6.2.1等式的性质与方程的简单变形(一)
新华东师大版七年级数学下册《6章 一元一次方程 6.2 解一元一次方程 等式的性质与方程的简单变形》教案_1
1.等式的性质与方程的简单变形第1课时由等式的性质到方程简单变形归纳导入复习导入类比导入悬念激趣同学们,你们还记得“曹冲称象”的故事吗?请同学说说这个故事.图6-2-1小时候的曹冲是多么聪明啊!随着社会的进步,科学水平的发达,我们有越来越多的方法测量物体的质量.最常见的方法是用天平测量一个物体的质量.现在认识一下天平,然后回答下列问题:问题1:天平有什么作用呢?它代表什么意义呢?问题2:要让天平平衡应该满足什么条件?问题3:如果天平在平衡的条件下,左盘放着重(3x+4)克的物体,右盘放着重4x克的物体,你知道怎样列式吗?问题4:已知方程4x=3x+4,你能求出x吗?[说明与建议] 说明:通过对天平的认识让学生感受等式可以类比天平,利用天平称物的图示可以形象直观地展现等式的性质,还可以直观地展现方程的求解过程,从而激发学生的求知欲.建议:充分发挥学生的主动性,注重训练学生的合作交流意识,通过解决问题,回顾以前知识,提醒学生注意与新知识的对比.上节课我们将几个实际问题转化成了数学模型即方程,只列出了方程,并没有求出方程的解.其实,在小学我们利用逆运算能够去求形如ax+b=c的方程的解,比如:5x+4=9.对于这样的方程:23x=13,比较复杂,怎么解呢?要想求出这些复杂的一元一次方程的解,我们必须研究等式的性质,才可以解决这个问题.[说明与建议] 说明:学生感受到自己原先具有的知识已不能够解决目前的问题,学生遇到了困难,从而激发学生的求知欲,产生了克服困难的决心和信心,更能积极投入到新课的学习情境中去.建议:可让学生去解一下这个复杂的方程,让他们亲身体会此方程的复杂,然后小组讨论,是否能够找到解决办法.——教材第6页例1、例2 例1 解下列方程: (1)x -5=7;(2)4x =3x -4. 例2 解下列方程: (1)-5x =2;(2)32x =13.【模型建立】利用等式的基本性质解方程就是通过对方程进行简单变形,使含未知数的项在一边,不含未知数的项在另一边,合并同类项后,两边同时除以未知数的系数即可.【变式变形】1.如果5a 3b 5与a 3b 6m -7是同类项,那么m 的值为( B )A .-4B .2C .-2D .42.当x =___3___时,代数式3x -7的值是2. 3.当k =__-12__时,方程5x -k =3x +8的解是-2. 4.解方程:(1)2-3x =5.[答案:x =-1] (2)-2x =6+3x.[答案:x =-65](3)-35x +2=-4.[答案:x =10] (4)-14x +1=-2x +4.[答案:x =127][命题角度1] 等式的基本性质的应用此种题型考查学生对等式的基本性质的理解,应用等式的基本性质对方程进行简单变形. 例 把方程12x =1变形为x =2,其依据是__等式的性质2__.[命题角度2] 移项的识别移项的依据是方程的变形规则1,这一变形过程不改变方程的解.注意:(1)移项的时候一定要变号;(2)移项不等于移动,在等号一边利用加法交换律移动的项不能改变符号;(3)移项不改变方程中项的数目,不要漏写任一项.例 解方程6x +1=-4,移项正确的是( D ) A .6x =4-1 B .-6x =-4-1 C .6x =1+4 D .6x =-4-1[命题角度3] 利用等式的基本性质解方程利用等式的基本性质可以把一个等式进行变形,变成ax =b 的形式,然后两边同时除以a 即可.例 [湖州中考] 方程2x -1=0的解是x =__12__.[命题角度4] 与其他知识综合此类型试题检测学生的审题能力,并能根据题意准确列出式子,利用一元一次方程的解法求出有关字母的值.例 x 为何值时,代数式2x -3与-3x +7的值互为相反数?[答案:x =4] [命题角度5] 解决实际应用题列方程解决实际问题是本章的重点及难点,此类型考题注重考查学生的综合分析能力及解决问题的能力,要求学生能够读懂题意,找准等量关系,正确列出方程并求解.图6-2-2例 [金华中考] 一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图6-2-2方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可做多少人? (2)若用餐的人数有90人,则这样的餐桌需要多少张?解:(1)4张餐桌:4×4+2=18(人);8张餐桌:4×8+2=34(人). (2)设这样的餐桌需要x 张,由题意得4x +2=90,解得x =22. 答:这样的餐桌需要22张.练习1 P5 1.回答下列问题:(1)由a =b 能不能得到a -2=b -2?为什么? (2)由m =n 能不能得到-m 3=-n3?为什么?(3)由2a =6b 能不能得到a =3b ?为什么? (4)由x 2=y3能不能得到3x =2y ?为什么?解:(1)能,根据等式的基本性质1,两边同时减去2. (2)能,根据等式的基本性质2,两边同时乘以-13.(3)能,根据等式的基本性质2,两边同时除以2. (4)能,根据等式的基本性质2,两边同时乘以6.2. 填空,使所得结果仍是等式,并说明是根据哪一条等式性质得到的: (1)如果x -2=5,那么x =5+________; (2)如果3x =10-2x ,那么3x +________=10; (3)如果2x =7,那么x =________; (4)如果x -12=3,那么x -1=________.解:(1)2,等式的基本性质1. (2)2x ,等式的基本性质1. (3)72,等式的基本性质2. (4)6,等式的基本性质2. 练习2 P71.下列方程的变形是否正确?为什么? (1)由3+x =5,得x =5+3; (2)由7x =-4,得x =-74;(3)由12y =0,得y =2;(4)由3=x -2,得x =-2-3.