41cm 4.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心5.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A.5米B.8米C.7米D.53米第5题图第8题图6.⊙O的半径为5cm,弦AB∥CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( )A.1cm B.7cm C.3cm或4 cm D.1cm 或7cm二、填空题7.已知AB是⊙O的弦,AB=8cm,OC⊥AB于C,OC=3cm,则⊙O的半径为cm 8.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3cm,则CD=____ cm.9.半径为6cm的圆中,垂直平分半径OA的弦长为cm.10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD 的高度为m.11.如图,在直角坐标系中,以点P为圆心的圆弧与轴交于A、B两点,已知P(4,2)和A(2,0),则点B的坐标是.12.如图,矩形ABCD与圆心在AB上的圆O交于点G、B、F、E,GB=10,EF=8,那么AD=.三、解答题13.已知⊙O的半径长为50cm,弦AB长50cm.求:(1)点O到AB的距离;(2)∠AOB 的大小.14.已知:如图,AD 是⊙O 的直径,BC 是⊙O 的弦,AD ⊥BC ,垂足为点E ,BC =8, AD =10.求:(1)OE 的长;(2)∠B 的正弦值15.如图,已知⊙O 的半径长为25,弦AB 长为48,C 是弧AB 的中点.求AC 的长.AB C E O .《垂径定理》习题参考答案一、选择题1. D;2. B;3. C;4. D;5. B;6. D二、填空题7. 5;8. 63;9. 63;10. 4;11. (6,0);12. 3三、解答题13. 解答:(1)过点O作OC⊥AB于点C,则:AC=12AB=25cm,在Rt△OAC中,222OC AC OA+=,∴OC=22OA AC-=225025-=253cm,∴点O到AB的距离253cm;(2)∵OA=OB=AB=50cm,∴△OAB是等边三角形,∴∠AOB=60°14. 解答:(1)连接OB,∵AD是⊙O的直径,且AD⊥弦BC,∴OB=12AD=5,BE=12BC=4,在Rt △OBE 中,222OE BE OB += , ∴OE =22OB BE -=2254-=3,(2)由(1)知:OE =3,∴AE =OA +OE =5+3=8,在Rt △ABE 中,222AE BE AB += , ∴AB =22AE BE +=2284+=45 , ∴sin ∠ABE =AEAB =45=255.15. 解答:连接OA 、OC ,OC 交AB 于点D , ∵OC 是圆O 的半径,C 是弧AB 的中点, ∴OC ⊥AB ,AD =12AB =24,在Rt △OAD 中,OD =22OA AD -=222524-=7,∴CD =OC -OD =25-7=18,在Rt △OAD 中,222AD CD AC += , ∴AC =22AD CD +=222418+=30.。

北师大版九年级下册数学 3.3垂径定理 同步习题(含解析)

北师大版九年级下册数学 3.3垂径定理 同步习题(含解析)

