幻方的构造方法PPT教学课件
《幻方》教学课件
反射对称法
将奇数阶幻方反射后得到 偶数阶幻方。
递推构造法
通过已知的低阶幻方推导 出高阶幻方,常用的递推 关系有菲波那契数列等。
运用编程语言实现幻方构造
Python实现
使用Python的列表操作 和循环语句实现幻方的构 造。
Java实现
使用Java的数组和循环语 句实现幻方的构造。
C实现
使用C的数组和循环语句 实现幻方的构造。
幻方学习的重要性
幻方是一种具有独特魅力的数学游戏,通过学习可以帮助学生 提高数学兴趣和思维能力。
学习内容回顾
在幻方的学习过程中,学生需要掌握基本的数学原理和方法,如 对称性、组合数学等。
学习收获
通过幻方学习,学生可以提高观察力、逻辑思维和空间想象力等 多方面的能力。
对于幻方研究的展望与建议
深入探究
伪代码描述
给出算法的伪代码描述,以清晰简洁地表达算法 的实现细节。
算法复杂度分析
对算法的时间复杂度和空间复杂度进行分析,说 明算法的效率及可行性。
优化与改进
算法优化
针对现有算法的不足之处,提出相应的优化策略和改进方案,提 高算法的效率和性能。
优化实例
通过具体实例,演示优化后的算法相比原算法的优势和特点。
《幻方》教学课件
2023-11-02
目录
• 幻方简介 • 幻方的基本构造方法 • 幻方的数学原理 • 幻方的计算机实现 • 幻方在实践中的应用 • 总结与展望
01 幻方简介
幻方的定义
幻方是一种将n×n个数字排列成一个正方形,使每行、每列 和对角线上的数字之和均相等,具有神秘色彩的组合图形。
幻方最初由古希腊数学家费尔南德斯发现,被认为是数学与 艺术的完美结合。
幻方的构造方法
幻方的构造方法
幻方的构造方法有很多,如连摆法、德洛涅法、巴舍法、拉丁方阵法、西洛克斯法、杨辉法、卞和法、加尔贝格法、马凯法、常用法等。
连摆法:从幻方最上行中央起,填1,以后每一步都填右上格。
若超出上格线,则移至该列最下格;若超出最右线,则移至该行最左格;若超出顶角,或右上已填数(重叠),则回到原数的下格。
填毕所有空格,即得所求幻方。
德洛涅法:先画出由1至n^2的n×n方格阵,再将1放在第一行的中间一列,从此按以下规则构造幻方:每一个数放在它上一数的右上方,若该位置已有数,则将该数放到它下一数的左方,如此继续下去,直到填满整个方格阵为止。
构造幻方
构造幻方所谓幻方,也教纵横图,就是在n×n的方阵中放入1到n2个自然数:在一定的布局下,其各行、各列和两条对角线上的数字之和正好都相等。
这个和数就叫做“幻方常数”或幻和。
幻方分为奇数阶幻方、偶数阶幻方(单偶阶幻方、双偶阶幻方),下面就这三类幻方的构造分别示范。
奇数阶幻方的经典方法-罗伯奇数阶幻方,也就是3阶、5阶、7阶……幻方,那么如何构造这样的幻方呢?我们可以采取罗伯法(也叫连续摆数法),其法则如下:把“1”放在中间一列最上边的方格中,从它开始,按对角线方向(比如说按从左下到右上的方向)顺次把由小到大的各数放入各方格中,如果碰到顶,则折向底,如果到达右侧,则转向左侧,如果进行中轮到的方格中已有数或到达右上角,则退至前一格的下方。
按照这一法则建立5阶幻方的示例如下图:罗伯法(连续摆数法)的助记口诀:1居上行正中央,依次斜填切莫忘。
上出框界往下写,右出框时左边放。
重复便在下格填,角上出格一个样。
