初中数学教程绝对值
人教版七年级数学绝对值——绝对值的定义和性质课件
总结
知2-讲
若几个非负数的和为0,则这几个数都为0.
知2-练
1 绝对值最小的数是________;绝对值最小的负整数 是________.
2 如果 a- 1 +|b-1|=0,那么a+b=( )
2
A.- 1
2
B. 1
2
C. 3
总结
知2-讲
本题运用了巧用非负性技巧,考查了非负数的性质, 该性质可巧记为“0+0=0”,可以推广为:如果几个非 负数的和为0,那么这几个非负数均为0.
知2-讲
【例5】已知 a-2 + b-1 =0 ,求a、b的值.
导引:因为 | a-2 | 和 | b-1 | 都是非负数,所以| a-2 | 0 , | b-1 | 0,又 | a-2 |+| b-1 |=0 ,所以a -2 =0 , b-1=0.
15 ,0,- 3 ,-3 1 ,-4.5,-5.
4
2
2
导引: 15 是正数,它的绝对值是它本身;0 的绝对值是0 , 4
- 3,-3 1 ,-4.5,-5都是负数,它们的绝
2
2
对值是它们的相反数.
解:15 15 ; 0 0; - 3 3 ; -3 1 3 1 ;
44
22 2 2
-4.5 4.5; 5 5.
2
D.1
知2-练
3 写出下列各式的值,并回答问题.
1 15 = ______,2.5 = _____,2 = _____;
3
2 -15 = ______,-2.5 = _____,- 2 = _____;
3
3由以上可以看出:当a 是正数时,a ______ 0 ;
七年级数学《绝对值》教案【优秀6篇】
七年级数学《绝对值》教案【优秀6篇】数学《绝对值》教案篇一●教学内容七年级上册课本11----12页1.2.4绝对值●教学目标1、知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2、过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。
通过应用绝对值解决实际问题,体会绝对值的意义。
3、情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备多媒体课件●教学过程一、创设问题情境1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。
若规定向右为正,则A处记作__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型1、绝对值的概念(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5.注意:①与原点的关系②是个距离的概念2、。
绝对值ppt课件
做数的绝对值,记作
01 知识解读
单步训练
原点
− 在数轴上表示_______的点到_______的距离,
-12
且距离为_______,所以
− =_______
12
12
原点
− 在数轴上表示_______的点到_______的距离,
且距离为_______,所以 −
=_______
4
4
距离为_______,所以
=_______
注意
绝对值是求数轴上某点到原点
距离的运算
02
方法展示
02 方法展示
【示例1】化简下列各数:
=_____
− +
−
2020
=_____43;
【示例2】如果 = ,则 =_______
-2020
=_____
A、±
B、
C、−
③
2018
=_____
D、
二
绝对值比较大小
目录
CONTENTS
01
方法展示
02
实战演练
01
方法展示
01 方法展示
【示例1】数轴上A、B两点表示的数分别是−、−
−的绝对值是_____,−的绝对值是_____
4
3
在数轴中标出点A、B的位置,并比较它们的大小:_____
所以 + =_____
1
01 方法展示
总结
02
实战演练
02 实战演练
例5 若 − + + + + = ,求、、的值
练5.1 若 − + + − = ,则 + =_____
七年级绝对值知识点总结
七年级绝对值知识点总结在初中数学中,绝对值是一个重要的概念,也是许多数学题目必不可少的一部分。
本文将对七年级绝对值的基础知识进行总结。
一、什么是绝对值绝对值是一个数与0之间的距离,因此它的值永远是正数。
用符号表示则为|a|,a为任意一个实数,则当a≥0时,|a|=a当a<0时,|a|=-a二、绝对值的运算法则1.绝对值与加减运算对于任意实数a,b,则①|a+b|≤|a|+|b|②|a-b|≥|a|-|b|特别地,当a,b同号时①式改为|a+b|=|a|+|b|;当a,b异号时,②式改为|a-b|=|b|-|a|2.绝对值与乘法运算对于任意实数a,b,则|ab|=|a|·|b|特别地,若a,b的符号相同,则|a|·|b|=ab,反之,|a|·|b|=-ab3.绝对值与除法运算对于任意a≠0,b≠0,则|a/b|=|a|/|b|三、绝对值的应用1. 解绝对值方程对于任意实数a,则|a|=b的解为a=b或a=-b,即把|a|看作一个未知数,转换为一元一次方程求解,得到方程的解即为绝对值方程的解。
