1.3 矢量场的通量及散度

合集下载

矢量场的通量和散度

矢量场的通量和散度

divA lim
AdV
V
lim ( A)P V
V 0
V
V 0
V
divA A
二、矢量场的散度(divergence)
A Ax Ay Az x y z
散度小结: 1. 矢量场的散度是一个标量,它是描述矢量场中
பைடு நூலகம்任一点发散性质的量; 2. 散度代表矢量场的通量源的分布特性:
A 0 (正源) A 0 (负源) A 0 (无源)
矢量场的通量和散度
➢ 本节的研究目的
寻找能够度量和刻画矢量场变化情况的 量 散度是描述矢量场中任一点发散性质 的量
➢ 本节的研究内容
一、矢量场的通量 二、矢量场的散度
一、矢量场的通量
在矢量场中,取一个有向曲面 S ,则矢量场A 在 S 上的面积分称为矢量 A 穿过曲面 S 的通量,即
Φ
A dS
二、矢量场的散度(divergence)
散度小结:
A 0 (正源) A 0 (负源) A 0 (无源)
3. 在矢量场中,若 A 0 , 称之为有源场, 称为(通量)源密度;
4. 若场中处处 A 0 ,称之为无源场。
本节要点
➢ 本节的研究目的
寻找能够度量和刻画矢量场变化情况的量 ——散度(分析矢量场的工具之一)
S
S A endS
A
S
en
一、矢量场的通量
通量的物理意义:不同物理量的通量意义不同。
以流速场为例,流速场 v 的通量表示单位时间 内流体穿过S 的流量。
v
S
en
Φ v dS S
表示穿出闭合
S面的净流量
en
一、矢量场的通量
根据通量的大小判断闭合面中源的性质:

第01章 矢量分析

第01章   矢量分析
( A B )C A (B C )
矢量,标量与矢量相乘。
标量,标量三重积。
矢量,矢量三重积。
A (B C )
a. 标量三重积 法则:在矢量运算中,先算叉积,后算点积。
( 定义:B C) A | A || B || C | sin cos
•矢量与矢量的乘积
a
•标量积(数量积、内积、点积)
a b | a | | b | co s
b

a
两矢量点积的含义: 一矢量在另一矢量方向上的投影与另一矢量模的乘 积,其结果是一标量。 推论1:满足交换 律 推论2:满足分配律
a b b a a (b c ) a b a c
( x, y, z )
5 ( x 1) ( y 2 ) z
2 2 2
标量场
如温度场、电位场、势场…
2 2 F ( x , y , z ) 2 xy e x x z e y xy z e z
矢量场
如速度场、电场、磁场…
1.1.3、矢量的运算法则
(1)加法: 矢量加法是矢量的几何和,服从平行四边形法则。
Ay A B By
Az Ax ex Bz Bx
Ax Az ey Bx Bz
Ay ez By
设( A B ) C xe x ye y ze z
x
Ax Bx
Az Bz
cx
Ax Bx
Ay By
cy
见课本P6
例: 设
r1 2 e x e y e z , r2 e x 3 e y 2 e z r3 2 e x e y 3 e z , r4 3 e x 2 e y 5 e z

矢量场的通量和散度

矢量场的通量和散度

S A endS
A
S
en
一、矢量场的通量
通量的物理意义:不同物理量的通量意义不同。
以流速场为例,流速场 v 的通量表示单位时间 内流体穿过 S 的流量。
v
S
en
Φ S v dS
表示穿出闭合
S面的净流量
en
一、矢量场的通量
根据通量的大小判断闭合面中源的性质:
>0
(有正源)
<0
=0
(有负源) (无源或正负源同时存在)
散度是描述矢量场中任一点发散性质的量
通量无法说明闭合面内每一点处的性质,怎么办?
二、矢量场的散度(divergence)
1.散度的定义
divA lim S A dS
V 0 V S
矢量场 A 在点
M
M处的散度
V 0
单位体积发出的 通量—通量体密度
二、矢量场的散度(divergence)
1.散度的定义
S
M
V 0
divA lim S A dS
情况的量 散度是描述矢量场中任一点发散性质的量
本节的研究内容
一、矢量场的通量 二、矢量场的散度
一、矢量场的通量
在上矢 的量面场积中 分, 称取 为一 矢个 量有A 向穿曲过面曲面S ,S则的矢通量量场,A即在
S
Φ
A dS
S
V
lim ( A)P V
V 0
V
V 0 V
divA A
二、矢量场的散度(divergence)
A Ax Ay Az x y z
散度小结: 1. 矢量场的散度是一个标量,它是描述矢量场中
任一点发散性质的量; 2. 散度代表矢量场的通量源的分布特性:

电磁场与电磁波--矢量场的散度及旋度

电磁场与电磁波--矢量场的散度及旋度

evz Fz
v F
1.4 矢量场的通量和散度
散度的表达式:
直角坐标系
v F
Fx
Fy
Fz
x y z
圆柱坐标系
v F
1 h h hz
h hz F
h hz F
z
h h Fz
1( F ) 1FFz z球坐标系
v F
1 hr h h
r
(h h Fr )
(hr h F
)
F
(hr
h
F
)
1 r2
方向相反大小 相等结果抵消
n
S
C
图 1.曲5.5 面曲面的的剖划分分
1.5 矢量场的环流与旋度
4. 散度和旋度的区别
v
v
F 0; F 0
v
v
F 0; F 0
v
v
F 0; F 0
v
v
F 0; F 0
1.5 矢量场的环流与旋度
例1 .5 点电荷q在离其 rv处产生的电场强度为
1.4.4 散度定理
从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等 于该闭合曲面所包含体积中矢量场的散度的体积分,即
vv
v
ÑS F dS V FdV
高斯(散度)定理
散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁 理论中有着广泛的应用。
1.4 矢量场的通量和散度
vv
v div F
r div F 0
1.4 矢量场的通量和散度
直角坐标系下散度表达式的推导
不失一般性,令包围P点的 微体积V 为一直平行六面 体,如图所示。则
蜒S Fv
v dS
S

矢量场的通量 散度

矢量场的通量  散度

divA(r ) Ax Ay Az x y z
(ex
x
ey
y
ez
) z
(ex
Ax
ey
Ay
ez
Az )
A(r )
式中:
(ex
x
ey
y
ez
) z
圆柱坐标系下:
1
(er
r
e
r
ez
) zBiblioteka 哈密顿算符A(r ) 1 (rAr ) 1 A Az
r r r z
球面坐标系下:
(er
散度定理的证明
散度定理的证明
从散度定义有:
A(r ) lim s A(r ) dS lim d
V 0 V
V 0 V dV
则在一定体积V内的总的通量为:
V A(r )dV s A(r ) dS
得证!
散度的定义
在场空间 A(r ) 中任意点M 处作一个闭合曲面,所围的体积 为 V ,则定义场矢量 A(r ) 在M 点处的散度为:
divA(r ) lim s A(r ) dS
V 0
V
散度的物理意义 矢量场的散度表征了矢量场的通量源的分布特性 矢量场的散度是一个标量 矢量场的散度是空间坐标的函数
矢量场的通量 散度
一、矢量线(力线)
矢量线的疏密表征矢量场的大小
矢量线上每点的切向代表该处矢量场的方向
二、矢量场的散度 若矢量场A(r ) 分布于空间中,在
空间中取任意曲面S,定义:
A(r ) dS S
为矢量A(r )沿有向曲面S 的通量。
若S 为闭合曲面
s A(r ) dS
矢量场的通量
r
e
1 r

通量和散度

通量和散度

1.3.3 散度定理(高斯定理)
表达式:
SA d S V A d V
式中S为V的外表面。 物理含义:
矢量A穿过任一封闭曲面S的总通量等于矢量散度在S 所包围体积V内的体积分。
散度定理的证明:
d iv A l V im 0 1 VS A d S d i v A V l i mA d S
【解】若使A成为一个无源场,即要求 A0
Aaz2xb2xy12zcx2xy (a2)z(2c)xb1 0 解得 a2,b1,c2
A ( 2 x z x 2 ) e x ( x y 2 y ) e y ( z z 2 2 x z 2 x y z ) e z
面,则:
内容小结 掌握通量、散度的物理意义
z h 围成的封闭曲面,求矢径r穿出S的柱面部分的通量。
【解】设s1和s2为闭合曲面S的顶部和底部的圆
z
面,则:
r ds r ds r ds
s
s1
s2
s1
rdv
v
s1 (xex yey zez ) (dydzex dxdzey dxdyez )
s2 (xex yey zez ) (dydzex dxdzey dxdyez )
通量指通过该曲面的矢线量,它代表曲面S内存在的通量源。
(3)在矢量场中,若
,称之为有源场, 称为(通量)源密度;
说明流出闭合面的通量小于流入曲面的通量,即闭合面内存在负源(沟)。
矢量场的通量-------通量源
矢量场的通量
1.矢量场的通量-------通量源 (2)散度代表矢量场的通量源的分布特性。
h
3 dv zdxdy zdxdy
v
s1
s2
3πa2h hdxdy 0dxdy