3.3垂径定理同步习题一.选择题1.如图,已知⊙O的半径为5cm,弦AB的长为8cm,P是AB的延长线上一点,BP=2cm,则OP等于()A.cm B.3cm C.cm D.cm2.半径为5的圆内有长为的弦,则此弦所对的圆周角为()A.60°B.120°C.60°或120°D.30°或120°3.如图,在平面直角坐标系中,⊙P的圆心坐标是(﹣3,a)(a>3),半径为3,函数y=﹣x 的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.4.如图,M是以AB为直径的半圆⊙O的内接四边形ABCD边CD的中点,MN⊥AB于点N,半圆的面积为π,AD=AN=3,则BC=()A.4B.5C.6D.75.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EB.若AB=4,CD=1,则EB的长为()A.3B.4C.5D.2.56.如图,将沿弦AB翻折过圆心O点,交弦AC于D,AD=1,CD=2,则AB长为()A.B.C.D.7.如图,在半圆O中,AB为直径,CD是一条弦,若△COD的最大面积是12.5,则弦CD的值为()A.B.5C.5D.12.58.如图,在⊙O中直径AB=8,弦AC=CD=2,则BD长为()A.7B.6C.3D.9.如图,⊙O经过菱形ABCO的顶点A、B、C,若OP⊥AB交⊙O于点P,则∠P AB的大小为()A.15°B.20°C.25°D.30°10.如图,AB为⊙O的直径,点D为⊙O上一动点,作DE⊥AB于点C,交⊙O于点E,过点D作直线EB的垂线,垂足为点F.若AB=20,EF=3BF,则AC的长度可能为()A.B.5C.15D.18二.填空题11.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=6,则AD=.12.如图,在⊙O中,C是弦AB上一点,AC=2,CB=4.连接OC,过点C作DC⊥OC,与⊙O 交于点D,DC的长为.13.如图,在△ABC中,∠A=62°,⊙O截△ABC三边所得的弦长相等,则∠BOC的度数是.14.如图,AB是⊙O的直径,且经过弦CD的中点H,已知HD=4,BD=5,则OA的长度为.15.如图,在⊙O中,AB是直径,弦BE的垂直平分线交⊙O于点C,CD⊥AB于D,AD=1,BE=6,则BD的长为.三.解答题16.如图,已知Rt△ABC,∠BAC=90°,BC=5,AC=2,以A为圆心、AB为半径画圆,与边BC交于另一点D.(1)求BD的长;(2)连接AD,求∠DAC的正弦值.17.如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=8,OG=10,求⊙O的半径.18.如图,Rt△ABC中,∠ACB=90°,O为△ABC角平分线的交点,以OC为半径的⊙O交△ABC于D、E、F、G.(1)求证:CD=EF;(2)若⊙O的半径为4,AE=2,求AB的长.参考答案一.选择题1.解:过O作OC⊥AB于C,则∠OCP=∠ACO=90°,∵OC⊥AB,OC过O,∴AC=BC=AB=×8cm=4cm,∵BP=2cm,∴PC=BC+BP=6cm,在Rt△ACO中,由勾股定理得:OC===3(cm),在Rt△PCO中,由勾股定理得:OP===3(cm),故选:D.2.解:如图所示,∵OD⊥AB,∴D为AB的中点,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD==,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选:C.3.解:过P作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,如图:∵⊙P的圆心坐标是(﹣3,a),∴OC=3,PC=a,把x=3代入y=﹣x得:y=﹣3,∴D点坐标为(3,﹣3),∴CD=OC=3,∴△OCD为等腰直角三角形,∴∠CDO=45°,∵PE⊥AB,∴△PED为等腰直角三角形,AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE==1,∴PD=PE=,∴PC=CD+PD=3+,即a=3+,故选:B.4.