1居上行正中央——数字1放在首行最中间的格子中依次斜填切莫忘——向右上角斜行,依次填入数字上出框界往下写——如果右上方向出了上边界,就以出框后的虚拟方格位置为基准,将数字竖直降落至底行对应的格子中右出框时左边放——同上,向右出了边界,就以出框后的虚拟方格位置为基准,将数字平移至最左列对应的格子中重复便在下格填——如果数字{N}右上的格子已被其它数字占领,就将{N +1}填写在{N}下面的格子中角上出格一个样——如果朝右上角出界,和“重复”的情况做同样处理。
偶数阶幻方的一种制作方法——双偶阶、单偶阶幻方1.双偶阶幻方(中心对称交换法)n为偶数,且能被4整除(n=4,8,12,16,20……)(n=4k,k=1,2,3,4,5……)先说明一个定义。
互补:如果两个数字的和,等于幻方最大数和最小数的和,即n×n+1,称为互补。
先看看4阶幻方的填法:将数字从左到右、从上到下按顺序填写:这个方阵的对角线,已经用颜色标出。
小学数学幻方课件
《三阶幻方》课件
4
3 8
9
2
7 6
5
1
规律2:与中间数对应的上下、左右、 对角两个数字的和=中间数×2
三 阶 幻 方
4 3 8
9
2 7 6
5
1
规律3:角上的数字=对角相邻 的两数字和的一半
三 阶 幻 方
4 3ห้องสมุดไป่ตู้
9 5
2 7
8
1
6
练习1:
17
4
12
6 11 16 10 18 5
练习2:
15
3 12 5
7 10 13 8 17
21
上下对易,左右相更
25 11 4 4 17 10 10 23 24 24 12 5 18 6 6 7 25 13 1 19 20 20 8 21 14 2 2 3 16 16 9 21 22 22 15
5
1
四维挺进
11 4 17
24 12 5
7 25 13
20 8 21
3 16 9
10
23
18
8
9
6
8
1
6
类似的原理可以构造5阶、 7阶、9阶等奇数阶幻方。 下图给出了5阶幻方的构 造过程。
1 6
11 7
2
3
16
21 17
12
13
8
9
4
5
22
23
18
19 24 25
14
15 20
10
25子斜排
25 24 20
11
4 12
7
8
3
16
5
10
17
18 23 6
13
趣味数学-幻方PPT幻灯片.ppt
耆那幻方:
是在印度耆那教寺庙门前一块石牌上刻的,是12 -13世纪的产物。它的任何2×2的方块内的4个数 字和也是34。
5:如何编幻方(幻方的构成)
四阶幻方构成方法
数字依次先排好, 上下中间交叉换, 左右中间交叉换, 其他地方不要变!
原理与步骤:
1 2 34 567 8 9 10 11 12 13 14 15 16
每行每列斜着的三个数的和是否都相等,来判断是不是幻方。
2、填幻方:
1)这只龟姐姐背上的有些图案看不清了,你能帮它 找出来吗?
92
4 3
5
7
81 6
1、利用每一行,每一列,每一条对角线上的 三个数的和相等的特点。
4、填幻方: 2)看!又来了一只龟爷爷,背上的图案缺得 更多了,请你帮帮它好吗?
72 9
27 6 951 438
8 16 357 492
6 72 159 834
2 94 753 618
4 38 753 276
将幻方围绕中心,向右旋转90度一次、二次、三次
向右旋转90度一次、二次、三次后将幻方上下对换。
5:如何编幻方(幻方的构成)
1)三阶幻方构成方法之一
九子斜排 上下对易 左右更替 四维挺出
化
13 14 15 16
练习:填四阶幻方:
把3,4,5,6,…..18这16个数字编成一个四阶幻方.
数字依次先排好, 上下中间交叉换, 左右中间交叉换, 其他地方不要变!