例如,|2x-3|=7,可转化为2x-3=7和2x-3=-7两个方程,解得x=5和x=-2.2. 求绝对值大小根据绝对值的定义及运算法则,可以求出有关绝对值的大小。
例如,|3-8|=|-5|=5,|5·(-6)|=|-30|=30。
3. 比较大小根据绝对值的定义,对于任意实数a,b,有|a|>|b|,当且仅当a>b或a<-b。
例如,比较|-5|和|3|,由于|-5|>-3,因此|-5|>|3|。
四、绝对值相关的常用不等式1.柯西-施瓦茨不等式对于任意n个实数a1,a2,…… ,an和b1,b2,……,bn,有|(a1b1+a2b2+……+anbn)|≤√(a1²+a2²+……+an²)√(b1²+b2²+……+ bn²)2. 三角不等式对于任意两个实数a,b,则|a+b|≤|a|+|b|3. 平均值不等式对于任意n个正数a1,a2,……,an,则(a1+a2+……+an)/n ≥ √(a1·a2·……·an)五、总结本文主要总结了七年级数学中绝对值的基础知识及运算法则,并介绍了绝对值在方程求解、大小比较、不等式证明等方面的应用。
七年级数学上《绝对值》知识解析
《绝对值》知识解析
课标要求
理解绝对值的含义,会求一个数的绝对值,理解绝对值的几何定义和代数定义。
知识结构
1.绝对值的几何意义:数轴上表示数a的点到原点的距离叫做这个数a的绝对值,它是一个数的几何特征,利用一个数的绝对值的几何意义可以直观地将数和点联系起来.更有利于研究它的性质.
2.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
3.任给一个有理数,求它的绝对值.
内容解析
教材首先通过实例提出决定一个数不仅是符号,还有它到原点的距离---绝对值,然后利用数轴提出绝对值的几何意义——数轴上表示数a的点到原点的距离叫做这个数a的绝对值,在数轴上研究不同类别的数的绝对值,归纳总结出绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.从而使学生学会求一个数的绝对值,了解有理数的绝对值的特征.
重点难点
本节的重点是正确理解绝对值的定义,能求一个数的绝对值.难点是正确理解一个数的绝对值的几何定义和代数定义.
教法导引
利用数轴引导学生观察绝对值的几何意义,总结绝对值的代数意义,通过数形结合,启发、诱导、讨论的方法学会找一个数的绝对值.
学法建议
联系生活实际,利用类推,归纳,相互讨论的方式来学习绝对值.。
七年级数学《绝对值》教案【优秀9篇】
七年级数学《绝对值》教案【优秀9篇】学习难点: 篇一绝对值的综合运用绝对值教案篇二绝对值教学目标:通过数轴,使学生理解绝对值的概念及表示方法1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力教学重点:理解绝对值的概念、意义,会求一个数的绝对值教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。
通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。
教学过程:一、创设情境,复习导入。
今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。
(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?① 千米,千米;②()×升。
在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。
这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。
你还能举出其他类似的例子吗?。
小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈。
[初中数学]绝对值+课件++人教版数学七年级上册
(2)a,b表示任意有理数,若|a|=|b|,则a与b之间有什么关 系? 解:a=±b.
19 一条直线流水线上有5个机器人,它们站的位置在数轴 上依次用点A1,A2,A3,A4,A5表示,如图所示.
(1)站在点___A_1上的机器人表示的数的绝对值最大,站 在点__A_和2 点___A_5,点___A_3和点___A上4 的机器人到原点 的距离分别相等;
7 (7) --72 =_2_;
(2) -(-1)=_1__; (4) -|-11|=__-__1_1_; (6) +|-20|=__2_0_;
(8) |-3.1|+|1.9|=__5_.
绝对值的应用 6.一只蚂蚁从某点P出发在一条直线上来回爬行,假定向右爬行的路 程记为正,向左爬行的路程记为负,爬行的各段路程依次为(单位: 米): +5,-4,+10,-8,-5,+12,-10. 若蚂蚁共用了9分钟完成上面的路程,那么蚂蚁每分钟走多少路程?
