高等代数北大编第1章习题参考答案
高等代数(北大第三版)习题答案完整
f ( x) = x 4 − 2 x 2 + 3 = ( x + 2) 4 − 8( x + 2)3 + 22( x + 2) 2 − 24( x + 2) + 11
3)
f ( x) = x 4 + 2ix 3 − (1 + i ) x 2 + 3 x + 7 + i
= ( x + i − i )4 + 2i ( x + i − i )3 − (1 + i )( x + i − i ) 2 − 3( x + i − i ) + 7 + i = ( x + i ) 4 − 2i( x + i)3 + (1 + i)( x + i ) 2 − 5( x + i ) + 7 + 5i
2
ε1 =
− 1 + 3i − 1 − 3i ,ε 2 = 2 2
证:设 ( f ( x ) h( x ), g ( x ) h( x )) = m( x ) 由
( f ( x ), g ( x)) h( x ) | f ( x) h( x) ∴ ( f ( x ), g ( x)) h( x ) | m( x )
设 d ( x ) = ( f ( x ), g ( x )) = u ( x ) f ( x ) + v ( x ) g ( x ).
由 12 题 ( fg , f + g ) = 1 令 g = g1 g 2 … g n
∴ 每个i, ( fi , g ) = 1 ⇒ ( f1 f1 , g ) = 1, ⇒ ( f1 f 2 f3 , g ) = 1 , ⇒ ( f1 f 2
高等代数习题答案
高等代数(北大版第三版)习题答案I I(总95页)-本页仅作为预览文档封面,使用时请删除本页-高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。
证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。
故必存在非退化线性替换Y C X 1-=使()BY Y ACY C Y AX X '=''='-12222122221n p p p y y y y y y ----+++=++ ,且在规范形中必含带负号的平方项。
于是只要在Y C Z 1-=中,令p y y y === 21,1,021=====++n p p y y y 则可得一线性方程组 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++1102211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21 =使()0111000<--=----+++='p n AX X s s, 即证存在0≠X ,使0<'A X X 。
13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。
证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X ,于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。
北大版-线性代数第一章部分课后标准答案详解
北大版-线性代数第一章部分课后答案详解————————————————————————————————作者:————————————————————————————————日期:习题1.2:1 .写出四阶行列式中11121314212223243132333441424344a a a a a a a a a a a a a a a a 含有因子1123a a 的项解:由行列式的定义可知,第三行只能从32a 、34a 中选,第四行只能从42a 、44a 中选,所以所有的组合只有()()13241τ-11233244a a a a 或()()13421τ-11233442a a a a ,即含有因子1123a a 的项为11233244a a a a 和11233442a a a a2. 用行列式的定义证明11121314152122232425313241425152000000000a a a a a a a a a a a a a a a a =0 证明:第五行只有取51a 、52a 整个因式才能有可能不为0,同理,第四行取41a 、42a ,第三行取31a 、32a ,由于每一列只能取一个,则在第三第四第五行中,必有一行只能取0.以第五行为参考,含有51a 的因式必含有0,同理,含有52a 的因式也必含有0。
故所有因式都为0.原命题得证.。
3.求下列行列式的值:(1)01000020;0001000n n -L L M M M OM L L(2)00100200100000n n-L L M O M O M L L; 解:(1)010000200001000n n -LLM M M OM LL=()()23411n τ-L 123n ⨯⨯⨯⨯L =()11!n n --(2)00100200100000n n-L LM OM O M L L=()()()()12211n n n τ---L 123n ⨯⨯⨯⨯L =()()()1221!n n n --- 4.设n 阶行列式:A=1111nn nna a a a LM OM L,B=11111212212221212n n nn n n n n nna ab a b a b a a b a b a b a -----L L MMOM L,其中0b ≠,试证明:A=B 。
高等代数北大版(第三版)答案
令(x2+x+1)=0
得 ε1
=
−1+ 2
3i
,ε2
=
−1− 2
3i
∴f(x)与g(x)的公共根为 ε1,ε2 .
P45.16 判断有无重因式
① f (x) = x5 − 5 x4 + 7x3 + 2x2 + 4x − 8 ② f (x) = x4 + 4x2 − 4x − 3
解① f '(x) = 5x4 − 20x3 + 21x 2 − 4x + 4
设
f (x) d ( x)
=
f1 ( x),
g(x) d ( x)
=
g1 ( x),
及
d
(x)
=Байду номын сангаас
u(x)
f
(x)
+
v( x) g ( x).
所以 d (x) = u(x) f1(x)d (x) + v(x)g1(x)d (x).
消去 d (x) ≠ 0 得1 = u(x) f1(x) + v(x)g1(x)
P45.5
(1) g(x) = (x −1)(x2 + 2x +1) = (x −1)(x +1)2 f (x) = (x + 1)(x3 − 3x −1) ∴ ( f (x), g(x)) = x +1
(2) g(x) = x3 − 3x2 +1不可约 f (x) = x4 − 4x3 + 1不可约
3
u = − 1 [(t 2 + t + 3)(t 2 + 2t − 8) + 6t + 24] = −2(t + 4) ∴3
高等代数第1章习题解
高等代数第1章习题解第一章习题解1.1数字1的基本知识。
找到9405和5313的最大公因数解:9405?5313? 4902,5313? 4902? 411,4909? 11? 411? 三百八十八411?388?23,而(23,388)?1,所以(9405,5313)=12.设置A1、A2、,?,一z、证据(A1、A2、an)?(A1,A2,an?1),an)证据:D1号命令?(a1,a2,an),d2?((A1A,2?An,1a)n)由D1?(a1,a2,an),?d1ai,我?1,2,?, N1.d1and1(a1,a2,,an1),(d1an)d1((a1,a2,,an1),an)d1d2在D2之前?((a1,a2,an?1),an)?d1(a1,a2,an?1),d1and1ai(i1,2,,n1),d1andai(i1,2,,n)d2(a1,a2,,an)d2d1那么D1呢?d23.求(504,630,1764,4536)解:630=504+126,504=1264→(630,504)=1264536=21764+1008,1764=1008+756,1008=756+252,756=2523→(1764,4536)=252252=1262所以(504,630,1764,4536)=1264.设a,b,c?z,ab,ac,证明a2bc证明:ab?b?aq;ac?c?ap?bc?a2(pq)?a2bc5.设a,b?z,ab,ba,证明a??b证明:ab?b?aq;ba?a?bp?b?(bp)q?pq?1P1.A.B6.设a是整数x是任意整数,那么ax?a??1;xa?a?0证明:若ax对任意整数x成立,那么取x?1,有a1?a??1;反之,若a??1,ax显然成立;如果XA适用于任何整数x,也就是a?XP适用于任何整数x,取x?0 a?相反,如果a?0,xa显然成立.7.假设a,B,D?z、 D呢?(a,b),证明u,v的存在?z、做D?欧?Bv证明:如果是?B0,那么(a,b)?0 a?0 b?0,因此结论成立;如果a和B不都是零,那么必须有一个整数s,t来表示as?英国电信?0令所有这样的正整数组成的集合为d,即:d?{as?bt?0|s,t?z},由于d是正整数组成的集合,故必有一个最小整数,设这个正整数为d?,即有整数u,v使d??au?bv我们说d?就是a,b的最大公因数.事实上,有一个任意因素,哈,B?bv?hd?;如果d?不是a,b的公因数,不妨设d?不是a的因数,那么由带余除法,有A.DQr、 0?RD于是a?(au?bv)q?r?r?a(1?qu)?b(?qv)?r?d这与d?是d中最小数的假设矛盾.8.设p为大于1的整数,a和B为任意整数。
北京大学数学系《高等代数》(第3版)课后习题-第一章至第三章(上册)【圣才出品】
4.把 f(x)表成 x-x0 的方幂和,即表成 c0+c1(x-x0)+c2(x-x0)2+…的形式. (1)f(x)=x5,x0=1;
2 / 108
圣才电子书 十万种考研考证电子书、题库视频学习平台
6.求 u(x),v(x)使 u(x)f(x)+v(x)g(x)=(f(x),g(x)): (1)f(x)=x4+2x3-x2-4x-2,g(x)=x4+x3-x2-2x-2. (2)f(x)=4x4-2x3-16x2+5x+9,g(x)=2x3-x2-5x+4. (3)f(x)=x4-x3-4x2+4x+1,g(x)=x2-x-1. 解:(1)用辗转相除法进行计算.
