[1,N]离散均匀分布-描述统计
第一章 离散随机信号统计分析基础
❖ 如果我们把对温漂电压的观察看作为一个随机试验,那么,每一次的记录,就是
随机试验的一次实现,相应的结果就是一个样本函数:
xi (t)
❖
所能有经样历本的函整数个的过x集程i (合,t)该集合就i=是1一,个2随,…机过,N程,,N也→即随∞机,信就号构,成记了之温为漂:电压可
X(t)
物随机变理量 意义:x1 (t1 ), x2 (t1 ), , xN (t1 )
lim
M
1 2M
1
M
x(n)x(n
nM
m)
x
(m)
例1.2.3 讨论例1.2.1随机相位正弦序列的各
态遍历性。
解 对 X (n) Asin(2fnTs ),其单一的时间样本
x(n) Asin(2fnTs ) , 为一常数,对 X (n)
作时间平均,显然
mx (n)
lim
M
2
1 M
自相关函数和自协方差函数的关系
❖ 1 X (m) X (m) mX2 XY (m) XY (m) mX mY
❖ 2当 mX 0 时
X (m) X (m) XY (m) XY (m)
工程实际中,当m趋于无穷大时,可以认 为不相关,存在:
lim
m
X
(m)
E[
X
*
(n)
X
自相关函数 X (n1, n2 ) 和 n1,n2 的选取无关,而仅和 n1, n之2 差有关,那么,我 们称X(n)为宽平稳的随机信号,或广义平稳随机信号 。其具有以下的统 计特征. ❖ 1)均值为常值。
2)自相关函数和自协方差函数均只是m的函数。
目的:使问题简化,实际工程中大部分属于这种
严平稳随机信号:指概率特性不随时间的平移而变化(或说与 时间基准点无关)的随机信号。只有当X(n)是高斯随机过程 时,宽平稳才是严平稳。
[1,N]离散均匀分布样本最大值分布-描述统计
1,N 离散均匀分布样本最大值分布基于Wolfram Mathematica9,下表给出了 1,N 区间内离散均匀分布DU 1,N 样本最大值的概率密度(质量)函数、累积分布函数、累积分布函数、逆生存函数、风险函数(故障率)、矩母函数 MGF 、中心矩母函数 CMGF 、累积量母函数 CGF 、阶乘矩母函数 FMGF 、特征函数的计算和结果表达式,均值、中位值、众数、四分位数列表、q分位数、方差、标准差、一三四分位数间矩、偏度系数、峰度系数、四分偏度系数、r阶原点矩、r阶中心矩、r阶阶乘矩、r阶累积量、信息熵等描述性统计量的计算和结果表达式。
In[105]:=dist DiscreteUniformDistribution 1,N ;dist1 OrderDistribution dist,n ,n ;"1.概率密度(质量)函数:"PDF dist1,k"2.累积分布函数:"CDF dist1,k"3.生存(可靠性)函数:"SurvivalFunction dist1,k"4.逆生存函数:"InverseSurvivalFunction dist1,q"5.风险函数(故障率):"HazardFunction dist1,k"6.矩母函数 MGF :"MomentGeneratingFunction dist1,t"7.中心矩母函数 CMGF :"CentralMomentGeneratingFunction dist1,t"8.累积量母函数 CGF :"CumulantGeneratingFunction dist1,t"9.阶乘矩母函数 FMGF :"CharacteristicFunction dist1,t"10.特征函数:"CharacteristicFunction dist1,t"11.均值:"Mean dist1"12.中位值:"Median dist1"13.四分位数列表:"Quartiles dist1"14.q分位数:"Quantile dist1,q"15.方差:"Variance dist1"16.标准差:"StandardDeviation dist1"17.一、三四分位数间矩:"InterquartileRange dist1"18.偏度系数:"Skewness dist1"19.峰度系数:"Kurtosis dist1"20.四分偏度系数:"QuartileSkewness dist1"21.r阶原点矩矩:"Moment dist1,r"22.r阶中心矩:"CentralMoment dist1,r"23.r阶阶乘矩:"FactorialMoment dist1,r"24.r阶累积量:"Cumulant dist1,r"25.信息熵:"Sum PDF dist1,k Log PDF dist1,k , k,1,N Out[107]= 1.概率密度(质量)函数:Out[108]= 1NkN n k N n k 1&&k N 0 1 1 1N n k N 0&&k 1 0k N 0 k 1 1 1N n k 1&&k N 0 N n TrueOut[109]= 2.累积分布函数:Out[110]= Floor k N n1 k N1k N0True Out[111]= 3.生存(可靠性)函数:Out[112]=1k 11 1 N Floor kN n1 k N 0TrueOut[113]= 4.逆生存函数:Out[114]=ConditionalExpression Max 1,Ceiling N 1 q 1n 0 1 1 q 1n 1N1 1 q 1n 01True,0 1 q 1n 1Out[115]= 5.风险函数(故障率):2[1,N]离散均匀分布样本最大值分布-描述统计.nbOut[116]=1 k NN n1 k 2&&k N 0 1k 2 0 k N 11 k NN n 1 1 k N N n1 1 1 k NN n k 2&&k N 0 0TrueOut[117]= 6.矩母函数 MGF :Out[118]=MomentGeneratingFunctionOrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,t Out[119]=7.中心矩母函数 CMGF :Out[120]=CentralMomentGeneratingFunctionOrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,t Out[121]=8.累积量母函数 CGF :Out[122]=CumulantGeneratingFunctionOrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,t Out[123]=9.阶乘矩母函数 FMGF :Out[124]=CharacteristicFunctionOrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,t Out[125]=10.特征函数:Out[126]=CharacteristicFunctionOrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,t Out[127]=11.均值:Out[128]=1 N N n BernoulliB 1 n,1 BernoulliB 1 n,1 N1 nOut[129]=12.中位值:Out[130]=ConditionalExpression Max 1,Ceiling 2 1 n N 0 2 1 n 112 1 n 0N True,0 2 1 n 1Out[131]=13.四分位数列表:[1,N]离散均匀分布样本最大值分布-描述统计.nb3Out[132]=ConditionalExpressionMax 1,Ceiling 4 1 n N 0 4 1 n 114 1 n 0N True,0 4 1 n 1 ,ConditionalExpressionMax 1,Ceiling 2 1 n N 0 2 1 n 112 1 n 0N True,0 2 1 n 1 ,ConditionalExpressionMax 1,Ceiling 341nN 0341n11 341n 0NTrue,0341n1Out[133]=14.q 分位数:Out[134]=ConditionalExpressionMax 1,Ceiling N q 1n 0 q 1n 11q 1n 0N True,0 q 1n 1Out[135]=15.方差:Out[136]=1 N 11 nN nBernoulliB 1 n,1 BernoulliB 1 n,1 N 2N nBernoulliB 1 n,1 BernoulliB 1 n,N 1 n2 BernoulliB 2 n,1 BernoulliB 2 n,N2 nBernoulliB 3 n,1 BernoulliB 3 n,N3 nOut[137]=16.标准差:Out[138]=1 N11 nNnBernoulliB 1 n,1 BernoulliB 1 n,1 N2N nBernoulliB 1 n,1 BernoulliB 1 n,N1 n2 BernoulliB 2 n,1 BernoulliB 2 n,N 2 nBernoulliB 3 n,1 BernoulliB 3 n,N3 nOut[139]=17.一、三四分位数间矩:4 [1,N]离散均匀分布样本最大值分布-描述统计.nbOut[140]=ConditionalExpressionN Max 1,Ceiling 341nN341n1&&41n 1N Max 1,Ceiling 4 1 n N341n 1&&41n 1Max 1,Ceiling 341n N Max 1,Ceiling 4 1 n N 341n 1&&41n 10True,0341n1&&0 4 1 n 1Out[141]=18.偏度系数:Out[142]=21 N11 nNnBernoulliB 1 n,1 BernoulliB 1 n,1 N33N n 1 N 11 nN n BernoulliB 1 n,1 BernoulliB 1 n,1 NBernoulliB 1 n,1 BernoulliB 1 n,N1 n2 BernoulliB 2 n,1 BernoulliB 2 n,N 2 nBernoulliB 3 n,1 BernoulliB 3 n,N3 nN nBernoulliB 1 n,1 BernoulliB 1 n,N1 n3 BernoulliB 2 n,1 BernoulliB 2 n,N 2 n3 BernoulliB 3 n,1 BernoulliB 3 n,N 3 nBernoulliB 4 n,1 BernoulliB 4 n,N4 n1 N 11 nNnBernoulliB 1 n,1 BernoulliB 1 n,1 N2N nBernoulliB 1 n,1 BernoulliB 1 n,N1 n2 BernoulliB 2 n,1 BernoulliB 2 n,N 2 nBernoulliB 3 n,1 BernoulliB 3 n,N3 n3 2[1,N]离散均匀分布样本最大值分布-描述统计.nb5Out[143]=19.峰度系数:Out[144]=31 N 11 nNnBernoulliB 1 n,1 BernoulliB 1 n,1 N46Nn1 N11 nN nBernoulliB 1 n,1 BernoulliB 1 n,1 N 2BernoulliB 1 n,1 BernoulliB 1 n,N 1 n2 BernoulliB 2 n,1 BernoulliB 2 n,N2 nBernoulliB 3 n,1 BernoulliB 3 n,N3 n4N n 1 N 11 nN n BernoulliB 1 n,1 BernoulliB 1 n,1 NBernoulliB 1 n,1 BernoulliB 1 n,N 1 n3 BernoulliB 2 n,1 BernoulliB 2 n,N2 n3 BernoulliB 3 n,1 BernoulliB 3 n,N3 nBernoulliB 4 n,1 BernoulliB 4 n,N4 nN n BernoulliB 1 n,1 BernoulliB 1 n,N1 n4 BernoulliB 2 n,1 BernoulliB 2 n,N2 n6 BernoulliB 3 n,1 BernoulliB 3 n,N3 n4 BernoulliB 4 n,1 BernoulliB 4 n,N4 nBernoulliB 5 n,1 BernoulliB 5 n,N5 n1 N 11 nNnBernoulliB 1 n,1 BernoulliB 1 n,1 N2N nBernoulliB 1 n,1 BernoulliB 1 n,N1 n2 BernoulliB 2 n,1 BernoulliB 2 n,N2 n26 [1,N]离散均匀分布样本最大值分布-描述统计.nbBernoulliB 3 n,1 BernoulliB 3 n,N3 n2 Out[145]=20.