人教版七年级数学第三章课后习题与答案
【人教版】七年级上册数学:第三章《一元一次方程》练习题(含答案)
第3章一元一次方程练习题(一)一、选择题1. 对于非零的两个实数a 、b ,规定ab b a 11-=⊗,若1)1(1=+⊗x ,则x 的值为( ) A .23 B .31 C . 21 D . 21- 2.下列变形错误的是( )A.由x + 7= 5得x+7-7 = 5-7 ;B.由3x -2 =2x + 1得x= 3C.由4-3x = 4x -3得4+3 = 4x+3xD.由-2x= 3得x= -32 3. 解方程3x +1=5-x 时,下列移项正确的是( )A.3x +x =5+1B.3x-x=-5-1C.1-5=-3x+xD.3x+x=5-14. 将(3x +2)-2(2x -1)去括号正确的是( )A 3x +2-2x +1B 3x +2-4x +1C 3x +2-4x -2D 3x +2-4x +25.下列解方程去分母正确的是( )A .由1132x x --=,得2x -1=3-3x . B .由44153x y +-=,得12x -15=5y +4. C .由232124x x ---=-,得2(x -2)-3x -2=-4. D .由131236y y y y +-=--,得3y +3=2y -3y +1-6y . 6.当x=2时,代数式ax -2x 的值为4,当x=-2时,这个代数式的值为( )A.-8B.-4C.-2D.87.在下列方程中,解是x=2的方程是( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
8.如果错误!未找到引用源。
是方程错误!未找到引用源。
的解,那么错误!未找到引用源。
的值是( )A.-8B.0C.2D.89.若x =a 是方程4x +3a =-7的解,则a 的值为( )A.7B.-7C.1D.-110.已知x =-2是方程2x -3a =2的根,那么a 的值是( )A.a =2B.a =-2C.a =23D.a =23- 11.如果错误!未找到引用源。
部编人教版七年级数学上册第3章 一元一次方程 3.4.5产品配套与工程问题【习题课件】
C.3 个 D.4 个
课堂导练
6.解决工程问题时,常把总工作量看作1,基本关系有: 工作量=__工__作___效__率___×工作时间, 工作量=人均效率×人数×时间, 各部分工作量之和等于__总__工__作__量____. 工程问题中找相等关系的方法与行程问题类似,一 般有如下规律:在工作量、工作时间、工作效率这 三个量中,如果甲量已知,从乙量设元,那么就从 丙量找相等关系列方程.
则停电时间为( C )
A.2 h
B.3 h
C.152 h
D.52 h
【点拨】设蜡烛的总长为 1,停电时间为 x h.由题意,
得 1-x4=21-x3,解得 x=152.
课后训练
11.(中考·海南)在某市“棚户区改造”建设工程中, 有甲、乙两种车辆参加运土.已知5辆甲种车和 2辆乙种车一次共可运土64 m3,3辆甲种车和1 辆乙种车一次共可运土36 m3,求甲、乙两种车 每辆一次分别可运土多少立方米.
课后训练
(1)求甲、乙两个班组平均每天各掘进多少米. 解:设乙班组平均每天掘进x m,则甲班组平均每天
掘进(x+0.6)m. 根据题意,得5x+5(x+0.6)=45, 解得x=4.2. 则x+0.6=4.2+0.6=4.8. 答:甲班组平均每天掘进4.8 m,乙班组平均每 天掘进4.2 m.
课后训练
课堂导练
8.一件工作,甲单独做20 h完成,乙单独做12 h 完成,现在先由甲单独做4 h,余下的由甲、乙 一起完成.余下的部分需要几小时完成?若设 余下的部分需要x h完成,由此条件可列方程: __21_0_×_4_+__21_0_+_1_12__x_=__1__.
课堂导练
9.一个水池有甲、乙两个水龙头,单独开甲水龙头,2 h
人教版七年级上册数学第三章 一元一次方程含答案【完整版】
人教版七年级上册数学第三章一元一次方程含答案一、单选题(共15题,共计45分)1、根据下面所给条件,能列出方程的是().A.一个数的是6B.a与1的差的C.甲数的2倍与乙数的D.a与b的和的60%2、关于x的方程3﹣=0与方程2x﹣5=1的解相同,则常数a是()A.2B.﹣2C.3D.﹣33、某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不赔B.赚9元C.赔18元D.赚18元4、下列式子可以用“=”连接的是( )A.5+4_______12-5B.7+(-4)______7-(+4)C.2+4(-2)______-12 D.2(3-4)_____23-45、下列结论中正确的是()A.在等式3a﹣b=3b+5的两边都除以3,可得等式a﹣2=b+5B.如果2=﹣x,那么x=﹣2C.在等式5=0.1x的两边都除以0.1,可得等式x=0.5 D.在等式7x=5x+3的两边都减去x﹣3,可得等式6x﹣3=4x+66、把mn=pq(mn≠0)写成比例式,写错的是()A. =B. =C. =D. =7、解方程下=2,去分母正确的是( )A.2x-1-x+2=2B.2x-1-x+2=12C.2x-2-x-2=12D.2x-2-x-2=68、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价降价20%以96元出售,很快就卖掉了.则这次生意的赢亏情况为()A.亏4元B.亏24元C.赚6元D.不亏不赚.9、甲、乙两人每天生产某种产品的数量比是,经过生产线升级他们每天都多生产27件,那么现在他们每天生产品的数量之比为,则乙现在每天生产产品的件数为().A.42B.48C.54D.6310、A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )A.2(x1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x1)=1311、为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()A.31元B.30.2元C.29.7元D.27元12、要将等式进行一次变形,得到x=-2,下列做法正确的是()A.等式两边同时加B.等式两边同时乘以C.等式两边同时除以D.等式两边同时乘以13、下列等式变形,正确的是( )A.由2+x=8得x=8+2B.由2x+6=4x得x+6=2xC.由2x=3得x=D.由−1=1得x−5=114、如果(2+m)x|m|﹣1 +2=0是关于x的一元一次方程,则m的值为()A.1或﹣1B.2C.2或﹣2D.﹣215、数学竞赛卷共有20道题,每答对一道题得5分,不答或答错一道题倒扣1分,要得到76分必须答对的题数是()A.17B.16C.15D.14二、填空题(共10题,共计30分)16、当代数式2x﹣2与3+x的值相等时,x=________.17、已知方程(m-2)x|m-1|+4=7是关于x的一元一次方程,则m=________.18、有一批树苗.若每人种10棵,则余下6棵;若每人种12棵则缺6棵.参与种树的人数是________.19、商场一件商品按标价的九折销售仍获利20%,已知商品的标价为28元,则商品的进价是________元.20、某商品的进价是200元,标价300元出售,商店要求利润不低于5%,售货员最低可以打________折出售此商品.21、某市居民夏季(5月—10月)阶梯电价价目如右表.李叔叔家8月份用电500度,他家这个月要电费________元.张阿姨家8月份缴纳电费249.4元,她家这个月用电________度.(不计公共分摊部分).