第二章数理统计的基本概念1精品PPT课件
合集下载
数理统计的基本概念PPT精品文档40页
则样本的联合分布为
n
n
P { X 1 x 1 ,X 2 x 2 , ,X n x n } P { X i x i} p i.
i 1
i 1
§6.2 抽样分布
6.2.1 统计量的概念
由样本推断总体的某些情况时,需要对样本进行“ 加工”,构造出若干个样本的已知 (确定)的函数, 其作用是把样本中所含的某一方面的信息集中起来 。这种不含任何未知参数的样本的函数称为统计量。 它是完全由样本所决定的量。
统计量的分布称为抽样分布,下面介绍来自正 态总体的几个重要统计量的分布,称为统计学的三 大分布: 2 分布,t分布和F分布.
6.2.2 χ 2 分布
定义4: 设 X1, X2, …, Xn 是来自总体 N(0, 1), 的样本,则称统计量
与总体X具有相同的概率分布,则称随机变量 X1,X2, ,Xn为来自总体X的容量为n的简单随机 样本,简称样本.
它们的 x1,x观 2, ,x 察 n称值 为,样 又本 称值 为 X的 n个独立 . 的观察值
注意:样本的二重性。
6.1.2 样本的分布 样本 X1,X2,…,Xn 可以被看作n维随机向量,自
定义2:设 X1,X2, ,Xn是来自总体X的样本, g(X 1,X 2, ,X n)是样本 X1,X2, ,Xn的函数,如果 g(X 1,X 2, ,X n)中不包含任何未知参数,则称它
是一个统计量。
定义3:几个常用的统计量
样本均值
X
1 n
n i1
Xi
反映总体 均值的信息
样本方差 S2n11in1(Xi X)2n11(in1 Xi2nX2)
200 20 00 20 00 20 00 20 00 20 000
概率论与数理统计--第二章PPT课件
由概率的可列可加性得X的分布函数为
F(x) pk xk x
分布函数F(x)在x xk , 其跳跃值为pk P{X
对k 所1,有2,满足处x有k 跳 x跃的,k求和。
xk }
第26页/共57页
第四节 连续型随机变量及其概率密度
定义 对于随机变量X的分布函数F(x),如果存在非 负函数f (x),使对于任意实数有
售量服从参数为 10的泊松分布.为了以95%以上的
概率保证该商品不脱销,问商店在月底至少应进该商 品多少件? 解 设商店每月销售该种商品X件,月底的进货量为n件,
按题意要求为 PX n 0.95
由X服附从录的泊1松0的分泊布松表分知布k,140 1则k0!k有e1k0n01k00!k.9e1160 6
可以用泊松分布作近似,即
n
k
pk
1
p
nk
np k
k!
enp , k
0,1, 2,
.
例 4 为保证设备正常工作,需要配备一些维修工.如果各台设备
发生故障是相互独立的,且每台设备发生故障的概率都是 0.01.
试求在以下情况下,求设备发生故障而不能及时修理的概率.
(1) 一名维修工负责 20 台设备.
于是PX I P(B) Pw X (w) I.
随机变量的取值随试验的结果而定,而试验的各个 结果出现有一定的概率,因而随机变量的取值有一 定的概率.
按照随机变量可能取值的情况,可以把它们分为两 类:离散型随机变量和非离散型随机变量,而非离 散型随机变量中最重要的是连续型随机变量.因此, 本章主要研究离散型及连续型随机变量.
x
x
4. F(x 0) F(x) 即F(x)是右连续的
第23页/共57页
F(x) pk xk x
分布函数F(x)在x xk , 其跳跃值为pk P{X
对k 所1,有2,满足处x有k 跳 x跃的,k求和。
xk }
第26页/共57页
第四节 连续型随机变量及其概率密度
定义 对于随机变量X的分布函数F(x),如果存在非 负函数f (x),使对于任意实数有
售量服从参数为 10的泊松分布.为了以95%以上的
概率保证该商品不脱销,问商店在月底至少应进该商 品多少件? 解 设商店每月销售该种商品X件,月底的进货量为n件,
按题意要求为 PX n 0.95
由X服附从录的泊1松0的分泊布松表分知布k,140 1则k0!k有e1k0n01k00!k.9e1160 6
可以用泊松分布作近似,即
n
k
pk
1
p
nk
np k
k!
enp , k
0,1, 2,
.