3 4 5 6 42 7 8 9 10 42 11 12 13 14 42
15 16 17 18 42
42 42 42 42
所以 幻和=42
把1,2,3…9这9个数填入3×3的方格里,变成三阶幻方
幻方构造方法
幻方构造方法:(有很多种,这里只举出几种)奇数阶:n=2*m+1,m为自然数1)将数字1填在(0,(n+1)/2) ;要注意c中是从下标0开始2)从左上往右下依次填。
3)由2),列的下标出界(超过n-1)时,行加1,以n为摸的余数为应填的列数;4)由2),行的下标出界(超过n-1)时,列加1,以n为摸的余数为应填的行数;5)由2),行列都未出界,但已添上其他数,应在当前位置左横移一个位置进行填数。
然后是偶数阶:前一种:n=4*m+2, m为自然数1)将n阶方阵分为四个小魔方阵ABCD如下排列:B CD A因为n*n=4*(2*m+1)*(2*m+1),记u=n/2=2*m+1,分为1~u*u,u*u+1~2*u*u,2*u*u+1~3*u*u,3*u*u+1~4*u*u即在调用子函数的时候分别如下面传递参数:A(0),B(u*u),C(2*u*u),D(3*u*u)分别在ABCD中按照前面的填法把奇数阶填好(注意加上所传参数作为基数,每一个元素都要加上这个值),最后做如下交换:(1)B中第0~(m-1)-1行中元素与C中相对应元素交换(2)D中第(n-1)-m+1~(n-1)共m行的每行中的元素与A中相对应元素交换(3)交换D:(u+m,m)与A中对应元素(矩阵中心值)(4)交换D:(n-1,m)与A中对应元素(实际为矩阵最大值n*n)所谓对应位置,指相对于小魔方阵的左顶角的相对的行列位置上面的这些你可以用数学进行证明,利用魔方阵常数(注意n阶的和u阶的关系)后一种:n=4*m,m为自然数因为行列都是4的倍数,因而可以将整个矩阵分为每4*4的小矩阵。
先判断一个数是否在划为4*4小矩阵的对角线上,如果在,则填该位置的数为n*n-i+1(i为该元素的相对位置,从1开始,比如n阶的第s行第t个元素则其i=s*n+t)如果不在,则填上i。
参考资料:/archives/structure/2ae241192e129bc795deb5a721562f3d.php五阶幻方简便算法悬赏分:10 - 解决时间:2008-10-8 19:08五阶幻方简便算法提问者:狐老大- 试用期一级最佳答案五阶幻方10 11 17 23 `422 `3 `9 15 1614 20 21 `2 `81` 7` 13 19 259 `3 22 16 1521 20 14 `8 `213 `7 `1 25 195 `24 18 12 `617 11 10 `4 2317 24 `1 8 1523 `5 `7 14 16`4 `6 13 20 2210 12 19 21 `311 18 25 `2 `9下面这些构造方法都是比较适合于编程的。
探寻神奇的幻方ppt
展望
01
幻方在数学领域的应用
幻方作为一种具有特殊性质的矩阵,在数学领域有着广泛的应用。例
如,幻方可以用于解决一些线性代数、组合数学和图论等问题。
02 03
幻方在其他领域的应用
除了在数学领域的应用外,幻方还被广泛应用于其他领域,如计算机 科学、信息科学、物理学等。这些领域的研究者可以利用幻方的性质 来解决一些与实际生活相关的问题。
负数阶幻方的构造方法
负数阶幻方是一种由(-n)×(-n)个元素组成的正方 形矩阵,其中n为正整数。
中心法:将幻方划分为四个相等的子区域,每个 子区域包含(-n-1)/2×(-n-1)/2个元素。将每个子 区域的中心元素放置在幻方对应位置上,然后按 照规律填充其他元素。
奇数阶幻方构造方法可以扩展到负数阶幻方,只 需将阶数取相反数即可。
幻方可以用于解决组合问题,例如通过构造幻方,可以找到某 些组合问题的最优解。
幻方可以用于研究组合性质,例如通过观察幻方中的数字规律 ,可以揭示出一些组合性质和组合恒等式。
在几何学中的应用
01
几何学是研究形状、大小、位置和变化的数学分支。幻方作为一种几何结构, 在几何学中有着广泛的应用。
02
幻方可以用于研究几何形状的对称性和周期性,例如通过构造具有特定对称性 的幻方,可以找到某些几何形状的最优填充方式。
幻方可以用于研究代数结构和性质,例如通过 观察幻方中的数字规律,可以揭示出一些代数 结构和性质。
05
幻方在其他领域的应用
在计算机科学中的应用
程序设计和编码
幻方可以被用来检测程序的正确性和效率,因为它们具有完美的数学性质。例如 ,程序员可以使用幻方来检测算法的正确性,或者在编写代码时使用幻方来优化 代码结构。
趣味数学课件-幻方
神龟背洛书
神龟背洛书
在公元前23世纪,大 禹治水的时侯,在黄 河支流洛水中,有一 天忽然浮现出一个大 乌龟,当时,大禹与 治水士兵正在河 边观
察洛河水情,商议治理黄河大计,遇 到乌龟在河里上下翻腾十分奇怪。只 见此龟行走水面,游来游去,身形庞 大,甲背平圆。近处仔细观看,
甲背上有9种花点的图案, 大禹让士兵们将图案中的 花点记了下来,带回去作 了认真的研究,他惊奇地 发现9种花点数正巧是, 1—9这9个数,各数的位置排列也相 当奇巧,各线上三数之和皆为15, 既均衡又对称,奇偶交替变化之中似 有一种周转运动之妙,大禹受到启发 ,用此原理治理黄河,获得成功。
而在国外,公元130年,希腊人塞翁 才第一次提起幻方。我国不仅拥用 幻方的发明权,而且是对幻方进行 深入研究的国家。公元13世纪的数 学家杨辉已经编制出3-10阶幻方, 记载在他1275年写的《续古摘厅算 法》一书中。在欧洲,直到574年, 德国著名画家丢功才绘制出了完整 的4阶幻方。
一般地, 将1,2,3...n 2填入到一个n n的表格中 使得 , 每行, 列以及两对角线上的 个数字之和相等 称这 n , 样数表为n阶幻方.