四分偏度系数:Out[146]=ConditionalExpression 1 34 Indeterminate 34 ComplexInfinity 34N Max 1,Ceiling 34 1n N 2Max 1,Ceiling 2 1 n NN Max 1,Ceiling 34 1n N341 342N Max 1,Ceiling 34 1n N Max 1,Ceiling 4 1 n NMax 1,Ceiling 34 1n N Max 1,Ceiling 4 1 n N34N 2Max 1,Ceiling 2 1 n N Max 1,Ceiling 4 1 n NN Max 1,Ceiling 4 1 n N 34Max 1,Ceiling 34 1n N2Max 1,Ceiling 2 1 n N Max 1,Ceiling 4 1 n NMax 1,Ceiling 34 1n N Max 1,Ceiling 4 1 n NTrueOut[147]=21.r阶原点矩矩:Out[148]=Moment OrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,rOut[149]=22.r阶中心矩:Out[150]=CentralMoment OrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,rOut[151]=23.r阶阶乘矩:Out[152]=FactorialMoment OrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,rOut[153]=24.r阶累积量:Out[154]=Cumulant OrderDistribution DiscreteUniformDistribution 1,N ,n ,n ,rOut[155]=25.信息熵:[1,N]离散均匀分布样本最大值分布-描述统计.nb7Out[156]=k 1NLog1Nk N n k Nnk 1&&k N 01 1 1Nn k N 0&&k 10k N 0 k 1 11Nn k 1&&k N 0 N nTrue1Nk N n k Nnk 1&&k N 01 1 1Nn k N 0&&k 10k N 0 k 1 11Nn k 1&&k N 0 N nTrue8 [1,N]离散均匀分布样本最大值分布-描述统计.nb。
[1,N]离散均匀分布样本中位数分布-描述统计
1,N 离散均匀分布样本中位数分布基于Wolfram Mathematica9,下表给出了 1,N 区间内离散均匀分布DU 1,N 样本中位数的概率密度(质量)函数、累积分布函数、累积分布函数、逆生存函数、风险函数(故障率)、矩母函数 MGF 、中心矩母函数 CMGF 、累积量母函数 CGF 、阶乘矩母函数 FMGF 、特征函数的计算和结果表达式,均值、中位值、众数、四分位数列表、q分位数、方差、标准差、一三四分位数间矩、偏度系数、峰度系数、四分偏度系数、r阶原点矩、r阶中心矩、r阶阶乘矩、r阶累积量、信息熵等描述性统计量的计算和结果表达式。
dist DiscreteUniformDistribution 1,N ;dist1 OrderDistribution dist,2n 1 ,n 1 ;"1.概率密度(质量)函数:"PDF dist1,k"2.累积分布函数:"CDF dist1,k"3.生存(可靠性)函数:"SurvivalFunction dist1,k"4.逆生存函数:"InverseSurvivalFunction dist1,q"5.风险函数(故障率):"HazardFunction dist1,k"6.矩母函数 MGF :"MomentGeneratingFunction dist1,t"7.中心矩母函数 CMGF :"CentralMomentGeneratingFunction dist1,t"8.累积量母函数 CGF :"CumulantGeneratingFunction dist1,t"9.阶乘矩母函数 FMGF :"CharacteristicFunction dist1,t"10.特征函数:"CharacteristicFunction dist1,t"11.均值:"Mean dist1"12.中位值:"Median dist1"13.四分位数列表:"Quartiles dist1"14.q分位数:"Quantile dist1,q"15.方差:"Variance dist1"16.标准差:"StandardDeviation dist1"17.一、三四分位数间矩:"InterquartileRange dist1"18.偏度系数:"Skewness dist1"19.峰度系数:"Kurtosis dist1"20.四分偏度系数:"QuartileSkewness dist1"21.r阶原点矩矩:"Moment dist1,r"22.r阶中心矩:"CentralMoment dist1,r"23.r阶阶乘矩:"FactorialMoment dist1,r"24.r阶累积量:"Cumulant dist1,r"25.信息熵:"Sum PDF dist1,k Log PDF dist1,k , k,1,N 1.概率密度(质量)函数:BetaRegularized 1N kN,1 n,1 n BetaRegularized kN,1 n,1 n k 1&&k N 01 BetaRegularized 1 1N,1 n,1 n k 1&&k N 0BetaRegularized 1N,1 n,1 n k 1&&k N 0 0True2.累积分布函数:BetaRegularized Floor kN,1 n,1 n 1 k N1k N0True3.生存(可靠性)函数:1k 1BetaRegularized N Floor kN,1 n,1 n 1 k N0True4.逆生存函数:ConditionalExpression Max 1,Ceiling N 1 InverseBetaRegularizedq,1 n,1 nInverseBetaRegularizedN InverseBetaRegularized 1True5.风险函数(故障率):2[1,N]离散均匀分布样本中位数分布-描述统计.nb1 BetaRegularized k N N,1 n,1 n1 k 2&&k N 01k 2 0 k N 1 BetaRegularized k N N,1 n,1 nBetaRegularized 1 k NN,1 n,1 nBetaRegularized 1 k N N ,1 n,1 nk 2&&k N 0True6.矩母函数 MGF :MomentGeneratingFunctionOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,t 7.中心矩母函数 CMGF :CentralMomentGeneratingFunctionOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,t 8.累积量母函数 CGF :CumulantGeneratingFunctionOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,t 9.阶乘矩母函数 FMGF :CharacteristicFunctionOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,t 10.特征函数:CharacteristicFunctionOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,t 11.均值:Mean OrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n 12.中位值:ConditionalExpressionMax 1,Ceiling N InverseBetaRegularized 12,1 n,1 nInverseBetaRegularized1InverseBetaRegularized NTrue13.四分位数列表:[1,N]离散均匀分布样本中位数分布-描述统计.nb3ConditionalExpression Max 1,Ceiling N InverseBetaRegularized 14,1 n,1 nInverseBetaRegularized1InverseBetaRegularized N TrueConditionalExpression Max 1,Ceiling N InverseBetaRegularized 12,1 n,1 nInverseBetaRegularized1InverseBetaRegularized N TrueConditionalExpression Max 1,Ceiling N InverseBetaRegularized 34,1 n,1 nInverseBetaRegularized1InverseBetaRegularized N True14.q分位数:ConditionalExpression Max 1,Ceiling N InverseBetaRegularized q,1 n,1 nInverseBetaRegularized1InverseBetaRegularized N True15.方差:Variance OrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n16.标准差:StandardDeviationOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n17.一、三四分位数间矩:4[1,N]离散均匀分布样本中位数分布-描述统计.nbConditionalExpression 1 N InverseBetaRegularized14,1 n,1 n 1&&InverseBetaRegularized1 N InverseBetaRegularized14,1 n,1 n 0&&InverseBetaRegularized1Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n0 InverseBetaRegularized14,1 n,1 n 1&&InverseBetaRegularizedNMax 1,Ceiling N InverseBetaRegularized14,1 n,1 n0 InverseBetaRegularized14,1 n,1 n 1&&InverseBetaRegularized1Max 1,Ceiling N InverseBetaRegularized34,1 n,1 nInverseBetaRegularized0&&0 InverseBetaRegularize34,1 n,1 n 1NMax 1,Ceiling N InverseBetaRegularized34,1 n,1 nInverseBetaRegularized1&&0 InverseBetaRegularize34,1 n,1 n 1Max 1,Ceiling N InverseBetaRegularized14,1 n,1 nMax 1,Ceiling N InverseBetaRegularized34,1 n,1 n0 InverseBetaRegularized14,1 n,1 n 1&&0 InverseBetaRegularized34,1 n,1 n 10True0 InverseBetaRegularized 34,1 n,1 n 118.