阶梯电量(度)电价/度第一档0—260部分0.59元第二档261—600部分0.64元第三档601度以上部分0.89元22、某种家电商场将一种品牌的电脑按标价的9折出售,仍可获利20%,已知该品牌电脑进价为9000元,如果设该电脑的标价为x元,根据题意得到的方程是________.23、王铭寒假时和同学们观看冰灯,门票每张150元,15张(含15张)以上打八折,他们共花1800元,他们共买了________ 张门票.24、1月份的日历,如果用表示日历方框中的4个数字,试用等式写出a,b,c,d之间的数字关系________.25、当x=________时,式子与的值相等.三、解答题(共6题,共计25分)26、关于x的方程与方程的解互为倒数,求a 的值.27、已知关于y的方程= 的解比关于x的方程3a-x= +3的解小3,求a的值.28、制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?29、方程17+15x=245,, 2(x+1.5x)=24都只含有一个未知数,未知数的指数都是1,它们是一元一次方程,方程x2+3=4,x2+2x+1=0,x+y=5是一元一次方程吗?若不是,它们各是几元几次方程?30、已知关于x的方程=x+ 与方程= ﹣0.6的解互为倒数,求m的值.参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、B5、B6、D8、A9、A10、A11、D12、D13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)27、28、29、30、。
人教版七年级上册数学第三章 一元一次方程含答案
人教版七年级上册数学第三章一元一次方程含答案一、单选题(共15题,共计45分)1、方程的解是()A. B. C. D.2、将方程化为形式,指出分别是()A.1和3B.1和4C.−1和3D.−1和43、已知方程2x+a=x-1的解满足2x+6=x+2,则a的值是 ( )A.-15B.15C.10D.-104、在平面直角坐标系中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底"a:任意两点横坐标差的最大值,“铅垂高"h:任意两点纵坐标差的最大值,则矩面积"S=ah。
例如:三点坐标分别为A(1,2), B(-3,1),C(2,-2),则"水平底"a=5,铅垂高"h=4,“矩面积"S= ah=20。
若D (1,2),E(-2,1)、F(0,t)三点的"矩面积"为15,则的值为()A.-3或7B.-4或6C.-4或7D.-3或65、若与互为相反数,则a=()A. B.10 C. D.﹣106、5月开学初,为做好新冠肺炎疫情的防空工作,班主任邱老师在某网站为班上的每一位学生购买口罩,每个口罩的价格是15元,在结算时卖家说;“如果您再多买一个口罩就可以打九折,价钱会比现在便宜45元.”邱老师说:“那好吧!我就再买一个,谢谢”根据两人的对话,判断邱老师的班级人数.设班级人数为人.下列方程正确的是()A. B. C.D.7、下面是一个被墨水污染过的方程:,答案显示此方程的解是,被墨水遮盖的是一个常数,则这个常数是()A.2B.-2C.D.8、在甲处工作的有132人,在乙处工作的有108人,如要使乙处工作的人数是甲处工作人数的,应从乙处调多少人到甲处?若设应从乙处调x人到甲处,则下列方程中正确的是( )A.132+x=(108-x)B. (132-x)=108-xC. ×132+x=108-xD. (132+x)=108-x9、下列各式中是方程的是()A.7+8=15B.2x+1C.x+2=5D.|a|≥010、若x=﹣1是关于x的方程2x+3=a的解,则a的值为()A.﹣5B.5C.1D.﹣111、在等边三角形ABC中,BC=6cm,射线AG//BC,点E从点A出发,沿射线AG 以1cm/s的速度运动,同时点F从点B出发,沿射线BC以2cm/s的速度运动,设运动时间为t,当t为( )s时,以A,F,C,E为顶点的四边形是平行四边形?()A.2B.3C.6D.2或612、下列方程中,解为x=1的是()A.2x=x+3B.1﹣2x=1C. =1D. - =213、如果方程6x+3a=22与方程3x+5=11的解互为相反数,那么a=()A.﹣B.C.D.﹣14、下列式子的变形中,正确的是()A.由6+ =10得=10+6B.由3 +5=4 得3 -4 =-5C.由8 =4-3 得8 -3 =4D.由2( -1)= 3得2 -1=315、把方程去分母正确是( )A.18x+2(2x-1)=18-3(x+1)B.3x+(2x-1)=3-(x+1)C.18x+(2x-1)=18-(x+1) D.x+2(2x-1)=3-3(x+1)二、填空题(共10题,共计30分)16、我们规定一种运算:,例如:,按照这种运算的规定,请解答下列问题:当________时,.17、如果a,b为定值,关于x的一次方程﹣=2,无论k为何值时,它的解总是1,则a+2b=________.18、某件商品的标价是330元,按标价的八折销售可获利10%,则这种商品的进价为________元。
人教版七年级上册数学第三章一元一次方程3-4实际问题与一元一次方程课后练习【含答案】
人教版七年级上册数学第三章一元一次方程3.4实际问题与一元一次方程课后练习一、单选题(共12题)1.虽然受到新冠疫情的影响,但2020年我国前三季度的GDP比2019年前三季度增长0.7%,达到亿元,称为世界上首个实现经济正增长的主要经济体.设我国2019年前三季度的GDP为x亿元,根据题意,可列出方程()A. (1+0.7%)x=722786B. x+0.7%=722786C. x+(1+0.7%)=722786D. x+(1−0.7%)=7227862.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张.根据题意,下面所列方程正确的是()A. x+5(12−x)=48B. x+5(x−12)=48C. x+12(x−5)=48D. 5x+(12−x)=483.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳,一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,则下面所列方程正确的是()A. 2×1000(26−x)=800xB. 1000(13−x)=800xC. 1000(26−x)=2×800xD. 1000(26−x)=800x4.在明朝程大位《算法统宗》中,有这样的一首歌谣,叫做浮屠增级歌:“远看巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔,其古称浮屠,本题说它一共有七层宝塔,每层悬挂的红灯数是上一层的2倍,一共有三百八十一盏灯,则这个塔顶的灯数为()A. 4盏B. 3盏C. 2盏D. 1盏5.一个电器商店卖出一件电器,售价为1820元,以进价计算,获利40%,则进价为()A. 728元B. 1300元C. 1092元D. 455元6.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程()A. 54−x=20%×108B. 54−x=20%×(108+x)C. 54+x=20%×162D. 108−x=20%(54+x)7.由于换季,超市准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元;而按原售价的九折出售,将盈利20元,则该商品的原售价为()A. 300元B. 270元C. 250元D. 230元8.某商场上月的营业额是a万元,本月营业额为500万元,比上月增长15%,那么可列方程为()A. 15%a=500B. (1+15%)a=500C. 15%(1+a)=500D. 1+15%a=5009.日历中同一竖列相邻三个数的和不可能是()A. 35B. 39C. 51D. 6010.一件服装的进货价为80元,按标价的6折出售,仍获利50%,则这件服装的标价为()A. 150B. 200C. 250D. 30011.