所以 x5=(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)+1.
3 / 108
圣才电子书
(2)应用综合除法
十万种考研考证电子书、题库视频学习平台
所以 f(x)=(x+2)4-8(x+2)3+22(x+2)2-24(x+2)+11. (3)f(x)=(x+i)4-2i(x+i)3-(1+i)(x+i)2-5(x+i)+7+5i. 5.求 f(x)与 g(x)的最大公因式: (1)f(x)=x4+x3-3x2-4x-1,g(x)=x3+x2-x-1. (2)f(x)=x4-4x3+1,g(x)=x3-3x2+1.
圣才电子书
十万种考研考证电子书、题库视频学习平台
第二部分 课后习题
第 1 章 多项式
1.用 g(x)除 f(x),求商 q(x)与余式 r(x): (1)f(x)=x3-3x2-x-1,g(x)=3x2-2x+1; (2)f(x)=x4-2x+5,g(x)=x2-x+2. 解:(1)用分离系数的竖式进行计算
高等代数习题解答(第一章)(完整资料).doc
【最新整理,下载后即可编辑】高等代数习题解答第一章 多项式补充题1.当,,a b c取何值时,多项式()5f x x =-与2()(2)(1)g x a x b x =-++ 2(2)c x x +-+相等?提示:比较系数得6136,,555a b c =-=-=. 补充题2.设(),(),()[]f x g x h x x ∈,2232()()()f x xg x x h x =+,证明:()()()0f x g x h x ===.证明 假设()()()0f x g x h x ===不成立.若()0f x ≠,则2(())f x ∂为偶数,又22(),()g x h x 等于0或次数为偶数,由于22(),()[]g x h x x ∈,首项系数(如果有的话)为正数,从而232()()xg x x h x +等于0或次数为奇数,矛盾.若()0g x ≠或()0h x ≠则232(()())xg x x h x ∂+为奇数,而2()0f x =或2(())f x ∂为偶数,矛盾.综上所证,()()()0f x g x h x ===.1.用g (x ) 除 f (x ),求商q (x )与余式r (x ): 1)f (x ) = x 3- 3x 2 -x -1,g (x ) =3x 2 -2x +1; 2)f (x ) = x 4 -2x +5,g (x ) = x 2 -x +2. 1)解法一 待定系数法.由于f (x )是首项系数为1的3次多项式,而g (x )是首项系数为3的2次多项式,所以商q (x )必是首项系数为13的1次多项式,而余式的次数小于 2.于是可设q (x ) =13x +a , r (x ) =bx +c 根据 f (x ) = q (x ) g (x ) + r (x ),即x 3-3x 2 -x -1 = (13x +a )( 3x 2 -2x +1)+bx +c 右边展开,合并同类项,再比较两边同次幂的系数,得 2333a -=-,1123a b -=-++,1a c -=+解得79a =-,269b =-,29c =-,故得17(),39q x x =- 262().99r x x =--解法二 带余除法.3 -2 1 1 -3 -1 -1 1379-1 23- 1373-43- -173-14979- 269- 29-得17(),39q x x =- 262().99r x x =--2)2()1,()57.q x x x r x x =+-=-+ 262().99r x x =--2.,,m p q 适合什么条件时,有1)231;x mx x px q +-++ 2)2421.x mx x px q ++++ 1)解21x mx +-除3x px q++得余式为:2()(1)()r x p m x q m =+++-,令()0r x =,即210;0.p m q m ⎧++=⎨-=⎩故231x mx x px q +-++的充要条件是2;10.m q p m =⎧⎨++=⎩2)解21x mx ++除42x px q++得余式为:22()(2)(1)r x m p m x q p m =-+-+--+,令()0r x =,即22(2)0;10.m p m q p m ⎧-+-=⎪⎨--+=⎪⎩解得2421x mx x px q ++++的充要条件是0;1m p q =⎧⎨=+⎩ 或 21;2.q p m =⎧⎨=-⎩ 3.求()g x 除()f x 的商()q x 与余式()r x : 1)53()258,()3;f x x x x g x x =--=+2)32(),()12.f x x x x g x x i =--=-+1)解法一 用带余除法(略).解法二 用综合除法.写出按降幂排列的系数,缺项的系数为0: -3 2 0 -5 0 -8 0 + -6 18 -39 117 -3272 -6 13 -39 109 -327 所以432()261339109,()327.q x x x x x r x =-+-+=-2)解法一 用带余除法(略).解法二 用综合除法.写出按降幂排列的系数,缺项的系数为0:()f x1-2i 1 -1 -1 0 + 1-2i -4-2i -9+8i 1 -2i -5-2i -9+8i 所以2()2(52),()98.q x x ix i r x i =--+=-+4.把()f x 表成0x x -的方幂和,即表成 201020()()c c x x c x x +-+-+的形式:1)50(),1;f x x x == 2)420()23,2;f x x x x =-+=-3)4320()2(1)37,.f x x ix i x x i x i =--+-++=-注 设()f x 表成201020()()c c x x c x x +-+-+的形式,则0c 就是()f x 被x x -除所得的余数,1c 就是()f x 被x x -除所得的商式212030()()c c x x c x x +-+-+再被0x x -除所得的余数,逐次进行综合除法即可得到01,,,.n c c c1)解用综合除法进行计算1 1 0 0 0 0 0+ 1 1 1 1 11 1 1 1 1 1 1+ 1 2 3 41 2 3 4 51 + 1 3 61 3 6 101 + 1 41 4 101 + 11 5所以5234515(1)10(1)10(1)5(1)(1).x x x x x x=+-+-+-+-+-2)3)略5.求()f x与()g x的最大公因式:1)43232()341,()1;f x x x x xg x x x x=+---=+--2)4332()41,()31;f x x xg x x x=-+=-+3)42432()101,()6 1.f x x xg x x x=-+=-+++1)解用辗转相除法()g x()f x2()q x12-141 1 -1 -1 1 1 -3 -4 -11 1 3212 1 1 -1 -112-32- -1 1()r x-2 -3 -13()q x834312- 34- 14- -2 -22()r x34-34--1 -1-1 -13()r x所以((),()) 1.f x g x x =+2)((),()) 1.f x g x = 3)2((),()) 1.f x g x x =--6.求(),()u x v x 使()()()()((),()):u x f x v x g x f x g x += 1)432432()242,()22f x x x x x g x x x x x =+---=+---; 2)43232()421659,()254f x x x x x g x x x x =--++=--+; 3)4322()441,()1f x x x x x g x x x =--++=--. 1)解 用辗转相除法()g x ()f x2()q x1 1 1 1 -1 -2 -2 1 2 -1 -4 -21 1 0 -2 0 1 1 -1 -2 -2 1 1 -2 -21()r x1 0 -2 03()q x1 01 0 -2 0 1 0 -22()r x1 0 -23()r x由以上计算得11()()()(),f x q x g x r x =+ 212()()()(),g x q x r x r x =+ 132()()(),r x q x r x =因此22((),())()2f x g x r x x ==-,且2((),())()f x g x r x =21()()()g x q x r x =-21()()[()()()]g x q x f x q x g x =-- 212()()[1()()]()q x f x q x q x g x =-++所以212()()1,()1()()2u x q x x v x q x q x x =-=--=+=+.2)((),())1f x g x x =-,21122(),()13333u x x v x x x =-+=--. 3)((),())1f x g x =,32()1,()32u x x v x x x x =--=+--.7.设323()(1)22,()f x x t x x u g x x tx u =++++=++的最大公因式是一个二次多项式,求,t u 的值.解 略.8.证明:如果()(),()()d x f x d x g x 且()d x 为()f x 与()g x 的一个组合,那么()d x 是()f x 与()g x 的一个最大公因式.