解:(1)错误,3由等号左边移项到等号右边没有改变符号. (2)错误,方程两边同时除以7,得x =-47.(3)错误,方程两边同时乘以2,得y =0.(4)错误,x 由等号右边移项到等号左边没有改变符号. 2.(口答)求下列方程的解: (1)x -6=6; (2)7x =6x -4; (3)-5x =60; (4)14y =12. 解:(1)x =12. (2)x =-4. (3)x =-12. (4)y =2. 练习3 P8 1.解下列方程: (1)3x +4=0; (2)7y +6=-6y ; (3)5x +2=7x +8; (4)3y -2=y +1+6y ; (5)25x -8=14-0.2x ; (6)1-12x =x +13.解:(1)移项,得3x =-4. 两边同时除以3,得x =-43.(2)移项,得7y +6y =-6. 合并同类项,得13y =-6. 两边同时除以13,得y =-613. (3)移项,得5x -7x =8-2. 合并同类项,得-2x =6. 两边同时除以(-2),得x =-3. (4)移项,得3y -y -6y =1+2. 合并同类项,得-4y =3. 两边同时除以(-4),得y =-34.(5)两边同时乘以20,得8x -160=5-4x . 移项,得8x +4x =5+160. 合并同类项,得12x =165.两边同时除以12,得x =554. (6)两边同时乘以6,得6-3x =6x +2. 移项,得-3x -6x =2-6. 合并同类项,得-9x =-4. 两边同时除以(-9),得x = 49.2.试解6.1节中问题1所列出的方程. 解:移项,得44x =328-64. 合并同类项,得44x =264. 两边同时除以44,得x = 6. 习题6.2.1 P9 1.解下列方程: (1)18=5-x ; (2)34x +2=3-14x ; (3)3x -7+4x =6x -2; (4)10y +5=11y -5-2y ; (5)x -1=5+2x ;(6)0.3x +1.2-2x =1.2-2.7x . 解:(1)移项,得x =5-18. 合并同类项,得x =-13. (2)移项,得34x +14x =3-2.合并同类项,得x =1.(3)移项,得3x +4x -6x =7-2. 合并同类项,得x =5.(4)移项,得10y -11y +2y =-5-5. 合并同类项,得y =-10. (5)移项,得x -2x =5+1. 合并同类项,得-x =6, 两边同时除以-1,得x =-6. (6)移项,得0.3x -2x +2.7x =1.2-1.2. 合并同类项,得x =0. 2.解下列方程: (1)2y +3=11-6y ; (2)2x -1=5x +7; (3)13x -1-2x =-1; (4)12x -3=5x +14. 解:(1)移项,得2y +6y =11-3. 合并同类项,得8y =8. 两边同时除以8,得y =1.(2)移项,得2x -5x =7+1. 合并同类项,得-3x =8. 两边同时除以-3,得x =-83.(3)移项,得13x -2x =-1+1.合并同类项,得-53x =0.两边同时除以-53,得x =0.(4)移项,得12x -5x =14+3.合并同类项,得-92x =134.两边同时除以-92,得x =-1318.3.已知A =3x +2,B =4-x ,解答下列问题: (1)当x 取何值时,A =B? (2)当x 取何值时,A 比B 大4?解:(1)根据题意,要求3x +2=4-x 的解. 解这个方程得x =12.所以当x =12时,A =B .(2)根据题意,要求3x +2-(4-x )=4的解. 解这个方程得x = 32.所以当x =32时,A 比B 大4.专题一 一元一次方程1. 在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1. 2. 某种商品若按标价的八折出售,可获利20%,若按原标价出售,可获利( ).A .25%B .40%C .50%D .66.7% 3. 下面判断中正确的是 [ ]A .方程132=-x 与方程x x x =-)32(同解B .方程132=-x 与方程x x x =-)32(没有相同的解C .方程x x x =-)32(的解都是方程132=-x 的解D .方程132=-x 的解都是方程x x x =-)32(的解专题二 探究题4. 对于数x ,符号[x ]表示不大于x 的最大整数.例如[3.14]=3,[-7.59]=-8,则满足关系式[377x +]=4的x 的整数值有( )A .6个B .5个C .4个D .3个5. 现在弟弟的年龄恰是哥哥年龄的21,而九年前弟弟的年龄是哥哥年龄的51,则哥哥现在的年龄是___________岁.6.解方程:3x-1.10.4 -4x-0.20.3 =0.16-0.7x0.06状元笔记【知识要点】1.等式的基本性质:(1)等式的两边都加上(或都减去)同一个数或同一个整式,所得结果仍是等式;(2)等式的两边都乘以(或都除以)同一个数(除数不能为0),所得结果仍是等式.2.方程的变形规则:(1)方程的两边都加上(或都减去)同一个数或同一个整式,方程的解不变;(2)方程的两边都乘以(或都除以)同一个不等于0的数,方程的解不变.3.方程的变形类型:(1)移项:依据方程的变形规则1,将方程中的某些项改变符号后,从方程的一边移到另一边的变形;(2)将未知数的系数化为1:依据方程的变形规则2,将方程的两边都除以未知数的系数的变形.4.一元一次方程:只含有一个未知数,并且未知数的最高次数是的整式方程叫做一元一次方程.5.解一元一次方程的步骤: ①去分母 ②去括号 ③移项④合并同类项⑤化未知项的系数为1⑥检验方程的解一般不需答出,但要养成检验的习惯 6.列一元一次方程解应用题的步骤:①弄清题意,设未知数:求什么?