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是()A. 8天B. 7天C. 6天D. 5天12.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量要比环保限制的最大量少100t.新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?如果设新工艺的废水排量为2xt,旧工艺的废水排量为5xt.那么下面所列方程正确的是()A. 5x−200=2x+100B. 5x+200=2x−100C. 5x+200=2x+100D. 5x−200=2x−100二、填空题(共6题)13.某酒店客房都有三人间普通客房,双人间普通客房,收费标准为:三人间150元/间,双人间140元/间.为吸引游客,酒店实行团体入住五折优惠措施,一个46人的旅游团,优惠期间到该酒店入住,住了一些三人间普通客房和双人间普通客房,若每间客房正好住满,且一天共花去住宿费1310元,则该旅游团住了三人间普通客房和双人间普通客房共________间;14.在如图的方格中,若要使横,竖,斜对角的3个实数相乘都得到同样的结果,则图中m的值为________.15.一组“数值转换机”按下面的程序计算,如果输入的数是30,则输出的结果为56,要使输出的结果为76,则输入的最小正整数是________.16.某电视台组织知识竞赛,共设有20道单项选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况.如果参赛者D得70分,则他答对的题数为________.17.李明组织同学一起去看电影,已知电影票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了________张电影票.18.按下面的程序计算:若输入n=20,输出结果是101;若开始输入的n值为正整数,最后输出的结果为131,则开始输入的n 值可以是________.三、综合题(共4题)19.由于疫情防控的需要,学校开学第一周给某班配备了一定数量的口罩,若每个学生发5个,则多40个口罩,若每个学生发6个,则少12个口罩,请问该班有多少名学生?学校给该班准备了多少个口罩?20.今年开学,由于疫情防控的需要,某学校统一购置口罩(1)班全体学生配备了一定数量的口罩,若每个学生发3个口罩,则多30个口罩,若给每个学生发5个口罩,则少50个口罩,请问该班有多少名学生?21.某项工程,如果让甲工程队单独工作需75天完成,如果让乙工程队单独工作需50天完成.如果让两个工程队一起工作15天,再由乙工程队完成剩余部分,共需多少天完成?(请列方程解应用题)22.为了适应新的教育形势发展的需要,我县某初中学校研究决定探索符合学校情况的课改模式,通过多方面调查、探究和思考,学校最终确定的课改思路为“先学后教、以学定教”,根据学校实际决定先在七年级实行小班额教学,但是由于学校教室有限,除了八、九年级学生所占教室外,能供七年级用的就不多了,若每间教室安排40名学生,则缺少1间教室;若每间教室安排44名学生,则空出1间教室,请你根据所提供的信息帮助算一算该校能供七年级学生所用的教室校共有多少间?答案解析部分一、单选题1. A解:依题意得:(1+0.7%)x=722786.故A.【分析】由2020年我国前三季度的GDP=2019年我国前三季度的GDP×(1+增长率),即可得出关于x的一元一次方程,此题得解.2. A解: 1元纸币为x张, 那么5元纸币有(12-x)张,∴ x+5(12-x) =48 ,故A.【分析】由题意得:等量关系为: 1x1元纸币的张数+ 5x5元纸币的张数=48,据此列方程即可.3. C解:设安排x名工人生产口罩面,则(26-x)人生产耳绳,由题意得1000(26-x)=2×800x.故选:C.【分析】设安x名工人生产口罩面,则(26-x)生产口罩耳绳,由一个口罩面需要配两个口罩耳绳可知,口罩耳绳的个数是口罩面个数的2倍,从而得出等量关系,则可列出方程.4. B解:设塔顶的灯数为x盏,则从塔顶向下,每一层灯的数量依次是2x,4x,8x,16x,32x,64x,所以x+2x+4x+8x+16x+32x+64x=381,127x=381x=381÷127x=3答:这个塔顶的灯数为3盏.故B.【分析】设塔顶的灯数为x盖,则根据每层悬挂的红灯数是上层的2倍,分别求出每一层灯的数量,然后求和,根据它们的和是381列方程求解即可.5. B解:设电器每件的进价是x元,利润可表示为(1820-x)元,则1820-x=40%x,解得x=1300即电器每件的进价是1300元.所以B选项是正确的.故B.【分析】设电器每件的进价是x元,根据利润=利润率×进价=售价-进价,列出方程,求出解即可.6. B解:根据题意可得改造后旱地的面积为(54-x)公顷;林地的面积为(108+x)公顷,根据题意可得等式为:旱地的面积=林地的面积×20%,即54-x=20%×(108+x).【分析】根据原有林地108公顷,旱地54公顷,列方程求解即可。
人教版七年级数学第三章课后习题与答案
七年级上册 第三章习题3.1P83,1、列等式表示:(1)比a 大5的数等于8; (2)b 的三分之一等于9;(3)x 的2倍与10的和等于18; (4)x 的三分之一减y 的差等于6;(5)比a 的3倍大5的数等于a 的4倍; (6)比b 的一半小7的数等于a 与b 的和. 解:(1)a +5=8; (2)193b =; (3)2x +10=18; (4)163x y -=; (5)3a +5=4a ; (6)172b a b -=+. P83,2、列等式表示: (1)加法交换律; (2)乘法交换律; (3)分配律; (4)加法结合律. 解:(1)a +b=b +a ; (2)ab=ba ;(3)a(b +c)=ab +ac ;(4)(a +b)+c=a +(b +c).P83,3、x=3,x=0,x=-2,各是下列哪个方程的解? (1)5x +7=7-2x ;(2)6x -8=8x -4;(3)3x -2=4+x . 解:将x=3,x=0,x=-2分别代入三个方程中验证可知: x=0是方程5x +7=7-2x 的解; x=-2是方程6x -8=8x -4的解; x=3是方程3x -2=4+x 的解.P83,4、用等式的性质解下列方程: (1)x -4=29;(2)1262x +=; (3)3x +1=4; (4)4x -2=2. 解:(1)方程两边加4,x=33. (2)方程两边先减2再乘2,x=8. (3)方程两边先减1再除以3,x=1.(4)方程两边先加2再除以4,x=1.P83,5、某校七年级1班共有学生48人,其中女生人数比男生人数的45多3人,这个班有男生多少人?(列方程)解:设七年级1班有男生x人,有女生4(3)5x+人,则4(3)485x x++=.P83,6、把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元.获得一等奖的学生有多少人?(列方程)解:设获得一等奖的学生有x人,则200x+50(22-x)=1400.P84,7、今年上半年某镇居民人均可支配收入为5109元,比去年同期增长了8.3%,去年同期这项收入为多少元?(列方程)解:设去年同期这项收入为x元,则x·(1+8.3%)=5109.P84,8、一辆汽车已行驶了12000 km,计划每月再行驶800 km,几个月后这辆汽车将行驶20800 km?(列方程)解:设x个月后这辆汽车将行驶20800km,则12000+800x=20800.P84,9、圆环形状如图所示,它的面积是200 cm2,外沿大圆的半径是10 cm,内沿小圆的半径是多少?解:设内沿小圆的半径为x cm,则102π-πx2=200.P84,10、七年级1班全体学生为地震灾区共捐款428元,七年级2班每个学生捐款10元,七年级1班所捐款数比七年级2班少22元.两班学生人数相同,每班有多少学生?