证明 由于()(),()()d x f x d x g x ,所以()d x 为()f x 与()g x 的一个公因式.任取()f x 与()g x 的一个公因式()h x ,由已知()d x 为()f x 与()g x 的一个组合,所以()()h x d x .因此,()d x 是()f x 与()g x 的一个最大公因式.9.证明:(()(),()())((),())()f x h x g x h x f x g x h x =,(()h x 的首项系数为 1). 证明 因为存在多项式()u x 和()v x 使 ((),())()()()()f x g x u x f x v x g x =+,所以((),())()()()()()()()f x g x h x u x f x h x v x g x h x =+,这表明((),())()f x g x h x 是()()f x h x 与()()g x h x 的一个组合,又因为 ((),())(),((),())()f x g x f x f x g x g x , 从而((),())()()(),((),())()()()f x g x h x f x h x f x g x h x g x h x ,故由第8题结论,((),())()f x g x h x 是()()f x h x 与()()g x h x 的一个最大公因式.注意到((),())()f x g x h x 的首项系数为1,于是(()(),()())((),())()f x h x g x h x f x g x h x =.10.如果(),()f x g x 不全为零,证明:()()(,)1((),())((),())f xg x f x g x f x g x =.证明 存在多项式()u x 和()v x 使((),())()()()()f x g x u x f x v x g x =+,因为(),()f x g x 不全为零,所以((),())0f x g x ≠,故由消去律得()()1()()((),())((),())f xg x u x v x f x g x f x g x =+,所以()()(,)1((),())((),())f xg x f x g x f x g x =.11.证明:如果(),()f x g x 不全为零,且()()()()((),())u x f x v x g x f x g x +=,那么((),())1u x v x =.证明 因为(),()f x g x 不全为零,故 ((),())0f x g x ≠,从而由消去律得()()1()()((),())((),())f xg x u x v x f x g x f x g x =+,所以((),())1u x v x =.12.证明:如果((),())1f x g x = ,((),())1f x h x =,那么((),()())1f x g x h x =. 证法一 用反证法.假设()((),()())1d x f x g x h x =≠,则(())0d x ∂>,从而()d x 有不可约因式()p x ,于是()(),()()()p x f x p x g x h x ,但因为((),())1f x g x =,所以()p x 不整除()g x ,所以()()p x h x ,这与((),())1f x h x =矛盾.因此((),()())1f x g x h x =.证法二 由题设知,存在多项式1122(),(),(),()u x v x u x v x ,使得11()()()()1u x f x v x g x +=,22()()()()1u x f x v x h x +=,两式相乘得12121212[()()()()()()()()()]()[()()]()()1u x u x f x v x u x g x u x v x h x f x v x v x g x h x +++=,所以((),()())1f x g x h x =.13.设11(),,(),(),,()m n f x f x g x g x 都是多项式,而且((),())1(1,2,,;1,2,,).i j f x g x i m j n ===求证:1212(()()(),()()()) 1.m n f x f x f x g x g x g x =证法一 反复应用第12题的结果 证法二 反证法14.证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x +=. 证明 由于((),())1f x g x =,所以存在多项式()u x 和()v x 使 ()()()()1u x f x v x g x +=,由此可得()()()()()()()()1,u x f x v x f x v x f x v x g x -++= ()()()()()()()()1,u x f x u x g x u x g x v x g x +-+=即[][]()()()()()()1,u x v x f x v x f x g x -++=[][]()()()()()()1,v x u x g x u x f x g x -++= 于是((),()())1f x f x g x +=,((),()())1g x f x g x +=,应用第12题的结论可得(()(),()())1f x g x f x g x +=.注 也可以用反证法.15.求下列多项式的公共根:32432()221;()22 1.f x x x x g x x x x x =+++=++++提示 用辗转相除法求出2((),()) 1.f x g x x x =++于是得两多项式的公共根为1.2-± 16.判别下列多项式有无重因式: 1)5432()57248f x x x x x x =-+-+-; 2)42()443f x x x x =+--1)解 由于432'()5202144f x x x x x =-+-+,用辗转相除法可求得2((),'())(2)f x f x x =-,故()f x 有重因式,且2x -是它的一个 3 重因式.2)解 由于3'()484f x x x =+-,用辗转相除法可求得((),'())1f x f x =,故()f x 无重因式.17.求t 值使32()31f x x x tx =-+-有重根. 解2'()36f x x x t =-+.先用'()f x 除()f x 得余式 1263()33t t r x x --=+.当3t =时,1()0r x =.此时'()()f x f x ,所以21((),'())'()(1)3f x f x f x x ==-,所以1是()f x 的3重根.当3t ≠时,1()0r x ≠.再用1()r x 除'()f x 得余式215()4r x t =+.故当154t =-时,2()0r x =.此时,121((),'())()92f x f x r x x =-=+,所以12-是()f x 的2重根.当3t ≠且154t ≠-时,2()0r x ≠,则((),'())1f x f x =,此时()f x 无重根.综上,当3t =时,()f x 有3重根1;当154t =-时,()f x 有2重根12-.18.求多项式3x px q ++有重根的条件. 解 略.19.如果242(1)1x Ax Bx -++ ,求,A B .解法一 设42()1f x Ax Bx =++,则3'()42f x Ax Bx =+.因为242(1)1x Ax Bx -++,所以1是()f x 的重根,从而1也是'()f x 的根.于是(1)0f =且'(1)0f =,即10;420.A B A B ++=⎧⎨+=⎩解得1,2A B ==-.解法二 用2(1)x -除421Ax Bx ++得余式为(42)(31)A B x A B ++--+,因为242(1)1x Ax Bx -++,所以(42)(31)0A B x A B ++--+=,故420;310.A B A B +=⎧⎨--+=⎩ 解得1,2A B ==-.20.证明:212!!nx x x n ++++没有重根.证法一 设2()12!!n x x f x x n =++++ ,则21'()12!(1)!n x x f x x n -=++++-. 因为()'()!nx f x f x n -=,所以((),'())((),)1!nx f x f x f x n ==.于是212!!nx x x n ++++没有重根. 证法二 设2()12!!n x x f x x n =++++ ,则21'()12!(1)!n x x f x x n -=++++-. 假设()f x 有重根α,则()0f α=且'()0f α=,从而0!nn α=,得0α=,但0α=不是()f x 的根,矛盾.所以212!!nx x x n ++++没有重根. 21.略. 22.证明:x 是()f x 的k 重根的充分必要条件是(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠.证明 (必要性)设0x 是()f x 的k 重根,从而0x 是'()f x 的1k -重根,是''()f x 的2k -重根,…,是(1)()k f x -的单根,不是()()k f x 的根,于是(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠.(充分性)设(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠,则0x 是(1)()k f x -的单根,是(2)()k f x -的2重根,…,是()f x 的k 重根.23.举例说明断语“如果α是'()f x 的m 重根,那么α是()f x 的m +1重根”是不对的.解 取1()()1m f x x α+=-+,则()'()1()m f x m x α=+-.α是'()f x 的m 重根,但α不是()f x 的m +1重根.注:也可以取具体的,如0,1m α==.24.证明:如果(1)()n x f x -,那么(1)()n n x f x -. 证明 略.25.证明:如果23312(1)()()x x f x xf x +++,那么12(1)(),(1)()x f x x f x --.证明2121()()x x x x ωω++=--,其中12ωω==.由于23312(1)()()x x f x xf x +++,故存在多项式()h x 使得33212()()(1)()f x xf x x x h x +=++,因此112122(1)(1)0;(1)(1)0.f f f f ωω+=⎧⎨+=⎩ 解得12(1)(1)0f f ==,从而12(1)(),(1)()x f x x f x --.26.求多项式1n x -在复数范围内和实数范围内的因式分解. 解 多项式1n x -的n 个复根为 22cossin ,0,1,2,,1kk k i k n n nππω=+=-,所以1n x -在复数范围内的分解式为1211(1)()()()n n x x x x x ωωω--=----.在实数范围内,当n 为奇数时:222112211221(1)[()1][()1][()1]n n n n n x x x x x x x x ωωωωωω---+-=--++-++-++,当n 为偶数时:222112222221(1)(1)[()1][()1][()1]n n n n n x x x x x x x x x ωωωωωω---+-=-+-++-++-++.27.求下列多项式的有理根: 1)3261514x x x -+-; 2)424751x x x ---;3)5432614113x x x x x +----.1)解 多项式可能的有理根是1,2,7,14±±±±. (1)40f =-≠,(1)360f -=-≠.由于44444,,,,1(2)171(7)1141(14)-------------都不是整数,所以多项式可能的有理根只有2.用综合除法判别:2 1 -6 15 -14 + 2 -8 14 2 1 -4 7 0 + 2 -4 1 -2 3≠0 所以2是多项式的有理根(单根).注:一般要求指出有理根的重数.计算量较小的话,也可以直接计算,如本题可直接算得(2)0f =,说明2是()f x 的有理根,再由'(2)0f ≠知.2是单根.用综合除法一般比较简单.2)答12-(2重根).3)答 1-(4重根),3(单根). 28.下列多项式在有理数域上是否可约? 1)21x -;2)4328122x x x -++; 3)631x x ++;4)1p x px ++,p 为奇素数; 5)441x kx ++,k 为整数. 1)解21x -可能的有理根是1±,直接检验知,都不是它的根,故21x -不可约.2)解 用艾森斯坦判别法,取2p =. 3)解 令1x y =+,则原多项式变为6365432(1)(1)1615211893y y y y y y y y ++++=++++++,取3p =,则由艾森斯坦判别法知多项式65432615211893y y y y y y ++++++不可约,从而多项式631x x ++也不可约.4)提示:令1x y =-,取素数p . 5)提示:令1x y =+,取2p =.。
高等代数-第1章习题及解答
习题1.11. 判断以下数集是否作成数环。
1)S={}Z ∈; 2) S={}0a a Q ≠∈; 3)S={},a b Z +∈;4)S={},a a b Q +∈.解: 1)错误。
不能包含除0以外的整数。
2)错误。
对差不封闭。
3)正确。
4)正确。
{}{},5,13a bi ab Q a bi a b Q Q +∈+∈2. 填空:1) 包含5i 的最小数域是或 2) 包含的最小数域是⎭⎬⎫⎩⎨⎧∈Q a a 31或{}{}{}0.,0,,,,0,1,2,3,,-l S a S a S ka S a S k l a bi a b Q F c di c di ≠≠∈≠∈∈=+∈⋅∈≠≠ 3.证明:如果一个数环S ,那么含有无限多个数。
证明:S 0可设是数环于是 其中 故含有无限多个数。
4.证明:S=是一个数环,是不是数域?证明: S 为数环,则S 对于数的加、减、乘封闭,且1=1+0i S 设+0,那么0222222220000,()()()()(),d c c di d c di c Q a bi a bi c di ac bd bc ad ic di c di c di cd ac bd bc adi c d c dac bd bc adQ c d ==+≠≠=∈++-++-==++-++-=++++-∈+否则 在的情形下,,与矛盾 在的情形下,与矛盾因此 又由于 22,Q c d a biS S c di∈++∴∈+ 故是数域。
121212,F F F F F F 5.设均为数域,证明也是数域,一定是数域吗?举例说明。
{}121222112,,,F F F F R F a bi a b Q F F F F ==+∈⊄⊄ 112证明:是数域,不一定是数域 反例:设F 因 F F 所以 不是数域()21,5(5,2)(2,3)(1)112;12(-1)(-2)12123455234125341n n k k k k +=+++++++−−−→−−−→− 习题1.21.计算下列排列的反序数: 1)75231468; 2)n(n-1)21;3)(2k)1(2k-1)2(k+1)k.解: ) ; 2) 3)2.利用对换把排列12345变成35241。
高等代数北大编第1章习题参考答案
第一章多项式一、习题及参考解答1 .用g(x)除了(x),求商g(x)与余式r(x):1 ) f (x) = x3 - 3x2 - x -1, g(x) = 3x2 - 2x +1;2 ) f(x) = x4 -2x + 5,g(x) = x2 - x + 2。
解1)由带余除法,可得q(x) =L-Z,“x) =-竺x-2 ;2)同理可得g(x) = / +x-l,r(x) = -5x + 7。
2. 〃?,PM适合什么条件时,有1 ) X2 +/?1¥-1 I X3 + px + c/ 92) x2 + nix + 11 x4 + px2 +q。
解1 )由假设,所得余式为0,即(〃 + l + 〃?2)x + (q-〃?) = O,所以当 1 + 。
时有 /+〃a-11 X* + px +g 0q _ in = 0 .2)类似可得= 于是当〃? = 0时,代入(2)可得〃=夕+ 1;q + 1 —〃一" = 0而当2- 〃 -J = 0时,代入(2)可得4 = 1 04 = ] _, 时,皆有 / + + 1 I X,+ px2 + 9。
综上所诉,当p + nr = 23 .求g(x)除f(x)的商q(x)与余式:1 ) /(x) = 2«?-5x3-8x,g(x) = x + 3 ;2) f(x) = x3-x2 - xg(x) = x-l + 2i o解[)q(x) = 2x4 - 6x3 +13x2 - 39A+ 109 ,r(x) = -327 '2)= x2 -2LV-(5+2/)r(x) = -9 + 8/ °4 .把/1(X)表示成x-%的方幕和,即表成c()+ G(X —“0)+。
2(X — X。
)~ + …+ C n(X — X。
)” + …的形式:1)/(x) = x',x()= 1 ;2) /(X)= X4-2X2+3,X0 =-2 ;3) f (x) = x4 + 2汉3 -(1 + i)x2 -3x + 7 + i,x0 =-i o解 1 ) 由综合除法,可得f(x) = l + 5(x-l) + 10(x-l)2 + 10(x-1)3+5(X-1)4 + (x-1)5 ;2 ) 由综合除法,可得X4-2X2+3=11-24(X + 2) + 22* + 2)2 -8(.r + 2)3 + (x + 2),;3)由综合除法,可得『+2立3_(1 +82_3工+ (7 +,)= (7 + 5i)-5(x + i) + (-l-i)(x + i)2 -2i(x + i)3 + (x + i),。
高等代数北大编 第1章习题参考答案
第一章 多项式 一 、习题及参考解答1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+ 的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
高等代数 习题及参考答案
解易知 有三重根 时, 。若令
,比较两端系数,得
由(1),(3)得 ,解得 的三个根为 ,将 的三个根分别代入(1),得 。再将它们代入(2),得 的三个根 。
当 时 有3重根 ;当 时, 有2重根 。
18.求多项式 有重根的条件。
解令 ,则 ,显然当 时,只有当 才有三重根。
3) 。
解利用剩余除法试根,可得
1)有一个有理根2。
2)有两个有理根 (即有2重有理根 )。
3)有五个有理根 (即一个单有理根3和一个4重有理根 )。
28.下列多项式在有理数域上是否可约?