工程数学 矢量场的通量及散度

工程数学 矢量场的通量及散度

CQU
作业:1.6、1.7 补充题:试证明
R ∇ ⋅ 3 =0ቤተ መጻሕፍቲ ባይዱR
x0 , y0 , z0
e z
称“
1.3 矢量场的通量及散度

dS [ Fx ( x0 + F= ∆x ∆x , y0 , z0 ) − Fx ( x0 − , y0 , z0 )]∆y∆z + 2 2 ∆y ∆y [ Fy ( x0 , y0 + , z0 ) − Fy ( x0 , y0 − , z0 )]∆x∆z + 2 2 ∆z ∆z [ Fz ( x0 , y0 , z0 + ) − Fz ( x0 , y0 , z0 − )]∆x∆y 2 2 ∂F ∂F ∂F = x ∆x∆y∆z + y ∆x∆y∆z + z ∆x∆y∆z ∂z ∂x ∂y
通量源与漩涡源cqu在直角坐标系中设13矢量场的通量及散度为了定量研究场与源之间的关系需建立场空间任意点小体积元的通量源与矢量场小体积元曲面的通量的关系
1.3 矢量场的通量及散度
定义:对于空间区域 V 内的任意一点 r,若有一个矢量 F(r) 与之对 应,我们就称这个矢量函数 F(r) 是定义于V 的矢量场。 特点:1) F(r)为空间坐标的函数(点函数),显示单值性; 2)占有空间性。 分类:恒稳矢量场F(r) ,时变矢量场F(r , t)。
得直角坐标式的矢量线方程
dx dy dz = = Fx Fy Fz
1.3 矢量场的通量及散度
2、矢量场的通量
问题:如何定量描述矢量场?
= S∫ d = 通量的概念: ψψ
CQU
引入通量的概念。

S
F ⋅ dS =

矢量分析

矢量分析

二、方向导数 在实际应用中,不仅需要宏观上了解场在空间的数值,还要知道在不同 方向上场变化的情况。方向导数表征标量场空间中,某点处场沿各个方向变 化的规律。
取等位面 u 1、定义:
x, y , z
增加的方向,相互垂直且满足右手螺旋法则
v ˆ ˆ ˆ 矢量表示: A = e x Ax + e y Ay + e z Az
v 位置矢量: r = e x x + e y y + e z z ˆ ˆ ˆ
v ˆ ˆ ˆ dr = e x dx + e y dy + e z dz 微分长度元:
(2)球面坐标系下矢量运算
v ˆ ˆ ˆ A = er Ar + eθ Aθ + eϕ Aϕ v ˆ ˆ ˆ B = er Br + eθ Bθ + eϕ Bϕ
v v ˆ ˆ ˆ A ± B = er ( Ar ± Br ) + eθ ( Aθ ± Bθ ) + eϕ ( Aϕ ± Bϕ )
v v A• B = Ar Br + Aθ Bθ + Aϕ Bϕ
e 单位矢量:ˆ ρ
ρ

ˆ , eφ
,z
ˆ , ez
0 ≤ ρ < ∞ , 0 ≤ φ ≤ 2π , − ∞ < z < ∞
ˆ ˆ ˆ e z = e ρ × eφ ˆ ˆ ˆ e ρ = eφ × e z ˆ ˆ ˆ eφ = e z × e ρ
ˆ ˆ ˆ ↑ e ρ 、eφ 、e z
分别代表ρ、φ、z 增加的方向,相互垂直且满足右手螺旋法则
ˆ 由于 θ、ϕ 不是常矢量,与 er
ˆ ∂er ˆ =eθ ∂θ ˆ ∂ eθ ˆ = −er ∂θ ˆ ∂ eϕ = 0 ∂θ

矢量场散度的定义与计算

矢量场散度的定义与计算
1.6 矢量场的散度
1. 矢量场的矢线(场线) 2. 矢量场的通量 3.散度的定义 4.散度的计算 5.散度定理
1. 矢量场的矢线(场线):
在矢量场中,若一条曲线上每
一点的切线方向与场矢量在该点的
+
-
方向重合,则该曲线称为矢线。
2. 通量: 定义:如果在该矢量场中取一曲面S, 通过该曲面的矢线量称为通量。
S2 F dS2
S3 F dS3
S4 F dS4
S5 F dS5
S6 F dS6
4.散度的计算: 在直角坐标系中,如图做一封闭
曲面,该封闭曲面由六个平面组成。 矢量场表示为:
F Fxaˆx Fyaˆy Fzaˆz
z
S6
S1
S3
S4
S2
S5
y
x
F dS S
S1 F dS1
S2 F dS2
常用坐标系中,散度的计算公式
直角坐标系中: 圆柱坐标系中:
F Fx Fy Fz x y z
F 1 (Fr r) 1 F Fz
rR 2FR R
)
1
Rsin
(F
sin
)
1
Rsin
F
正交曲线坐标系中: F
1
Fu1 h 2 h 3
(Fu2
h1h3
F S
dS
Fxx
Fy y
Fz z
xyz
z
S3 S2
x
S6
S1
S4
S5
y
该闭合曲面所包围的体积: V xyz
散度: divF
F dS
S
Fx Fy Fz
lim V0 V
x y z

矢量场的通量及散度.