解:设每班有x人,则10x=428+22.P84,11、一个两位数个位上的数是1,十位上的数是x.把1与x对调,新两位数比原两位数小18,x应是哪个方程的解?你能想出x是几吗?解:10x+1-(10+x)=18,x=3.点拨:两位数的表示方法为十位上的数字乘10加上个位上的数字.习题3.2P91,1、解下列方程:(1)2x+3x+4x=18;(2)13x-15x+x=-3;(3)2.5y+10y-6y=15-21.5;(4)12261 233b b b-+=⨯-.解:(1)合并同类项,得9x=18.系数化为1,得x=2.(2)合并同类项,得-x=-3.系数化为1,得x=3.(3)合并同类项,得6.5y=-6.5.系数化为1,得y=-1.(4)合并同类项,得53 6b=.系数化为1,得185x=.P91,2、举例说明解方程时怎样“移项”,你知道这样做的根据吗?解:例如解方程5x+3=2x,把2x改变符号后移到方程左边,同时把3改变符号后移到方程右边,即5x-2x=-3,移项的根据是等式的性质1.P91,3、解下列方程:(1)x+3x=-16;(2)16y-2.5y-7.5y=5;(3)3x+5=4x+1;(4)9-3y=5y+5.解:(1)合并同类项,得4x=-16.系数化为1,得x=-4.(2)合并同类项,得6y=5.系数化为1,得56y=.(3)移项,得3x-4x=1-5.合并同类项,得-x=-4.系数化为1,得x=4.(4)移项,得-3y-5y=5-9.合并同类项,得-8y=-4.系数化为1,得12y=.P91,4、用方程解答下列问题:(1)x的5倍与2的和等于x的3倍与4的差,求x;(2)y与-5的积等于y与5的和,求y.解:(1)根据题意,可列方程5x+2=3x-4.移项,得5x-3x=-4-2.合并同类项,得2x=-6.系数化为1,得x=-3.(2)根据题意,可列方程-5y=y+5.移项,得-5y-y=5.合并同类项,得-6y=5.系数化为1,得56y=-.P91,5、小新出生时父亲28岁,现在父亲的年龄是小新年龄的3倍,求现在小新的年龄.解:设现在小新的年龄为x.根据题意,得3x=8+x.移项,得2x=28.系数化为1,得x=14.答:现在小新的年龄是14.P91,6、洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1︰2︰14,计划生产这三种洗衣机各多少台?解:设计划生产Ⅰ型洗衣机x台,则计划生产Ⅱ型洗衣机2x台,计划生产Ⅲ型洗衣机14x台.根据题意,得x+2x+14x=25500.合并同类项,得17x=25500.系数化为1,得x=1500.因此2x=3000,14x=21000.答:这三种型号洗衣机计划分别生产1500台、3000台、21000台.P91,7、用一根长60 m的绳子围出一个长方形,使它的长是宽的1.5倍,长和宽各应是多少?解:设宽为x m,则长为1.5x m.根据题意,得2x+2×1.5x=60.合并同类项,得5x=60.系数化为1,得x=12.所以1.5x=18.答:长是18m,宽是12m.P91,8、随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌节水的灌溉方式.灌溉三块同样大的实验田,第一块用漫灌方式,第二块用喷灌方式,第三块用滴灌方式.后两种方式用水量分别是漫灌的25%和15%.(1)设第一块实验田用水x t,则另两块实验田的用水量各如何表示?(2)如果三块实验田共用水420 t,每块实验田各用水多少吨?解:(1)设第一块实验田用水x t,则第二块实验田用水25%x t,第三块实验田用水15%x t.(2)根据(1),并由题意,得x+25%x+15%x=420.合并同类项,得1.4x=420.系数化为1,得x=300.所以25%x=75,15%x=45.答:第一块实验田用水300t,第二块实验田用水75t,第三块实验田用水45t.P91,9、某造纸厂为节约木材,大力扩大再生纸的生产.它去年10月生产再生纸2050 t,这比它前年10月再生纸产量的2倍还多150 t.它前年10月生产再生纸多少吨?解:设它前年10月生产再生纸x t,则10月生产再生纸(2x+150)t.根据题意,得2x+150=2050.移项,合并同类项,得2x=1900.系数化为1,得x=950.答:它前年10月生产再生纸950t.P91,10、把一根长100 cm的木棍锯成两段,要使其中一段长比另一段长的2倍少5 cm,应该在木棍的哪个位置锯开?解:设其中的另一段长为x cm,则其中的一段长为(2x-5)cm.根据题意,得x+2x-5=100.移项、合并同类项,得3x=105.系数化为1,得x=35.答:在距一端35cm处锯开.P91,11、几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗.求参与种树的人数.解:设参与种树的人数是x.根据题意,得10x+6=12x-6,移项,得10x-12x=-6-6.合并同类项,得-2x=-12.系数化为1,得x=6.答:参与种树的人数是6.P92,12、在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?解:设相邻三行里同一列的三个日期数分别为x-7,x,x+7.根据题意,假设三个日期数之和能为30,则(x-7)+x+(x+7)=30.去括号,合并同类项,得3x=30.系数化为1,得x=10.x=10符合题意,假设成立.x-7=10-7=3,x+7=10+7=17.所以相邻三行里同一列的三个日期数之和能为30.这三个数分别是3,10,17.P92,13、一个两位数的个位上的数的3倍加1是十位上的数,个位上的数与十位上的数的和等于9,这个两位数是多少?解:方法1:设这个两位数的个位上的数为x,则十位上的数为(3x+1),这个两位数为10(3x+1)+x.根据题意,得x+(3x+1)=9.解这个方程,得x=2.3x+1=3×2+1=7.这个两位数为10(3x+1)+x=10×7+2=72.答:这个两位数是72.方法2:设这个两位数的个位上的数为x,则十位上的数为(9-x),这个两位数为10(9-x)+x.根据题意,得3x+1=9-x,解这个方程,得x=2.这个两位数为10(9-x)+x=10×(9-2)+2=72.答:这个两位数是72.习题3.3P98,1、解下列方程:(1)5a+(2-4a)=0;(2)25b-(b-5)=29;(3)7x+2(3x-3)=20;(4)8y-3(3y+2)=6.解:(1)去括号,得5a+2-4a=0.移项,得5a-4a=-2.合并同类项,得a=-2.(2)去括号,得25b-b+5=29.移项,得25b-b=29-5.合并同类项,得24b=24.系数化为1,得b=1.(3)去括号,得7x+6x-6=20.移项,得7x+6x=26.合并同类项,得13x=26.系数化为1,得x=2.(4)去括号,得8y-9y-6=6.移项,得8y-9y=6+6.合并同类项,得-y=12.系数化为1,得y=-12.P98,2、解下列方程:(1)2(x+8)=3(x-1);(2)8x=-2(x+4);(3)22(3)33x x x-+=-+;(4)2(10-0.5y)=-(1.5y+2).解:(1)去括号,得2x+16=3x-3.移项、合并同类项,得-x=-19.系数化为1,得x=19.(2)去括号,得8x=-2x-8.移项、合并同类项,得10x=-8.系数化为1,得45x=-.(3)去括号,得22233x x x--=-+.移项、合并同类项,得75 3x=.系数化为1,得157x =. (4)去括号,得20-y=-1.5y -2. 移项、合并同类项,得0.5y=-22. 系数化为1,得y=-44.P98,3、解下列方程:(1)352123x x +-=; (2)334515x x -+=-; (3)3157146y y ---=;(4)5415523412y y y +--+=-. 