14 下列各式中,等号不成立的是( D )
A. |-5|=5 B.-|-4|=-|4| C. |-3|=3 D.-|-2|=2
15 若a与1互为相反数,则|a+2|等于( C ) A. 2 B.-2 C.1 D.-1
16 如图,已知数轴上A,B两点表示的数分别是a,b,则 计算|b|-|a|正确的是( C ) A. b-a B.a-b C.a+b D.-a-b
17.若 a,b 都是非零的有理数,那么|aa|+|bb|的值是多少? 解:当 a>0,b>0 时,|aa|+|bb|=2;
当 a,b 异号时,|aa|+|bb|=0;
当 a<0,b<0 时,|aa|+|bb|=-2.
综上所述,|aa|+|bb|的值是±2 或 0.
1.|-6|=( B ) A.-6 C.-16
初中数学 实数的绝对值是什么
初中数学实数的绝对值是什么实数的绝对值是该实数到零点的距离。
绝对值是一个非负数,表示一个数距离零点的远近。
我们将详细介绍实数的绝对值的定义、性质以及一些常见的应用。
1. 绝对值的定义:对于实数a,它的绝对值表示为|a|,定义如下:-如果a ≥ 0,那么|a| = a。
-如果a < 0,那么|a| = -a。
绝对值的定义可以简单地理解为将实数a 的符号去掉,得到非负数。
2. 绝对值的性质:-非负性:对于任意实数a,|a| ≥ 0。
-非负数的绝对值:对于任意非负数a,|a| = a。
-负数的绝对值:对于任意负数a,|a| = -a。
-三角不等式:对于任意实数a 和b,有|a + b| ≤ |a| + |b|。
绝对值的性质可以帮助我们在解决问题时进行推导和运算。
尤其是三角不等式,它是计算绝对值之和的一个重要不等式。
3. 绝对值的应用:-距离:绝对值可以表示两个实数之间的距离。
例如,|x -y| 表示实数x 和y 之间的距离。
-求解方程和不等式:绝对值经常在方程和不等式的求解中出现。
通过解绝对值方程和不等式,我们可以找到使得方程或不等式成立的实数解。
-求解最大最小值:在一些问题中,我们需要求解一组实数中的最大值或最小值。
通过绝对值和相关的不等式,我们可以确定最大最小值的范围。
实数的绝对值是一个非负数,表示一个数距离零点的远近。
它的定义简单明了,它的性质使得我们在解决问题时能够进行推导和运算。
在实际应用中,绝对值经常出现在计算距离、求解方程和不等式以及求解最大最小值等问题中。
通过熟练掌握绝对值的概念和性质,我们能够更好地理解和应用实数的绝对值。
初中数学绝对值教案
初中数学绝对值教案初中数学绝对值教案「篇一」学习目的1.使学生理解相反数的意义;2.给出一个数,能求出它的相反数;3.理解绝对值的意义,熟悉绝对值符号;4.给一个数,能求它的绝对值。
教学重点、难点:1.理解掌握双重符号的化简法则。
2.能正确理解绝对值在数轴上表示的意义。
教学过程一、交流与发现:1.相反数的概念:首先,咱们来画一条数轴,然后在数轴上标出下列各点:3和-3,1.6和-1.6,请同学们观察:(1)上述这两对数有什么特点?(2)表示这两对数的数轴上的点有什么特点?(3)请你再写出同样的几对点来?同学们通过观察思考可以总结出以下几点:(1)上面的这两对数中,每一对数,只有符号不同。
(2)这两对数所对应的点中每一组中的两个点,一个在原点的左边,一个在原点的右边,而且离开原点的`距离相同。
练一练:请同学们举出几个相反数的例子(强调)我们还规定:0的相反数是0说明:(1)注意理解相反数定义中“只有”的含义。
(2)相反数是相对而言的,即如果6是-6的相反数,则-6也是6的相反数,因而相反数全是成对出现的。
(3)两个互为相反数的数在数轴上的对应点(除0外),在原点的两旁,并且距离原点距离相等的两个点,至于0的相反数是0的几何意义,可理解为这两点距离原点都是零。
二、典型例题例(1)分别指出9和-7的相反数;解:由相反数的定义可知:(1)9的相反数是-9,-7的相反数是7;(2)-2.4是2.4的相反数。
同学们思考交流,老师最后讲解,学生交流得出:一个正数的相反数是一个负数,而一个负数的相反数是一个正数。
三、实验与探究同学们观察数轴比思考下列问题(1)数轴上表示有理数5,2,0.5的点到原点的距离各是多少?(2)数轴上表示有理数-5,-2,-0.5的点到原点的距离各是多少?(3)数轴上表示0的点到原点的距离是多少?学生思考回答,老师引导总结出绝对值的定义:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
七年级数学《绝对值》教案精选3篇