1) ;
2) ;
3) ;
4) 为奇素数;
5) 为整数。
解1)因为 都不是它的根,所以 在有理数域里不可约。
2)利用艾森斯坦判别法,取 ,则此多项式在有理数域上不可约。
指数组
对应 的方幂乘积
4 2 0
4 1 1
3 3 0
3 2 1
2 2 2
原式= (1)
只要令 ,则原式左边 。另一方面,有 ,
代入(1)式,得 。再令 ,得 。
令 ,得
(2)
令 得
(3)
由(2),(3)解得 。因此
原式 。
4)原式=
指数组
对应 的方幂乘积
2 2 0 0
2 1 1 0
1 1 1 1
设原式
高等代数
第一章多项式
1.用 除 ,求商 与余式 :
1) ;
2) 。
解1)由带余除法,可得 ;
2)同理可得 。
2. 适合什么条件时,有
1) ,
2) 。
解1)由假设,所得余式为0,即 ,
高等代数北大编 第1章习题参考答案
第一章 多项式一 、习题及参考解答1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
&解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成—2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
北大版 线性代数第一章部分课后答案详解
习题1.2:1 .写出四阶行列式中11121314212223243132333441424344a a a a a a a a a a a a a a a a 含有因子1123a a 的项解:由行列式的定义可知,第三行只能从32a 、34a 中选,第四行只能从42a 、44a 中选,所以所有的组合只有()()13241τ-11233244a a a a 或()()13421τ-11233442a a a a ,即含有因子1123a a 的项为11233244a a a a 和11233442a a a a2. 用行列式的定义证明11121314152122232425313241425152000000000a a a a a a a a a a a a a a a a =0 证明:第五行只有取51a 、52a 整个因式才能有可能不为0,同理,第四行取41a 、42a ,第三行取31a 、32a ,由于每一列只能取一个,则在第三第四第五行中,必有一行只能取0.以第五行为参考,含有51a 的因式必含有0,同理,含有52a 的因式也必含有0。
故所有因式都为0.原命题得证.。
3.求下列行列式的值:(1)0100002;0001000n n -(2)001002001000n n-;解:(1)0100020001000n n -=()()23411n τ-123n ⨯⨯⨯⨯=()11!n n --(2)001002001000n n-=()()()()12211n n n τ---123n ⨯⨯⨯⨯=()()()1221!n n n ---4.设n 阶行列式:A=1111nn nna a a a ,B=11111212212221212n n n n n n n n nna ab a b a ba ab a b a b a -----,其中0b ≠,试证明:A=B 。
证明:B=11111212212221212n n n n n n n n nna ab a b a ba ab a b a b a -----=()()[]1212121212121n n n n s s s s n s s s s s n s s s n a b a b a b τ---∈-∑!=()()[]1212121212121()n n n n s s s s n s s s s s n s s s n a a a b b b τ---∈-∑!=()()[]12121212(1)(2)()121n n n n s s s s s s n s s s n s s s n a a a b τ-+-+-∈-∑!=()()[]121212121n n n s s s s s s n s s s n a a a τ∈-∑!=A命题得证。
高等代数北大编第1章习题参考答案
高等代数北大编第1章习题参考答案第一章多项式一、习题及参考解答1.用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当??+==10q p m 或=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+L 的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
完整版高等代数习题解答(第一章)
完整版高等代数习题解答(第一章)高等代数题解答第一章多项式补充题1.当a,b,c取何值时,多项式f(x)=x-5与g(x)=a(x-2)^2+b(x+1)+c(x^2-x+2)相等?提示:比较系数得a=-1,b=-1,c=6.补充题2.设f(x),g(x),h(x)∈[x],f^2(x)=xg^2(x)+x^3h^2(x),证明:假设f(x)=g(x)=h(x)不成立。
若f(x)≠0,则∂(f^2(x))为偶数,又g^2(x),h^2(x)等于或次数为偶数,由于g^2(x),h^2(x)∈[x],首项系数(如果有的话)为正数,从而xg^2(x)+x^3h^2(x)等于或次数为奇数,矛盾。
若g(x)≠0或h(x)≠0,则∂(xg^2(x)+x^3h^2(x))为奇数,而f^2(x)为偶数,矛盾。
综上所证,f(x)≠g(x)或f(x)≠h(x)。
1.用g(x)除f(x),求商q(x)与余式r(x):1)f(x) =x^3-3x^2-x-1,g(x) =3x^2-2x+1;2)f(x) =x^4-2x+5,g(x) =x^2-x+2.1)解法一:待定系数法。
由于f(x)是首项系数为1的3次多项式,而g(x)是首项系数为3的2次多项式,所以商q(x)必是首项系数为1的1次多项式,而余式的次数小于2.于是可设q(x)=x+a,r(x)=bx+c。
根据f(x)=q(x)g(x)+r(x),即x^3-3x^2-x-1=(x+a)(3x^2-2x+1)+bx+c,右边展开,合并同类项,再比较两边同次幂的系数,得a=-1/3,b=-2/3,c=-1,故得q(x)=x-1/3,r(x)=-x-1/3.2)解法二:带余除法。
用长除法得商q(x)=x^2+x-1,余式r(x)=-5x+7.2.m,p,q适合什么条件时,有1)x^2+mx-1/x^3+px+q;2)x^2+mx+1/x^4+px^2+q.解:1)将x^3+px+q除以x^2+mx-1得商为x+m+1/(x+m-1),所以当m≠1时有解。
高等代数北大版第章习题参考答案
1. 判别下面所定义的变换那些是线性的,那些不是:4) 在 P 3 中,A (X 1,X 2,X 3) (2X 1 X 2, X 2 X 3,X 1);5) 在 P[ X ]中,A f (x) f (x 1); 6) 在P[ X ]中,A f(x )f(X o ),其中X 0 P 是一固定的数;7) 把复数域上看作复数域上的线性空间,A8)在P nn 中,A X=BXC 其中B,C P n n 是两个固定的矩阵.解1)当0时,是;当 0时,不是。
2)当 0时,是;当 0时,不是。
3)不是.例如当(1,0,0), k 2 时,k A ( ) (2,0,0) , A (k )(4,0,0),A (k ) k A()。
4)是•因取(y 1,y 2,y 3),有A ()= A (X 1 y 1, X 2 y 2 ,X 3 y 3)=(2X 1 2y 1 X 2 y 2 ,X 2 y= (2X 1 X 2,X 2 X 3,X 1) (2y 1=A+ A ,A (k ) A (kx 1, kx 2, kx 3)故A 是P 3上的线性变换。
5)是.因任取 f(x) P[x], g(x) P[ X],并令u(x) f (x) g(x)则A ( f (x) g(x)) = A u(x) =u(x 1) = f (x 1) g(x 1)=A f (x) + A (g(x)),再令 v( x) kf (x)则 A (kf (x)) A (v( x)) v(x 1) kf (x 1) k A ( f (x)),故A 为P[x]上的线性变换。
6)是.因任取 f (x)P[x], g(x) P[ x]则.g(x))=f(X 0) g(x 。
)A ( f (x)) A (g(x)),第七章线性变换1) 在线性空间V 中,A ,其中V 是一固定的向量;2)在线性空间V 中,A3) 在 P 3 中,A (X 1, X 2 X )其中V 是一固定的向量;(X 12 , X 2 X 3, x 3).X 3 y 3,X 1 yj y 2,y 2y 3,y 1)(2kx 1kx 2, kx 2gkxj (2kx 1kx 2, kx 2gkxjA ( f (x)A(kf (x)) kf (X0) k A(f (x))7)不是,例如取a=1,k=l,则A(ka)=-i , k( A a)=i, A^ ka) k A(a)。
高等代数[北大版]第1章习题参考答案解析
第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+L 的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
高等代数第1章习题解