解:(1)去分母,得3(3x +5)=2(2x -1).去括号,得9x +15=4x -2.移项、合并同类项,得5x=-17. 系数化为1,得175x =-. (2)去分母,得-3(x -3)=3x +4. 去括号,得-3x +9=3x +4. 移项、合并同类项,得6x=5. 系数化为1,得56x =. (3)去分母,得3(3y -1)-12=2(5y -7). 去括号,得9y -3-12=10y -14. 移项、合并同类项,得y=-1.(4)去分母,得4(5y +4)+3(y -1)=24-(5y -5). 去括号,得20y +16+3y -3=24-5y +5. 移项、合并同类项,得28y=16. 系数化为1,得47y =.P98,4、用方程解答下列问题:(1)x 与4之和的1.2倍等于x 与14之差的3.6倍,求x ;(2)y 的3倍与1.5之和的二分之一等于y 与1之差的四分之一,求y . 解:(1)根据题意,得1.2(x +4)=3.6(x -14). 去括号,得1.2x +4.8=3.6x -50.4, 移项,得1.2x -3.6x=-50.4-4.8, 合并同类项,得-2.4x=-55.2. 系数化为1,得x=23. (2)根据题意,得11(3 1.5)(1)24y y +=-. 去分母(方程两边乘4),得 2(3y +1.5)=y -1.去括号,得6y+3=y-1.移项,得6y-y=-1-3.合并同类项,得5y=-4.系数化为1,得45y=-.P98,5、张华和李明登一座山,张华每分登高10 m,并且先出发30min(分),李明每分登高15 m,两人同时登上山顶.设张华登山用了x min,如何用含x的式子表示李明登山所用时间?试用方程求x的值,由x的值能求出山高吗?如果能,山高多少米?解:设张华登山用了x min,则李明登山所用时间为(x-30)min.根据题意,得10x=15(x-30).解得x=90.山高10x=10×90=900(m).答:这座山高为900m.P99,6、两辆汽车从相距298 km的两地同时出发相向而行,甲车的速度比乙车速度的2倍还快20km/h,半小时后两车相遇,两车的速度各是多少?解:设乙车的速度为x km/h,甲车的速度为(x+20)km/h.根据题意,得11(20)84 22x x++=.解这个方程,得x=74.x+20=74+20=94.答:甲车的速度是94km/h,乙车的速度是74km/h.P99,7、在风速为24km/h的条件下,一架飞机顺风从A机场飞到B机场要用2.8h,它逆风飞行同样的航线要用3 h.求:(1)无风时这架飞机在这一航线的平均航速;(2)两机场之间的航程.解:(1)设无风时这架飞机在这一航线的平均航速为x km/h,则这架飞机顺风时的航速为(x+24)km/h,这架飞机逆风时的航速为(x-24)km/h.根据题意,得2.8(x+24)=3(x-24).解这个方程,得x=696.(2)两机场之间的航程为2.8(x+24)km或3(x-24)km.所以3(x-24)=3×(696-24)=2016(km).答:无风时这架飞机在这一航线的平均航速为696km/h.两机场之间的航程是2016km.P99,8、买两种布料共138m,花了540元.其中蓝布料每米3元,黑布料每米5元,两种布料各买了多少米?解:设蓝布料买了x m,则黑布料买了(138-x)m.列方程,得3x+5(138-x)=540.去括号,得3x+690-5x=540.移项,得3x -5x=540-690. 合并同类项,得-2x=-150.系数化为1,得x=75.138-x=138-75=63. 答:蓝布料买了75m ,黑布料买了63m .P99,9、有一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m 2墙面.每名一级技工比二级技工一天多粉刷10m 2墙面,求每个房间需要粉刷的墙面面积.解:设每个房间需要粉刷的墙面面积为x m 2,则85010401035x x -+=+,解得x=52. 答:每个房间需要粉刷的墙面面积为52m 2.P99,10、王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km ,到中午12时,两人又相距36 km .求A ,B 两地间的路程.分析:第一次相距36km 时,两人是相对而行,还未曾相遇过;第二次相距36km 时,两人是相背而行,已经相遇过了.解:从10时到12时王力、陈平两人共行驶36+36=72(km ),用时2h ,所以从8时到10时王力、陈平用时2h 也行驶72km ,设A 、B 两地间的路程为x km ,则x -72=36,得x=108.答:A ,B 两地间的路程为108km .此题还可以这样思考:设两地间的路程为x km ,上午10时,两人走的路程为(x -36)km ,速度和为36km/h 2x -,中午12时,两人走的路程为(x +36)km ,速度和为36km/h 4x +, 根据速度和相等列方程,得363624x x -+=,得x=108. 答:A ,B 两地间的路程为108km .P99,11、一列火车匀速行驶,经过一条长300m 的隧道需要20s 的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s .(1)设火车的长度为x m ,用含x 的式子表示:从车头经过灯下到车尾经过灯下火车所走的路程和这段时间内火车的平均速度;(2)设火车的长度为x m ,用含x 的式子表示:从车头进入隧道到车尾离开隧道火车所走的路程和这段时间内火车的平均速度;(3)上述问题中火车的平均速度发生了变化吗? (4)求这列火车的长度. 解:(1)设火车的长度为x m ,从车头经过灯下到车尾经过灯下火车所走的路程为x m ,这段时间内火车的平均速度为m/s 10x. (2)设火车的长度为x m ,从车头进入隧道到车尾离开隧道火车所走的路程为(300+x )m ,这段时间内火车的平均速度为300()m/s 20x+. (3)在这个问题中火车的平均速度没有发生变化.(4)根据题意,可列300 1020x x+=.解这个方程,得x=300.所以这列火车的长度为300m.习题3.4P106,2、制作一张桌子要用一个桌面和4条桌腿,1m3木材可制作20个桌面,或者制作400条桌腿,现有12m3木材,应怎样计划用料才能制作尽可能多的桌子?解:设计划用x m3的木材制作桌面,(12-x)m3的木材制作桌腿,才能制作尽可能多的桌子.根据题意,得4×20x=400(12-x).解得x=10,12-x=12-10=2.答:计划用10m3的木材制作桌面,2m3的木材制作桌腿才能制作尽可能多的桌子.P106,3、某车间每天能制作甲种零件500只,或者制作乙种零件250只,甲、乙两种零件各一只配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?解:设甲种零件应制作x天,乙种零件应制作(30-x)天.根据题意,得500x=250(30-x).解得x=10,30-x=30-10=20.答:甲种零件应制作10天,乙种零件应制作20天.P106,4、某中学的学生自己动手整修操场,如果让七年级学生单独工作,需要7.5h完成;如果让八年级学生单独工作,需要5h完成.如果让七、八年级学生一起工作1h,再由八年级学生单独完成剩余部分,共需多少时间完成?解:设共需要x h完成,则111()(1)1 7.555x++-=,解得133x=,13h4h3=20min.答:如果让七、八年级学生一起工作1h,再由八年级学生单独完成剩余部分,共需4h 20min.点拨:此题属于工程问题.工程问题存在的三个基本量间的关系为:工作量=工作效率×工作时间.P106,5、整理一批数据,由一人做需80h完成.现在计划先由一些人做2h,再增加5人做8h,完成这项工作的34.怎样安排参与整理数据的具体人数?解:设先由x人做2h,则5328 80804x x+⨯+⨯=,解得x=2,x+5=7(人).