例 4 为保证设备正常工作,需要配备一些维修工.如果各台设备
发生故障是相互独立的,且每台设备发生故障的概率都是 0.01.
试求在以下情况下,求设备发生故障而不能及时修理的概率.
(1) 一名维修工负责 20 台设备.
于是PX I P(B) Pw X (w) I.
随机变量的取值随试验的结果而定,而试验的各个 结果出现有一定的概率,因而随机变量的取值有一 定的概率.
按照随机变量可能取值的情况,可以把它们分为两 类:离散型随机变量和非离散型随机变量,而非离 散型随机变量中最重要的是连续型随机变量.因此, 本章主要研究离散型及连续型随机变量.
x
x
4. F(x 0) F(x) 即F(x)是右连续的
第23页/共57页
数理统计的基本概念课件
离散程度
通过方差、标准差等指标 来描述数据的离散程度, 反映数据的变化程度。
数据的中位数、均值和众数
中位数
将数据按照大小顺序排列,处于 中间位置的数值即为中位数。中 位数可以反映数据的集中趋势和
离散程度。
均值
将所有数据相加后除以数据个数 ,得到的数值即为均值。均值可 以反映数据的集中趋势和离散程
度。
拟合优度
决定于所选择的非线性函数形式,常 用的有R²和SSPE(残差平方和)。
显著性检验
一般采用基于参数的假设检验和似然 比检验。
THANKS FOR WATCHING
感谢您的观看
05
假设检验
假设检验的基本思想
统计假设
假设检验的核心是对提出的问题(即假设)进行统计推断,先假设所要考察的 总体参数按某种规律或分布(即统计模型)分布,然后根据样本信息对原假设 进行检验。
假设检验的基本步骤
首先提出假设,然后收集样本数据,接着根据样本数据对原假设进行检验,最 后根据检验结果做出结论。
多元线性回归分析
• β0: 截距 • β1, β2, ...: 斜率
• ε: 误差项
多元线性回归分析
拟合优度
R²,表示模型解释因变量的方差的比例 。
VS
显著性检验
整体显著性检验(F检验)和单个变量的 显著性检验(t检验)。
非线性回归分析
定义
非线性回归分析是研究非线性关系的 统计方法。
模型
Y = f(X) (其中 f 是非线性函数)
• β0: 截距
一元线性回归分析
01
• β1: 斜率
02
• ε: 误差项
03
04
拟合优度:R²,表示模型解 释因变量的方差的比例。
《数理统计》课件
季节性分析
要点一
总结词
季节性分析是时间序列分析的重要环节,通过季节性分析 可以了解时间序列数据中存在的季节性波动。
要点二
详细描述
季节性分析的方法包括季节性分解、季节性自相关图、季 节性指数等。这些方法可以帮助我们识别时间序列数据中 的季节性模式,并基于这些模式进行预测和建模。
THANKS FOR WATCHING
参数与统计量
参数是描述总体特性的指标, 统计量是描述样本特性的指标 。
概率与随机变量
概率用于描述随机事件发生的 可能性,随机变量是表示随机 现象的变量。
估计与检验
估计是用样本数据推断总体参 数的过程,检验是利用样本数
据对假设进行判断的过程。
CHAPTER 02
描述性统计
数据的收集与整理
数据来源
描述数据的来源,如调查、观察、实 验等。
非线性回归分析
总结词
非线性回归分析是数理统计中用于研究非线 性关系的分析方法。
详细描述
非线性回归分析不依赖于最小二乘法原理, 而是通过其他优化方法来拟合非线性模型。 非线性回归分析适用于因变量和自变量之间 存在非线性关系的情况。常见的非线性回归 模型包括多项式回归、指数回归、对数回归 等。非线性回归分析广泛应用于各个领域,
如正态分布、指数分 布等。
随机事件的概率计算
条件概率
在某个事件发生的条件下,另一个事件发生 的概率。
互斥事件的概率计算
两个互斥事件同时发生的概率等于各自发生 概率的和。
独立事件的概率计算
两个独立事件同时发生的概率等于各自发生 概率的乘积。
全概率公式
一个复杂事件的概率可以分解为若干个互斥 事件的概率之和。
单因素方差分析
数理统计的基本概念
第二章 数理统计的基本概念
概率论与数理统计的区别: 在概率论中,假设随机变量的分布列或者分布函数已知,然 后描述随机变量的统计规律. 数理统计首先解决,如何知道 随机变量的分布规律,如何知道分布中所含的参数.