解:作DE⊥AB于E,OF⊥AD于F,CP⊥AB于P,连接OC,如图所示:则AF=DF=AD=,∵MN⊥AB,∴DE∥MN∥CP,∵M是CD的中点,∴EN=PN,∵半圆的面积为π=π×OA2,∴OA=5,∵∠DEA=∠OF A=90°,∠DAE=∠OAF,∴△ADE∽△AOF,∴==,∴AE=AF=×=,∴PN=EN=AN﹣AE=3﹣=,∴P A=AE+EN+PN=,∴OP=P A﹣OA=,BP=OB﹣OP=,∵CP⊥AB,∴CP2=OC2﹣OP2=BC2﹣BP2,即52﹣()2=BC2﹣()2,解得:BC=7;故选:D.5.解:设⊙O的半径为r.∵OD⊥AB,∴AC=BC=2,在Rt△AOC中,∵∠ACO=90°,∴OA2=OC2+AC2,∴r2=(r﹣1)2+22,∴r=,∴OC=,∵OA=OE,AC=CB,∴BE=2OC=3,故选:A.6.解:过点O作OF⊥AB于F,过点B作BE⊥AC于E,连接OA、OB、BD、BC,∵OF=OA,∴∠AOF=∠BOF=60°,∴∠ADB=∠AOB=120°,∠ACB=∠AOB=60°,∴∠CDB=∠ACB=60°,∴△CDB为等边三角形,∵CD=2,∴DE=1,BE=,∴AB===,故选:D.7.解:如图,作DH⊥CO交CO的延长线于H.∵S△COD=•OC•DH,∵DH≤OD,∴当DH=OD时,△COD的面积最大,此时△COD是等腰直角三角形,∠COD=90°,∴CD=OC,∵•OC2=12.5,∴OC=5,∴CD=5.故选:C.8.解:如图,连接OC,AD,AD交OC于E.作OH⊥AC于H.∵AC=CD,∴=,∴OC⊥AD,∴DE=AE,∵OA=OB,∴BD=2OE,∵OC=OA=4,OH⊥AC,∴HC=AH=1,∴OH==,∵•AC•OH=•OC•AE,∴AE=,∴OE==,∴BD=2OE=7,故选:A.9.解:连接OB,∵四边形ABCO是菱形,∴OA=AB,∵OA=OB,∴△AOB为等边三角形,∴∠AOB=60°,∵OP⊥AB,∴∠BOP=∠AOB=30°,由圆周角定理得,∠P AB=∠BOP=15°,故选:A.10.解:设AC=x,EF=y,在Rt△ODC中,CE=CD==.在Rt△BEC中,BE=.∵DF⊥EB,∴cos∠E=,∴,∴y与x之间的函数解析式为y=.①当点F在线段EB上时(图1),∵EF=3BF,∴EF=BE,得=×,解得x1=20(不符合题意),x2=.②当点F在线段EB的延长线上时(如图2),同理,BE=,EF=∵EF=3BF,∴EF=BE,得=×,解得x1=20(不符合题意),x2=15.∴线段AC的长为或15.故选:C.二.填空题11.解:∵CE=2,DE=6,∴CD=DE+CE=8,∴OD=OB=OC=4,∴OE=OC﹣CE=4﹣2=2,在Rt△OEB中,由勾股定理得:BE===2,∵CD⊥AB,CD过O,∴AE=BE=2,在Rt△AED中,由勾股定理得:AD===4,故答案为:4.12.解:延长DC交⊙O于点E.∵OC⊥DE,∴DC=CE,∵AC•CB=DC•CE(相交弦定理,可以证明△ADC∽△EBC得到),∴DC2=2×4=8,∵DC>0,∴DC=2,故答案为2.13.解:∵△ABC中∠A=62°,⊙O截△ABC的三条边所得的弦长相等,∴O到三角形三条边的距离相等,即O是△ABC的内心,∴∠1=∠2,∠3=∠4,∠1+∠3=(180°﹣∠A)=(180°﹣62°)=59°,∴∠BOC=180°﹣(∠1+∠3)=180°﹣59°=121°.故答案是:121°.14.解:∵AB是⊙O的直径,且经过弦CD的中点H,∴CH=HD,AB⊥CD,∴∠BHD=90°,∵HD=4,BD=5,∴BH=3,设OA=x,连接OD,可得:x2=42+(x﹣3)2,解得:x=,即OA=,故答案为:.15.解:弦BE的垂直平分线交BE于点F.∴BF=BE=3,∠BFO=90°,∵CD⊥AB,∴∠ODC=∠BFO=90°,∵OB=OC,∠BOF=∠COD,∴△BOF≌△COD(AAS),∴CD=BF=3,设⊙O的半径为r,则OD=r﹣1,由勾股定理得:OC2=OD2+CD2,r2=(r﹣1)2+32,r=5,∴BD=AB﹣1=2×5﹣1=9,故答案为:9.三.解答题16.解:(1)如图连接AD,作AH⊥BD于H.