矢量场的通量及散度.
div(cA) cdivA div( A B) div( A B) div( A) divA grad A
xyz e , r xi yj zk 例4 已知 求 div r
第二章 场论 第四节矢量场的环量及旋度 质点沿封闭曲线L运转一周时,场力F所做的功
r dS xdydz ydxdz zdxdy
s1 s1
Hdxdy H dxdy H 3
x
1
1
r
s2 s1
dS rn dS 0dS 0
s2 s2
r dS r dS H 3
s2
第二章 场论 2)通量为正、为负、为零时的物理意义 在一般的矢量场A(M)中,对于穿出封闭面S的通量Φ ,当其不为 零的时候,我们视其为证或者为负而说S内产生有通量Φ 的正源 或负源对于源的实际意义如何,视具体的物理场而定 例2 在点电荷q所产生的电场中,任何一点M处的电位移矢量为 q n D r 2 4 r 求从内穿出S的电通量Φ
在任一点M(x,y,z)的散度是
divA P q R x y z
第二章 场论
A dS Pdydz Qdxdz Rdxdy
s s
P q R ( )dV x y z P q R x y z V 根据中值定理有 M 其中M′为在Δ Ω 内的一点,由此

M s
D dS
s
q 4 R 2
r

dS
q 4 R 2
q 2 dS 4 R q 2 4 R s
第二章 场论 2 散度
divA lim lim M V M

矢量场的通量及散度(教案)

 矢量场的通量及散度(教案)

1.3矢量场的通量及散度1.3.1矢量场的概念定义:空间区域V 内的某一物理系统的状态,可以用一个矢量函数F (r ,t )来描述。

对于V 中任意一点r ,若F (r ,t )有确定的值与之对应,则称F (r ,t )是定义于V 区域上的矢量场。

矢量场也有两个特点:①F (r ,t )为空间坐标的函数(点函数),显示单值性;②F (r ,t )要占有一个空间。

矢量场也分恒稳矢量场F (r )和时变矢量场F (r , t )。

矢量场F (r ,t )可用矢量线(简称F 线)来形象地描述。

F 线是带有箭头的空间曲线,其上任一点的切线方向即为该处矢量场的方向,F 线的疏密反映矢量场分布的弱或强,矢量线互不相交。

直角坐标系下矢量场可表为:()()()()z z y y x x z y x F z y x F z y x F z y x e ,,e ,,e ,,,,F ++=(1.3.1)F 线上的任一线元矢量d l 总是与该处的F 共线,有 即则F 线的微分方程zy x F zF y F x d d d == (1.3.2) 1.3.2. 矢量场的通量(1)恒稳液流场v (r )液体流动形成液流场,其中每一点的流动特点用流速v (r )表示,反映单位时间内流过与该处液流方向垂直的单位面积的液体体积的多少。

恒稳之意是指与时间无关恒稳液流场⇔恒稳流速矢量场v (r )。

2)流量概念面元矢量:对于S 面上的任意面元d S ,指定其正法向方向,设置正法向单位矢量e n ,确定了正法向方向的面元称为面元矢量,表示为d S =d S e n 。

流量:设面元矢量d S 与该处v 间的夹角为θ,则穿过该面元d S 的元流量为ψd = v n d S = v cos θd S = v ‧d S (1.3.3)累加S 面上所有面元的元流量,得穿过S 面的流量⎰⎰⋅==sS v d d ψψ(1.3.4)推广流量的概念,对于任意闭合面,有v (r )在闭面S 上的闭合面积分⎰⋅=s d s v ψ(1.3.5)规定闭面上各d S 的方向为外法线方向,上式就表示流出闭面S 的净流量。

《矢量分析与场论》知识点归纳

《矢量分析与场论》知识点归纳

⎢⎢a
y
⎥ ⎥
=
⎢⎢sinθ
sin
ϕ
⎢⎣az ⎥⎦ ⎢⎣ cosθ
cosθ cosϕ cosθ sinϕ
− sinθ
− sinϕ cosϕ
− sinϕ cosϕ
0
0⎤⎡aρ ⎤
0⎥⎥
⎢⎢aϕ
⎥ ⎥
1⎥⎦⎢⎣az ⎥⎦
(1-2-10)
如果矢量 A 是在圆柱坐标系给定的,根据式(1-2-10)
可以变换成直角坐标系的表达式,反之,若矢量 A 是在直角坐标系给定的,则根据式(1-2-9)
可以变换成圆柱坐标系的表达式。
P 沿 ρ 、ϕ 和 z 方向的长度增量分别为
⎤ ⎥ ⎥
=
⎡sinθ ⎢⎢cosθ
cosϕ cosϕ
⎢⎣aϕ ⎥⎦ ⎢⎣ − sinϕ
sinθ sinϕ cosθ sinϕ
cosϕ
cosθ ⎤⎡ax ⎤