数理统计研究问题:它研究怎样有效地收集整理和分析带有随 机性的数据,以对所考察的问题作出推断或预测,直至为采取一 定的决策和行动提供依据和建议.
概率统计的基本问题:依据有限个观测或试验如何对整体所作 出推论的问题.这种伴随有一定概率的推断称为统计推断.
母体与子样、经验分布函数
1、母体:把研究对象的全体所构成的一个集合称为母体或总体; 组成母体的每一个成员称为个体. 注:10、实际应用中总体往往指研究对象的某项数值指标的全体。 20、总体的某个数值指标是一个具有分布函数F(x)随机变量,称 总体为具有分布函数F(x)的总体。 30、也可能是一个随机向量,相应的分布函数就为多元函数.
(i
n! 1)!(n
i)![F (
y)]i1[1
F(
y )] n1
f
(
y),
0 ,
a yb 其它
证明 第 i个次序统计量(i)落入无穷小区间 [ y , y y)
内这一事件等价于”容量为n的子样1 ,2 , n 中有(i 1)
个分量落入区间[a , y)内,1个分量落入区间[ y , y y)内,
n
F ( x1 ,, xn ) F ( xi ) i 1
例1 设总体 X 服从参数为 ( 0)的指数分布, ( X1, X2 ,, Xn )
是来自总体的样本, 求样本( X1, X2 ,, Xn )的概率密度.
解
总体 X 的概率密度为
ex ,
f (x)
概率论与数理统计的区别: 在概率论中,假设随机变量的分布列或者分布函数已知,然 后描述随机变量的统计规律. 数理统计首先解决,如何知道 随机变量的分布规律,如何知道分布中所含的参数.
数理统计研究问题:它研究怎样有效地收集整理和分析带有随 机性的数据,以对所考察的问题作出推断或预测,直至为采取一 定的决策和行动提供依据和建议.
概率统计的基本问题:依据有限个观测或试验如何对整体所作 出推论的问题.这种伴随有一定概率的推断称为统计推断.
母体与子样、经验分布函数
1、母体:把研究对象的全体所构成的一个集合称为母体或总体; 组成母体的每一个成员称为个体. 注:10、实际应用中总体往往指研究对象的某项数值指标的全体。 20、总体的某个数值指标是一个具有分布函数F(x)随机变量,称 总体为具有分布函数F(x)的总体。 30、也可能是一个随机向量,相应的分布函数就为多元函数.
(i
n! 1)!(n
i)![F (
y)]i1[1
F(
y )] n1
f
(
y),
0 ,
a yb 其它
证明 第 i个次序统计量(i)落入无穷小区间 [ y , y y)
内这一事件等价于”容量为n的子样1 ,2 , n 中有(i 1)
个分量落入区间[a , y)内,1个分量落入区间[ y , y y)内,
n
F ( x1 ,, xn ) F ( xi ) i 1
例1 设总体 X 服从参数为 ( 0)的指数分布, ( X1, X2 ,, Xn )
是来自总体的样本, 求样本( X1, X2 ,, Xn )的概率密度.