∵Rt△ABC,∠BAC=90°,BC=5,AC=2,∴AB==,∵•AB•AC=•BC•AH,∴AH==2,∴BH==1,∵AB=AD,AH⊥BD,∴BH=HD=1,∴BD=2.(2)作DM⊥AC于M.∵S△ACB=S△ABD+S△ACD,∴××2=×2×2+×2×DM,∴DM=,∴sin∠DAC===.17.(1)证明:∵DF⊥CG,CD⊥AB,∴∠DEB=∠BFG=90°,∵∠DBE=∠GBF,∴∠D=∠G,∵∠A=∠D,∴∠A=∠G,∴AC=CG.(2)解:设⊙O的半径为r.则AG=OA+OG=r+10,∵CA=CG,CD⊥AB,∴AE=EG=,EC=ED=4,∴OE=AE﹣OA=,在Rt△OEC中,∵OC2=OE2+EC2,∴r2=()2+42,解得r=或(舍弃),∴⊙O的半径为.18.(1)证明:作OM⊥AB于M,ON⊥AC于N,OH⊥CG于G,连接OE、OD,∵点O为△ABC的角平分线交点,∴OM=ON,∵OE=OD=OC,∴RT△OME≌RT△OND(HL),∴ME=ND,∵EF=2ME,CD=2ND,∴CD=EF;(2)解:由(1)可知CD=EF=CG,∵点O为△ABC的角平分线交点,∴OM=ON=OH,∵∠ACB=90°,∴四边形ONCH是正方形,∴OM=ON=OH=CD=EF=CG,∵OC=4,∴OH=OC=4,∴EF=CD=CG=8,易证得AM=AN=6,BM=BH,∴AC=10,设BM=BH=x,则BC=x+4,AB=x+6,∵∠ACB=90°,∴AB2=AC2+BC2,即(6+x)2=102+(4+x)2,解得x=20,∴BM=20,∴AB=AM+BM=20+6=26.。

3.3.1 垂径定理 浙教版数学九年级上册同步练习(含解析)

3.3.1 垂径定理 浙教版数学九年级上册同步练习(含解析)

3.3 垂径定理第1课时 垂径定理基础过关全练知识点1 圆的对称性1.一个圆的对称轴( )A.仅有1条B.仅有2条C.有无数条D.有有限条知识点2 垂径定理2.如图,AB是☉O的直径,弦CD⊥AB于点E,则下列结论一定正确的有( )①CE=DE;②BE=OE;③CB=BD;④∠CAB=∠DAB;⑤AC=AD.A.4个B.3个C.2个D.1个3.(2023浙江杭州西湖期中)如图,在☉O中,AB是☉O的直径,弦CD⊥AB于点H.若AH=5,HB=1,则CD的长为( )A.5 B.13 D.213C.25 4.(2023浙江杭州拱墅期中)如图,在半径为10的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=16,则OP的长为( )A.6B.8C.62 D.825.(2020浙江湖州中考)如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是 .6.【新独家原创】如图,AB是☉O的弦,过圆心O作OC⊥AB,延长CO 交☉O于点D,点E是☉O上一动点,CD=18,AB=12,则CE的长的最小值为 .()能力提升全练7.(2021四川凉山州中考,11,★☆☆)点P是☉O内一点,过点P的最长弦的长为10 cm,最短弦的长为6 cm,则OP的长为( )A.3 cmB.4 cmC.5 cmD.6 cm8.如图,AC是☉O的直径,弦BD⊥AO于E,连结BC,过点O作OF⊥BC 于F,若BD=8 cm,AE=2 cm,则OF的长度是( )A.3 cmB.6 cmC.2.5 cm D.5cm9.【线段最值问题】如图,在☉O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交☉O于点D,则CD长的最大值为 .10.如图所示的是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26 m,OE⊥CD于点E.水位正常时测得OE∶CD=5∶24.()(1)求CD的长;(2)汛期来临时,水面以每小时4 m的速度上升,求经过多长时间桥洞会被灌满.11.