sin
θ
⎥ ⎥
⎢⎢a
y
⎥ ⎥
0 ⎥⎦⎢⎣az ⎥⎦
同样,将上式求逆即可得到由球坐标变换到直角坐标的关系式
(1-2-23)
⎡ax ⎤ ⎡sinθ cosϕ
矢量分析与场论
实数域内任一代数即一个只有大小的量称之为标量,而一个既有大小又有方向特性的量 称之为矢量。无论是标量还是矢量,一旦被赋予物理单位,则成为一个具有物理意义的量即 所谓的物理量。物理量数值的无穷集合称为场。如果这个物理量是标量,就称其为标量场; 如果物理量是矢量就称这个场为矢量场。场的一个重要属性是它占有一个空间,而且在该空 间域内,除有限个点或表面外它是处处连续的。如果场中各处物理量不随时间变化,则称该 场为静态场,不然,则称为动态场或时变场。

《矢量分析与场论》 矢量场的通量及散度

《矢量分析与场论》 矢量场的通量及散度

q •o
径为 R 的球面的通量。
x
y
R
解:电位移矢量为
D
qr
4r 3

q
4r 2
r r
q
4r 2
r
r r x2 y2 z2
根据通量的定义,有 球面外法向单位矢量

D • dS
S
n
r
dS
ndS
r
在球面上有
rR
4.通量和源



为 n 个弧长小段,第 i 段有,
li (xi1 xi )2 ( yi1 yi )2 (zi1 zi )2 xi2 yi2 zi2
且 (i ,i , i ) 是在 li 内的一点。
2.曲线积分
如果(1)式的极限存在,则把该极限称之为数
量场u(x, y, z) 在曲L线 上对弧长的曲线积分,记 作
y
o
x
D
( k ) x y (k ,k , k )
3.曲面积分
(i ,i , i ) 是 曲 面 上 的Si 一 点 ,
若式(2)的极限存在,则称
z
S Si
y
为数量场
u(x, y在, z曲) 面上 x o
的面积曲面积分,也称为第I
D
型曲面积分。记作
( k )x y (k ,k , k )
最后得到:
(Axdydz Aydxdz Azdxdy)
为矢量函数
A(
S
x,
y,
z
)
对坐标的曲面积分,也称为
第II型曲面积分。
在上式中,被积函数 Ax , Ay , Az中的 x, y, z 并不独立, 受曲面 S 的约束。

第一章 矢量分析

第一章 矢量分析
电磁场与波
1
电磁场与波
1.1 矢量代数
1.2 矢量场的通量与散度,散度定理
1.3 矢量场的环流和旋度,斯托克斯定理
1.4 标量场的方向导数与梯度,格林定理 1.5 亥姆霍兹定理 1.6 曲面坐标系 1.7 场函数的二阶微分运算
2
电磁场与波
教学基本要求: 理解标量场与矢量场的概念,了解标量场的等值面和 矢量场的矢量线的概念 深刻理解矢量场的散度和旋度,标量场的梯度,掌握 相关计算公式和方法 熟练掌握散度定理和斯托克斯定理 理解亥姆霍茨定理的重要意义
—— 标量三重积 A ( B C ) B ( C A ) C ( A B )
—— 矢量三重积 A ( B C )( A C ) B ( A B ) C
10
电磁场与波
z x y 9, z B x 243 y , 求 ( 1 ) A B , A B , A B 例1.1:设 A ( 2 ) 求 A 和 B 的 夹 角
用坐标分量表示为 A B ( x A y A z A )( x B y B z B ) x y z x y z A B A B A B x x y y z z
矢量的标积符合交换律: AB BA
8
电磁场与波
(4)矢量的矢量积(叉积)
ˆ ˆ ˆ B = x ( 12 ) y [9(4 ) ] z (13 ) 解:(1) A ˆ ˆ ˆ x y 5 z 4
ˆ ˆ ˆ ˆ(3 ˆ A B = xx ˆ 2 y 9 (y 4 ) z z ) 23 63 3 5 ˆ y ˆ z ˆ x
掌握曲面坐标系及其相互转换关系