偏度系数:Skewness OrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n19.峰度系数:Kurtosis OrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n20.四分偏度系数:1 InverseBetaRegularized1&&InverseBetaRegularize14,1 n,1 n &&InverseBetaRegularized,1 n,1 n 1InverseBetaRegularized0&&InverseBetaRegularize1,1 n,1 n &&[1,N]离散均匀分布样本中位数分布-描述统计.nb54,1 n,1 n &&InverseBetaRegularized12,1 n,1 n Indeterminate InverseBetaRegularized1&&InverseBetaRegularize12,1 n,1 n &&InverseBetaRegularized,1 n,1 n 1InverseBetaRegularized0&&InverseBetaRegularize12,1 n,1 n &&InverseBetaRegularized34,1 n,1 n1 InverseBetaRegularized1&&InverseBetaRegularize12,1 n,1 n &&InverseBetaRegularized,1 n,1 n 1InverseBetaRegularized0&&InverseBetaRegularize12,1 n,1 n &&InverseBetaRegularized34,1 n,1 n ComplexInfinity InverseBetaRegularized1&&InverseBetaRegularize14,1 n,1 n &&InverseBetaRegularized,1 n,1 n 1InverseBetaRegularized0&&InverseBetaRegularize14,1 n,1 n &&InverseBetaRegularized3 4,1 n,1 n1 2N Max 1,Ceiling N InverseBetaRegularized 14,1 n,1 n 1 Max 1, Ceiling N InverseBetaRegularized1 4,1 n,1 n0 InverseBetaRegularized14,1 n,1 n 1&&InverseBetaRegularized0&&InverseBetaRegularized2 N Max 1,Ceiling N InverseBetaRegularized 1,1 n,1 n N Max 1,0 InverseBetaRegularized14,1 n,1 n 1&& InverseBetaRegularized1&&6[1,N]离散均匀分布样本中位数分布-描述统计.nbConditionalExpression4,1 n,1 n N Max 1,Ceiling N InverseBetaRegularized14,1 n,1 nInverseBetaRegularized1&&InverseBetaRegularized11 N 1 N 2Max 1,Ceiling N InverseBetaRegularized12,1 n,1 nInverseBetaRegularized14,1 n,1 n 1&&InverseBetaRegularized0&&0 InverseBetaRegularize12,1 n,1 n 1 11 N 1 N 2Max 1,Ceiling N InverseBetaRegularized12,1 n,1 nInverseBetaRegularized14,1 n,1 n 0&&InverseBetaRegularized1&&0 InverseBetaRegularize12,1 n,1 n 11 Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n 2Max 1,Ceiling N InverseBetaRegularized12,1 n,1 n 1 Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n0 InverseBetaRegularized14,1 n,1 n 1&&InverseBetaRegularized0&&0 InverseBetaRegularize12,1 n,1 n 1N Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n 2Max 1,Ceiling N InverseBetaRegularized12,1 n,1 n N Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n0 InverseBetaRegularized14,1 n,1 n 1&&InverseBetaRegularized1&&0 InverseBetaRegularize12,1 n,1 n 11 2N Max 1,Ceiling N InverseBetaRegularized34,1 n,1 n 1 Max 1,Ceiling N InverseBetaRegularized34,1 n,1 nInverseBetaRegularized0&&0 InverseBetaRegularize34,1 n,1 n 1&&InverseBetaRegularized 2 N Max 1,Ceiling N InverseBetaRegularized34,1 n,1 n N Max 1,Ceiling N InverseBetaRegularized34,1 n,1 nInverseBetaRegularized1&&0 InverseBetaRegularize34,1 n,1 n 1&&InverseBetaRegularized 2 Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n Max 1,Ceiling N InverseBetaRegularized0 InverseBetaRegularized14,1 n,1 n 1&&0 InverseBetaRegularized3,1 n,1 n 1&&[1,N]离散均匀分布样本中位数分布-描述统计.nb7Ceiling N InverseBetaRegularized34,1 n,1 n Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n Max 1,Ceiling N InverseBetaRegularized 34,1 n,1 n4,1 n,1 n 1&&InverseBetaRegularized2N Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n Max 1,Ceiling N InverseBetaRegularized 34,1 n,1 n Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n Max 1,Ceiling N InverseBetaRegularized 34,1 n,1 n0 InverseBetaRegularized14,1 n,1 n 1&&0 InverseBetaRegularized 34,1 n,1 n 1&&InverseBetaRegularized1 2Max 1,Ceiling N InverseBetaRegularized12,1 n,1 n Max 1,Ceiling N InverseBetaRegularized 34,1 n,1 n1 Max 1,Ceiling N InverseBetaRegularized34,1 n,1 nInverseBetaRegularized0&&0 InverseBetaRegularize34,1 n,1 n 1&&0 InverseBetaRegularized12,1 n,1 n 1N 2Max 1,Ceiling N InverseBetaRegularized12,1 n,1 n Max 1,Ceiling N InverseBetaRegularized 34,1 n,1 nN Max 1,CeilingN InverseBetaRegularized34,1 n,1 nInverseBetaRegularized1&&0 InverseBetaRegularize34,1 n,1 n 1&&0 InverseBetaRegularized12,1 n,1 n 1Max 1,Ceiling N InverseBetaRegularized 14,1 n,1 n 2Max 1,Ceiling N InverseBetaRegularized12,1 n,1 n Max 1,Ceiling N InverseBetaRegularized34,1 n,1 n Max 1,Ceiling N InverseBetaRegularized14,1 n,1 n Max 1,Ceiling N InverseBetaRegularized34,1 n,1 nTrue&&8 [1,N]离散均匀分布样本中位数分布-描述统计.nb0 InverseBetaRegularized 12,1 n,1 n 1&&0 InverseBetaRegularized 34,1 n,1 n 121.r 阶原点矩矩:Moment OrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,r 22.r 阶中心矩:CentralMomentOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,r 23.r 阶阶乘矩:FactorialMomentOrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,r 24.r 阶累积量:Cumulant OrderDistribution DiscreteUniformDistribution 1,N ,1 2n ,1 n ,r 25.信息熵:k 1NLogBetaRegularized 1Nk N ,1 n,1 n BetaRegularized k N,1 n,1 n k 1&&k1 BetaRegularized 11N,1 n,1 n k 1&&k BetaRegularized 1N,1 n,1 n k 1&&k 0True[1,N]离散均匀分布样本中位数分布-描述统计.nb9。
06离散型连续型随机变量的分布
dx
18
注意要点
x
(2)从几何上看定义中的 F( x) f (t)dt y F (x) = P {X ≤ x }
o
x
x
(3)密度函数不是唯一的。
因为改变 f (x) 在个别点上的函数值,不会改 变分布函数 F(x) 的值。
19
2、概率密度函数的性质:
2、概率密度函数的性质:
(1) f ( x) 0;
P{X 0}, P{X 1}, P{X 2}
7
(3)P{ X 1} F ( 1 ) 0.6
2
2
P{1 X 3} F ( 3) F ( 1 ) 0.9 0.6 0
P{1 X 2} P{X 1} P{X 2} 0.4
8
1、(0-1)分布
二、常见的离散型分布
分布列为: X 0
1
P 1 p p
2、二项分布
2、二项分布
在独立试验概型中,进行 n 次重复试验时 A 发生 k 次的概率已知为:
Pn (k ) Cnk pk (1 p)nk (k 0,1, 2, ..., n)
如果用随机变量 X 表示 A 发生的次数,则 X 的可 能取值为:k = 0, 1, 2, …, n ,相应的分布律为:
1、(0-1)分布
若随机变量 X 只取两个值 x0 和 x1 ,并且
已知 P{ X x0 } 1 p, P{X x1} p,
称随机变量 X 服从两点分布。
特别:若 x0 0, x1 1, 则称为(0-1)分布。
其分布律为:P{ X k} pk (1 p)1k , (k 0,1)
k!