答:先安排2人做2h,再由7人做8h,就可以完成这项工作的34.P107,6、(古代问题)某人工作一年的报酬是年终给他一件衣服和10枚银币,但他干满7个月就决定不再继续干了,结账时,给了他一件衣服和2枚银币.这件衣服值多少枚银币?解:设这件衣服值x枚银币,则102127x x++=,解得x=9.2.答:这件衣服值9.2枚银币.P107,7、用A型和B型机器生产同样的产品,已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱装多少个产品.解法1:设每台B型机器一天生产x个产品,则每台A型机器一天生产(x+1)个产品.根据题意,得5(1)471811x x+--=,解得x=19,因此719112()11⨯-=个.答:每箱装12个产品.解法2:设每箱装x个产品,根据“每台A型机器一天生产的产品=每台B型机器一天生产的产品+1”列方程,得84111157x x++=+.解得x=12.答:每箱装12个产品.(1)如果温度的变化是均匀的,21 min时的温度是多少?(2)什么时间的温度是34℃?解:(1)由题意知时间增加5min,温度升高15℃,所以每增加1min,温度升高3℃,则21min时的温度为10+21×3=73(℃).(2)设时间为x min,列方程3x+10=34,解得x=8.P107,9、某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼.制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.现共有面粉4500kg,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?解:设制作大月饼用x kg面粉,制作小月饼用(4500-x)kg面粉,才能生产最多的盒装月饼.根据题意,得45000.050.0224x x-=.化简,得8x=10(4500-x).解得x=2500.4500-x=4500-2500=2000.答:制作大月饼应用2500kg 面粉,制作小月饼用2000kg 面粉,才能生产最多的盒装月饼.P107,10、小刚和小强从A ,B 两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行.出发后2 h 两人相遇.相遇时小刚比小强多行进24 km ,相遇后0.5 h 小刚到达B 地.两人的行进速度分别是多少?相遇后经过多少时间小强到达A 地?解:设相遇时小强行进的路程为x km ,小刚行进的路程为(x +24)km .小强行进的速度为km/h 2x ,小刚行进的速度为24km/h 2x +. 根据题意,得240.52x x +⨯=,解得x=8. 所以8422x ==,248241622x ++==. 相遇后小强到达A 地所用的时间为:24824844x ++==. 答:小强行进的速度为4km/h ,小刚行进的速度为16km/h .相遇后经过8h 小强到达A地.P107,11、现对某商品降价20%促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几?解:设销售量要比按原价销售时增加x%. 根据题意,得(1-20%)(1+x%)=1. 解得x=25.答:销售量要比按原价销售时增加25%.P107,12、甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件.(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件? (2)如果甲组工人实际完成的此月人均工作量比乙组的多2件,那么此月人均定额是多少件?(3)如果甲组工人实际完成的此月人均工作量比乙组的少2件,那么此月人均定额是多少件?解:(1)设此月人均定额是x 件,则42062045x x +-=,解得x=45. 答:此月人均定额是45件. (2)设此月人均定额是y 件,则420620245y y +-=+,解得y=35. 答:此月人均定额是35件. (3)设此月人均定额为z 件,则420620245z z +-=-,解得z=55. 答:此月人均定额是55件.P108,13、(古代问题)希腊数学家丢番图(公元3~4世纪)的墓碑上记载着: “他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一; 再过五年,他有了儿子,感到很幸福; 可是儿子只活了他父亲全部年龄的一半;儿子死后,他在极度悲痛中度过了四年,也与世长辞了.”根据以上信息,请你算出: (1)丢番图的寿命;(2)丢番图开始当爸爸时的年龄; (3)儿子死时丢番图的年龄.解:(1)设丢番图的寿命为x 岁,则11115461272x x x x x +++++=, 解得x=84.所以丢番图的寿命为84岁. (2)111538()6127x x x +++=岁,所以丢番图开始当爸爸时的年龄为38岁. (3)x -4=80,所以儿子死时丢番图的年龄为80岁.复习题3P111,1、列方程表示下列语句所表示的相等关系:(1)某地2011年9月6日的温差是10℃,这天最高气温是t ℃,最低气温是23t ℃; (2)七年级学生人数为n ,其中男生占45%,女生有110人;(3)一种商品每件的进价为a 元,售价为进价的1.1倍,现每件又降价10元,现售价为每件210元;(4)在5天中,小华共植树60棵,小明共植树x (x <60)棵,平均每天小华比小明多种2棵树.解:(1)2103t t -=; (2)110100%45%n n-⨯=或(1-45%)n=110; (3)1.1a -10=210; (4)60255x-=.P111,2、解下列方程:(1)4118332x x-=-;(2)0.5x-0.7=6.5-1.3x;(3)12(36)365x x-=-;(4)1231337x x-+=-.解:(1)移项,得114 8323x x-+=-.合并同类项,得55 23x-=.系数化为1,得23x=-.(2)移项,得0.5x+1.3x=6.5+0.7.合并同类项,得1.8x=7.2.系数化为1,得x=4.(3)去括号,得1213 25x x-=-.移项,得1231 25x x-=-+.合并同类项,得12 10x=-.系数化为1,得x=-20.(4)去分母,得7(1-2x)=3(3x+1)-63.去括号,得7-14x=9x+3-63.移项、合并同类项,得-23x=-67.系数化为1,得6723x=.点拨:解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.熟之后,步骤可合并,汉字可省略.P111,3、当x为何值时,下列各组中两个式子的值相等?(1)13xx--和375x+-;(2)2152xx-+和3(1)825xx--.解:(1)根据题意,得13735x xx-+-=-.去分母,得15x-5(x-1)=105-3(x+3).去括号,得15x-5x+5=105-3x-9.移项、合并同类项,得13x=91.系数化为1,得x=7.∴当x=7时,13xx--的值与375x+-的值相等.(2)根据题意,得213(1)8 5225x xx x--+=-,去分母(方程两边同乘10),得4x +5(x -1)=15(x -1)-16x . 去括号,得4x +5x -5=15x -15-16x . 移项,得4x +5x -15x +16x=-15+5. 合并同类项,得10x=-10. 系数化为1,得x=-1. ∴当x=-1时,2152x x -+的值与3(1)825x x --的值相等.P111,4、在梯形面积公式1()2S a b h =+中, (1)已知S=30,a=6,h=4,求b ; (2)已知S=60,b=4,h=12,求a ; (3)已知S=50,a=6,53b a =,求h . 