如图所示,在以点O为圆心的两个同心圆(两圆的圆心均为点O)中,大圆的弦AB交小圆于点C,D.(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=6,且圆心O到直线AB的距离为3,求AC的长.素养探究全练12.【推理能力】如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合),OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求出线段OD的长度.(2)在△DOE中是否存在长度保持不变的边?如果存在,请求出其长度;如果不存在,请说明理由.(3)在(1)的条件下,求出线段OE的长度.答案全解全析基础过关全练1.C 过圆心的直线都是圆的对称轴,∴一个圆的对称轴有无数条.2.A ∵AB是☉O的直径,且AB⊥CD,∴CE=DE,CB=BD,故①③正确.∵AB⊥CD,CE=DE,∴直线AB为线段CD的垂直平分线,∴AC=AD,故⑤正确.∵AB⊥CD,∴∠CAB=∠DAB(等腰三角形三线合一),故④正确.根据题中条件无法证明BE=OE,故②不一定成立.所以一定正确的结论是①③④⑤.故选A.3.C 如图,连结OD,∵AB是☉O的直径,弦CD⊥AB,CD,∴DH=12∵AH=5,HB=1,∴AB=AH+HB=6,∴OD=OA=3,∴OH=AH-OA=2,在Rt△ODH中,DH=OD2―OH2=32―22=5,∴CD=2DH=25,故选C.4.C 如图,作OM ⊥AB 于M ,ON ⊥CD 于N ,连结OB ,OD ,∴BM =12AB =8,DN =12CD =8,∴OM =OB 2―BM 2=102―82=6,ON =OD 2―DN 2=102―82=6,∵AB ⊥CD ,OM ⊥AB ,ON ⊥CD ,∴四边形MONP 是矩形,∵OM =6=ON ,∴四边形MONP 是正方形,∴OP =62+62=62.故选C .5.答案 3解析 过点O 作OH ⊥CD 于H ,连结OC ,如图,则CH =DH =12CD =4,OC =12AB =5,在Rt △OCH 中,OH =52―42=3,因为AB ∥CD ,所以CD 与AB 之间的距离是3.6.答案 2解析 如图,连结OA ,AB=6,∵OC⊥AB,AB=12,∴AC=12设☉O的半径为r,在Rt△AOC中,OC2=OA2-AC2,即(18-r)2=r2-62,解得r=10,∴OC=CD-OD=18-10=8,当C,O,E三点在同一条直线上,且点E在AB上时,CE的长最小,最小值为10-8=2.能力提升全练7.B ☉O内过点P的最长的弦为直径,最短的弦是垂直于这条直径的弦,如图所示,CD⊥AB于点P,连结OC.根据题意,得AB=10 cm,CD=6 cm.∵AB是☉O的直径,且CD⊥AB,CD=3 cm.∴OC=OB=5 cm,CP=12根据勾股定理,得OP=CO2―CP2=52―32=4(cm).故选B.8.D 如图,连结AB,OB,BD=4 cm,∵BD⊥AO,BD=8 cm,∴BE=12在Rt△ABE中,∵AE=2 cm,BE=4 cm,∴AB =BE 2+AE 2=42+22=25 cm ,∵OF ⊥BC ,∴BF =FC ,∵OA =OC ,∴OF 是△ABC 的中位线,∴OF =12AB =5 cm .故选D .9.答案 12解析 连结OD ,如图,设☉O 的半径为r ,∵CD ⊥OC ,∴∠DCO =90°,∴CD =OD 2―OC 2=r 2―OC 2,当OC 的长最小时,CD 的长最大,当OC ⊥AB 时,OC 的长最小,此时D 、B 两点重合,∴CD =CB =12AB =12×1=12,即CD 长的最大值为12.10.解析 (1)∵直径AB =26 m ,∴OD =OB =12AB =12×26=13 m ,∵OE ⊥CD ,∴DE =12CD ,∵OE ∶CD =5∶24,∴OE ∶ED =5∶12,设OE =5x m (x >0),则ED =12x m ,在Rt△ODE中,OE2+ED2=OD2,即(5x)2+(12x)2=132,解得x=1或x=-1(舍去),∴OE=5 m,ED=12 m,∴CD=2DE=24 m.