第一章习题解4902411=+,490911411388=⋅+41138823=+,而233881(,)=,所以(9405,5313)=12.设12,,, n a a a Z ∈,证明12121(,,,)((,,,),) n n n a a a a a a a -= 证明:令112(,,,), n d a a a = 2121((,,,),)n n d a a a a -= 由112(,,,), n d a a a =11121,,,,; i n d a i n d a ⇒=-11211112112(,,,),()((,,,),) n n n n d a a a d a d a a a a d d --⇒⇒⇒由212111211((,,,),)(,,,), n n n n d a a a a d a a a d a --=⇒1112112(,,,),(,,,) i n i d a i n d a d a i n ⇒=-⇒=21221(,,,) n d a a a d d ⇒⇒所以12d d =(630,504)=1264536=2·1764+1008, 1764=1008+756,1008=756+252,756=252·3→(1764,4536)=252 252=126·2所以(504, 630, 1764, 4536)=12622;()a b b aq a c c ap bc a pq a bc ⇒=⇒=⇒=⇒1;()a b b aq b a a bp b bp q pq ⇒=⇒=⇒=⇒=1p a b =±⇒=±若a x 对任意整数x 成立,那么取1x =,有11a a ⇒=±;反之,若1a =±,a x 显然成立;若x a 对任意整数x 成立,即a xp =对任意整数x 成立,取00x a =⇒=;反之,若0a =,x a 显然成立.7.设,,a b d Z ∈, 且(,)d a b =, 证明存在,u v Z ∈, 使得d au bv =+如果0a b ==,则000(,)a b a b ==⋅+⋅,所以结论成立; 如果,a b 不全为零,那么一定存在整数,s t 使0as bt +>,令所有这样的正整数组成的集合为D,即:0{|,}D as bt s t Z =+>∈, 由于D 是正整数组成的集合,故必有一个最小整数, 设这个正整数为d ',即有整数,u v 使d au bv '=+ 我们说d '就是,a b 的最大公因数.事实上,对于,a b 的任意公因数h ,显然有h au bv +h d '⇒;如果d '不是,a b 的公因数,不妨设d '不是a 的因数,那么由带余除法,有0,a d q r r d ''=+<<于是 1()()()a au bv q r r a qu b qv r D =++⇒=-+-⇒∈ 这与d '是D 中最小数的假设矛盾.如果P 不是质数,那么有两个大于1的整数,s t 使11,,p st s p t p =<<<< 显然有p st ,按题设,应有p s 或p t ,但这显然不可能..9.设12,S S 都是数环,请问12S S 与12S S 是否是数环,为什么?12S S 是数环,而12S S 未必是数环.事实上:1211,,,,a b S S a b S a b a b ab S ∀∈⇒∈⇒+-∈ 同理: 21,,,a b S a b a b ab S ∈⇒+-∈ 所以12,,a b a b ab S S +-∈ ,即12S S 是数环.取1257{|},{|}S k k Z S k k Z =∈=∈,这时1257,S S ∈∈,但121257121212,S S S S +=∉∉⇒∉所以12S S 未必是数环.,()()()(a c S a c a c b d S ∀++∈⇒+++=+++∈()()()(a c a c b d S +-+=-+-∈2()()()(a c ac bd ad bc S ++=-++∈所以{|,}S a a b Z =+∈是数环;但110S S =+∈=+∈=,而12Z ∉,所以2i S ∉,所以{|,}S a a b Z =+∈不是数域;{,}S a a b Q =+∈ 1.2一元多项式1.若43232231321(),()f x x x x x g x x x x =-+-+=-+-,求()(),()(),f x g x f x g x +-和()()f x g x4324325522()(),()()f x g x x x x f x g x x x x x +=++-=-+-+765432314141210621()()f x g x x x x x x x x =-+-+-+-2.求,,a b c 使22432211251()()x bx x ax x x cx x +--+=++--224322112211()()()()()x bx x ax x b a x ab x a b x +--+=+-+-++-432251x x cx x =++--所以: 2511,,b a ab c a b -=-=+=-213,,a b c ⇒=-==3.,,,a b c d 取何值时,多项式32322()()()f x a b c x a b c x dx =+-++-++与322()()()()g x a c x a d x c a x b =++-+++相等.1234,,,a b c d ====4.将多项式4323223()f x x x ax x =-++-化成2x +的方幂形式43232262852122261()()()()()f x x x x x =+-+++-++ 5.设多项式00(),()f x g x ≠≠,问(),()f x g x 的系数满足什么条件时,公式(()())max{(),()}f x g x f x g x ∂+≤∂∂等号成立?满足什么条件时,小于号成立?1110()n n n n f x a x a x a x a --=++++ ,1110()n n n n g x b x b x b x b --=++++ 当0n n a b +≠时,公式中的等号成立; 当0n n a b +=时,公式中的小于号成立;6.设(),(),()[]f x g x h x R x ∈,若222()()()f x xg x xh x =+,则0()()()f x g x h x ===(),()g x h x 至少有一个不是零多项式.由于(),()[]g x h x R x ∈,所以2222(()())max{(),()}g x h x g x h x ∂+=∂∂于是等式222()()()f x xg x xh x =+右边的的次数为奇数,而左边的次数为偶数,这导致矛盾,所以必然有0()()()f x g x h x ===7. .设(),()[]f x g x R x ∈,若00(),()f x g x ≠≠,证明则220()()f x g x +≠11100(),n n n n n f x a x a x a x a a --=++++≠ ,11100(),m m m m m g x b x b x b x b b --=++++≠ ,并且m n ≤于是22()()f x g x +的最高次项的系数为22,()n m a b m n +=或2,()n a m n <,不论是哪种情形,22()()f x g x +的最高次项的系数都不为零,所以220()()f x g x +≠(但这个结论对复数域上的多项式不成立,例如22(),(),f x ix g x x ==但22440()()f x g x x x +=-+=1.3多项式的整除性1.用()g x 除()f x ,求商式()q x 和余式()r x : (1) 322432123(),()f x x x x g x x x =-+-=-+ (2) 4322323(),()f x x x x g x x x =-+-=-+(1) 45164516()()(),(),()f x g x x q x x r x =+-=+=-(2) 221391731391732488824888()()(),(),()f x g x x x x q x x x r x x =--++=--=+ 2.确定,a b 的值,使223()g x x x =-+能整除43236()f x x x x ax b =-+++,得2153()()()()f x g x x x a x b =-++++-,所以53,a b =-=3.下列命题是否成立,为什么?(1)成立,否则由()(),()|()()h x f x h x f x g x +,则()|[()()]()()h x f x g x f x g x +-=导致矛盾;(2)不成立,例如11(),(),()h x x f x x g x x ==+=-,但2|x x ,即()|()()h x f x g x +(3) 不成立,例如22(),(),()h x x f x x g x x ===,但222|x x ,即()|()()h x f x g x(4)成立,由于()(),()()f xg x f x g x ∂=∂,所以(),()f x g x 只相差一个常数因子,所以()|()g x f x 成立.(),()f x g x 被()h x 除得的余式相等.()⇒设1122()()()(),()()()()f x h x q x r x g x h x q x r x =+=+,其中1100()()()r x or r x h x =≤∂<∂和2200()()()r x or r x h x =≤∂<∂于是1212()()()[()()][()()]f x g x h x q x q x r x r x -=-+-,由()[()()]h x f x g x -⇒12()()()h x r x r x -但1212[()()]max{(),()}()r x r x r x r x h x ∂-≤∂∂<∂,这显然不可能,除非120()()r x r x -=,即12()()r x r x =()⇐设12()()()(),()()()()f x h x q x r x g x h x q x r x =+=+,其中00()()()r x or r x h x =≤∂<∂于是12()()()[()()]f x g x h x q x q x -=-()[()()]h x f x g x ⇒-5.常数,,a b c 满足什么条件时,21()g x x ax =++能整除4()f x x bx c =++?2222121()()()()f x g x x ax a b a a x c a =-+-++-++- 所以222010,b a a c a +-=+-=所以221a b c a +=+=1()()()()()g x h x f x q x p x =,2()()()f x h x p x = 所以2112()()()()()()()()()()g x h x h x p x q x p x g x q x p x p x =⇒=()()q x g x ⇒7.