解:梯形面积公式1()2S a b h =+. (1)当S=30,a=6,h=4时,130(6)42b =+⨯. 去括号,得12+2b=30.移项、合并同类项,得2b=18. 系数化为1,得b=9.(2)当S=60,b=4,h=12时,160(4)122a =+⨯, 去括号,得6a +24=60.移项、合并同类项,得6a=36. 系数化为1,得a=6. (3)当S=50,a=6,53b a =时, 55610.33150(610).2b a h ==⨯==+⨯ 去括号,得8h=50, 系数化为1,得254h =.P112,5、(我国古代问题)跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?解:设快马x 天可以追上慢马.根据题意,得240x=150(12+x),解得x=20.答:快马20天可以追上慢马.点拨:行程问题中的基本数量关系:路程=速度×时间.P112,6、运动场的跑道一圈长400 m.小健练习骑自行车,平均每分骑350 m;小康练习跑步,平均每分跑250 m.两人从同一处同时反向出发,经过多少时间首次相遇?又经过多少时间再次相遇?6、解:设经过x min首次相遇,由题意,得350x+250x=400,解得23x=.答:经过2min3首次相遇,又经过2min3再次相遇.点拨:此题也是行程问题,从同一处出发反向跑,首次相遇,两人路程和是400m,再次相遇两人路程和是800m.P112,7、有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.原有多少只鸽子和多少个鸽笼?解:设有x个鸽笼,原有(6x+3)只鸽子.根据题意,得6x+3+5=8x.解得x=4.6x+3=6×4+3=27.答:原有27只鸽子和4个鸽笼.P112,8、父亲和女儿的年龄之和是91,当父亲的年龄是女儿现在年龄的2倍的时候,女儿的年龄是父亲现在年龄的13,求女儿现在的年龄.解:设女儿现在的年龄为x,则父亲现在的年龄为(91-x).根据题意,得12(91)913x x x x--=--,或12(91)(91)3x x x x--=--.解得x=28.答:女儿现在的年龄是28.P112,9、某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5(1)参赛者F(2)参赛者G说他得80分,你认为可能吗?为什么?解:(1)参赛者F得76分,设他答对了x道题.根据题中数据可知,参赛者答错一道题扣6分.根据题意,得100-6(20-x)=76.去拭和,得100-120+6x=76.移项、合并同类项,得6x=96.系数化为1,得x=16.答:参赛者F得76分,他答对了16道题.(2)参赛者G说他得80分,我认为不可能.设参赛者G得80分时,他答对了y道题.根据题意,得100-6(20-y)=80.去括号,得100-120+6y=80.移项、合并同类项,得6y=100.系数化为1,得503y=.因为y为正整数,所以503y=不合题意,所以参赛者G说他得80分,我认为不可能.点拨:此题第(2)问也可以运用自述法进行推算,因为答错一道题扣6分,得分为94分;答错两道题扣12分,得分为88分;答错三道题扣18分,得分为82分.所以参赛者G 说他得80分,是不可能的.P112,10、一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元.试讨论并回答:(1)什么情况下,购会员证与不购证付一样的钱?(2)什么情况下,购会员证比不购证更合算?(3)什么情况下,不购会员证比购证更合算?解:设去游泳馆为x次,凭会员证去共付y1元,不凭证去共付y2元,所以y1=80+x,y2=3x.(1)购会员证与不购会员证付一样的钱,即y1=y2,即80+x=3x,解得x=40.答:恰好去40次的情况下,购会员证与不购会员证付一样的钱.(2)当所购入场券数大于40时,购会员证合算.(3)当所购入场券数小于40时,不购会员证合算.点拨:从“等于”入手,以买多少张票为界限,然后讨论“大于”和“小于”,可用特殊值试探.“什么情况下”是指“在这个游泳馆游泳多少次”.P112,11、“丰收1号”油菜籽的平均每公顷产量为2400 kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点.某村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少3hm2,但是所产油菜籽的总产油量比去年提高3750 kg.这个村去年和今年种植油菜的面积各是多少公顷?解:设这个村今年种植油菜的面积是x hm2,去年种植油菜的面积是(x+3)hm2,则去年种植“丰收1号”油菜的产油量为2400×40%×(x+3).今年种植“丰收2号”油菜的产油量为(2400+300)×(40%+10%)x.根据题意,得2400×40%×(x+3)=(2400+300)×(40%+10%)x-3750.化简得960(x+3)=2700×0.5x-3750.去括号,得960x+2880=1350x-3750.移项、合并同类项,得-390x=-6630.系数化为1,得x=17.x+3=17+3=20.答:这个村去年种植油菜的面积是20hm2,今年种植油菜的面积是17hm2.。
2024年人教版七年级上册数学第三单元课后练习题(含答案和概念)
2024年人教版七年级上册数学第三单元课后练习题(含答案和概念)试题部分一、选择题:1. 在下列数中,哪一个数是有理数?( )A. √3B. πC. 0.333D. √12. 下列运算中,哪个运算是错误的?( )A. 2 + 3 = 5B. 5 3 = 2C. 2 × 3 = 6D. 9 ÷ 3 = 43. 一个正方形的边长是a,它的面积是( )A. aB. a²C. 2aD. 4a4. 下列哪个数是最小的正整数?( )A. 1B. 0D. 25. 如果a=3,那么3a+5的值是( )A. 14B. 15C. 16D. 176. 下列各数中,哪个数是整数?( )A. 2.5B. 3.14C. 4.0D. 5.757. 下列哪个式子是代数式?( )A. 5 + 3 = 8B. 2x + 3yC. 4 > 2D. √9 = 38. 下列哪个数是质数?( )A. 12B. 15C. 17D. 209. 下列哪个数是合数?( )A. 11C. 23D. 2710. 下列哪个数是无理数?( )A. 1/2B. 0.333C. √2D. 3.14二、判断题:1. 任何两个有理数的和仍然是有理数。
()2. 任何两个无理数的和仍然是无理数。
()3. 0是整数,也是正数。
()4. 负数的平方是正数。
()5. 任何两个正数相乘,结果是正数。
()6. 任何两个负数相乘,结果是正数。
()7. 0除以任何非0的数都等于0。
()8. 有理数和无理数统称为实数。
()9. 一个正方形的面积等于它的边长的平方。
()10. 任何数乘以0都等于0。
()三、计算题:1. 计算:(3) + 7 × 2 42. 计算:(4 3²) ÷ 23. 计算:5 × (2 + 3) 104. 计算:4² × 3 12 ÷ 25. 计算:(6 2) × (3 + 4)6. 计算:9 ÷ 3 + 2 × 57. 计算:10 3 × (2 + 1)8. 计算:4(3 2²)9. 计算:3² × 2 5²10. 计算:8 ÷ (2 + 1) + 411. 计算:(4 + 6) ÷ 2 312. 计算:5 × 2² 3 × 413. 计算:7 2 × (3 + 2)14. 计算:6 ÷ 2(1 + 2)15. 计算:3(2² 1) ÷ 316. 计算:(8 3) × (4 + 1)17. 计算:10 ÷ 2 + 3²18. 计算:2³ × 4 6²19. 计算:9 3 × (2 + 3)20. 计算:4 + 6 ÷ 2²四、应用题:1. 小明买了3本书,每本书的价格是25元,他还剩下40元,请问他原来有多少钱?2. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2024年人教版七年级上册数学第三单元课后练习题(含答案和概念)