七年级数学《绝对值》教案精选3篇七年级数学《绝对值》教案篇一一、教学目标:1.知识目标:①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2.能力目标:①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3.情感目标:①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点教学重点:绝对值的几何意义和代数意义,以及求一个数的`绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法启发引导式、讨论式和谈话法四、教学过程(一)复习提问问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?(二)新授1.引入结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。
2.数a的绝对值的意义①几何意义一个数a的绝对值就是数轴上表示数a的点到原点的距离。
数a的绝对值记作|a|。
举例说明数a的绝对值的几何意义。
(按教材P63的倒数第二段进行讲解。
)强调:表示0的点与原点的距离是0,所以|0|=0。
指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。
七年级数学《绝对值》教案篇二各位专家领导:你们好!今天我说课的内容是人教版七年级上册1、2、4 绝对值内容。
首先,我对本节教材进行一些分析:一、教材分析(说教材):(一)、教材所处的地位与作用:本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1、2、4 节内容。
绝对值ppt课件
课本例题
例1 求下列各数的绝对值:
求一个数的绝对值的方法:
15
1
- ,+ ,-4.75,10.5.
2
10
解:
15
−
2
15
= ,
2
1
+
10
=
去掉绝对值符号时,必须按照“先
1
,
10
−4.75 = 4.75, 10.5 =10.5.
判后去”的原则,先判断这个数是
正数、0或负数,再根据绝对值的
值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离.
试探索:(1)|5-(-2)|= 7
.
(2)探索猜想:对于任意有理数 x ,| x -(-6)|+| x -3|是否有最小值?
如果有,求出最小值;如果没有,说明理由.
【解】对于任意有理数 x ,| x -(-6)|+| x -3|有最小值.因为| x -(-6)|
【解】点 A3向左移动2个单位长度到达 A2点,再向右移动6个单位长度到
达 A5点.
(3)若原点是零件供应点,则5个机器人分别到达供应点取货的总路程是多
少?
【解】|-4|+|-3|+|-1|+|1|+|3|=12.
答:5个机器人分别到达供应点取货的总路程是12.
分层练习-拓展
15. [新考法 特例猜想法]同学们都知道,|5-(-2)|表示5与-2之差的绝对
A. x ≤2
B. x <2
| a |= a ;当 a < 0时,| a |=- a ;当 a =0时,
C. x ≥2
D. x >2
| a |= a =- a ,所以当 a ≤0时,| a |=- a .
初中数学绝对值归纳总结
初中数学绝对值归纳总结绝对值是数学中的一种基本概念,它代表一个数与零的距离,无论这个数是正数、负数还是零。
在初中数学中,绝对值是一个重要的知识点,掌握绝对值的性质和运算规律对于解决数学问题至关重要。
本文将对初中数学中绝对值的相关知识进行归纳总结,分为以下几个方面进行阐述。
一、绝对值的定义及性质绝对值的定义:对于任意实数x,其绝对值表示为|x|,|x|的值等于x 与0之间的距离,即|x|=x(x≥0),|x|=-x(x<0)。
绝对值的性质:1. 非负性:对于任意实数x,|x|≥0。
2. 同号性:如果实数a和b同号,则|a|=|b|。
3. 零性:只有当实数a等于0时,|a|=0。
4. 正负性:对于任意非零实数a,有|-a|=|a|。
二、绝对值的运算1. 绝对值的加减法:对于任意实数a和b,有|a+b|≤|a|+|b|和|a-b|≥||a|-|b||。
2. 绝对值的乘法:对于任意实数a和b,有|ab|=|a|·|b|。
三、绝对值的应用1. 解绝对值不等式:对于绝对值不等式|ax+b|<c(a≠0,b、c为已知实数),可分解为一个以x为中心的两个线性不等式,并通过解这两个线性不等式得到解集。
2. 求绝对值平均:对于给定的一组数x₁、x₂、⋯、xₙ,求它们的绝对值平均等于求这组数的绝对值之和除以数的个数。