解
总体 X 的概率密度为
ex ,
f (x)
硕士研究生数理统计课件
ξ2、……、ξn )来自于总体F(x)。
LOGO Your Site Here
第二章 数理统计的基本概念与抽样分布
定理:若( ξ1、ξ2、……、ξn )来自于F(x)(或P(x)), 则( ξ1、ξ2、……、ξn )的联合分布密度函数
n
n
∏ F(xi) 或∏ P(xi)
i=1
i=1
例一: ξ~N(0,1),(ξ1、ξ2、ξ3)是一个样本,
§2.1数理统计的几个基本概念 一、总体与样本
有限总体 总体 研究对象的全体
无限总体 个体 每个研究对象 关心 与它们的性能相联 系的某个数量指标 实验前不知结果 是一个随机变量(有 一个分布)。
LOGO Your Site Here
第二章 数理统计的基本概念与抽样分布
总体 个体
一个具有确定概率分布的随机变量 随机变量可能取的数值
数理统计是统计? 统计的内涵:
1.统计工作 2.统计资料 3.统计学
专业统计 大统计
数理统计
统计既是一种理论,也是许多方法的总称。
LOGO Your Site Here
绪论
二、统计的题材 统计的题材包括范围极广——设计生成数据
的试验,数据的收集、分析、描述和解释。
n
X的性质:(1)(Xi X ) 0 i 1
(2)若Yi aXi b,则Y aX b
(3)EX EX
(4)DX DX n
S2的性质:(1)E(S 2 ) n 1 DX E(S*2) DX n
n
n
(2)x R,有 (Xi -X)2 (Xi -x)2
合格率大于等于90%,信不信? 3.温度与压力有无关系?有什么样的关系? 4.一天所加工的零件的误差是否服从正态分布? 5.几个地区人的血液中胆固醇的含量的平均值
LOGO Your Site Here
第二章 数理统计的基本概念与抽样分布
定理:若( ξ1、ξ2、……、ξn )来自于F(x)(或P(x)), 则( ξ1、ξ2、……、ξn )的联合分布密度函数
n
n
∏ F(xi) 或∏ P(xi)
i=1
i=1
例一: ξ~N(0,1),(ξ1、ξ2、ξ3)是一个样本,
§2.1数理统计的几个基本概念 一、总体与样本
有限总体 总体 研究对象的全体
无限总体 个体 每个研究对象 关心 与它们的性能相联 系的某个数量指标 实验前不知结果 是一个随机变量(有 一个分布)。
LOGO Your Site Here
第二章 数理统计的基本概念与抽样分布
总体 个体
一个具有确定概率分布的随机变量 随机变量可能取的数值
数理统计是统计? 统计的内涵:
1.统计工作 2.统计资料 3.统计学
专业统计 大统计
数理统计
统计既是一种理论,也是许多方法的总称。
LOGO Your Site Here
绪论
二、统计的题材 统计的题材包括范围极广——设计生成数据
的试验,数据的收集、分析、描述和解释。
n
X的性质:(1)(Xi X ) 0 i 1
(2)若Yi aXi b,则Y aX b
(3)EX EX
(4)DX DX n
S2的性质:(1)E(S 2 ) n 1 DX E(S*2) DX n
n
n
(2)x R,有 (Xi -X)2 (Xi -x)2
合格率大于等于90%,信不信? 3.温度与压力有无关系?有什么样的关系? 4.一天所加工的零件的误差是否服从正态分布? 5.几个地区人的血液中胆固醇的含量的平均值
概率论与数理统计的基本概念1
定 理 5 . 4 独 立 同 分 布 的 中 心 极 限 定 理
设随机变量Z1,Z2,L ,Zn,L 相互独立同分布,EZi ,DZi 2,i 1,2,L
n
则 Zbn,0.75,
E Z n p 0 . 7 5 n ,D Z n p q 0 . 1 8 7 5 n ,
又
fn
A
Z n
而 P 0 . 7 4 Z n 0 . 7 6 P Z 0 . 7 5 n 0 . 0 1 n
1
0.1875n
0.01n 2
118n750.90
n18750
第三章 多维随机变量及其分布
❖ 3.1 二维随机变量
❖ 3.2 边缘分布
❖ 3.3 条件分布
2
❖ 3.4 相互独立的随机变量
第四章
随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵
第五章
大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理
第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
3
第七章
参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章
假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验
则 PZ fxdx x
x2
x
2
f xdx
f (x)
12
x2
fxdx
DZ
2
2 2
8
例1:在n重贝努里试验中,若已知每次试验事件A出 现
数理统计全集ppt课件
ak
1 n
n i1
xik
由大数定律可知:
bk
1n ni1(xi
x)k
Ak
1n n i1
Xi k
依概率收敛于
E( X k )
.