则称 X 服从参数为λ的泊松(Poisson)分布。
记为: X ~ ( ), 容易验证:
统计学第3章数据分布特征描述
3.分析现象之间的依存关系。 如研究劳动者文化程度与收入的关系。
4.(数值)平均指标是推断统计中的重要 统计量,是进行统计推断的基础。
几种常见的位置特征数
N
MH
N
i 1
1
1 xi
wi
wi
i 1
N
i 1
1 xi
wi
N
wi
i 1
MH
1 N1
N N1
i1 xi i1 xi
N
k0:几何平均数 加权
N
M G i 1w i x 1 w 1x2 w 2 xN w N
简单
M G N x 1x 2 x N
fi
i1
i 1(xifi)254 674 58 012 1110 % 01.7 1%
n(xifi) i1 xi
1 2% 6 56 1 4% 0 75 1 4% 2 80 10350
(四)几何平均数(Geometric mean)
简单几何平均数— n个变量值连乘积的n次方根。
n(xi x)2 min
i1
性质(3)证明:
(三)调和平均数(Harmonic mean)
调和平均数,也称倒数平均数。 各变量值倒数(1/xi)的算术平均数的倒数。 计算公式为:
n
xHx11m1x12m12... x1nmn
m1m2... mn
m1m2 ... mn
与单项式分组资料一样,采用加权算术平均数计算。
第二章数理统计基本概念11
, Xn)
定义 为了准确地进行判断,对抽样有所要求:
① 代表性:样本的每个分量 X i 与总体X 有相同的
分布函数;
② 独立性:X1, X 2, , X n 为相互独立的随机变量,
满足以上条件的样本 ( X1, X 2, , X n ) 称为来自总体
X 的容量为n 的一个简单随机样本(简称样本)。
样本的一次具体实现 (x1, x2, , xn ) 称为样本值。
2.性质
(1)由定义可见,1 Y n2
F X n1
~F(n2,n1)
(2) X的数学期望为:
E( X ) n2 n2 2
若n2>2
即它的数学期望并不依赖于第一自由度n1.
F 分布的分位点 对于给定的正数
的点
为
称满足条件 分布的上 分位点
表中所给的 都是很小的数,如0.01,0.05等 当 较大时,如0.95,
n
1 n
1
n
D( X )
D( n
i 1
Xi )
n2
D(
i 1
Xi )
1 n2
nD( X
)
D(X ) n
(3) E(S 2 ) D( X )
E
S2
E
1
n
1
n i 1
X
2 i
nX
2
n
1 1
nE
X
2
nE
X
2
n n 1
D X E2 X D X E2 X
n
n 1
且 X 与 Y 独立, 是取自Y的
样本,
分别是这两个样本的均值,
分别是这两个样本的样本方差, 则有
1)
常见的离散型随机变量的概率分布标准版文档
(II) 贝努里概型 和 二项分布 例6 设生男孩的概率为p,生女孩的概率为 q=1-p,令X表示随机抽查出生的4个婴儿 中“男孩”的个数.
我们来求X的概率分布.
X表示随机抽查的4个婴儿中男孩的个数,
生男孩的概率为 p.
男女
X=0 X =1 X =2 X =3 X =4
X的概率分布是:
X可取值0,1,2,3,4.
X()=
1, = 1 0, = 2
例 5 200件产品中,有196件是正品,4
件是次品,今从中随机地抽取一件,若规
定
1, 取到合格品
X()=
0, 取到不合格品
则 P{X=1}=196/200=0.98, P{X=0}=4/200=0.02
故 X服从参数为0.98的两点分布 . 即 X ∼ B(1,0.98).
注: 贝努里概型对试验结果没有等可能 的要求,但有下述要求: (1)每次试验条件相同;
(2)每次试验只考虑两个互逆结果A或 A ,
且P(A)=p ,P(A)1p; (3)各次试验相互独立.
二项分布描述的是n重贝努里试验中出现 “成功”次数X的概率分布.
例8 某类灯泡使用时数在2000小时以上视为正 品.已知有一大批这类的灯泡,其次品率是0.2. 随机抽出20只灯泡做寿命试验,求这20只灯泡 中恰有3只是次品的概率.
X= X1+X2+ +Xn 其密度函数和分布函数常用 和
表示:
~N(0,1)
(IV)、标准正态分布
0,1的正态分布称为标准正态分布.
其密度函数和分布函数常用 (x)和(x)表示:
(x)
1
x2
e2,
x
2
(x) 1
第三章 统计学数据分布特征的描述
测定集中趋势指标的作用
1.反映变量分布的集中趋势和一般水平。
如用平均工资了解职工工资分布的中心,反映职工工资 的一般水平。
2.可用来比较同一现象在不同空间或不同阶段的发 展水平。
不受总体规模大小的影响; 在一定程度上使偶然因素的影响相互抵消。
3.可用来分析现象之间的依存关系。
如研究劳动者的文化程度与收入的关系。
社会经济统计中所应用的调和平均数通常是加权算 术平均数的变形。
已知各组变量值 xi 和(xi fi)而缺乏 fi 时,加权算 术平均数通常可变形为调和平均数形式来计算。
例3-4
解:
n
n
xi fi (xi fi )
x i1
i1
256 475 480
1211 100% 11.7%
x f! 1
x2 f2
... xk fk
x fi n i 1
fi i
i1
适用于各个变量值之间存在连乘积关系的场合。
主要用于计算现象的平均发展速度; 也适用于对某些具有环比性质的比率求平均。
例3-5
某企业产品的加工要顺次经过前后衔接的五道工序。本月该 企业各加工工序的合格率分别为88%、85%、90%、92%、 96%,试求这五道工序的平均合格率。
第三章 数据分布特征的描述
第一节 统计变量集中趋势的测定 第二节 统计变量离散程度的测定 第三节 变量分布的偏度与峰度 第四节 利用Excel计算描述统计
指标
第一节 统计变量集中趋势的 测定
一 测定集中趋势的指标及其作用 二 数值平均数 三 众数与中位数
一、测定集中趋势的指标及 其作用
集中趋势(Central tendency)
12 22800 0.120
概率论-离散型随机变量及其分布律、分布函数
4. 泊松分布
设随机变量X的分布律为 P{X k} ke , k 0,1,2,,
k!
其中 0是常数.则称 X 服从参数为的泊松分
布,记为 X ~ π().
通常在n很大,p很小时,用泊松分布近似代替二项分布, 简称泊松近似。
Cnk
pk (1 p)nk
k e
k!
,
其中 np ,可查表 p247 得到泊松分布的概率。
(2) n 重伯努利试验
伯努利资料
设试验 E 只有两个可能结果: A 及 A,则称 E 为伯努利试验. 设 P( A) p (0 p 1),此时P( A) 1 p.
将 E 独立地重复地进行n 次,则称这一串重 复的独立试验为n 重伯努利试验.
实例1 抛一枚硬币观察得到正面或反面的情况. 若将硬币抛 n 次,就是n重伯努利试验.
3
4
0.0625 0.0625
例2 随机变量 X 的概率分布律如下,求常数 c
X01 2
1
1
3
pk
c 2
c 4
c 8
3
解:∵ pk 1,
k 1
即 1c 1c 3c 1
248
∴
c8 9
例3 设随机变量 X 的概率分布律如下,
X 0 1 23 4 5 6 pk 0.1 0.15 0.2 0.3 0.12 0.1 0.03
分析:这是不放回抽样.但由于这批元件 的总数很大, 且抽查元件的数量相对于元 件的总数来说又很小,因而此抽样可近似 当作放回抽样来处理. 把检查一只元件是否为一级品看成是一次试 验, 检查20只元件相当于做20 重伯努利试验.