(2)如图,延长OE交半圆O于点F,AB=13 m,则OF=12∵OE=5 m,∴EF=OF-OE=13-5=8 m,8÷4=2小时,∴经过2小时桥洞会被灌满.11.解析 (1)证明:如图,过点O作OE⊥AB于点E,∵OE⊥AB,∴AE=BE,CE=DE,∴AE-CE=BE-DE,∴AC=BD.(2)如图,连结AO,CO,∵AO=10,OE=3,∴AE=AO2―OE2=91,∵CO=6,OE=3,∴CE=CO2―OE2=33,∴AC=AE-CE=91―33.素养探究全练12.解析 (1)∵OD ⊥BC ,BC =6,∴BD =12BC =12×6=3,∠BDO =90°,∴OD =OB 2―BD 2=52―32=4,即线段OD 的长度为4.(2)存在,DE 的长度保持不变.计算过程如下:连结AB ,如图,∵∠AOB =90°,OA =OB =5,∴AB =OA 2+OB 2=52+52=52,∵OD ⊥BC ,OE ⊥AC ,∴D 和E 分别是线段BC 和AC 的中点,∴DE 是△ABC 的中位线,∴DE =12AB =522.(3)如图,将△OBD 绕圆心O 顺时针旋转90°得到△OAF ,延长OF ,与CA 的延长线交于点G ,连结OC ,∵OD ⊥BC ,OB =OC ,∴∠BOD =∠COD =12∠BOC ,同理,∠COE=∠AOE=1∠AOC,2∴∠BOD+∠AOE=1∠AOB=45°,2根据旋转的性质得∠BOD=∠AOF,∠BDO=∠AFO=90°,BD=AF, OD=OF,∴∠EOG=∠AOE+∠AOF=45°,∵∠OEG=90°,∴△OEG是等腰直角三角形,∴∠G=45°,OE=EG,∵∠AFO=90°,∴∠AFG=90°,∴△AFG是等腰直角三角形,∴FG=AF=BD=3,∴OG=OF+FG=OD+FG=4+3=7,∵OE2+EG2=OG2,OE=EG,.∴OE=EG=722。

九年级数学下册 33 垂径定理课时训练 试题

九年级数学下册 33 垂径定理课时训练 试题

垂径定理1、判断:⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.〔〕⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧.〔〕⑶经过弦的中点的直径一定垂直于弦.〔〕⑷圆的两条弦所夹的弧相等,那么这两条弦平行. 〔〕⑸弦的垂直平分线一定平分这条弦所对的弧. 〔〕2、:如图,⊙O 中,弦AB∥CD,AB<CD,直径MN⊥AB,垂足为E,交弦CD于点F.图中相等的线段有 .图中相等的劣弧有 .3、:如图,⊙O 中, AB为弦,C 为 AB 的中点,OC交AB 于D ,AB = 6cm ,CD = 1cm. 求⊙O 的半径OA.4.如图,圆O与矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的长.5.储油罐的截面如图3-2-12所示,装入一些油后,假设油面宽AB=600mm,求油的最大深度.6.“五段彩虹展翅飞〞,我利用国债资金修建的,横跨南渡江的琼州大桥〔如图3-2-16〕已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图〔1〕.最高的圆拱的跨度为110米,拱高为22米,如图〔2〕那么这个圆拱所在圆的直径为米.