1.3 工程电磁场 矢量场的通量和散度

1.3 工程电磁场 矢量场的通量和散度

的积分只剩下 此,当体积 τ 由N
i个小、体积j 外元表组面成上时的,通穿量出,体因积
τ的通量就等于限定它的闭合面 S 上的通量。
N

N

i 1
lim (
i 0

A)
i

i 1
A dS
Si
证毕
即 ( A)d A dS
divA =0: 该点无源。
散度是标量。
2019/5/30
7
2 、散度在直角坐标系中的表示式:
divA
Ax
Ay
Az
x y z
矢量微分算子 : “ ” 读作 nabla 或 del



ex
x
ey
y

ez
z
当作矢量看待

divA

(ex


A dS
divA
lim S
0

散度是标量
散度的意义:表示场中任意一点M处,通量对 体积的变化率。也称为 “通量源密度”。
2019/5/30
6

讨论:
divA
lim

A dS
S

0
divA >0:该点有发出通量线的正源;
divA <0: 该点有吸收通量线的负源;

S
2019/5/30
11
例A : e设xx球面eySy上 e任z z意, 点求的位SA置 d矢S量. 为
R
解:根据散度定理


Ad A dS

S
而 A的散度为

电磁场与电磁波(第四版)(王家礼) (2)

电磁场与电磁波(第四版)(王家礼) (2)

第一章 矢 量 分 析 1.1.3 标量场的等值面和矢量场的矢量线
在研究场的特性时,以场图表示场变量在空间逐点分布的 情况具有很大的意义。对于标量场,常用等值面的概念来描述。
所谓等值面,是指在标量场j(x,y,z)中,使其函数 j取相同数值的所有点组成的集合,这些点组成一个曲面,该曲
面称为等值面。如温度场的等值面,就是由温度相同的点所组 成的一个曲面,此曲面称为等温面。等值面在二维空间就变为 等值线。如地图上的等高线,就是由高度相同的点连成的一条 曲线。
表该代数量的大小。在物理学中,任意一个代数量一旦被赋予物理
单位,则成为一个具有物理意义的标量,即所谓的物理量,如电压u、 电流i、面积S、体积V等等。
在二维空间或三维空间内的任一点P是一个既存在大小(或称 为模)又有方向特性的量,故称为实数矢量,实数矢量可用黑体A表 示,而白体A表示A的大小(即A的模)。若用几何图形表示,实数矢量 是从原点出发的一条带有箭头的直线段,直线段的长度表示矢量A 的模,箭头的指向表示该矢量A的方向。矢量一旦被赋予物理单位, 便成为具有物理意义的矢量,如电场强度E、磁场强度H、速度v等
(1-2)
若函数j=j(x,y,z)在点M0(x0,y0,z0)处可微,cosα、 cosβ、cosγ为l方向的方向余弦,则函数j=j(x,y,z)在点M0(x0,
y0,z0)处沿l方向的方向导数必定存在,且为
j j cos j cos j cos
l M 0 x
y
z
(1-3)
第一章 矢 量 分 析
A=A(t) 而G[a,b]为A(t)的定义域。矢性函数A(t)在直角坐标系中的三 个坐标分量都是变量t的函数,分别为Ax(t)、Ay(t)、Az(t),则 矢性函数A(t)也可用其坐标表示为

第1章 矢量分析

第1章 矢量分析

在直角坐标系中称之为哈米尔顿算子 哈米尔顿算子,是一个微分 哈米尔顿算子 符号,同时又要当作矢量看待。算子与矢性函数A 的点积 点积为一标量 标量函数。 点积 标量 散度的表达式可以写为: 散度 直角坐标系
∂ ∇ ⋅ A = ax + ay ∂x ∂Ax = ax + ay ∂x ∂ ∂ + a z ⋅ (a x Ax + a y Ay + a z Az ) ∂y ∂z ∂Ay ∂Az + az ∂y ∂z
Φ = ∫ A ⋅ dS = ∫ A cos θ dS
S S
1.2.2. 矢量场的散度 (1) 散度的定义 设有矢量场A,在其中任一点P处作一个包含P点在内 的闭合曲面S,设S所限定的体积为∆V,当体积∆V以任 意方式缩向P点时,取下列极限:
∆V ndS ∆V
如果上式的极限存在,则称此极限为矢量场A在点P处 的散度,记作

l

S
•斯托克斯定理的几何意义 矢量场A的旋度沿曲面S法向分量的面积分等于该矢 量沿围绕此面积曲线边界的线积分。
1.4 标量的方向导数和梯度 1.4.1标量的方向导数和梯度 等值面 一个标量场u可以用标量函数来表示。在直角坐标系中, 可将u表示为 u = u ( x, y , z ) u = u ( x, y , z ) = C 令 C为任意常数。该式在几何上一般表示一个曲面,在 这个曲面上的各点,虽然坐标(x, y, z)不同,但函数值 相等,称此曲面为标量场u的等值面 等值面。 等值面 等值线 对于由二维函数v=v(x,y)所给定 的平面标量场,可按v(x, y)=C得 到一系列不同值的等值线。
第一章 矢量分析
本章重点及知识点 标量场的方向导数和梯度 矢量场的通量和散度 矢量场的环量和旋度 亥姆霍兹定理