解: 以 X 记 20 只元件中一级品的只数,
则 X ~ b(20, 0.2), 因此所求概率为
均匀分布方差公式推导
均匀分布方差公式推导均匀分布方差,又称秩和型方差,是生物统计学中常用的概率模型,它能够描述某种现象或事件出现的频率分布状态。
讨论均匀分布方差的推导,应从数理统计的角度出发,首先关注方差的概念、性质,确定它的定义及应用,然后从均匀分布的定义和实现入手,最后得到均匀分布方差的推导公式。
一、方差的概念、性质方差,是指位置离散程度的度量,它的本质是一个实数,可以形象地表示数据集中元素偏离平均值的程度。
方差可以用来在数据集中出现的频率分布上发现数值范围,以及说明数据集中数据离散程度。
方差的定义:设数据集中有n组数据,期望值$E(x)=frac{1}{n}sum_{i=1}^n x_i$,其方差可以表示为:$sigma^2=E[(x-E(x))^2]=frac{1}{n}sum_{i=1}^n (x_i-E(x))^2$,即样本方差的定义。
方差的性质:方差的基本性质有三条:(1)非负性:方差的值不可以为负,即$sigma^2geq 0$;(2)尺度不变性:数据集中发生所有数值的变化时,方差的值也会发生相应的改变;(3)一致性:每次重复实验的方差值结果都应该相同。
二、均匀分布的定义和实现均匀分布,是一种经典的数据分布模型,它表示某种现象出现的频率分布,其特点是元素各自出现的概率相等,即该分布的概率密度函数为常数,可以用数学公式$f(x)=frac{1}{b-a}$表达,其中a为均匀分布的下界,b为均匀分布的上界。
均匀分布的实现:一般用随机数(Random Number)方法来实现。
随机数方法是一种使用计算机程序模拟生成均匀分布值序列的方法。
计算机程序中可以定义一定范围内(a,b)的整数序列,让程序模拟抛硬币或掷骰子等随机操作,从而在该范围内生成均匀分布序列。
三、均匀分布方差公式推导均匀分布方差,也称秩和型方差,是描述某种现象或事件出现的频率分布的概率分布模型,常用于生物统计学中。
在均匀分布条件下,样本空间是固定的,取值范围是a到b,样本容量为n,每个样本取值的概率均为$frac{1}{n}$,则方差的推导公式记为:$sigma^2=frac{b-a}{n}frac{n+1}{12}$。
13种常见的统计分布ppt课件
属性
✓ 连续型分布 ✓ 用于描述以方向、位置、周期性(环形)时间、角度等为测度
单位的数字特征
应用
✓ 医学领域内一些现象是以方向或时间度量,具有周期性特点, 如某疾病在一年内各月份的发生数、胎儿在一昼夜间各时点 分娩的频度
✓ 有些数据本身就是以角度来表示:如脑电阴图的上升角,气 象环境的风向玫瑰图
✓ 这些数据不能用通常的均数、标准差描述
1 二项分布 Binomial Distribution
应用 条件
✓ 各观察单位只能具有相互对立的一种结果,如阳性或阴 性,生存或死亡等,属于两分类资料
✓ 已知发生某一结果(阳性)的概率为π,其对立结果的概 率为1-π,实际工作中要求π是从大量观察中获得比较稳 定的数值。
✓ n次试验在相同条件下进行,且各个观察单位的观察结果 相互独立,即每个观察单位的观察结果不会影响到其他观 察单位的结果。如要求疾病无传染性、无家族性等。
9 F分布 F Distribution
属性
✓ 连续型分布 ✓ 用于方差Γ分布 Γ Distribution or Gamma Distribution
属性
✓ 连续型分布 ✓ 正偏态分布,常用于正偏态分布的拟合
11 圆形分布 Circular Distribution
5 均匀分布 Uniform Distribution
属性
✓ 连续型分布 ✓ 数值计算的误差分析 ✓ 任意分布的随机数
理解
✓ 均匀分布在自然情况下极为罕见,而人工栽培的有一定株 行距的植物群落即是均匀分布
✓ 均匀,表示可能性相等的含义
6 正态分布 Normal Distribution
属性
✓ 连续型分布 ✓ 自然界、人类社会、心理和教育中大量现象均按正态形式分布,
[1,N]离散均匀分布样本最小值分布-描述统计
1,N 离散均匀分布样本最小值分布基于Wolfram Mathematica9,下表给出了 1,N 区间内离散均匀分布DU 1,N 样本最小值的概率密度(质量)函数、累积分布函数、累积分布函数、逆生存函数、风险函数(故障率)、矩母函数 MGF 、中心矩母函数 CMGF 、累积量母函数 CGF 、阶乘矩母函数 FMGF 、特征函数的计算和结果表达式,均值、中位值、众数、四分位数列表、q分位数、方差、标准差、一三四分位数间矩、偏度系数、峰度系数、四分偏度系数、r阶原点矩、r阶中心矩、r阶阶乘矩、r阶累积量、信息熵等描述性统计量的计算和结果表达式。
In[53]:=dist DiscreteUniformDistribution 1,N ;dist1 OrderDistribution dist,n ,1"1.概率密度(质量)函数:"PDF dist1,k"2.累积分布函数:"CDF dist1,k"3.生存(可靠性)函数:"SurvivalFunction dist1,k"4.逆生存函数:"InverseSurvivalFunction dist1,q"5.风险函数(故障率):"HazardFunction dist1,k"6.矩母函数 MGF :"MomentGeneratingFunction dist1,t"7.中心矩母函数 CMGF :"CentralMomentGeneratingFunction dist1,t"8.累积量母函数 CGF :"CumulantGeneratingFunction dist1,t"9.阶乘矩母函数 FMGF :"CharacteristicFunction dist1,t"10.特征函数:"CharacteristicFunction dist1,t"11.均值:"Mean dist1"12.中位值:"Median dist1"13.四分位数列表:"Quartiles dist1"14.q分位数:"Quantile dist1,q"15.方差:"Variance dist1"16.标准差:"StandardDeviation dist1"17.一、三四分位数间矩:"InterquartileRange dist1"18.偏度系数:"Skewness dist1"19.峰度系数:"Kurtosis dist1"20.四分偏度系数:"QuartileSkewness dist1"21.r阶原点矩矩:"Moment dist1,r"22.r阶中心矩:"CentralMoment dist1,r"23.r阶阶乘矩:"FactorialMoment dist1,r"24.r阶累积量:"Cumulant dist1,r"25.信息熵:"Sum PDF dist1,k Log PDF dist1,k , k,1,NOut[54]=OrderDistribution DiscreteUniformDistribution 1,N ,n ,1 Out[55]= 1.概率密度(质量)函数:Out[56]= 1 kN n 1 1N k N n k 1&&k N 0 N n k N 0&&k 1 0k N 0 k 1 1 N n k 1&&k N 0 1 1 1N n TrueOut[57]= 2.累积分布函数:Out[58]=1 1 Floor kN n1 k N 1k N0TrueOut[59]= 3.生存(可靠性)函数:Out[60]=1k 1 N Floor k N n1 k N 0TrueOut[61]= 4.逆生存函数:Out[62]=ConditionalExpression Max 1,Ceiling N 1 q1n 0 q1n 1N q1n 01True,0 q1n 1Out[63]= 5.风险函数(故障率):2[1,N]离散均匀分布样本最小值分布-描述统计.nbOut[64]=1 k N Nn1 k 2&&k N 01k 2 0 k N 1 1 k N Nn11 k N Nn1k N Nnk 2&&k N 00TrueOut[65]= 6.矩母函数 MGF :Out[66]=MomentGeneratingFunctionOrderDistribution DiscreteUniformDistribution 1,N ,n ,1 ,t Out[67]=7.中心矩母函数 CMGF :Out[68]=CentralMomentGeneratingFunctionOrderDistribution DiscreteUniformDistribution 1,N ,n ,1 ,t Out[69]=8.累积量母函数 CGF :Out[70]=CumulantGeneratingFunctionOrderDistribution DiscreteUniformDistribution 1,N ,n ,1 ,t Out[71]=9.阶乘矩母函数 FMGF :Out[72]=CharacteristicFunctionOrderDistribution DiscreteUniformDistribution 1,N ,n ,1 ,t Out[73]=10.特征函数:Out[74]=CharacteristicFunctionOrderDistribution DiscreteUniformDistribution 1,N ,n ,1 ,t Out[75]=11.均值:Out[76]=Mean OrderDistribution DiscreteUniformDistribution 1,N ,n ,1 Out[77]=12.中位值:Out[78]=ConditionalExpressionMax 1,Ceiling 1 2 1 n N 0 1 2 1 n 111 2 1 n 0NTrue,0 2 1 n 1Out[79]=13.四分位数列表:Out[80]=ConditionalExpressionMax 1,Ceiling 1 34N 0 1 341n 111 341n 0NTrue,0341n1 ,ConditionalExpressionMax 1,Ceiling 1 2 1 n N 0 1 2 1 n 111 2 1 n 0NTrue,0 2 1 n 1 ,ConditionalExpressionMax 1,Ceiling 1 4 1 n N 0 1 4 1 n 111 4 1 n 0NTrue,0 4 1 n 1[1,N]离散均匀分布样本最小值分布-描述统计.nb3Out[81]=14.q 分位数:Out[82]=ConditionalExpressionMax 1,Ceiling N 1 1 q 1n 0 1 1 q 1n 111 1 q 1n0NTrue,0 1 q 1n 1Out[83]=15.