用字母表示适当的未知数;②分析条件,找等量关系:找出已给出的数量及未知数之间的等量关系;③组织方程,列方程:对等量关系中涉及的量,列出所需的表达式,根据等量关系得到方程.④解所得的方程:求解所列出的一元一次方程,并检验所求的解是否原方程的解、是否符合实际意义.⑤写出答语.【温馨提示(针对易错)】1.判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等都不是一元一次方程.2.解方程时要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.【方法技巧】解方程的基本思想就是应用等式的基本性质进行转化,将方程化为“x =常数”的形式,最后的“常数”就是方程的解. 答案1.【答案】D2.【答案】C .【解析】设商品的进价为a 元,标价为b 元, 则80%b -a =20%a ,解得b =32 a ,原标价出售的利润率为b-aa ×100%=50%3.【答案】D【解析】方程132=-x 的解是2=x;方程x x x =-)32(的解是0=x 和2=x .因此,A .B .C .的判断都是错误的,只有D 判断正确. 4. 【答案】D 5. 【答案】12【解析】设弟弟年龄是x ,则哥哥年龄是2x ,则依题意有5(x -9)=(2x -9), ∴x = 12.6. 【答案】解:原方程变形为 30x-114 -40x-23 =16-70x6去分母,得3×(30x -11)-4×(40x -2)=2×(16-70x ) 去括号,得90x -33-160x +8=32-140x 移项, 得90x -160x +140x =32+33-8 合并, 得70x =57 系数化为1,得x =5770“方程的简单变形”学习点拨学习方程变形的依据及方程的两种简单变形,是为进一步学习解一元一次方程作铺垫。
6.2.1等式的性质与方程的简单变形
b
等式的左边
a
等式的右边
等号
a
b
+
—
a c c
c
b
c
等式的基本性质1:等式两边都加上(或都减去)同一个数 或同一个整式,所得结果仍是等式. 如果a=b,那么a±c=b±c
a
b
a a a
×3 ?
b b b
÷3 ?
等式的基本性质2:等式两边都乘以(或都除以)同一
个数(除数不能为0),所得结果仍是等式.
砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1
个砝码A与 个砝码C的质量相等.
【解析】由题意得A=B+C,A+B=3C,解得A=2C,即1≠0 4.如果a=b, 且 ,则c应满足的条件是_________. c c
5.解方程
(1)4x - 2 = 2; x=1 1 (2) x + 2 = 6. x=8 2
不正确.左边减去6,右边加上6.运算符号不一致.
(3)由m=n,得m-2x2=n-2x2
正确.依据:等式基本性质1:等式两边同时减去2x2.
(4)由2x=x-5,得2x+x=-5
不正确.左边加x,右边减去x.运算符号不一致
(5)由x=y,y=5.3,得x=5.3
正确.等式的传递性.
(6)由-2=x,得x=-2
3 5 两边都除以 ,得 y 2 3
解:(1) 10m+5= 17m-5-2m
移项,得
10m - 17m+2m = -5 -5
即
-5m = -10
m = 2
两边都除以-5得
• • • • •
解下列方程: (1) 4x = 3x-4 (3) 3x+2= 4x
2023-2024学年华师版数学七年级下册 6.2.1等式的性质与方程的简单变形
6.2 解一元一次方程6.2.1 等式的性质与方程的简单变形第一课时 等式的性质1.熟练掌握等式的基本性质2.利用等式的基本性质对等式进行变形.一、情境导入 同学们,你们认识天平吗?它有什么特征?通过下面几幅图片你能说说当天平两边满足怎样的数量关系时,才能保持平衡?二、合作探究探究点一:等式的基本性质已知m =n ,则下列等式不成立的是( ) A.m -1=n -1 B.-2m -1=-1-2nC.m 3+1=n3+1 D.2-3m =3n -2 解析:由等式的基本性质1,在等式两边同时减去1,结果仍相等,A 成立;在等式两边同时乘以-2,得-2m =-2n ,两边再同时加上-1,结果仍相等,B 成立;在等式两边同时除以3,得m 3=n3,两边再同时加上1,结果仍相等,C 成立;只有D 不成立.故选D.方法总结:对等式进行变形,必须在等式的两边同时进行,即同加或同减,同乘或同除,不能漏掉一边,且同加或同减,同乘或同除的数必须相同.阅读理解题:下面是小明将等式x -4=3x -4进行变形的过程: x -4+4=3x -4+4,① x=3x ,② 1=3.③(1)小明①的依据是 . (2)小明出错的步骤是 ,错误的原因是 . (3)给出正确的解法.解析:根据等式的性质解答即可.解:(1)等式的两边都加(或减)同一个数(或整式),结果仍得等式; (2)③,等式两边都除以x ,x 可能为0; (3)x -4=3x -4, x -4+4=3x -4+4,x=3x,x-3x=0,-2x=0,x=0.方法总结:本题主要考查等式的基本性质.在等式的两边同时加上或减去同一个数或字母,等式仍成立,这里的数或字母没有条件限制,但是在等式的两边同时乘以或除以同一个数或字母时,这里的数或字母必须不为0.探究点二:等式基本性质的应用【类型一】应用等式的性质对等式进行变形.用适当的数或整式填空,使所得结果仍是等式.(1)如果2x+7=10,那么2x=10-_______;相同的四则运算,否则就会破坏原来的相等关系。
《等式的性质与方程的简单变形(1、2)》教学课件
重点:
能利用方程的变形规律和移项的方法进行解方程。
难点:
1.利用天平的变化归纳出方程的变形规律。 2.利用移项准确解出方程的解。
高效上好每节课·快乐上好每天学
高效上好每节课·快乐上好每天学
作业布置:
解方程:
1. 2x=3-x;
2.