2.3矢量场的通量及散度

2.3矢量场的通量及散度



s
A(r ) dS v
v 0
2、散度的物理意义 1) 矢量场的散度代表矢量场的通量源的分布特性;
2) 矢量场的散度是一个标量;
3) 矢量场的散度是空间坐标的函数;
4) 矢量场的散度值表征空间中通量源的密度(分布特性)。
某一点的散度是指在以该点为中心的邻域内单位体积中 的通量源----通量源密度。
2. 矢量场的旋度
旋度是一个矢量,
模值等于环量密度的最大值; 方向为最大环量密度的方向。 用 rot A 表示,即:
rot A n lim

c
A dl S
max
S 0
ˆ 表示矢量场旋度的方向; 式中:n
3. 旋度的物理意义
1)矢量的旋度为矢量,是空间坐标的函数; 旋度完整的反映了矢量场的旋涡在各点上的分布情况。 而某个方向的环量密度是旋度在该方向上的投影。 2)矢量在空间某点处的旋度表征矢量场在该点处的漩涡源密度; 旋度可以反映引起矢量场旋涡的源(旋度源)在空间的 分布情况。
Ax
y
Ay
ˆ A
ˆ y
ˆ z
A
ˆ 1 A
z
Az
1 A r 2 sin r
Ar
ˆ r
ˆ r
rA
r sin A
ˆ r sin
可以看出,旋度是对矢量场的一种微分运算,描述矢量场 在空间的某种变化情况。
通量反映的是大面积上的积分量,不能说明体积内每一点的性质。如果包围点M 的闭合面S所围区域V以任意方式缩小为点M 时, 通量与体积之比的极限存在, 即:
在M 点处的散度为: 为 V ,则定义场矢量 A(r )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3 矢量场的通量及散度
1.3.1 矢量场的概念
定义:空间区域V 内的某一物理系统的状态,可以用一个矢量函数F (r ,t )来描述。

对于V 中任意一点r ,若F (r ,t )有确定的值与之对应,则称F (r ,t )是定义于V 区域上的矢量场。

矢量场也有两个特点:①F (r ,t )为空间坐标的函数(点函数),显示单值性;
②F (r ,t )要占有一个空间。

矢量场也分恒稳矢量场F (r )和时变矢量场F (r , t )。

矢量场F (r ,t )可用矢量线(简称F 线)来形象地描述。

F 线是带有箭头的空间曲线,其上任一点的切线方向即为该处矢量场的方向,F 线的疏密反映矢量场分布的弱或强,矢量线互不相交。

直角坐标系下矢量场可表为:
()()()()z z y y x x z y x F z y x F z y x F z y x e ,,e ,,e ,,,,F ++= (1.3.1)
F 线上的任一线元矢量d l 总是与该处的F 共线,有
0d =⨯l F

()()()0d d d d d d =-+-+-z
y
x
y
x
z
x
z
y
x F y F z F x F y F z F e
e e
则F 线的微分方程
z
y x F z
F y F x d d d == (1.3.2) 1.3.2. 矢量场的通量
(1)恒稳液流场v (r )
液体流动形成液流场,其中每一点的流动特点用流速v (r )表示,反映单位时间内流过与该处液流方向垂直的单位面积的液体体积的多少。

恒稳之意是指与时间无关
恒稳液流场 ⇔恒稳流速矢量场v (r )。

2)流量概念
面元矢量:对于S 面上的任意面元d S ,指定其正法向方向,设置正法向单位矢量e n ,确定了正法向方向的面元称为面元矢量,表示为d S =d S e n 。

流量:设面元矢量d S 与该处v 间的夹角为θ,则穿过该面元d S 的元流量为
ψd = v n d S = v cos θ d S = v ‧d S (1.3.3)
累加S 面上所有面元的元流量,得穿过S 面的流量
⎰⎰⋅==s
S v d d ψψ (1.3.4)
推广流量的概念,对于任意闭合面,有v (r )在闭面S 上的闭合面积分
⎰⋅=s d s v ψ (1.3.5)
规定闭面上各d S 的方向为外法线方向,上式就表示流出闭面S 的净流量。

净流量实际上是流出闭面S 与流入闭面S 的流量之差,若
0>ψ :表示流出多于流入,说明S 内有产生液体的“正源”; 0<ψ :说明S 内有“吞食”液体的转换器或“负源”; 0=ψ :表示流出与流入S 的液体相等,S 内无“源”。