2024年人教版七年级上册数学第三单元课后练习题(含答案和概念)试题部分一、选择题:1. 下列哪个数是第三单元所学的有理数?()A. πB. √3C. 3D. 52. 一个数是2,那么它的相反数是()A. 2B. 2C. 1/2D. 1/23. 下列哪个式子是整式的加法?()A. 3x 2xB. 3x + 2yC. 4xy 3x^2D. 5a^2 + 3b^24. 若a=3,b=2,则a+b的值是()A. 5B. 5C. 1D. 15. 下列哪个数是正整数?()A. 3B. 0C. 2.5D. 36. 下列哪个式子是整式的乘法?()A. 4x + 3yB. 5x 2xC. 6a^2 3aD. 7m × 8n7. 若3x 2 = 7,则x的值是()A. 3B. 5C. 2D. 18. 下列哪个数是负分数?()A. 3/4B. 2/3C. 5D. 59. 下列哪个式子是整式的减法?()A. 5a 3bB. 4xy + 2x^2C. 7m × 8nD. 9p^2 6p^310. 若a=5,b=4,则ab的值是()A. 1B. 9C. 1D. 9二、判断题:1. 有理数包括整数和分数。
()2. 相反数的意义是两个数相加等于0。
()3. 整式的加法是指把同类项的系数相加。
()4. 负数比正数小。
()5. 0既不是正数也不是负数。
()6. 整式的乘法是指把两个整式相乘得到一个新的整式。
()7. 解一元一次方程时,移项要变号。
()8. 分数可以表示成正整数除以正整数的形式。
()9. 整式的减法是指把同类项的系数相减。
()10. 若a>b,则ab一定大于0。
()三、计算题:1. 计算:3 + 7 4 + 52. 计算:(3/4) (2/3) + (5/6)3. 计算:4 × (2) ÷ 24. 计算:(5 3) × 2^35. 计算:2^4 ÷ (2)6. 计算:3 × (2 4 + 6)7. 计算:5 × (5) + 10 ÷ 28. 计算:(4/5) × (5/4) (1/2)9. 计算:2^5 ÷ 2^210. 计算:(3/8) ÷ (1/4) + (1/2)11. 计算:3^2 + 4^212. 计算:(6/7) (2/3) + (1/2)13. 计算:4 × (3) × 214. 计算:(2/3)^215. 计算:5 × (3/4 + 1/2)16. 计算:2^3 × (1/2)17. 计算:(8/9) ÷ (2/3)18. 计算:7 2^3 + 4 × 319. 计算:(3/5)^2 (2/5)^220. 计算:4 ÷ (1/2) + 3 × (1/4)四、应用题:1. 小明有5个苹果,他吃掉了其中的2个,然后又得到了3个,现在他有多少个苹果?2. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。
人教版七年级上册数学第三章一元一次方程3-1从算式到方程课后练习【含答案】
人教版七年级上册数学第三章一元一次方程3.1从算式到方程课后练习一、单选题(共12题)1.长江比黄河长 ,黄河长度的6倍比长江长度的5倍多 ,设长江长度为 ,则下列方836km 1284km xkm 程中正确的是( )A. B. 5x −6(x −836)=12846x −5(x +836)=1284C. D. 6(x +836)−5x =12846(x −836)−5x =12842.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x 辆,根据题意,可列出的方程是( )A. 3x﹣2=2x+9B. 3(x﹣2)=2x+9C.D. 3(x﹣2)=2(x+9)x 3+2=x 2−93.如果 为有理数,那么下列等式不一定成立的是( )x =y,a A. B. C. D. 1−y =1−x x 2=y 2x a =y a ax =ay 4.若方程 的解为 ,则a 的值为( )2x +a 2=4(x −1)x =3A. -2 B. 10 C. 22 D. 25.小刚骑车从学校到家,每分钟行150 m ,某天回家时,速度提高到每分钟200 m ,结果提前5 min 到家,设原来从学校到家骑x (min ),则可列出的方程为( )A. 150x=200(x+5)B. 150x=200(x-5)C. 150(x+5)=200xD. 150(x-5)=200x6.学校在一次研学活动中,有n 位师生乘坐m 辆客车,若每辆客车乘50人,则还有12人不能上车;若每辆客车乘55人,则最后一辆车空了13个座位.下列四个等式:① ;② ;③;④ .50m +12=55m −1350m −12=55m +13n −1250=n +1355n +1250=n −1355其中正确的是( )A. ①②B. ①③C. ③④D. ①④7.如果关于 的方程 的解是 ,那么 的值为( )x 3x +2a +1=x −6(3a +2)x =0a A. B. C. D. −1120−1320−201313208.已知关于x 的一元一次方程 的解为 ,则 的值为( )2x m −2+a =4x =−1a +m A. 9 B. 7 C. 5 D. 49.x 、y 、c 是有理数,则下列判断错误的是( )A. 若x =y ,则x+2c =y+2cB. 若x =y ,则a﹣cx =a﹣cyC. 若x =y ,则D. 若 ,则x =yx c =y c x c =y c 10.若关于 的方程 有正整数解,则满足条件的所有 值之和是( ).x x −6=(k −1)x k A. 0 B. 1 C. -1 D. -411.如果(4﹣m )x |m|﹣3﹣16=0是关于x 的一元一次方程,那么m 的值为( ) A. ±4 B. 4 C. 2 D. ﹣412.若x =-1是关于x 的方程2x +3a +1=0的解,则3a +1的值为( ) A. 0 B. -2 C. 2 D. 3二、填空题(共6题)13.某班在一次捐款活动中共捐出159元,比平均每人捐3元多24元,若设该班有x 人,根据题意可得方程:________.14.已知关于x 的方程 的解为x =1,则a =________.x −a 2=2x +1315.若关于x 的方程(2﹣m )x |m|﹣1+2=0是一元一次方程,则m 的值为________.16.若关于x 的方程 的解为 ,则k 的值是________.3x +2k =3x =−117.某中学的学生自己动手整修操场,如果让七年级学生单独工作,需要 完成;如果让八年级学生7.5ℎ单独工作,需要 完成.如果让七、八年级一起工作 ,再由八年级单独完成剩余部分,求一共需5ℎ1ℎ要多少小时能完成.设共需要x 小时完成,则可列方程________.18.若x+2与﹣5互为相反数,则x 的值为________.三、综合题(共4题)19.若方程 的解与关于 的方程 的解互为倒数,求 的值.2(3x +1)=1+2x x 6−2k 3=2(x +3)k 20.已知关于x 的方程 ,在解这个方程时,粗心的小琴同学误将 看成了 ,从而2a −3x =12−3x +3x 解得 ,请你帮他求出正确的解.x =321.当m 为何值时,关于x 的方程2(2x-m )=2x-(-x+1)的解是方程x-2=m 的解的3倍?22.A 、B 两座城市相距40千米,甲骑自行车从A 城出发前往B 城,1小时后,乙才骑摩托车从A 城出发前往B 城,已知乙的速度是甲的2.5倍,且乙比甲早30分钟到B 城,求甲、乙两人的速度各是多少?答案解析部分一、单选题1. D解:设长江长度为 ,则黄河长度为(x -836)km ,依题意得,xkm 6(x −836)−5x =1284故D .【分析】根据长江比黄河长 , 设长江长度为 ,则黄河长度为(x -836)km ,再根据黄河长836km xkm 度的6倍比长江长度的5倍多 , 可列出相应的付出,从而解答即可。