3. 应用于坐标系:在二维坐标系中,点(x, y)到原点的距离等于√(x²+y²),可以看作是x和y的绝对值之和。
四、绝对值的常见错误1. 错误地交换了绝对值与幂运算的顺序,导致运算结果错误。
2. 误认为|x+y|=|x|+|y|,在绝对值的加法运算中,需要注意其结果不一定等于各绝对值之和。
3. 忽略了绝对值的非负性,得出错误的结论。
绝对值作为数学中常见的概念之一,在初中阶段的数学学习中扮演着重要的角色。
通过深入理解绝对值的定义、性质和运算规律,掌握解决绝对值相关问题的方法和技巧,能够帮助学生在数学学习和解题过程中更加灵活和高效。
初中数学绝对值知识点
初中数学绝对值知识点一、绝对值的定义。
1. 几何定义。
- 在数轴上,表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
例如,在数轴上表示5的点到原点的距离是5,所以|5| = 5;表示-3的点到原点的距离是3,所以| - 3|=3。
2. 代数定义。
- 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
即当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。
例如,|7| = 7,| -2|=-(-2)=2。
二、绝对值的性质。
1. 非负性。
- 任何数的绝对值都是非负数,即| a|≥slant0。
例如,| - 5| = 5≥slant0,|0| = 0。
2. 互为相反数的两个数绝对值相等。
- 若a与b互为相反数,即a=-b,那么| a|=| b|。
例如,3与-3互为相反数,|3|=| - 3| = 3。
3. 绝对值相等的两个数可能相等或互为相反数。
- 若| a|=| b|,则a = b或a=-b。
例如,若| x| = 5,则x = 5或x=-5。
三、绝对值的运算。
1. 简单的绝对值计算。
- 根据绝对值的定义进行计算。
例如:- 计算| - 8|,因为-8<0,根据代数定义| - 8|=-(-8)=8。
- 计算|3 - π|,因为π≈3.14>3,即3-π<0,所以|3 - π|=π - 3。
2. 含有绝对值的方程。
- 例如| x| = 2,根据绝对值的性质可知x = 2或x=-2。
- 对于方程|2x - 1| = 3,则2x - 1 = 3或2x - 1=-3。
- 当2x - 1 = 3时,2x=4,解得x = 2。
- 当2x - 1=-3时,2x=-2,解得x=-1。
3. 含有绝对值的不等式。
- 对于不等式| x|<3,根据绝对值的几何定义,它表示在数轴上到原点的距离小于3的点对应的数,所以-3 < x < 3。
数学初一的绝对值的知识点总结及题型
数学初一的绝对值的知识点总结及题型
绝对值是初中数学中一个非常基础的概念,也是数学中一个非常重要的概念。
以下是初一数学中绝对值的知识点总结及题型:
1. 定义:绝对值是一个数与0的距离,表示为“|x|”。
2. 性质:
(1)|x| ≥ 0;
(2)|x| = |−x|;
(3)|xy| = |x|·|y|;
(4)|x/y| = |x|/|y|。
3. 计算方法:
(1)对于整数,绝对值即为其本身的值;
(2)对于小数,绝对值即为去掉小数点的数;
(3)对于分数,绝对值即为分子分母同时去掉正负号后的值。
4. 应用题型:
(1)求绝对值:给定一个数,求其绝对值。
例如:|−5|=5。
(2)比较大小:比较两个数的绝对值大小。
例如:|−5|>|3|。
(3)绝对值方程:给定一个含有绝对值的方程,求解未知数。
例如:|x+2|=5。
(4)绝对值不等式:给定一个含有绝对值的不等式,求
解未知数。
例如:|x+2|<7。
5. 注意事项:
(1)在进行绝对值计算时,需要注意符号的变化;
(2)绝对值的性质可以用来简化计算和证明不等式;
(3)绝对值的应用题型需要根据题目的具体情况进行分析和解答。
绝对值是初一数学中一个非常基础的概念,也是数学中一个非常重要的概念。
掌握好绝对值的知识点,可以帮助学生更好地理解数学知识,提高数学成绩。
初中数学 正数和负数的绝对值是什么
初中数学正数和负数的绝对值是什么在初中数学中,我们经常会碰到正数和负数的绝对值的概念。
正数和负数的绝对值是指一个数与零之间的距离,它表示了一个数的大小而没有方向性。
下面我将详细解释正数和负数的绝对值的定义、性质以及应用。
1. 正数的绝对值:对于一个正数a,它的绝对值等于它本身,即|a| = a。
例如,|3| = 3,|5| = 5。
2. 负数的绝对值:对于一个负数b,它的绝对值等于它的相反数,即|b| = -b。
例如,|-2| = 2,|-7| = 7。