26 21 22 7 12 13 111
19 23 27 10 14 18 111
24 25 20 15 16 11 111
84 84 84 138 138 138
六阶幻方填法
35 3 31 8 30 4 111 35 4 1 32 9 28 5 36 111 32 5 6 7 2 33 34 29 111 2 33 26 21 22 17 12 13 111 17 22 19 23 27 10 14 18 111 14 23 24 25 20 15 16 11 111 11 24 111 111 111 111 111 111 111 111
(参考课件)幻方
耆那幻方是在印度哈周拉合市的 耆那教寺庙门前一块石牌上刻的,是 12-13世纪的产物。它的任何2×2的 方块内的4个数字和也是34。这个幻 方是一个泛对角幻方(完美幻方)。
7 12 1 14 2 13 8 11 16 3 10 5 9 6 15 4
28
五、思考题:
在4×4格中,每行、每列、对
阅读材料:
幻方
1
一、幻方的起源: 幻方是一个高深莫测的数学迷宫
和高智力游戏,起源于《易》,古称 九宫(龟文)或纵横图,后来飘洋过 海,东传日本,西播欧美,有了很大 的发展,又以新的方式传回中国,叫 做幻方。中国的《洛书》中记载了世 界上最古老的幻方。
2
二,即二
12
比比看,谁更快!
下图中已填 入了3至18这16个 数中的一些数, 请将剩下的数填 入空格中,使每 行、每列、每条 对角线上各 数 的和相等。
138 4 5 165 7 183 192 10 11 192 183 14 165 16 17 138
13
3、五阶幻方 第一步:画一 个9×9的方格。 如右斜着填数
16
三 、 美 丽 的 幻 方
17
这幅九阶完美幻圆由1至81自然数列填 成,具有如下组合性质: (1)九条圆半径上各九数之和等于369; (2)九个圆周上各九数之和等于369; (3)九条左旋螺线上各九数之和等于369 ;
它是一个全等组合,即“半径=圆环=螺 线”,因此是一个最优化组合幻圆,堪为 一件稀世珍宝。
3
64 法 9 7 5一
10 8
11
6 11 4 579 10 3 8
6
4 92 35 7
81 6
6 11 4
法 二
579
幻方ppt课件
偶数阶幻方的构造方法
偶数阶幻方中最常用的是四阶和八阶幻方。四阶幻方的构 造方法是将1放在第一行中间,然后按顺序将其它数字填入 ,每行从左到右填入数字,每列也从左到右填入数字,保 证每个数字都不重复。
单人幻方游戏
九宫格幻方
将1至9的数字填入3x3的九宫格中,使得每行、每 列以及对角线的数字之和都相等。
16格幻方
将数字1至16填入4x4的方格中,使得每行、每列 、两条对角线以及四个角落的数字之和都相等。
25格幻方
将数字1至25填入5x5的方格中,使得每行、每列 、两条对角线以及四个角落的数字之和都相等。
奇数阶幻方
由奇数个数字组成的幻方,通常为3×3、5×5等。这类幻 方构造相对简单,但也有一定的难度。
偶数阶幻方
由偶数个数字组成的幻方,如4×4、6×6等。这类幻方构 造较为复杂,需要遵循一定的规律和技巧。
广义幻方
不仅限于数字,还可以用字母、符号等代替数字,甚至可 以是非线性的矩阵。这类幻方更加灵活多变,具有更广泛 的用途。数学中的规律美 Nhomakorabea规律之美
幻方中的数字按照一定的规律排 列,这种规律美是数学中非常重
要的美学特征之一。
逻辑之美
幻方的构造过程需要遵循一定的 逻辑,这种逻辑美也是数学中非
常重要的美学特征之一。
统一之美
幻方中的数字虽然千变万化,但 都遵循着统一的规律和逻辑,这 种统一美也是数学中非常重要的
美学特征之一。
数学中的逻辑美
多人幻方挑战赛
团队赛
01
多个团队同时进行幻方挑战,以最快完成且符合规则的团队为
做好的小学幻方第一节优质PPT
它们是幻方么?你怎样来判别? 它们是幻方么?你怎样来判别? 它们是幻方么?你怎样来判别?
