最新概率论与数理统计复习笔记
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计复习
第一章 概率论的基本概念
一.基本概念
随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.
必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算
1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.
2.A ∪B(和事件)事件A 与B 至少有一个发生.
3. A ∩B=AB(积事件)事件A 与B 同时发生.
4. A -B(差事件)事件A 发生而B 不发生.
5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.
6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .
运算规则 交换律 结合律 分配律 德•摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质
1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;
(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),
P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质
(1) P(Φ) = 0 , 注意: A P(A)=0 .
(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,
P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .
(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n
()()()
()
+∑
+
∑
-
∑=≤<<≤≤<≤=n
k j i k j i n
j i j i n
i i n A A A P A A P A P A A A P 111
21Y ΛY Y
…+(-1)n-1P(A 1A 2…A n )
四.等可能(古典)概型
1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.
2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率
1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).
2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).
P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)=()()i n
i i B A P B P ∑=1
当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()
∑==n
i i i i i i B A P B P B A P B P A P AB P 1
. 六.事件的独立性
1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .
(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立. 2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立. 3.n 个事件A 1,A 2,…,A n ,如果对任意k (1 ()()()() k k i i i i i i A P A P A P A A A P ΛΛ2 1 2 1 =,则称这n 个事件A 1,A 2,…,A n 相互独立. 第二章 随机变量及其概率分布 一.随机变量及其分布函数 1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量. 2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为: (1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1 1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞ =k k p . 2.离散型随机变量的分布函数 F(x)=∑≤x X k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点, 其跳跃值为p k =P{X=x k } . 3.三种重要的离散型随机变量的分布 (1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0 (2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()k n k p p k n --⎪⎪⎭ ⎫ ⎝⎛1(k=0,1,2,…,n) (0 λ-e k k ! (k=0,1,2,…) (λ>0) 三.连续型随机变量 1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x ⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).