例1. 从一批相同的电子元件中随机地抽出8个,测得使用
寿命(单位:小时)分别为:2300,2430,2580,2400,
2280,1960,2460,2000,试计算样本均值、样本方差及
n
证 明:设 χ2 X i2 X i ~N (0,1)i1,2,,n i 1 X1,X2,,Xn相互独立,则
E (X i)0 ,D (X i)1 , E (X i2) D (X i) E (X i)21,
E χ2 E n Xi2 n E(X i2) n i1 i1
.
E(Xi4)
1 x4ex22dx3 2π
ψ(x) Γ(Γn2(1)n1Γ 2n(2)n22)(n n1 2)(n n1 2x0)n211
1 x n1
n1n2 2
n2
x0 x0
.
f(x;n1,n2) n1 20
n2 n2 25
n2 10
o
x
.
注意:统计的三大分布的定义、基本性质在后面的
学习中经常用到,要牢记!!
4、上α分位点
例3.设总体X和Y相互独立,同服从 N(0,32 )
分布,而 X1,X2,…, X9 和 Y1,Y2,…, Y9 分别是来自X和Y的简单随机样本,求统计量
U X1X2 X9 的分布. Y12 Y22 Y92
解:Xi ~N(0,9)
9
Xi ~ N(0,81)
i1
9
Xi
i1 ~ N(0,1) 9
关于数理统计的基本概念课件
数理统计学是一门应用性很强的学科。它研 究怎样以有效的方式收集、 整理和分析带有随机 性的数据,以便对所考察的问题作出正确的推断 和预测,为采取正确的决策和行动提供依据和建 议。
数理统计不同于一般的资料统计,它更侧 重于应用随机现象本身的规律性进行资料的收 集、整理和分析。
4
第6章 数理统计基础
j1
ij 1,2,(j1,2,,n)
例6.2.4 设总体X~B(1,p),X1,X2,…,Xn为取自 总体X的样本,求样本X1,X2,…,Xn的联合分布(
称为样本分布)。
解: X的分布律为
P X x p x ( 1 p ) 1 x x 0 , 1
所以样本X1,X2,…,Xn的联合分布律为
6.1.2 样本与抽样
在应用中,我们从总体中抽出的个体必须具有代表 性,样本中个体之间要具有相互独立性,为保证这两 点,一般采用简单随机抽样.
定义6.1 一种抽样方法若满足下面两点,称其为简 单随机抽样:
(1) 总体中每个个体被抽到的机会是均等的; (2) 样本中的个体相互独立. 由简单随机抽样得到的样本称为简单随机样本. 如果没有特殊说明,以后所说样本均指简单随机样本.
关于数理统计的基 本概念
前几章我们学习了概率论的基本知识,从本章 开始将学习数理统计的基本知识、理论和方法. 数理统计是以对随机现象观测所取得的资料(数 据)为出发点,以概率论为基础来研究随机现象 的一门学科.
概率论中,往往是在已知随机变量分布的条件 下,去研究它的性质、特点和规律性,比如求随 机变量取某些特定值的概率、求随机变量的数字 特征、研究多个随机变量之间的关系等.