2x+1=-3;
3. 2x+3=1; 4. 1-0.5x=2;
1 1 5. x= ; 6. 8 2
1 x+3=0. 4
结束
高效上好每节课·快乐上好每天学
注意:
移项要变号!
高效上好每节课·快乐上好每天学
例1 解下列方程:
( 2 )4 x 3x 4
解: ( 2 由 )4 x 3x 4,
移项, 得
4 x 3x 4,
即
x 4.
高效上好每节课·快乐上好每天学
解方程 : 2 x 6
2x 6
(两边都除以2)
(如何变形?)
x 53
4 x 7
y0
4由3 x 2, 得x 2 3; x 3 2
x 3 2
高效上好每节课·快乐上好每天学
2. 解:
1x 6 6,
x 66 x 12 .
27 x 6x 4,
7 x 6 x 4,
x 4.
6.2.1 等式的性质与方程 的简单变形
第1、2课时
高效上好每节课·快乐上好每天学
学习目标
1、通过实验,总结出方程的变形规则, 并运用规则解简单的方程。 2、总结并概括出解一元一次方的方法:移项和化系数为1。 3、自学课本并展示自己的学习成果,获得学习数学的自信。
等式的性质与方程的简单变形
等式
两边同时
加上 减去
相同
的 整式,等式 仍然成立。
换言之,
【等式性质 1】 等式两边同时加上(或减去)同一个数或 同一个整式, 所得结果仍是等式.
等式的性质
【等式性质 1】 等式两边都加上(或都减去)同一个数或同一 个整式, 所得结果仍是等式.
【等式性质 2】 等式两边都乘以(或都除以)同一个数 (除数不能为0) , 所得结果仍是等式.
2、方程两边都乘以(或都除以)同一个不等于0的 数 ,方程的解不变.
用等式的性质解方程
例1 解下列方程:
(1) x -5 = 7
(2) 4x = 3x-4
这几小题中 的方程的变形有什么 共同的特点?
归纳
像这样,将方程两边都加上(或减去) 同一个数或同一个整式,就相当于把方程 中的某些项改变符号后,从方程的一边移
到另一边,这样的变形叫做移项。 注意:“移项”是指将方程的某些项从
等号的左边移到右边或从右边移到左边,
移项时要变号。
用方程的变形规则解方程
例2 解下列方程:
(1) -5x = 2 ;
(2) 3 x 1 . 23
这两个方程的解法,都依据了方程的变 形规则2,将方程的两边都除以未知数的 系数,像这样的变形,通常称作“将未 知数的系数化为1”。得到 x=a 的形式
书本第9页1、2题
练习
书本第7页1、2题
本节课你的收获是什么?
1、等式的性质
【等式性质 1】等式两边都加上(或都减去)同一个数或 同一个整式, 所得结果仍是等式. 【等式性质 2】等式两边都乘以(或都除以)同一个 数(除数不能为0) ,所得结果仍是等式.
2、方程的变形规则
1、方程两边都加上(或都减去)同一个数或同一个整式, 方程的解不变. 2、方程两边都乘以(或都除以)同一个不等于0的数 ,方程的解不变.
华东师大版七年级下册数学试题:6.2.1 ---6.2.2同步基础练习题无答案
6.2.1 等式的性质与方程的简单变形1.下列变形正确的是( )A .若x=y , 则x-5=y+5B .若a=b , 则-3a=-3bC .若x=y , 则ax a x = D .若a 2=5a, 则a=5 2.p=3是方程( )的解 。
A .3p=6B .p -3=0C .p(p -2)=4D .p+3=0 3.若ma=mb,那么下列等式不一定成立的是( )A .ma+1=mb+1B .ma-3=mb-3C .a=bD . - 12 ma-1=- 12 mb-14.下列说法正确的是( )A .若ac=bc 则a=b B. 若c a =cb ,则a=b C .若a 2=b 2则a=b D.若-31x=6则x=-2.5. 已知x=-3是方程k(x+4)-2k -x=5的解,则k 的值是( ) A.-2 B.2 C.3 D.56.在方程的两边都加上4,可得方程x+4=5,那么原方程是 .7.代数式x+6的值与3互为相反数,则x 的值为 。
8. 下列方程变形中①2x +6=-3变形为2x =-3+6,②12133=+-+x x 变形为2x +6-3x +3=6, ③313252=-x x 变形为6x -10x =5, ④1)1(253+-=x x 变形为3x =10(x -1)+1,正确的是________.(只填序号) 9.当y=_______时,y 的2倍与3的差等于17。
10. 已知方程 3x+8=x4 -a 的解满足|x-2|=0,则a=_______。
11. 求下列方程的解.(1)x -6 = 6; (2)7x = 6x -4; (3)-5x = 60; (4)2141 y .12. 小聪的妈妈从商店买回一条裤子,小聪问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元。
”你知道标价是多少元吗?13.方程 2x +1=3和方程2x -a =0 的解相同,求a 的值.14. x=3是否是方程7-2x=2x-5的解?说明理由。
2014版初中数学金榜学案配套课件:第6章6.21等式的性质与方程的简单变形第1课时(华东师大版七下)
【总结提升】等式变形的三点注意
1.对等式变形必须依据等式的基本性质1, 2 .