35 7
龟背上的图案代表了几个不同的数,人们称它为“幻方”。
每一行,每一列,每一条对角线上的三个数的和,有什么特点? 把龟背上的这些数填到表格中,你能发现什么?
8 16
公元前三千多年,有条洛河经常发大水,皇帝夏禹带领百姓去治理洛河,这时,从水中浮起一只大乌龟,背上有奇特的图案。
幻方
492
357
816
492 357 816 15 15 15
8+5+2= 15 4+9+2= 15 3+5+7= 15 8+1+6= 15 4+5+6= 15
练习一 它们是幻方么?你怎样来判别?
20
15
2 6 7 15
8 1 6 15
8 4 3 15
3 5 7 15
9 1 5 15
4 9 2 15
每一行,每一列,每一条对角线上的三个数的和,有什么特点?
公元前三千多年,有条洛河经常发大水,皇帝夏禹带领百姓去治理洛河,这时,从水中浮起一只大乌龟,背上有奇特的图案。
它们是幻方么?你怎样来判别?
它们是幻方么?你怎样来判别?
公元前三千多年,有条洛河经常发大水,皇帝夏禹带领百姓去治理洛河,这时,从水中浮起一只大乌龟,背上有奇特的图案。
幻方
故事引入:
公元前三千多年,有条洛河经常发大水,皇帝夏禹带 领百姓去治理洛河,这时,从水中浮起一只大乌龟,背上 有奇特的图案。
龟背上的图案是 什么意思呢?
龟背上的图案代表了几个不同的数, 人们称它为“幻方”。
探究一
把龟背上的这些数填到表格中,你能发现
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一居上行正中央, 依次斜填切莫忘, 上出格时往下填, 右出格时左边放, 排重便在下格填, 2020/12/11 角上出格一个样。 5
七那阶,、如九果这阶给种、你方你十数法做一字叫阶出1…做来—…对了1已称吗6经,交?难你换不能法到写。了出你一了 个四阶幻方?
将刚刚的三阶幻方绕中心旋转一定角度, 如:90o、180o等。
2020/12/11 你得到新的三阶幻方了吗? 3
实际上, 平面幻方的构造,分为三种:
①奇数(3、5、7……)阶幻方;
②双偶数(4、8、12……4n)阶幻 方③;单偶数(6、10、14……4n+2)阶幻方
2020/12/11
4
那刚以它么刚五按适你的 阶照合能三 幻这口编不阶 方种诀制能幻 为方,所写方例法剩有出就,叫下的其属跟做的奇他于我罗就数的奇一伯交阶奇数 起法给幻数阶 来,你方幻幻 试吧。方方 试!呢了 吧?。
123 4
567 8
9 10 11 12
Байду номын сангаас
13 14 15 16
①以1-16依次作四行排列;
②打两条对角线,被对角线穿过的数字不动;
③其他数字,按对角线的交点为对称中心,
对称对调. 2020/12/11
6
PPT教学课件
谢谢观看
Thank You For Watching
2020/12/11
7
2020/12/11
1
南宋数学家杨辉,在他著的《续古摘 奇算法》里介绍了这种方法:
① ④② ⑦⑤ ③ ⑧⑥
⑨
①将九个自然数按照从小到大的递增次序斜排; ②把上、下两数对调,左、右两数也对调; ③把2020中/12/11部四数各向外面挺出,幻方就出现了2 。
除了刚刚还得是出让三我阶来幻告方诉外你,吧你!还能写 出其他的三阶幻方吗? ④⑨② ③ ⑤⑦ ⑧ ①⑥