3. 绝对值的定义:绝对值符号"|" 表示绝对值,当我们对一个数取绝对值时,无论这个数是正数还是负数,都会得到一个非负数。
绝对值的定义可以用如下的数学表达式表示:如果a ≥ 0,那么|a| = a;如果a < 0,那么|a| = -a。
4. 绝对值的性质:-非负性:对于任何实数a,|a| ≥ 0。
-正数的绝对值:正数的绝对值等于它本身,即对于任何正数a,|a| = a。
-负数的绝对值:负数的绝对值等于它的相反数,即对于任何负数b,|b| = -b。
-零的绝对值:零的绝对值等于零,即|0| = 0。
-三角不等式:对于任何两个数a 和b,有|a + b| ≤ |a| + |b|,这被称为绝对值的三角不等式。
5. 绝对值的应用:绝对值在数学中和实际生活中都有广泛的应用,例如:-求距离:绝对值可以用来求两个数之间的距离。
例如,一个点的坐标是a,另一个点的坐标是b,它们之间的距离可以表示为|a - b|。
-解不等式:绝对值可以用来解含有绝对值的不等式。
例如,|x - 3| ≤ 5 可以表示x 到3 的距离不超过5 的所有实数解。
-设计问题:绝对值可以用来设计问题,例如计算机图形学中的像素坐标计算,物理学中的速度、加速度计算等。
总结起来,正数和负数的绝对值都是非负数。
正数的绝对值等于它本身,负数的绝对值等于它的相反数。
绝对值在数学中具有重要的性质和应用,它不仅能用于求距离、解不等式等数学问题,还能应用于实际生活中的设计和计算中。
绝对值(一) —— 初中数学第一册教案
绝对值(一)——初中数学第一册教案一、教学目标1.了解绝对值的定义和性质;2.掌握求解绝对值的方法;3.应用绝对值求解实际问题。
二、教学重点1.绝对值的概念;2.求解含有绝对值的方程和不等式。
三、教学内容1. 绝对值的定义和性质1.1 定义绝对值表示一个数与0的距离,用竖线“| |”表示。
对于任意实数a,绝对值的定义如下:|a| = a,若a≥ 0; |a| = −a,若a < 0。
1.2 性质•非负性:对任意实数a,有 |a| ≥ 0;•同号性:若a > 0,则有 |a| = a;若a < 0,则有 |a| = −a;•反对称性:若a≠ 0,则有−|a| ≠ a。
2. 求解含有绝对值的方程和不等式2.1 求解含有绝对值的方程对于形如 |a| = a的方程,可以有以下两种情况:•当a≥ 0时,解方程 |a| = a有两个解:a = a或a= −a;•当a < 0时,解方程 |a| = a无解。
例题1:求解方程 |a| = 3。
解:根据绝对值的定义,|a| = 3 表示a与0的距离为3。
根据性质,可以得到a = 3 或a = −3。
因此,方程 |a| = 3 的解为a = 3 或a = −3。
2.2 求解含有绝对值的不等式对于形如 |a| > a或 |a| < a的不等式,可以有以下情况:•当a > 0时,解不等式 |a| > a或 |a| < a为a > a或a< −a;•当a = 0时,解不等式 |a| > 0 或 |a| < 0 为a≠ 0;•当a < 0时,解不等式 |a| > a或 |a| < a为a∈ ℝ。
例题2:求解不等式 |a| < 2。
解:根据绝对值的定义,不等式 |a| < 2 表示a与0的距离小于2。
根据性质,可以得到−2 < a < 2。
因此,不等式 |a| < 2 的解为−2 < a < 2。
七年级上册数学绝对值知识点总结
七年级上册数学绝对值知识点总结绝对值是七年级数学中的一个基本概念,它在很多数学运算和实际应用中都有重要意义。
绝对值的引入可以帮助学生理解数轴、数与数之间的距离以及负数与正数的关系。
掌握绝对值的概念和性质是进一步学习代数、几何等数学领域的基础。
一、绝对值的定义1.绝对值的概念:绝对值表示一个数与零之间的距离。
每个实数都有一个绝对值,绝对值总是非负的。
2.数学表示:对于任何实数x,绝对值的表示为|x|。
如果x≥0,则|x|=x;如果x<0,则|x|=-x。
二、绝对值的几何意义1.数轴上的表示:在数轴上,任意一点与原点之间的距离就体现了该点的绝对值。
2.距离的计算:绝对值不仅可以用于表示数与零的距离,还可以表示两个数之间的距离。
对于任意两个实数a和b,a与b之间的距离可以表示为|a - b|。
三、绝对值的基本性质1.非负性:对于任何实数x,|x|≥0,表示绝对值永远是非负数。
2.自反性:|x|=0当且仅当x=0。
3.现实性:|x|的值与x的符号无关,只与数的大小有关。
4.乘法性质:|a * b| = |a| * |b|。
5.加法性质:|a + b| ≤ |a| + |b|(三角不等式)。