2.等式两边要做相同的变形.
3.在应用等式的基本性质2时,除数不能为0.
题组:等式基本性质的应用
1.下列说法中,正确的是(
)
A.等式2x=2a-b的两边都除以2,得到x=a-b
答案:10-8x
7
6.方程5x-4=4x-2变形为5x-4x=-2+4的依据是什么?方程-5x=6
变形为x= 6 的依据是什么?
5
【解析】因为方程5x-4=4x-2的两边同时加上-4x+4即可得到
5x-4x=-2+4,
所以依据是等式的基本性质1;
因为-5x=6的两边同时除以-5即可得到x= 6 ,
【解析】依据等式的基本性质2,托盘的两边都除以2,可得右 盘应取下6÷2=3(个). 答案:3
5.已知方程8x+7y=10,用含x的式子表示y,则y=_____. 【解析】根据等式的基本性质1,方程两边都减去8x,得 8x+7y-8x =10-8x,即7y=10-8x,根据等式的基本性质2,方
10-8x 程两边都除以7,得 7y 10-8x , 即 y . 7 7 7
3
【解题探究】1.对比观察各小题中已知等式与所求等式的左 边,发生了怎样的变形? 提示:(1)所求等式的左边是由已知等式的左边减去5得到的; (2)所求等式的左边是由已知等式的左边除以-4(或乘以-
1 ) 4
得到的;(3)所求等式的左边是由已知等式的左边加上3n(或 减去-3n)得到的;(4)所求等式的左边是由已知等式的左边 乘以3(或除以 1 )得到的.
七年级华师大版下册:6.2 解一元一次方程 6.2.1 等式的性质与方程的简单变形 第2课时 方程的简单变形
(3)-7x=21; (4)-3x=3. 22
9.方程 3x-4=1+2x,移项,得 3x-2x=1+4,也可以理解为方程两边同时( A )
A.加上(-2x+4) B.减去(-2x+4)
C.加上(2x+4) D.减去(2x+4)
第6章 一元一次方程
6.2 解一元一次方程 6.2.1 等式的性质与方程的
第2课时简单方变程的形简单变形七年级下册·数学·来自华师版1.方程的变形规则:
(1)方程 两边都 ___加__上___(或都 减去)同一 个_数___ 或同 一个__整__式___, 方程的 解 __不__变_;
(2)方程两边都___乘___以__(或都除以)同一个___不__等___于__0的数,方程的解__不__变__. 练 习 1 : (1) 方 程 3x = 2x + 1 两 边 都 减 去 ____2_x___ , 得 __x_=___1, 其 根 据 是 _方__程__的___变__形_;规则1 (2)方程 2x=6 两边都除以___2_____,得__x_=___3_,其根据是_方___程__的___变__形__规__.则2 2.将方程中的某些项改变__符__号__后,从方程的一边移到另一边,像这样的变形 叫做__移__项__.
2
解:解方程-2x-4=0,得 x=-6,则另一个方程的解为 x=-6+2=-4.将 x=-4 3
代入方程 3x+a=2x-3a,得-12+a=-8-3a,解得 a=1.
17.我们规定:若关于 x 的方程 ax=b 的解为 x=b-a,则称该方程是“差解方程”.例
如:2x=4 的解为 x=2,且 2=4-2,则 2x=4 是“差解方程”.
6.2.1方程的简单变形(常用的)
等号不是运算符号, 等号是大小关系符号中的一种。
天 平 与 等 式
把一个等式看作一个天平,把等号两边的式子看作天 平两边的砝码,则等号成立就可看作是天平保持两边平衡。
等式左边
等号等Βιβλιοθήκη 右边天 平 的 特 性天平两边同时加入相同质量的砝码, 天平仍然平衡。
天平两边同时拿去相同质量的砝码, 天平仍然平衡。
代
数
式
与
等
式
什么叫代数式、什么叫等式? 你能区分代数式与等式吗?下列式中哪些是代数式? 哪些是等式?
1 abc ; 3 a- 2b; 1 3; xy + y 2 - 5 3 2 - a; 2+3=5; 3×4=12; 9x+10 =19; a+b=b+a; S= r 2. 答:用运算符号连接数字与字母的式子叫代数式; 含有等号的式子叫等式; ~是代数式; ~是等式。
用等式的性质解方程
例2 解下列方程:
(1) -5x = 2 ;
(2)
3 1 x . 2 3
用等式的性质解方程
例4 解下列方程:
(1) 8x = 2x-7 ;
1 1 (3) 2y- = y-3 ; 2 2
(2) 6 = 8+2x;
(4) 10m+5= 17m-5-2m.
方程知识的应用
例5 方程 2x+1=3和方程2x-a=0
【等式性质 2】 等式两边同时乘同一个数 数 (或除以同一个非零的数) , 所得结果仍是等式.
注意 两个性质中同加减与同乘除的内容的不同:
代数式包括了数,且可能含有字母。
想一想 如果天平两边砝码的质量同时扩大相同 的倍数(或同时缩小为原来的几分之一), 那么天平还保持两边平衡吗? 于是 , 你又能得出等式的什么性质? 试用准确、简明的语言叙述之.
华师版七年级下册数学课件 第6章 一元一次方程 等式的性质与方程的简单变形 第2课时 方程的简单变形
等式性质2:等式两边同时乘(或除以)同一个数(或 式)(除数或除式不能为0),所得结果仍 是等式.