方差:Out[84]=Variance OrderDistribution DiscreteUniformDistribution 1,N ,n ,1 Out[85]=16.标准差:Out[86]=StandardDeviation OrderDistribution DiscreteUniformDistribution 1,N ,n ,1 Out[87]=17.一、三四分位数间矩:Out[88]=ConditionalExpression1 Max 1,Ceiling N 341n N341n 1&&41n 11 Max 1,Ceiling N 4 1 nN341n1&&41n 1 Max 1,Ceiling N 341nN Max 1,Ceiling N4 1 nN341n1&&41n 10True,0341n1&&0 4 1 n 1Out[89]=18.偏度系数:Out[90]=Skewness OrderDistribution DiscreteUniformDistribution 1,N ,n ,1 Out[91]=19.峰度系数:Out[92]=Kurtosis OrderDistribution DiscreteUniformDistribution 1,N ,n ,1 Out[93]=20.四分偏度系数:4 [1,N]离散均匀分布样本最小值分布-描述统计.nbOut[94]=ConditionalExpression 1 34 Indeterminate 34 ComplexInfinity 341 341 Max 1,Ceiling N 34 1n N2Max 1,Ceiling N 2 1 n N1 Max 1,Ceiling N 34 1n N342 Max 1,Ceiling N 34 1n NMax 1,Ceiling N 4 1 n NMax 1,Ceiling N 34 1n N Max 1,Ceiling N 4 1 n N342Max 1,Ceiling N 2 1 n NMax 1,Ceiling N 4 1 n N1 Max 1,Ceiling N 4 1 n N34Max 1,Ceiling N 34 1n N 2Max 1,Ceiling N 2 1 n NMax 1,Ceiling N 4 1 n NMax 1,Ceiling N 34 1n N Max 1,Ceiling N 4 1 n NTrueOut[95]=21.r阶原点矩矩:Out[96]=Moment OrderDistribution DiscreteUniformDistribution 1,N ,n ,1 ,rOut[97]=22.r阶中心矩:Out[98]=CentralMoment OrderDistribution DiscreteUniformDistribution 1,N ,n ,1 ,rOut[99]=23.r阶阶乘矩:Out[100]=FactorialMoment OrderDistribution DiscreteUniformDistribution 1,N ,n ,1 ,rOut[101]=24.r阶累积量:Out[102]=Cumulant OrderDistribution DiscreteUniformDistribution 1,N ,n ,1 ,rOut[103]=25.信息熵:[1,N]离散均匀分布样本最小值分布-描述统计.nb5Out[104]=k 1NLog1k Nn 11Nk Nn k 1&&k N 0N n k N 0&&k 10k N 0 k 1 1 N nk 1&&k N 0 1 1 1Nn True1k Nn 11Nk Nn k 1&&k N 0N n k N 0&&k 10k N 0 k 1 1 N nk 1&&k N 0 1 11Nn True6 [1,N]离散均匀分布样本最小值分布-描述统计.nb。
[N1,N2]离散均匀分布样本最大值分布
离散均匀分布DU N1,N2 样本最大值分布基于Wolfram Mathematica9,下表给出了 N1,N2 区间内离散均匀分布DU N1,N2 样本最大值的概率密度(质量)函数、累积分布函数、生存函数、逆生存函数、风险函数(故障率)、矩母函数 MGF 、中心矩母函数 CMGF 、累积量母函数 CGF 、阶乘矩母函数 FMGF 、特征函数的计算和结果表达式,均值、中位值、众数、四分位数列表、q分位数、方差、标准差、一三四分位数间矩、偏度系数、峰度系数、四分偏度系数、r阶原点矩、r阶中心矩、r阶阶乘矩、r阶累积量、信息熵等描述性统计量的计算和结果表达式。
"四.样本极大值分布:"dist DiscreteUniformDistribution N1,N2 ;dist1 OrderDistribution dist,n ,n ;"1.概率密度(质量)函数:"PDF dist1,k"2.累积分布函数:"CDF dist1,k"3.生存(可靠性)函数:"SurvivalFunction dist1,k"4.逆生存函数:"InverseSurvivalFunction dist1,q"5.风险函数(故障率):"HazardFunction dist1,k"6.矩母函数 MGF :"MomentGeneratingFunction dist1,t"7.中心矩母函数 CMGF :"CentralMomentGeneratingFunction dist1,t"8.累积量母函数 CGF :"CumulantGeneratingFunction dist1,t"9.阶乘矩母函数 FMGF :"CharacteristicFunction dist1,t"10.特征函数:"CharacteristicFunction dist1,t"11.均值:"Mean dist1"12.中位值:"Median dist1"13.四分位数列表:"Quartiles dist1"14.q分位数:"Quantile dist1,q"15.方差:"Variance dist1"16.标准差:"StandardDeviation dist12[N1,N2]离散均匀分布样本最大值分布.nb"17.一、三四分位数间矩:"InterquartileRange dist1"18.偏度系数:"Skewness dist1"19.峰度系数:"Kurtosis dist1"20.四分偏度系数:"QuartileSkewness dist1"21.r阶原点矩矩:"Moment dist1,r"22.r阶中心矩:"CentralMoment dist1,r"23.r阶阶乘矩:"FactorialMoment dist1,r"24.r阶累积量:"Cumulant dist1,r"25.信息熵:"Sum PDF dist,k Log PDF dist1,k , k,N1,N2Clear dist1四.样本极大值分布:1.概率密度(质量)函数:1 k N11 N1 N2 n 11 N1 N2 1 k N11 N1 N2 n k N1 0&&k N2 01 1 11 N1 N2 n k N2 0&&k N1 00k N2 0 k N1 01 11 N1 N2 n k N1 0&&k N2 01 N1 N2 n True2.累积分布函数:1 N1 Floor k 1 N1 N2 n N1 k N21k N20True3.生存(可靠性)函数:1k N11 1 N2 Floor k1 N1 N2 n N1 k N20True4.逆生存函数:ConditionalExpression1 N1 Max 1,Ceiling 1 N1 N2 1 q 1n 0 1 1 q 1n 1N21 1 q 1n 0N1True,0 1 q 1n 1 5.风险函数(故障率):1 k N21 N1 N2 n0 k N1 1&&k N2 01k N1 1 0 k N2 11 k N21 N1 N2 n 1 1 k N21 N1 N2 n1 1 1 k N21 N1 N2 n k N1 1&&k N2 00True6.矩母函数 MGF :MomentGeneratingFunctionOrderDistribution DiscreteUniformDistribution N1,N2 ,n ,n ,t7.中心矩母函数 CMGF :CentralMomentGeneratingFunctionOrderDistribution DiscreteUniformDistribution N1,N2 ,n ,n ,t8.累积量母函数 CGF :CumulantGeneratingFunctionOrderDistribution DiscreteUniformDistribution N1,N2 ,n ,n ,t9.阶乘矩母函数 FMGF :CharacteristicFunctionOrderDistribution DiscreteUniformDistribution N1,N2 ,n ,n ,t10.特征函数:CharacteristicFunctionOrderDistribution DiscreteUniformDistribution N1,N2 ,n ,n ,t11.均值:1 N211 n 1 N1 N2 n BernoulliB 1 n,1 BernoulliB 1 n,2 N1 N212.中位值:ConditionalExpression1 N1 Max 1,Ceiling2 1 n 1 N1 N2 0 2 1 n 1N12 1 n 0N2True,0 2 1 n 113.四分位数列表:[N1,N2]离散均匀分布样本最大值分布.nb3ConditionalExpression1 N1 Max 1,Ceiling 4 1 n 1 N1 N2 0 4 1 n 1N14 1 n 0N2True,0 4 1 n 1 ,ConditionalExpression1 N1 Max 1,Ceiling2 1 n 1 N1 N2 0 2 1 n 1N12 1 n 0N2True,0 2 1 n 1 ,ConditionalExpression 1 N1 Max 1,Ceiling 341n1 N1 N2 0341n1N1 341n 0N2True,0341n114.q 分位数:ConditionalExpression1 N1 Max 1,Ceiling 1 N1 N2 q 1n 0 q 1n 1N1q 1n 0N2True,0 q 1n 115.方差: 1 N1 2 1 N211 n1 N1 N2 nBernoulliB 1 n,1 BernoulliB 1 n,2 N1 N222 1 N12 N1 N2 11 n1 N1 N2 n BernoulliB 1 n,1 BernoulliB 1 n,2 N1 N21 N1 N2 n11 nBernoulliB 1 n,1 BernoulliB 1 n,1 N1 N2 12 n2 BernoulliB 2 n,1 BernoulliB 2 n,1 N1 N2 BernoulliB3 n,1 BernoulliB 3 n,1 N1 N23 n16.