四、绝对值的运算1.加法运算:对于两个绝对值相加,一定要注意计算哪部分是负数,需要根据具体的数值来判断。
2.减法运算:|a - b|并不等于|a| - |b|,需要根据数的大小关系进行判断。
3.乘法和除法:两数的绝对值相乘或相除时,绝对值的乘法和除法性质仍然成立。
五、绝对值方程1.绝对值方程的定义:包含绝对值的方程,例如|x|=a,其中a为非负数。
2.求解绝对值方程的方法:根据定义,分情况讨论。
例如|x|=3可以分为x=3和x=-3两种情况。
3.抽象方程的解决:复杂的绝对值方程需要通过建立方程或不等式进行逐步求解。
六、绝对值不等式1.绝对值不等式的形式:一般形式为|x|<a、|x|>a。
2. |x|<a:对于这种不等式,解集为-x<a<x。
七年级数学专题绝对值问题的几种解法ppt课件
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
三、零点分段法
说明:本题是求两个绝对值和的问题.解题的关键是如何同时 去掉两个绝对值符号
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
一、直接推理法
说明: 本题是直接利用有理数加法法则和有理数乘法法则确定字母符号
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
二、巧用数轴法
说明:本题是通过数轴,运用数形结合的方法确定字母的大小顺序, 从而达到去掉绝对值的目的.
小结:学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
练习:
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
知识回顾
• 1.去绝对值的符号法则: • 2.绝对值基本性质 • ①非负性:
• 3.绝对值的几何意义 • 从数轴上看, |a|表示数 a的点到原点的距
离(长度,非负); |a-b|表示数a 、数 b的两点 间的距离.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
初中数学绝对值教案(5篇)
初中数学绝对值教案(5篇)初中数学绝对值教案(5篇)通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
下面是小编为大家整理的初中数学绝对值教案,如果大家喜欢可以分享给身边的朋友。
初中数学绝对值教案【篇1】一、素质教育目标(一)知识教学点1、能根据一个数的绝对值表示距离 ,初步理解绝对值的概念。
2、给出一个数,能求它的绝对值。
(二)能力训练点在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力。
(三)德育渗透点1、通过解释绝对值的几何意义,渗透数形结合的思想。
2、从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。
(四)美育渗透点通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美。
二、学法引导1、教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现教为主导,学为主体的教学要求,注意创设问题情境,使学生自得知识,自觅规律。
2、学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)三、重点、难点、疑点及解决办法1、重点:给出一个数会求出它的绝对值。
2、难点:绝对值的几何意义,代数定义的导出。
3、疑点:负数的绝对值是它的相反数。
四、课时安排2课时五、教具学具准备投影仪(电脑)、三角板、自制胶片。
六、师生互动活动设计教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义。
七、教学步骤(一)创设情境,复习导入师:以上我们学习了数轴、相反数。
在练习本上画一个数轴,并标出表示-6,0及它们的相反数的点。
学生活动:一个学生板演,其他学生在练习本上画。
【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-3 -4.5
0
5
0 3.5 0
0
01
二 绝对值的性质及应用
观察与思考
|5|=5 |3.5|= 3.5
|-3|=3
|-4.5|=4.5
|0|=0
…..
|-10|=10 |100|=100 |50|=50 |-5000|=5000
思考: 一个正数的绝对值是什么? 一个负数的绝对值是什么? 0的绝对值是什么?