即,如果a = b,那么
ac=bc
a b (c 0). cc
讲授新课
一 移项
合作探究
请利用等式的性质,把方程
2345 + 12x = 5129
-22334455 + 12x = 5129
这个变形有 什么特点?
总结归纳
把方程中的某一项改变__符__号____后,从___方__程___ 的一边移到_另__一__边___,这种变形叫做移项.
移项要点: (1)移项的根据是等式的性质1. (2)移项要变号,没有移动的项不改变符号. (3)通常把含有未知数的项移到方程的左边,把常 数项(不含未知数的项)移到方程的右边.
七年级数学下(HS) 教学课件
6.2 解一元一次方程
6.2.1 等式的性质与方程的简单变形
第2课时 方程的简单变形
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.正确理解和使用移项法则;(难点) 2.能利用移项求解一元一次方程.(重点)
导入新课
复习引入
等式性质1: 等式两边同时加(或减)同一个数(或式),所 得结果仍是等式.
①
变形成x = a (其中a是已知数)的形式.
在方程①两边都减去2345, 得 2345+12x-2345= 5129-2345,
求方程的解的
过程叫做解方 程.(把方程化成 x = a 的形式)
即
12x=2784.
②
方程②两边都除以12,得x=232 .
华东师大版七年级数学下册6.2.1等式的性质与方程的简单变形教学设计
-设计针对性的练习题,并及时给予反馈,帮助学生查漏补缺。
-采取多元化的评价方式,关注学生的个体差异,激发学生的学习积极性。
6.拓展课外资源,提高学生的数学素养。
-推荐与等式性质和方程简单变形相关的课外阅读材料,拓展学生的知识视野。
-组织数学实践活动,让学生在实际操作中感受数学的魅力,提高数学素养。
-设计具有挑战性的问题,引导学生积极思考,鼓励学生尝试解决问题。
-组织课堂讨论,让学生在交流中碰撞思维火花,共同提高。
4.重视合作学习,促进学生之间的交流与分享。
-将学生分成小组,进行合作探究,培养学生的团队协作能力和沟通能力。
-鼓励学生在小组内分享解题心得,相互学习,共同成长。
5.精讲精练,注重反馈与评价。
2.学生能够在解决问题的过程中,培养勇于探索、克服困难的意志品质,增强自信心。
-教师将鼓励学生积极思考、主动探究,为学生提供展示自我的机会。
3.学生能够体会到团队合作的力量,学会与他人合作、交流,培养良好的人际关系。
-教师将组织多样化的课堂活动,鼓励学生积极参与,培养合作精神。
4.学生能够认识到数学知识是不断发展的,学会用发展的眼光看待问题,培养创新意识。
-教师巡回指导,参与学生的讨论,给予适当的提示和引导。
(四)课堂练习
1.教学活动设计:教师设计一系列有关等式的性质和方程简单变形的练习题,让学生独立完成。
-练习题难度逐渐加大,旨在巩固学生对等式性质和方程变形的理解。
2.教学过程:
-学生独立完成练习题,教师巡回指导,解答学生的疑问。
-教师针对学生的练习情况,给予反馈和评价,帮助学生发现并改正错误。
-学生跟随教师的讲解,学习等式性质,并尝试运用到实际问题中。
6.2.1等式的性质和方程的简单变形(一)(二)
6.2.1等式的性质和方程的简单变形(一)教学目标1.理解并掌握方程的两个变形规则;2.使学生了解移项法则,即移项后变号,并且能熟练运用移项法则解方程;3.运用方程的两个变形规则解简单的方程.重点、难点1.等式的性质2.应用等式的性质教学过程一、创设情境引入新课我们来做这样一个实验,测一个物体的质量(设它的质量为x).首先把这个物体放在天平的左盘内,然后在右盘内放上砝码,并使天平处于平衡状态,此时两边的质量相等,那么砝码的质量就是所要称的物体的质量.二、探究归纳请同学来做这样一个实验,如何移动天平左右两盘内的砝码,测物体的质量.实验1:如图(1)在天平的两边盘内同时取下2个小砝码,天平依然平衡,所测物体的质量等于3个小砝码的质量.实验2:如图(2)在天平的两边盘内同时取下2个所测物体,天平依然平衡,所测物体的质量等于2个小砝码的质量.实验3:如图(3)将天平两边盘内物体的质量同时缩少到原来的二分之一,天平依然平衡,所测物体的质量等于3个小砝码的质量.上面的实验操作过程,反映了方程的变形过程,从这个变形过程,你发现了什么一般规律?这个事实反映了等式的两个基本性质:方程的两边都加上或都减去同一个数或同一个整式,方程的解不变.方程两边都乘以或都除以同一个不为零的数,方程的解不变. 三、实践应用 例1 解下列方程.(1)x -5 = 7; (2)4x = 3x -4.分析:(1)利用方程的变形规律,在方程x -5 = 7的两边同时加上5,即x -5 + 5 = 7 + 5,可求得方程的解.(2)利用方程的变形规律,在方程4x = 3x -4的两边同时减去3x ,即4x -3x = 3x -3x -4,可求得方程的解.即 x = 12.即 x =-4 .像上面,将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项 注 (1)上面两小题方程变形中,均把含未知数x 的项,移到方程的左边,而把常数项移到了方程的右边.(2)移项需变号,即:跃过等号,改变符号.例2 解下列方程:(1)-5x = 2; (2)3123=x ;分析:(1)利用方程的变形规律,在方程-5x = 2的两边同除以-5,即-5x ÷(-5)= 2÷(-5)(或5255-=--x ),也就是x =52-,可求得方程的解.