6.1.2 样本与抽样
设X1,X2,...,Xn是从总体X中抽出的简单随机样 本,由定义可知,X1,X2,...,Xn有下面两个特性:
《数理统计基本概念》课件
不可能事件
概率等于0的事件,表示一定 不会发生。
独立事件
两个事件的发生相互独立,一 个事件的发生不影响另一个事 件的发生。
随机变量及其分布
01
02
03
04
离散型随机变量
随机变量可以取到有限个或可 数无穷个值。
连续型随机变量
随机变量可以取到任何实数值 。
概率分布函数
描述随机变量取值概率的函数 。
概率密度函数
确定因子、提出假设、构造统计量、 进行统计分析、做出推断结论。
方差分析的应用场景
比较不同组数据的均值差异、分析多 因素对结果的影响等。
方差分析的注意事项
满足正态性和方差齐性的假设、注意 组间和组内的比较等。
04
回归分析
一元线性回归
总结词
一元线性回归是数理统计中常用的回归分析方法,用于研究一个因变量与一个自变量之间 的线性关系。
假设检验的类型
单侧检验、双侧检验、独立样本检验、配对 样本检验等。
假设检验的基本步骤
提出假设、构造检验统计量、确定临界值、 做出推断结论。
假设检验的注意事项
避免两类错误、注意样本量和分布情况等。
方差分析
方差分析的概念
方差分析是用来比较不同组数据的变 异程度和分析变异来源的一种统计方 法。
方差分析的基本步骤
详细描述
一元线性回归分析通过最小二乘法拟合一条直线,使得因变量的观测值与自变量的预测值 之间的残差平方和最小。它可以帮助我们了解自变量和因变量之间的相关性和预测因变量 的未来值。
公式
(y = ax + b) 其中,(a) 是斜率,(b) 是截距。
多元线性回归
01
总结词
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 构造该数据的频率分布表(组数为6) B. 画出直方图
Max=1572, Min=738, 组数=6 组距=(Max-Min)/6=139140 取a0=735, 则分组区间及相关数据如下
组序 分区区间 频数 频率 累计频率
1 (735,875] 6 0.2
0.2
2 (875,1015] 8 0.27 0.47
0,
Fn
(
x)
k n
1,
x x(1) , x(k) x x(k1) , k 1, 2 n 1, x(n) x.
例3 从总体X中抽取容量为8的样本,其观测 值为
33,45,25,33,35,65,30,27。 试求X的经验分布函数。
解:将样本观测值由小到大排序得 25<27<30<33=33<35<45<65
统计量的值 1186.66 1080.00 156450.00 395.54 1250.00
频数/频率直方图
例2 某地区30名2000年某专业毕业实习生实习期满 后的月薪数据如下: 909 1091 967 1232 1096 1164 1086 1071 1572 950 808 971 1120 1081 825 775 1224 950 999 1130 914 1203 1044 866 1320 1336 992 1025 871 738
简单随机样本
设X1,X2, …,Xn为总体X的一个容量为n的样本。 若它满足
• 独立性,即X1,X2, …,Xn 相互独立; • 代表性,即每个Xi都与总体X服从相同的分布. 则称这样的样本为简单随机样本,简称为样本。
§2.2
一、统计量
设X1,X2, …,Xn是总体X的样本,g(X1,X2, …,Xn) 是样本的实值函数,且不包含任何未知参数, 则称g(X1,X2, …,Xn)为统计量。
第二章 数理统计的 基本概念
§2.1
■总体 一个统计问题总有它明确的研究对象.
将研究对象的全体称为总体, 总体中每个具体对象称为个体.
总体
…
研究某批灯泡的寿命
总体的特点: 大量性、同质性、变异性
总体可看成一个随机变量,用X、Y表示。
如果总体X服从正态分布,就称它是正 态总体。
总体分布决定了样本取值的概率规律, 也就是样本取到样本值的规律,因而可以由 样本值去推断总体.
■样本 为推断总体分布及各种特征,随机地从总体
中抽取若干个体进行观察试验,这一抽取过程称 为 “抽样”,所抽取的部分个体称为样本. 样本 中所包含的个体数目称为样本容量.
容量为n的样本可以看作n维随机变量 (X1,X2,…,Xn)
一旦取定一组样本,得到的是n个数 (x1,x2,…,xn), 称为样本的一次观察值,简称样本观测值 .
常用统计量
样本均值
X
1 n
n i 1
Xi
样本方差
它反映了总体均值 的信息
它反映了总体方差 的信息
S 2
1 n 1
n i 1
(Xi
X )2
注: 样本方差的算术平方根S称为样本标准差
样本k阶原点矩
它反映了总体k 阶矩 的信息AkFra bibliotek1 n
n i 1
X
k i
样本k阶中心矩
Bk
1 n
n i 1
(Xi
3 (1015,1155] 9 0.3
0.77
4 (1155,1295] 4 0.13
0.9
5 (1295,1435] 2 0.07 0.97
6 (1435,1575] 1 0.03
1.0
合计
30 1
经验分布函数
设X1,X2, …,Xn是取自总体X的样本,对应的次 序统计量为X(1) X(2) … X(n) ,当给定次序 统计量的观测值x(1) x(2) … x(n)时,对任意实 数x,称下面函数为总体X的经验分布函数。
X (n / 21) ),
n为奇数 n为偶数
它反映了总体取值 中间程度的信息
例1 在某城市中随机抽取9个家庭,调查得到 每个家庭的人均月收入数据如下(单位:元)
1080, 750,1080,1080,850,960, 2000, 1250,1630
计算出这组数据的统计量结果见下表:
统计量 样本均值 样本中位数 样本方差 样本标准差 样本极差
0,
1 ,
8
2
,
8
3
Fn
(
x)
8 5
, ,
8
6
,
8
7
,
8
1,
x 25, 25 x 27, 27 x 30, 30 x 33, 33 x 35, 35 x 45, 45 x 65, 65 x.