标准差:4 [N1,N2]离散均匀分布样本最大值分布.nb1 N1 21 N211 n1 N1 N2 nBernoulliB 1 n,1 BernoulliB 1 n,2 N1 N222 1 N12 N1 N2 11 n1 N1 N2 n BernoulliB 1 n,1 BernoulliB 1 n,2 N1 N21 N1 N2 n11 nBernoulliB 1 n,1 BernoulliB 1 n,1 N1 N2 12 n 2 BernoulliB 2 n,1 BernoulliB 2 n,1 N1 N2 13 n BernoulliB 3 n,1 BernoulliB 3 n,1 N1 N2 13 nBernoulliB 3 n,1 BernoulliB 3 n,2 N1 N217.一、三四分位数间矩:ConditionalExpression1 N1 N2 Max 1,Ceiling 341n1 N1 N21 N1 N2 Max 1,Ceiling 4 1 n 1 N1 N2Max 1,Ceiling 341n 1 N1 N2 Max 1,Ceiling 4 1 n 1 N1 N2018.偏度系数: 1 N1 321 N211 n1 N1 N2 nBernoulliB 1 n,1 BernoulliB 1 n,2 N1 N233 1 N1 22 N1 N211 n1 N1 N2 n BernoulliB 1 n,1 BernoulliB 1 n,2 N1 N23 1 N1 1 N1 N2 n11 nBernoulliB 1 n,1 BernoulliB 1 n,1 N1 N212 n 2 BernoulliB 2 n,1 BernoulliB 2 n,1 N1 N2 13 n BernoulliB 3 n,1 BernoulliB 3 n,1 N1 N213 nBernoulliB 3 n,1 BernoulliB 3 n,2 N1 N2 31 N211 n1 N1 N2 n BernoulliB 1 n,1 BernoulliB 1 n,2 N1 N21 N12 2 1 N1 2 N1 N211 n1 N1 N2 n BernoulliB 1 n,1 BernoulliB 1 n,2 N1 N2[N1,N2]离散均匀分布样本最大值分布.nb51 N1 N2 n11 nBernoulliB 1 n,1 BernoulliB 1 n,1 N1 N212 n 2 BernoulliB 2 n,1 BernoulliB 2 n,1 N1 N2 13 n BernoulliB 3 n,1 BernoulliB 3 n,1 N1 N2 13 nBernoulliB 3 n,1 BernoulliB 3 n,2 N1 N21 N1 N2 n11 nBernoulliB 1 n,1 BernoulliB 1 n,1 N1 N212 n 3 BernoulliB 2 n,1 BernoulliB 2 n,1 N1 N2 13 n 3 BernoulliB 3 n,1 BernoulliB 3 n,1 N1 N2 14 nBernoulliB 4 n,1 BernoulliB 4 n,1 N1 N214 nBernoulliB 4 n,1 BernoulliB 4 n,2 N1 N21 N1 21 N211 n1 N1 N2nBernoulliB 1 n,1 BernoulliB 1 n,2 N1 N222 1 N1 2 N1 N211 n1 N1 N2 n BernoulliB 1 n,1 BernoulliB 1 n,2 N1 N21 N1 N2 n11 nBernoulliB 1 n,1 BernoulliB 1 n,1 N1 N212 n 2 BernoulliB 2 n,1 BernoulliB 2 n,1 N1 N2 13 n BernoulliB 3 n,1 BernoulliB 3 n,1 N1 N2 13 nBernoulliB 3 n,1 BernoulliB 3 n,2 N1 N23 219.峰度系数: 1 N1 431 N211 n1 N1 N2 nBernoulliB 1 n,1 BernoulliB 1 n,2 N1 N244 1 N1 32 N1 N211 n1 N1 N2 n BernoulliB 1 n,1 BernoulliB 1 n,2 N1 N26 1 N1 2 1 N1 N2 n11 nBernoulliB 1 n,1 BernoulliB 1 n,1 N1 N212 n2 BernoulliB 2 n,1 BernoulliB 2 n,1 N1 N26 [N1,N2]离散均匀分布样本最大值分布.nb13 n BernoulliB 3 n,1 BernoulliB 3 n,1 N1 N213 nBernoulliB 3 n,1 BernoulliB 3 n,2 N1 N2 61 N211 n1 N1 N2nBernoulliB 1 n,1 BernoulliB 1 n,2 N1 N221 N12 2 1 N1 2 N1 N2 11 n1 N1 N2 n BernoulliB 1 n,1 BernoulliB 1 n,2 N1 N21 N1 N2 n11 nBernoulliB 1 n,1 BernoulliB 1 n,1 N1 N212 n 2 BernoulliB 2 n,1 BernoulliB 2 n,1 N1 N2 13 n BernoulliB 3 n,1 BernoulliB 3 n,1 N1 N2 13 nBernoulliB 3 n,1 BernoulliB 3 n,2 N1 N24 1 N1 1 N1 N2 n11 nBernoulliB 1 n,1 BernoulliB 1 n,1 N1 N212 n 3 BernoulliB 2 n,1 BernoulliB 2 n,1 N1 N2 13 n 3 BernoulliB 3 n,1 BernoulliB 3 n,1 N1 N2 14 n BernoulliB 4 n,1 BernoulliB 4 n,1 N1 N214 nBernoulliB 4 n,1 BernoulliB 4 n,2 N1 N2 41 N211 n1 N1 N2 n BernoulliB 1 n,1 BernoulliB 1 n,2 N1 N21 N1 3 3 1 N1 22 N1 N2 11 n1 N1 N2 n BernoulliB 1 n,1 BernoulliB 1 n,2 N1 N23 1 N11 N1 N2 n11 nBernoulliB 1 n,1 BernoulliB 1 n,1 N1 N212 n 2 BernoulliB 2 n,1 BernoulliB 2 n,1 N1 N2 13 n BernoulliB 3 n,1 BernoulliB 3 n,1 N1 N213 nBernoulliB 3 n,1 BernoulliB 3 n,2 N1 N21 N1 N2 n11 nBernoulliB 1 n,1 BernoulliB 1 n,1 N1 N212 n3 BernoulliB 2 n,1 BernoulliB 2 n,1 N1 N2[N1,N2]离散均匀分布样本最大值分布.nb713 n 3 BernoulliB 3 n,1 BernoulliB 3 n,1 N1 N2 14 n BernoulliB 4 n,1 BernoulliB 4 n,1 N1 N2 14 nBernoulliB 4 n,1 BernoulliB 4 n,2 N1 N21 N1 N2 n11 nBernoulliB 1 n,1 BernoulliB 1 n,1 N1 N212 n4 BernoulliB 2 n,1 BernoulliB 2 n,1 N1 N213 n6 BernoulliB 3 n,1 BernoulliB 3 n,1 N1 N2 14 n 4 BernoulliB 4 n,1 BernoulliB 4 n,1 N1 N2 15 n BernoulliB 5 n,1 BernoulliB 5 n,1 N1 N2 15 n BernoulliB 5 n,1 BernoulliB 5 n,2 N1 N21 N1 21 N211 n1 N1 N2nBernoulliB 1 n,1 BernoulliB 1 n,2 N1 N222 1 N1 2 N1 N211 n1 N1 N2 n BernoulliB 1 n,1 BernoulliB 1 n,2 N1 N21 N1 N2 n11 nBernoulliB 1 n,1 BernoulliB 1 n,1 N1 N212 n 2 BernoulliB 2 n,1 BernoulliB 2 n,1 N1 N2 13 n BernoulliB 3 n,1 BernoulliB 3 n,1 N1 N2 13 nBernoulliB 3 n,1 BernoulliB 3 n,2 N1 N2220.四分偏度系数:8 [N1,N2]离散均匀分布样本最大值分布.nbConditionalExpression 1 34 Indeterminate 34 ComplexInfinity 341 N1 N2 Max 1,Ceiling 34 1n 1 N1 N22Max 1,Ceiling 2 1 n 1 N1 N21 N1 N2 Max 1,Ceiling 34 1n 1 N1 N2341 342 2N1 2N2 Max 1,Ceiling 34 1n 1 N1 N2 Max 1,Ceiling 4 1 n 1 N1 N2Max 1,Ceiling 34 1n 1 N1 N2Max 1,Ceiling 4 1 n 1 N1 N2341 N1 N2 2Max 1,Ceiling 2 1 n 1 N1 N2 Max 1,Ceiling 4 1 n 1 N1 N21 N1 N2 Max 1,Ceiling 4 1 n 1 N1 N234Max 1,Ceiling 34 1n 1 N1 N22Max 1,Ceiling 2 1 n 1 N1 N2Max 1,Ceiling 4 1 n 1 N1 N2Max 1,Ceiling 34 1n 1 N1 N2Max 1,Ceiling 4 1 n 1 N1 N2True21.r阶原点矩矩:Moment OrderDistribution DiscreteUniformDistribution N1,N2 ,n ,n ,r22.r阶中心矩:CentralMoment OrderDistribution DiscreteUniformDistribution N1,N2 ,n ,n ,r 23.r阶阶乘矩:FactorialMoment OrderDistribution DiscreteUniformDistribution N1,N2 ,n ,n ,r 24.r阶累积量:Cumulant OrderDistribution DiscreteUniformDistribution N1,N2 ,n ,n ,r[N1,N2]离散均匀分布样本最大值分布.nb9"25.信息熵:"k N1N2Log1 k N11 N1 N2n11 N1 N21 k N11 N1 N2nk N1 0&&k N2 01 111 N1 N2nk N2 0&&k N1 00k N2 0 k N1 0 111 N1 N2n k N1 0&&k N2 0 1 N1 N2 nTrue11 N1 N2N1 k N20True10 [N1,N2]离散均匀分布样本最大值分布.nb。