(2)利用方程的变形规律,在方程3123=x 的两边同除以23或同乘以32,即23312323÷=÷x (或32313223⨯=⨯x ),可求得方程的解. 解 (1)方程两边都除以-5,得x = 52-.(2)方程两边都除以23,得x = 32312331⨯=÷,即x = 92.或解 方程两边同乘以32,得x = 221=⨯.四、小结:本堂课我们通过实验得到了方程的变形规律:(1)方程的两边都加上或都减去同一个数或同一个整式,方程的解不变; (2)方程两边都乘以或都除以同一个不为零的数,方程的解不变.通过上面几例解方程我们得出解简单方程的一般步骤:(1)移项:通常把含有未知数的项移到方程的左边,把常数项移到方程的右边;(2)系数化为1:方程两边同除以未知数的系数(或同乘以未知数系数的倒数),得到x = a 的形式.必须牢记:移项要变号!五、巩固练习课本第5页 练习 1、2、题 六、检测反馈1.判断下列方程的解法对不对?如果不对,应怎样改正.(1)9x = -4,得x = 49;(2)3553=x ,得x = 1;(3)02=x,得x = 2;(4)152+=y y ,得y =53;(5)3 + x = 5,得x = 5 + 3; (6)3 = x -2,得x = -2-3 . 2.(口答)求下列方程的解.(1)x -6 = 6; (2)7x = 6x -4;(3)-5x = 60; (4)2141=y .3.下面的移项对不对?如果不对,错在哪里?应当怎样改正? (1)从7 + x = 13,得到x = 13 + 7; (2)从5x = 4x + 8,得到5x - 4x = 8 七、教后反思:八、板书设计:6.2.1等式的性质和方程的简单变形(一)这个事实反映了等式的两个基本性质:方程的两边都加上或都减去同一个数或同一个整式,方程的解不变.方程两边都乘以或都除以同一个不为零的数,方程的解不变.。
公主岭市第九中学七年级数学下册 第六章 一元一次方程6.2 解一元一次方程 1等式的性质与方程的简单
4.(6 分)完成下列解方程:4-13x=2.解:方程的两边_同__减__去__4__,
根据方__程__的__变__形__规__那__么__1_得 4-13x-4=2_-__4_,
于是-13x=_-__2_,方程的两边__同__乘__以__-__3___, 根据方__程__的__变__形__规__那__么__2得 x=__6__.
20.(6分)假设关于x的方程2x-a=0的解比方程4x+5=3x+6的解大1 , 求a的值. 解 : 解方程4x+5=3x+6得x=1 , 所以2x-a=0的解为x=2 , 即4-a=0 , 得a=4
21.(8 分)阅读理解题:
阅读第(1)题的解题过程,解答第(2)题.
(1)解方程: 2(x-1)+1=x-1.
证合算 , 该同学去图书馆阅览应超过( ) C
A.8次 B.9次 C.10次 D.11次
6.(4分)购买 的〞全球通”卡 , 使用须付〞基本月使用费”(每月须交的固 定费用)58元 , 本地主叫限定时间为150分钟 , 超过的部分按0.5元/分钟计费 ; 购买〞神州行”卡 , 使用时不收〞基本月使用费” , 但在本地主叫时每分钟话 费0.30元 ; 假设某用户每月 费预算为100元 , 那么在这两种 卡中 , 购买〞 ___________”卡较合神算州.行
8.(12分)从某区社保局获悉 , 我区范围内已经实现了全员城乡居民新型 社会合作医疗保险制度 , 享受医保的城乡居民可在规定的医院就医并按规 定标准报销部分医疗费用 , 下表是住院费用报销的标准 :
住院费用 x(元)
≤5 000 ≤20 000 每年报销比例
0<x 5 000<x x>20 000
10.(15分)供电公司分时电价执行时段分为平、谷两个时段 , 平段为 8∶00~22∶00 , 14小时 , 谷段为22∶00~次日8∶00 , 10小时.平段用电价 格在原销售电价基础上每千瓦时上浮0.03元 , 谷段电价在原销售电价基础上 每千瓦时下浮0.25元 , 小明家5月份使用平段电量40千瓦时 , 谷段电量60千 瓦时 , 按分时电价付费42.73元.
6.等式的性质与方程的简单变形(第1课时等式的性质)教学课件--华师大版初中数学七年级(下)
一元一次方程
第6章 一元一次方程
6.2.1等式的性质与方程的简单变形
第1课时 等式的性质
学习目标
1.理解等式的基本性质;
2.能利用等式性质对等式进行变形.(重点、难点)
新课导入
对照天平与等式,你有什么发现?
等式的左边
等号
等式的右边
把一个天平看作一个等式,把天平两边的砝码看作等号两边的式子,
基本性质2
如果 = ( ≠
0),那么
=
.
知识讲授
× ?
÷ ?
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,
结果仍相等.
如果 = ,那么 = ;
如果 = ( ≠
),那么
=
.
知识讲授
注意
1.等式两边都要参加运算,并且是作同一种运算.
2.等式两边加或减,乘或除以的数一定是同一个数或
则天平保持两边平衡就可看作是等式成立.
新课导入
下列各式中哪些是等式?
1
1
;
2
(2)3 − 2;
1
(3)
3
+ 2 − 8 = 4;
√
(4)3;
(5)2+3>4;
(6)2+3=5;
(7)3×4=12;
√
(8)9 + 10 = 19; (9) + = + .
√
√
√
用等号表示相等关系的式子叫做等式. 我们可以用a=b表示一般
的等式.