即v 的闭合面积分起到检源作用。

(3)矢量场的通量与闭合面通量
将流量和闭合面流量概念推广到一般矢量场F (r ),有通量⎰⋅s s F d 和闭合面通量
⎰⋅s d s F 概念。

分析⎰⋅s d s F
内有负源
闭面内有正源闭面内无源闭面S S S ⇒
<⋅⇒>⋅⇒=⋅⎰⎰⎰0
d 0d 0d s s s s F s F s F
显示了它的检源作用。

θ
e n
v
S
v 线 d s
在直角坐标系中,设
()()()()z z y y x x z y x F z y x F z y x F z y x e ,,e ,,e ,,,,F ++=
d S = d y d z
e x + d x d z e y + d x d y e z
则通量为
⎰⎰++=⋅=s z y x s y x F z x F z y F d d d d d d d s F ψ (1.3.6)
1.3.3. 散度的概念
研究矢量场,需要知道产生闭合面通量的通量场源的逐点分布情况。

为此还需引入矢量场散度的概念。

(1)定义:设矢量场F (r )在其定义域V 内连续、可微,在场中任取一点P ,包围它作一微小的闭合面S ,其内的体积为∆V 。

计算⎰
⋅s d S F ,令∆V 向着P 点收缩,若极限
V
s V ∆⋅⎰→∆s
F d lim
存在,就称它为P 点处F (r )的散度(divergence )
V
s
V ∆⋅=⎰→∆s F F d lim
div 0
(1.3.7)
分析定义:①散度是标量,它表示在场中任一点处单位体积内场源发出的净通量,反映该点通量源发出闭合面通量的能力,是通量源强度的量度。

②散度通常是空间坐标的函数,它能描述通量源的逐点分布情况。

散度为零、为正或负,反映出场中某点的是无源的、有正(负)源存在或该区域为有源区。

(2)散度的直角坐标表达式 矢量场F (x ,y ,z )中任一点
(x ,y ,z ) ,以它为顶点作边长分别为
∆x 、∆y 、∆z 的小平行六面体,其体积∆V =∆x ∆y ∆z 。

在六面体三顶点a 、b 、
c 处有沿坐标轴正方向的矢量场分矢
量F x (x+∆x ,y ,z )、F y (x ,y+∆y ,z )
y,z )
和F z (x ,y ,z+∆z )。

在点(x ,y ,z )处按泰勒级数展开
z
z z z y y y y x
x x x z z
x,y,z F x,y,z F z x,y,z y y x,y,z F x,y,z F y,z x,y x x x,y,z F x,y,z F x,y,z x e F e F e F ])
()([)(])
()([)(])
()([)Δ(∆∂∂+≈∆+∆∂∂+≈∆+∆∂∂+≈+
在小六面体的任一面元上,矢量场的法向分量可看成近似不变,有
V
z
F y F x F y x F y x z z
F F z x F z x y y
F F z y F z y x x
F F z y x z z
z y y
y x x
x ∆∂∂+∂∂+∂∂=∆∆-∆∆∆∂∂++∆∆-∆∆∆∂∂++∆∆-∆∆∆∂∂+⋅≈⎰
)()]
)[()]
)[()])[(d s s F
由定义式得
z F y F x F V
iv z
y x
s
V ∂∂+∂∂+∂∂=
∆⋅=⎰→∆s F F d lim d 0
(1.3.8)
可写成
z
F y F x F z
y x ∂∂+
∂∂+∂∂=⋅∇F (1.3.9)
F ⋅∇表示F (r )的散度,称“⋅∇”为散度算符。

1.3.4. 有关散度运算的几个关系式
(1) 对于相对坐标矢量函数)(r r F '-,有
F F ⋅∇'-=⋅∇ (1.3.10)
(2) 相对位置矢量)(r r R '-的散度为
3=⋅∇R (1.3.11)
(3)对于标量场f (r )和矢量场F (r )之积f F 有
F F F ⋅∇+⋅∇=⋅∇f f f )( (1.3.12)
证:设
f (r ) =f (x ,y ,z )
F ( x,y,z ) = F x ( x,y,z ) e x + F y ( x,y,z ) e y + F z ( x,y,z ) e z

)()(z z y y x x fF fF fF f e e e F ++⋅∇=⋅∇
F
F ⋅∇+⋅∇=∂∂+∂∂+∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=
f f z
f
F y f F x f F z F y F x F f z
f
F z F f y f F y F f x f F x F f fF z
fF y fF x z y x z y x z z y y x x z y x )
()()
()()()()()( (4)对于R 及其模R ,有
03=⋅∇R
R
(1.3.13)
作业: 10
补充题:试证明 03=⋅∇R
R。

相关文档
最新文档