数学基础-概率论01(离散型分布)
数学基础-概率论01(离散型分布)⽬录:1.离散型1.1 单点分布单点分布(one-point distribution)亦称⼀点分布,或称退化分布,是⼀种最简单的离散型分布。
假如随机变量X仅取数值a,即P{X=a}=1,则称随机变量X服从单点分布或退化分布。
单点分布的均值E(x)=a,⽅差Var(x)=0。
如果随机变量X有有限均值和零⽅差,则随机变量X服从单点分布。
概率函数:$$P(x)= \begin{cases} {1}, & \text {x=a} \\ 0, & \text{x!=a} \end{cases}$$期望值$E(X)=a$;⽅差 $Var(X)=0$特点:该分布下数据衡等于a1.2 两点分布两点分布( two-point distribution)即“伯努利分布”或者0-1分布,是⼀个离散型概率分布。
在⼀次试验中,事件A出现的概率为P,事件A不出现的概率为q=1-p概率函数:$$P(x)= \begin{cases} p, & \text {x=a} \\ q, & \text{x=b} \end{cases}$$两点分布的均值$E(X)=pa+qb$,⽅差$V(X)=pq(a-b)^2$。
特点:该分布下数据仅有两个可取值,且任意⼀次随机,取a或b的概率不变1.3 均匀分布离散型均匀分布是⼀个离散型概率分布,其中有限个数值拥有相同的概率,典型的如抛硬币,掷⾊⼦概率密度函数:期望:$E(X)=\int_{-\infty}^{\infty} xf(x) dx=\int_{a}^{b} \frac{x}{b-a}dx=\frac{b-a} {2}$⽅差:$V(X)=\frac {(b-a)^2} {12}$特点:1.4 ⼆项分布⼆项分布就是重复n次独⽴的伯努利试验,在每次试验中只有两种可能的结果,⽽且两种结果发⽣与否互相对⽴,并且相互独⽴,与其它各次试验结果⽆关,事件发⽣与否的概率在每⼀次独⽴试验中都保持不变,则这⼀系列试验总称为n重伯努利实验,当试验次数为1时,⼆项分布服从0-1分布。
数理统计6:泊松分布,泊松分布与指数分布的联系,离散分布参数估计
数理统计6:泊松分布,泊松分布与指数分布的联系,离散分布参数估计前两天对两⼤连续型分布:均匀分布和指数分布的点估计进⾏了讨论,导出了我们以后会⽤到的两⼤分布:β分布和Γ分布。
今天,我们将讨论离散分布中的泊松分布。
其实,最简单的离散分布应该是两点分布,但由于在上⼀篇⽂章的最后,提到了Γ分布和泊松分布的联系,因此本⽂从泊松分布出发。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:泊松分布简介泊松分布是⼀种离散分布,先给出其概率分布列。
若X∼P(λ),则P(X=k)=λkk!e−λ,k=0,1,⋯它的取值是⽆限可列的。
为什么泊松分布会与指数分布、Γ分布有联系呢?这是因为,它们三个都是随机事件发⽣的⼀种描述。
实际上,指数分布的参数λ是⼀种速率的体现,它刻画了随机事件发⽣的速率。
⽽指数分布随机变量的取值,就代表某⼀事件在⼀定的速率下发⽣的时刻距离计时原点的长度。
Y∼E(λ),就代表Y对应的事件事件的发⽣速率是λ,所以平均发⽣时间就在在1/λ处。
这也可以作为E(Y)=1/λ的⼀种解释。
指数分布具有⽆记忆性,这与随机事件的发⽣相似,即已经发⽣历史事件对未来不产⽣影响,⽤数学语⾔说就是P(Y>s+t|Y>s)=P(Y>t)。
这指的是,如果⼀个事件平均会在s时间后发⽣,但是⽬前经过了t时间还没有发⽣,则事件的平均发⽣时间就移动到t+s时间后。
它不会因为你已经等了t时间,就会更快地发⽣。
⽽如果把n个独⽴同分布于E(λ)指数分布随机变量相加,得到的⾃然就是恰好发⽣k个事件的平均时间,这个时间Z∼Γ(n,λ),本质还是⼀种时间的度量。
但Z就不具有⽆记忆性了,这是因为,经过t时间后可能已经发⽣了n−1个事件就差最后⼀个没有发⽣,也可能⼀个事件都没发⽣还需要n个才能凑齐。
泊松分布则刚好相反,指数分布和Γ分布都是限定了发⽣次数,对发⽣时间作度量;泊松分布则是限定了时间1,求随机事件在这⼀段时间内发⽣的次数服从的概率分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
;
2
[1,N]离散均匀分布.nb
InterquartileRange dist "18.偏度系数 :" Skewness dist "19.峰度系数 :" Kurtosis dist "20.四分偏度系数 :" QuartileSkewness dist "21.r阶原点矩 :" Moment dist, r "22.r阶中心矩 :" CentralMoment dist, r "23.r阶阶乘矩 :" FactorialMoment dist, r "24.r阶累积量 :" Cumulant dist, r "25.信息熵:" Assuming N 1 && N Integers,
离散均匀分布 DU 1, N
基于 Wolfram Mathematica 9, 下表给出了 1, N 区间内离散均匀分布 DU 1, N 的概率密度 (质量) 函数、累积分布函数 、 累积分布函数 、逆生存函数 、风险函数 (故障率)、矩母函数 MGF 、中心矩母函数 CMGF 、 累积量母函数 CGF 、阶乘矩母函数 FMGF 、特征函数的计算和结果表达式 ,均值、中位值、众数、 四分位数列表 、q分位数、方差、标准差、一三四分位数间矩 、偏度系数 、峰度系数 、四分偏度系数 、 r阶原点矩 、r阶中心矩 、r阶阶乘矩 、r阶累积量 、信息熵等描述性统计量的计算和结果表达式 。 一、计算表达式 :
True
1 r FactorialPower 1,r 1 N r FactorialPower 1 N,r N 1 r
r
0
0 24.r阶累积量:
1 N 2 1 Nr BernoulliB r r
True
r
1 0 && r 2
Mod r, 2 True
0 25.信息熵: Log N
HurwitzZeta r,1
1 2
N 2 Max 1, Ceiling 2 3N Max 1, Ceiling 4 Max 1, Ceiling
3N 4
Bernou
1 N N HurwitzZeta r,
1 N 2
0 0 && Mod r, 2 0
r
0 23.r阶阶乘矩:
5.风险函数(故障率):
1 1 k N
1
k
N
0
True MGF :
6.矩母函数
[1,N]离散均匀分布.nb
3
t
1 N t
1
t
N
7.中心矩母函数 CMGF :
1 2
1 N t
t t
1 N t
1
N
8.累积量母函数 CGF :
t 1 N t t
Log 1 N
9.阶乘矩母函数 FMGF :
t t t Nt
15.方差: 1 1 12 16.标准差: 1 2 N2 3 N2
4
[1,N]离散均匀分布.nb
17.一、三四分位数间矩: N Max 1, Ceiling 4 18.偏度系数: 0 19.峰度系数: 3 3 5 1 4 N2 Max 1, Ceiling 4 3N
20.四分偏度系数: N Max 1, Ceiling 4 N Max 1, Ceiling 4 21.r阶原点矩: BernoulliB 1 r, 1 N 1 22.r阶中心矩: 1
Sum PDF dist, k Log PDF dist, k
, k, 1, N
二、输出结果 :
1.概率密度(质量)函数:
1 N
1
k
N
0
True
2.累积分布函数:
Floor k N
1
k
N
1 0
k N True
3.生存(可靠性)函数: 1
N Floor k N
k 1
1 k N
0
True
4.逆生存函数: ConditionalExpression Max 1, Ceiling N 1 N 1 q 0 q q 0 True 1 ,0 q 1
1
N
10.特征函数:
t t t Nt
1 11.均值: 1 2 N
N
12.中位值: N Max 1, Ceiling 2 13.四分位数列表: N Max 1, Ceiling 4 14.q分位数: ConditionalExpression Max 1, Ceiling N q 1 N 0 q q 0 True 1 ,0 q 1 , Max 1, Ceiling 2 N , Max 1, Ceiling 4 3N
dist DiscreteUniformDistribution 1, N "1.概率密度 (质量)函数 :" PDF dist, k "2.累积分布函数 :" CDF dist, k "3.生存(可靠性)函数:" SurvivalFunction dist, k "4.逆生存函数 :" InverseSurvivalFunction dist, q "5.风险函数 (故障率):" HazardFunction dist, k "6.矩母函数 MGF :" MomentGeneratingFunction dist, t "7.中心矩母函数 CMGF :" CentralMomentGeneratingFunction dist, t "8.累积量母函数 CGF :" CumulantGeneratingFunction dist, t "9.阶乘矩母函数 FMGF :" CharacteristicFunction dist, t "10.特征函数 :" CharacteristicFunction dist, t "11.均值 :" Mean dist "12.中位值 :" Median dist "13.四分位数列表 :" Quartiles dist "14.q分位数 :" Quantile dist, q "15.方差 :" Variance dist "16.标准差 :" StandardDeviation dist "17.一、三四分位数间矩 :"