证明:对任意非负整数n,都有222111|()n n x x x x ++++++n 用数学归纳法: 当0时,结论显然成立;假设结论在一切不大于n 的非负整数成立,那么在1n +时,3232212121111()[()]()[()]n n n n n x x x x x x x x +++++++=+++++- 221212111[()]()()n n n x x x x x x +++=++++++由归纳假设有222111|()n n x x x x ++++++,同时2212111|()()n x x x x x ++++++所以232311|()n n x x xx ++++++8.设k 是任意正整数,证明|()|()kx f x x f x ⇔,下面证明必要性用反证法:若|()x f x ,则10()(),f x xf x c c =+≠,那么1()[()]()k k k f x xf x c xg x c =+=+,由|()|k k x f x x c ⇒矛盾.9.证明:|()()x f x f x ⇔的常数项为011100(),nn n n n f x a x a xa x a a --=++++≠ 于是由于111|n n n n x a x a x a x --+++ ,1110|()n n n n x f x a x a x a x a --=++++所以111000|()()|n n n n x f x a x a x a x x a a ---+++⇒⇒= 反过来,若00a =,显然有|()x f x 10.证明:11||d n x x d n --⇔()⇐设n dq =,则1211111()()[()()]n dq d q d d q d q x x x x x x ---=-=-=-+++11|d n x x ⇒--()⇒若|d n ,设0,n dq r r d =+<<,于是11111()()n dq r dq r r r r dq r x x x x x x x x x +-=-=-+-=-+-由于111111|,|[()]|d n d r d q d r x x x x x x x ----⇒--,但0r d <<,这显然不可能.所以,必然有0r =,即|d n . 1.4最大公因式 1.求((),())f x g x(1)433234123(),()f x x x x g x x x =+--=+- (2) 32264530(),()f x x x x g x x x =-++=+- (3) 543243211(),()f x x x x x g x x x x =++-+=+++(4) 543257248(),f x x x x x x =-+-+-4325202144()g x x x x x =-+-+(1)2223422155()()()(),()()()f x g x x x x g x x x x x =+-+-=+--+-21212()()()r x x x x x =+-=-+所以1((),())f x g x x =-;(2) 741556()()()(),()()()f x g x x x g x x x =-+-=-+ 所以5((),())f x g x x =-; (3) 1((),())f x g x =(4)322221251()()(),()()()f x x x x g x x x =-++=-+所以22((),())()f x g x x =-2.设111()n n n n f x x a x a x a --=++++ 12121()n n n n g x x a x a x a ----=++++ ,1n >,求((),())f x g x由于10()()()()()()((),())n n n n g x a xg x f x a f x g x x a f x g x a =⎧=-⇒+-=⇒=⎨≠⎩3.设212(),(),m n m n m m f x x x x g x x x m n +-=---=--> ,求((),())f x gx4.对下列各题的(),()f x g x ,求(),()u x v x ,使((),())()()()()f x g x f x u x g x v x =+ (1)432421563()f x x x x x =+-++,3253()g x x x =-+ (2)432242(),f x x x x x =+---43222()g x x x x x =+--- (3)432442(),f x x x x x =--+-321()g x x x x =+--1)2215()()()()f x g x x x x =+--,22231()()()()g x x x x x =-+--21()x x x x -=-所以1((),())f x g x x =-15121225()[()()()])()()x g x x f x x f x -=+-+-所以222421115151555()()x x f x x x g x ⎛⎫⎛⎫-=--++- ⎪ ⎪⎝⎭⎝⎭221515()u x x =--,24211555()v x x x =+- (2)32()()f x g x x x =+-,32212()()()g x x x x x =-++-3222()x x x x -=-,所以22((),())f x g x x =-23221112()()()()[()()]()()()()()x g x x x x g x f x g x x x f x x g x -=--+=--+=--++所以:1()u x x =--,2()v x x =+(3)2234()()()()f x g x x x x =---+,2344717()()()g x x x x x =-+++-2493471774128()()()x x x x -+=--+,所以1((),())f x g x =22222212849341717747173443427179241284929245351107()()()()()()()()()()()()()[()()()][()()()()]()()()()x x x x g x x x x x x g x x f x x g x x x x f x g x x f x g x x x x f x x f x x x g x =-+----=--++-+=---=--++=-----++=--++-所以253511074949(),()x x x u x v x --+-== 5.令()f x 与()g x 是[]F x 中的多项式,而,,,a b c d是F中的数,并且满足0ad bc -≠,证明(()(),()())((),())af x bg x cf x dg x f x g x ++=12()((),()),()(()(),()())d x f x g x d x af x bg x cf x dg x ==++ 令 ()()(),()()())u x af x bg x v x cf x dg x =+=+ 那么 ()()(),()()())du x adf x bdg x bv x bcf x bdg x =+=+两式相减整理得:()()()d b f x u x v x ad bc ad bc=---同理:()()(),()()())cu x acf x bcg x av x acf x adg x =+=+()()()c ag x u x v x bc ad bc ad=---由于 111()((),())()|(),()|()d x f x g x d x f x d x g x =⇒11()|()(),()|()()d x af x bg x d x cf x dg x ⇒++ 12()|()d x d x ⇒反过来:2()(()(),()())((),())d x af x bg x cf x dg x u x v x =++=22()|(),()|()d x u x d x v x ⇒22()|()()()()|()()()d b d x u x v x f x ad bc ad bc c a d x u x v x g x bc ad bc ad ⎧-=⎪⎪--⇒⎨⎪-=⎪--⎩21()|()d x d x ⇒所以 12()()d x d x =6.证明定理1.4.7的逆:若1((),()())f x g x h x =,那么1((),())f x g x =与1((),())f x h x =都成立。
高等代数(北大第三版)习题答案完整
解出(ⅰ)当 u = 0时t + 3t − 3t + 4 = 0(t + 4)(t − t + 1)
3 2 2
1 ± 3¡ ± 3 ¡ t = −4或t = =e 2 ∴
(ⅱ)
π
当u ≠ 0时, 只有t 2 + t + 3 = 0,
t 1 =− t +1 3
t 3 + 3t 2 − (u + 3)t + (4 − u ) ⇒ u =
f ( x ) = x 5 , x0 = 1 :即 ∴ f ( x) = ( x − 1)5 + 5( x − 1) 4 + 10( x − 1)3 + 10( x − 1) 2 + 5( x − 1) + 1
当然也可以 f ( x) = x = [( x − 1) + 1]
5 5
= ( x − 1)5 + 5( x − 1) 4 + ⋅⋅⋅ + 1
2
ε1 =
− 1 + 3i − 1 − 3i ,ε 2 = 2 2
所以 d ( x) = u ( x) f1 ( x) d ( x) + v( x) g1 ( x)d ( x). 消去 d ( x ) ≠ 0 得 1 = u ( x) f1 ( x) + v( x) g1 ( x)
P45.11