知识讲授
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2.1等式的性质与方程的简单变形(一)
知识技能目标
1.理解并掌握方程的两个变形规则;
2.使学生了解移项法则,即移项后变号,并且能熟练运用移项法则解方程;
3.运用方程的两个变形规则解简单的方程.
过程性目标
1.通过实验操作,经历并获得方程的两个变形过程;
2.通过对方程的两个变形和等式的性质的比较,感受新旧知识的联系和迁移;
3.体会移项法则:移项后要变号.
课前准备
托盘天平,三个大砝码,几个小砝码.
教学过程
一、创设情境
同学们,你们还记得“曹冲称象”的故事吗?请同学说说这个故事.
小时候的曹冲是多么地聪明啊!随着社会的进步,科学水平的发达,我们有越来越多的方法测量物体的重量.
最常见的方法是用天平测量一个物体的质量.
我们来做这样一个实验,测一个物体的质量(设它的质量为x).首先把这个物体放在天平的左盘内,然后在右盘内放上砝码,并使天平处于平衡状态,此时两边的质量相等,那么砝码的质量就是所要称的物体的质量.
二、探究归纳
请同学来做这样一个实验,如何移动天平左右两盘内的砝码,测物体的质量.
实验1:如图(1)在天平的两边盘内同时取下2个小砝码,天平依然平衡,所测物体的质量等于3个小砝码的质量.
实验2:如图(2)在天平的两边盘内同时取下2个所测物体,天平依然平衡,所测物体的质量等于2个小砝码的质量.
实验3:如图(3)将天平两边盘内物体的质量同时缩少到原来的二分之一,天平依然平衡,所测物体的质量等于3个小砝码的质量.
上面的实验操作过程,反映了方程的变形过程,从这个变形过程,你发现了什么一般规律?
方程是这样变形的:
方程的两边都加上或都减去同一个数或同一个整式,所得结果仍是等式。
方程两边都乘以或都除以同一个不为零的数,所得结果仍是等式。
请同学们回忆等式的性质和方程的变形规律有何相同之处?并请思考为什么它们有相同之处?
通过实验操作,可求得物体的质量,同样通过对方程进行适当的变形,可以求得方程的解.
三、实践应用
例1 解下列方程.
(1)x -5 = 7; (2)4x = 3x -4.
分析:(1)利用方程的变形规律,在方程x -5 = 7的两边同时加上5,即x -5 + 5 = 7 + 5,可求得方程的解.
(2)利用方程的变形规律,在方程4x = 3x -4的两边同时减去3x ,即4x -3x = 3x -3x -4,可求得方程的解.
即 x = 12.
即 x =-4 .
像上面,将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项(transposition ).
注 (1)上面两小题方程变形中,均把含未知数x 的项,移到方程的左边,而把常数项移到了方程的右边.
(2)移项需变号,即:跃过等号,改变符号.
例2 解下列方程:
(1)-5x = 2; (2)3
123=x ; 分析:(1)利用方程的变形规律,在方程-5x = 2的两边同除以-5,即-5x ÷(-
5)= 2÷(-5)(或5255-=--x ),也就是x =5
2-,可求得方程的解.
(2)利用方程的变形规律,在方程3123=x 的两边同除以23或同乘以32,即23312323÷=÷x (或3
2313223⨯=⨯x ),可求得方程的解. 解 (1)方程两边都除以-5,得
x = 5
2-. (2)方程两边都除以2
3,得 x = 3
2312331⨯=÷, 即x = 9
2. 或解 方程两边同乘以3
2,得 x = 9
23231=⨯. 注:1.上面两题的变形通常称作“将未知数的系数化为1” .
2.上面两个解方程的过程,都是对方程进行适当的变形,得到x = a 的形式.
例3下面是方程x + 3 = 8的三种解法,请指出对与错,并说明为什么?
(1)x + 3 = 8 = x = 8-3 = 5;
(2)x + 3 = 8,移项得x = 8 + 3,所以x = 11;
(3)x + 3 = 8移项得x = 8-3 , 所以x = 5.
解 (1)这种解法是错的.变形后新方程两边的值和原方程两边的值不相等,所以解方程时不能连等;
(2)这种解法也是错误的,移项要变号;
(3)这种解法是正确的.
四、交流反思
本堂课我们通过实验得到了方程的变形规律:
(1)方程的两边都加上或都减去同一个数或同一个整式,方程的解不变;
(2)方程两边都乘以或都除以同一个不为零的数,方程的解不变.
通过上面几例解方程我们得出解简单方程的一般步骤:
(1)移项:通常把含有未知数的项移到方程的左边,把常数项移到方程的右边;
(2)系数化为1:方程两边同除以未知数的系数(或同乘以未知数系数的倒数),得到x = a 的形式.
必须牢记:移项要变号!
五、检测反馈
1.判断下列方程的解法对不对?如果不对,应怎样改正.
(1)9x = -4,得x = 4
9; (2)3
553=x ,得x = 1;
(3)
02
=x ,得x = 2; (4)15
2+=y y ,得y =53; (5)3 + x = 5,得x = 5 + 3;
(6)3 = x -2,得x = -2-3 .
2.(口答)求下列方程的解.
(1)x -6 = 6; (2)7x = 6x -4;
(3)-5x = 60; (4)2
141=y . 3.下面的移项对不对?如果不对,错在哪里?应当怎样改正?
(1)从7 + x = 13,得到x = 13 + 7;
(2)从5x = 4x + 8,得到5x - 4x = 8
4.用方程的变形解方程:44x + 64 = 328.
六.课后作业
1、第5、6页练习题做在练习本上。
2习题6.2.1第一题做在交本上。