三、课后练习:1、,如图在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点,求证:AC=BD2、AB、CD为⊙O的弦,且AB⊥CD,AB将CD分成3cm和7cm两局部,求:圆心O到弦AB的间隔3、:⊙O弦AB∥CD 求证:⋂=⋂BD AC4、:⊙O半径为6cm,弦AB与直径CD垂直,且将CD分成1∶3两局部,求:弦AB的长.5、:AB为⊙O的直径,CD为弦,CE⊥CD交AB于E DF⊥CD交AB于F求证:AE=BF6、:△ABC内接于⊙O,边AB过圆心O,OE是BC的垂直平分线,交⊙O于E、D两点,求证,⋂=⋂BC21 AE7、:AB为⊙O的直径,CD是弦,BE⊥CD于E,AF⊥CD于F,连结OE,OF求证:⑴OE=OF ⑵CE=DF8、在⊙O中,弦AB∥EF,连结OE、OF交AB于C、D求证:AC=DB9、如图等腰三角形ABC中,AB=AC,半径OB=5cm,圆心O到BC的间隔为3cm,求ABC的长10、:⊙O与⊙O'相交于P、Q,过P点作直线交⊙O于A,交⊙O'于B使OO'与AB平行求证:AB=2OO'11、:AB为⊙O的直径,CD为弦,AE⊥CD于E,BF⊥CD于F求证:EC=DF励志赠言经典语录精选句;挥动**,放飞梦想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

*3.3 垂径定理
1.如图,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,则可推出的相等关系是
___________.
2.圆中一条弦把和它垂直的直径分成3 cm和4 cm两部分,则这条弦弦长为__________.
3.判断正误.
(1)直径是圆的对称轴; (2)平分弦的直径垂直于弦.
4.圆O的半径OA=6,OA的垂直平分线交圆O于B、C,那么弦BC的长等于___________.
二、课中强化(10分钟训练)
1.圆是轴对称图形,它的对称轴是______________.
2.如图,在⊙O中,直径MN垂直于弦AB,垂足为C,图中相等的线段有__________,相等的劣弧有______________.
第2题图第3题图
3.如图,弦AB的长为24 cm,弦心距OC=5 cm,则⊙O的半径R=__________ cm.
4.如图所示,直径为10 cm的圆中,圆心到弦AB的距离为4 cm.求弦AB的长.
三、课后巩固(30分钟训练)
)
( 等于BC则C,、B于O的长为半径画弧交⊙,OA为圆心A以点OA=3,的半径O⊙,如图1. 332332D. C. A.3 B.3 22
2题图第第1题图
2.如图24-1-2-6,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8 cm,OC=5 cm,则OD的长是( )
A.3 cm
B.2.5 cm
C.2 cm
D.1 cm
3.⊙O半径为10,弦AB=12,CD=16,且AB∥CD.求AB与CD之间的距离.
4.如图所示,秋千链子的长度为3 m,静止时的秋千踏板(大小忽略不计)距地面0.5 m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为60°,则秋千踏板与地面的最大距离约为多少?
5. “五段彩虹展翅飞”,我省利用国债资金修建的,横跨南渡江的琼州大桥如图(1)已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图(1).最高的圆拱的跨度为110米,拱高为.
米___________那么这个圆拱所在圆的直径为(2),米,如图
22.
C.
、、B6.如图,要把破残的圆片复制完整,已知弧上三点A)
保留作图痕迹,不写作法;((1)用尺规作图法,找出弧BAC所在圆的圆心O) 结果保留根;(,腰AB=6 cm,求圆片的半径R(2)设△ABC为等腰三角形,底边BC=10 cm.
n的值,试估算m和)<R<m(m、n为正整数n(3)若在(2)题中的R满足
7.⊙O的直径为10,弦AB的长为8,P是弦AB上的一个动点,求OP长的取值范围.
思路分析:求出OP长的最小值和最大值即得范围,本题考查垂径定理及勾股定理.该题创新点在于把线段OP看作是一个变量,在动态中确定OP的最大值和最小值.事实上只需作OM⊥AB,.
即可OM求得.。

相关文档
最新文档