注:当n充分大时,有
Fn (x) F (x)
二、抽样分布
统计量既然是依赖于样本的,而后者又 是随机变量,故统计量也是随机变量,它的 分布叫做统计量的“抽样分布” .
一般的正态分布都可以通过线性变换转化为 标准正态分布.
若 X ~ N (, 2 ) ,则
U X ~ N (0, 1)
2. 2分布
定义: 设 X1, X 2,, X n 相互独立, 都服从正态
分布N(0,1), 则称随机变量:
2
X
2 1
X
2 2
X n2
所服从的分布为自由度为 n 的 2分布
■数理统计中常用分布
1. 标准正态分布
0, 1 的正态分布称为标准正态分布.
记成 N(0,1)
其密度函数和分布函数常用( x)和( x) 表示:
( x)
(x)
1
x2
e 2,
x
2
( x)
, (x) 1
x t2
e 2 dt
2
x
正态分布与标准正态分布的关系 标准正态分布的重要性在于,任何一个
X )k
它反映了总体k 阶 中心矩的信息
次序统计量
设X1, X 2 , , X n为总体X的样本,函数
X (k) X (k) ( X1, X 2 , , X n ), k 1, , n,
其中X (k)的观察值是样本X1, X 2 ,
,
X
的观察值
n
x1, x2 , , xn中由小到大排列后的第k个数值,
记为 2 ~ 2 (n)
例4 设X1, X 2 , X 3 , X 4是总体 X ~ N (0,22 )的
则称X (1) ,
,
X
(n
为次序统计量。
)
X (n) max{X1, , X n}为最大次序统计量 X (1) min{X1, , X n}为最小次序统计量
样本极差
它反映了总体取值 悬殊程度的信息
R X (n) X (1)
样本中位数
Mc
X ((n1) / 2) ,
1 2
( X (n/2)
Max=1572, Min=738, 组数=6 组距=(Max-Min)/6=139140 取a0=735, 则分组区间及相关数据如下
组序 分区区间 频数 频率 累计频率
1 (735,875] 6 0.2
0.2
2 (875,1015] 8 0.27 0.47
0,
Fn
(
x)
k n
1,
x x(1) , x(k) x x(k1) , k 1, 2 n 1, x(n) x.
例3 从总体X中抽取容量为8的样本,其观测 值为
33,45,25,33,35,65,30,27。 试求X的经验分布函数。
解:将样本观测值由小到大排序得 25<27<30<33=33<35<45<65
统计量的值 1186.66 1080.00 156450.00 395.54 1250.00
频数/频率直方图
例2 某地区30名2000年某专业毕业实习生实习期满 后的月薪数据如下: 909 1091 967 1232 1096 1164 1086 1071 1572 950 808 971 1120 1081 825 775 1224 950 999 1130 914 1203 1044 866 1320 1336 992 1025 871 738
简单随机样本
设X1,X2, …,Xn为总体X的一个容量为n的样本。 若它满足
• 独立性,即X1,X2, …,Xn 相互独立; • 代表性,即每个Xi都与总体X服从相同的分布. 则称这样的样本为简单随机样本,简称为样本。
§2.2
一、统计量
设X1,X2, …,Xn是总体X的样本,g(X1,X2, …,Xn) 是样本的实值函数,且不包含任何未知参数, 则称g(X1,X2, …,Xn)为统计量。
第二章 数理统计的 基本概念
§2.1
■总体 一个统计问题总有它明确的研究对象.
将研究对象的全体称为总体, 总体中每个具体对象称为个体.