证:设 ( f ( x), g ( x)) = d ( x) ≠ 0, f ( x) = f1 ( x) d ( x), g ( x) = g1 ( x)d ( x)
t= − 1 ± − 11 2
P45、8 d ( x ) | f ( x ), d ( x ) | g ( x ) 表明 d ( x ) 是公因式 又已知: d ( x)是f ( x)与g ( x)的组合 所以 表明任何公因式整除 d ( x )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 多项式一 、习题及参考解答1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r :1)123)(,13)(223+-=---=x x x g x x x x f ;2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有1)q px x mx x ++-+32|1,2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+;2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i =--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()nn c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
解 1)由综合除法,可得2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+-;2)由综合除法,可得42234231124(2)22(2)8(2)(2)x x x x x x -+=-+++-+++;3) 由综合除法,可得4322(1)3(7)x ix i x x i +-+-++ 234(75)5()(1)()2()()i x i i x i i x i x i =+-++--+-+++。
5.求()f x 与()g x 的最大公因式:1)43232()341,()1f x x x x x g x x x x =+---=+--;2)4332()41,()31f x x x g x x x =-+=-+;3)42432()101,()61f x x x g x x x =-+=-+++。
解 1)((),())1f x g x x =+;2)((),())1f x g x =;3)2((),())1f x g x x =--。
6.求(),()u x v x 使()()()()((),())u x f x v x g x f x g x +=。
1)432432()242,()22f x x x x x g x x x x x =+---=+---;2)43232()421659,()254f x x x x x g x x x x =--++=--+;3)4322()441,()1f x x x x x g x x x =--++=--。
解 1)因为22((),())2()f x g x x r x =-=再由11212()()()()()()()()f x q x g x r x g x q x r x r x =+⎧⎨=+⎩,解得22121212()()()()()()[()()()][()]()[1()()]()r x g x q x r x g x q x f x q x g x q x f x q x q x g x =-=--=-++, 于是212()()1()1()()11(1)2u x q x x v x q x q x x x =-=--=+=++=+。
2)仿上面方法,可得((),())1f x g x x =-,且21122(),()13333u x x v x x x =-+=--。
3)由((),())1f x g x =可得32()1,()32u x x v x x x x =--=+--。
7.设32()(1)22f x x t x x u =++++与32()g x x tx u =++的最大公因式是一个二次多项式,求,t u 的值。
解 因为32211212()()()()()(2)()()()()f x q x g x r x x tx u x x u g x q x r x r x =+=+++++=+,2((2))(2)(24)(3)x t x x u u t x u t =+-++-+-+-,且由题设知最大公因式是二次多项式,所以余式2()r x 为0,即(24)0(3)0u t u t -+-=⎧⎨-=⎩, 从而可解得1102u t =⎧⎨=⎩ 或 2223u t =-⎧⎨=⎩。
8.证明:如果()|(),()|()d x f x d x g x ,且()d x 为()f x 与()g x 的组合,那么()d x 是()f x 与()g x 的一个最大公因式。
证 易见()d x 是()f x 与()g x 的公因式。
另设()x ϕ是()f x 与()g x 的任一公因式,下证()|()x d x ϕ。
由于()d x 是()f x 与()g x 的一个组合,这就是说存在多项式()s x 与()t x ,使()()()()()d x s x f x t x g x =+,从而由()|(),()|()x f x x g x ϕϕ可得()|()x d x ϕ,得证。
9.证明:(()(),()())((),())()f x h x g x h x f x g x h x =,(()h x 的首系数为1)。
证 因为存在多项式(),()u x v x 使((),())()()()()f x g x u x f x v x g x =+, 所以((),())()()()()()()()f x g x h x u x f x h x v x g x h x =+,上式说明((),())()f x g x h x 是()()f x h x 与()()g x h x 的一个组合。
另一方面,由((),())|()f x g x f x 知((),())()|()()f x g x h x f x h x , 同理可得((),())()|()()f x g x h x g x h x ,从而((),())()f x g x h x 是()()f x h x 与()()g x h x 的一个最大公因式,又因为((),())()f x g x h x 的首项系数为1,所以(()(),()())((),())()f x h x g x h x f x g x h x =。
10.如果(),()f x g x 不全为零,证明:()(),1((),())((),())f x g x f x g x f x g x ⎛⎫= ⎪⎝⎭。
证 存在(),()u x v x 使((),())()()()()f x g x u x f x v x g x =+,又因为(),()f x g x 不全为0,所以((),())0f x g x ≠, 由消去律可得()()1()()((),())((),())f x g x u x v x f x g x f x g x =+, 所以()(),1((),())((),())f x g x f x g x f x g x ⎛⎫= ⎪⎝⎭。
11.证明:如果(),()f x g x 不全为零,且()()()()((),())u x f x v x g x f x g x +=,那么((),())1u x v x =。
证 由上题证明类似可得结论。
12.证明:如果((),())1,((),())1f x g x f x h x ==,那么((),()())1f x g x h x =。
证 由假设,存在11(),()u x v x 及22(),()u x v x 使11()()()()1u x f x v x g x += (1)22()()()()1u x f x v x h x += (2)将(1)(2)两式相乘,得12121212[()()()()()()()()()]()[()()]()()1u x u x f x v x u x g x u x v x h x f x v x v x g x h x +++=,所以((),()())1f x g x h x =。
13.设11(),...,(),(),...,()m n f x f x g x g x 都是多项式,而且((),())1i j f x g x = (1,2,...,;1,2,...,)i m j n ==。
求证:1212(()()...(),()()...())1m n f x f x f x g x g x g x =。
证 由于11121((),())1((),())1..........................((),())1n f x g x f x g x f x g x ===,反复应用第12题结论,可得112((),()()...())1n f x g x g x g x =,同理可证21212((),()()...())1................................................((),()()...())1n m n f x g x g x g x f x g x g x g x ==,从而可得1212(()()...(),()()...())1m n f x f x f x g x g x g x =。
14.证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x +=。
证 由题设知((),())1f x g x =,所以存在(),()u x v x 使()()()()1u x f x v x g x +=, 从而()()()()()()()()1u x f x v x f x v x f x v x g x -++=,即[()()]()()[()()]1u x v x f x v x f x g x -++=,所以((),()())1f x f x g x +=。