结论1:一个正数的绝对值是正数. 一个负数的绝对值是正数. 0的绝对值是0.
|a|≥0.
结论2:一个正数的绝对值是它本身. 一个负数的绝对值是它的相反数.
思考: 若字母a表示一个有理数,你知道a的
绝对值等于什么吗?
正数的绝对值是它本身
(1)当a是正数时,|a|=__a__;
(2)当a是负数时,|a|=_-a_; (3)当a=0时,|a|=__0 _.
练一练
判断下列说法是否正确. (1)一个数的绝对值是4 ,则这数是-4. × (2)|3|>0. √ (3)|-1.3|>0. √ (4)有理数的绝对值一定是正数. × (5)若a=-b,则|a|=|b|. √ (6)若|a|=|b|,则a=b. × (7)若|a|=-a,则a必为负数. × (8)互为相反数的两个数的绝对值相等. √
学习目标
1.理解绝对值的概念及性质.(难点、重点) 2.会求一个有理数的绝对值.
导入新课
情境引入
-3 -2 -1 0 1 2 3 4
讲授新课
一 绝对值的意义及求法
合作探究
甲、乙两辆出租车在一条东西走向的街道上行驶,记向
东行驶的里程数为正.两辆出租车都从O地出发,甲车向东行
驶10km到达A处,记作 +10 km,乙车向西行驶10km到达B处,
记做
-1k0m.
以O为原点,取适当的单位长度画数轴,并在数轴上标出
A、B的位置,则A、B两点与原点距离分别是多少?它们的实
际意义是什么?
B
O
A
-10
0
10
我们把一个数在数轴上对应的点到原点的距 离叫做这个数的绝对值,用“| |”表示.
-5到原点的距离是5, 所以-5的绝对值是5, 记做|-5|=5
3.|-1 |的相反数是 3
1 3
;若| a|=2,则a=
__±__2_.
课堂小结
1.数轴上表示数a的点与原点的距离叫做数a的绝对值. 2.绝对值的性质
(1)|a|≥0;
a (2) | a | a
0
(a 0) (a 0) (a 0)
(2)一个数的绝对值等于它的相反数,这个数一定是负数;( )
(3)如果两个数的绝对值相等,那么这两个数一定相等; ( )
(4)如果两个数不相等,那么这两个数的绝对值一定不等;( )
(5)有理数的绝对值一定是非负数;
()
2.__0__的相反数是它本身,_非__负__数__的绝对值
是它本身,_非__正__数__的绝对值是它的相反数.
0到原点的距离是0, 所以0的绝对值是0, 记做|0|=0
4到原点的距离是4,所以 4的绝对值是4,记做 |4|=4
│-5│=5
│4│=4
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
说一说
利用数轴上点到原点的距离口答
|5|= 5 |3.5|= 3.5 |-3|= 3 |-4.5|= 4.5 |0|= 0
例3 若|a|+|b|=0,求a,b的值. 解析:由绝对值的性质可得|a|≥0,|b|≥0.
解:由题意得|a|≥0,|b|≥0,又因为|a|+|b|=0, 所以|a|=0,|b|=0,所以a=0,b=0.
方法归纳:如果几个非负数的和为0,那么这几个非 负数都等于0.
当堂练习
1.判断并改错:
(1)一个数的绝对值等于本身,则这个数一定是正数; ( )
负数的绝对值 是它的相反数
a (a 0) | a | a (a 0)
0 (a 0)
0的绝对值是0
典例精析
例 1 求下列各数的绝对值: -21,+4,0,-7.8.
9
[解析] 判断该数的符号,再根据正数的 绝对值是它本身;负数的绝对值是它的相 反数于0的数是_0__, (2)绝对值等于5.25的正数是_5_._2_5_, (3)绝对值等于5.25的负数是_-_5_._2_5_, (4)绝对值等于2的数是_2_或__-_2__.