总体
…
研究某批灯泡的寿命
总体的特点: 大量性、同质性、变异性
总体可看成一个随机变量,用X、Y表示。
如果总体X服从正态分布,就称它是正 态总体。
总体分布决定了样本取值的概率规律, 也就是样本取到样本值的规律,因而可以由 样本值去推断总体.
■样本 为推断总体分布及各种特征,随机地从总体
中抽取若干个体进行观察试验,这一抽取过程称 为 “抽样”,所抽取的部分个体称为样本. 样本 中所包含的个体数目称为样本容量.
容量为n的样本可以看作n维随机变量 (X1,X2,…,Xn)
一旦取定一组样本,得到的是n个数 (x1,x2,…,xn), 称为样本的一次观察值,简称样本观测值 .
常用统计量
样本均值
X
1 n
n i 1
Xi
样本方差
它反映了总体均值 的信息
它反映了总体方差 的信息
S 2
1 n 1
n i 1
(Xi
X )2
注: 样本方差的算术平方根S称为样本标准差
样本k阶原点矩
它反映了总体k 阶矩 的信息AkFra bibliotek1 n
n i 1
X
k i
样本k阶中心矩
Bk
1 n
n i 1
(Xi
3 (1015,1155] 9 0.3
0.77
4 (1155,1295] 4 0.13
0.9
5 (1295,1435] 2 0.07 0.97
6 (1435,1575] 1 0.03
1.0
合计
30 1
经验分布函数
设X1,X2, …,Xn是取自总体X的样本,对应的次 序统计量为X(1) X(2) … X(n) ,当给定次序 统计量的观测值x(1) x(2) … x(n)时,对任意实 数x,称下面函数为总体X的经验分布函数。
X (n / 21) ),
n为奇数 n为偶数
它反映了总体取值 中间程度的信息
例1 在某城市中随机抽取9个家庭,调查得到 每个家庭的人均月收入数据如下(单位:元)
1080, 750,1080,1080,850,960, 2000, 1250,1630
计算出这组数据的统计量结果见下表:
统计量 样本均值 样本中位数 样本方差 样本标准差 样本极差
0,
1 ,
8
2
,
8
3
Fn
(
x)
8 5
, ,
8
6
,
8
7
,
8
1,
x 25, 25 x 27, 27 x 30, 30 x 33, 33 x 35, 35 x 45, 45 x 65, 65 x.
注:当n充分大时,有
Fn (x) F (x)
二、抽样分布
统计量既然是依赖于样本的,而后者又 是随机变量,故统计量也是随机变量,它的 分布叫做统计量的“抽样分布” .
一般的正态分布都可以通过线性变换转化为 标准正态分布.
若 X ~ N (, 2 ) ,则
U X ~ N (0, 1)
2. 2分布
定义: 设 X1, X 2,, X n 相互独立, 都服从正态
分布N(0,1), 则称随机变量:
2
X
2 1
X
2 2
X n2
所服从的分布为自由度为 n 的 2分布
■数理统计中常用分布
1. 标准正态分布
0, 1 的正态分布称为标准正态分布.
记成 N(0,1)
其密度函数和分布函数常用( x)和( x) 表示:
( x)
(x)
1
x2
e 2,
x
2
( x)
, (x) 1
x t2
e 2 dt
2
x
正态分布与标准正态分布的关系 标准正态分布的重要性在于,任何一个
X )k
它反映了总体k 阶 中心矩的信息
次序统计量
设X1, X 2 , , X n为总体X的样本,函数
X (k) X (k) ( X1, X 2 , , X n ), k 1, , n,
其中X (k)的观察值是样本X1, X 2 ,
,
X
的观察值
n
x1, x2 , , xn中由小到大排列后的第k个数值,
记为 2 ~ 2 (n)
例4 设X1, X 2 , X 3 , X 4是总体 X ~ N (0,22 )的
则称X (1) ,
,
X
(n
为次序统计量。
)
X (n) max{X1, , X n}为最大次序统计量 X (1) min{X1, , X n}为最小次序统计量
样本极差
它反映了总体取值 悬殊程度的信息
R X (n) X (1)
样本中位数
Mc
X ((n1) / 2) ,
1 2
( X (n/2)