多边形的定义 PPT

合集下载

人教版数学九年级上册24.3正多边形和圆课件(36张PPT)

人教版数学九年级上册24.3正多边形和圆课件(36张PPT)
24.3 正多边形和圆
人教版·九年级上册
学习目标
(1)理解正多边形及其半径、边长、边心距、中心 角等概念. (2)会进行特殊的与正多边形有关的计算,会画某 些正多边形.
新课导入
问题1:观察下面多边形,它们的边、角有什么特点?
都是各边相等,各内角相等的多边形
问题2:观看这些美丽的图案,都是在日常生活中我们 经常能看到的.你能从这些图案中找出类似的图形吗?
动手操作
操作一:自己动手试一试,你能画出什么正多边 形?你是怎么画的? 操作二:画一个半径是1.5cm的圆,并画出它的正 六边形。
解:方法 1 (1)作一个半径是1.5cm的圆⊙O ; (2)用量角器依次作∠AOB=∠BOC=∠COD= ∠DOE=∠EOF=∠FOA= 360 =60°,将360°圆心角六
想一想
有没有对称轴?
正多边形都是 轴对称 图形,一个正n边形共有
n 条对称轴,每条对称轴都通过n边形的 中心 .
边数3是条偶数的正4多条边形还是 5中条心对称图形6条,它的中 心就是对称中心.
你知道正多边形与圆的关系吗?
把一个圆分成相等的弧?依次连接各等分点,得到一个什 么图形? 如果五、六、七…等分?如果将圆n等分呢?
思考 什么叫正多边形?图中有哪些正多边形? 正多边形与圆有哪些关系?
探索新知
图形 ……
名称 正三角形 正四角形 正五角形 正六角形
……
边的关系
角的关系
三条边相等 三个角相等(60°)
四条边相等 四个角相等(90°)
五条边相等 五个角相等(108°)
六条边相等 六个角相等(120°)
……
……
正多边形的概念:
< 针对训练 >

多边形和圆的初步认识优秀ppt课件

多边形和圆的初步认识优秀ppt课件
如图,属于多边形的有( )个
15
多边形的
顶点 边
内角
对角线
E D
A
C
B
16
3、从一个多边形的同一个顶点出发,分别连接这 个顶点与其余各顶点,可以把这个多边形分割成若 干个三角形。能有一定的规律吗?

多边形
四边形 五边形
六边形
n边形
过点A对角线条数

分成三角形个数
17
1、从一个十八边形的某个顶点出发,分别
20
A
圆:平面上,一条线段绕着一个端点旋转 一周,另一个端点形成的图形叫做圆
圆弧:圆上任意两点A,B间的部分 (简称弧)
B
o
读作:弧AB 记作:
扇形:一条弧AB和经过这条弧的端点的两条半径 OA、OB所组成的图形叫做扇形
圆心角:顶点在圆心的角叫做圆心角
21
例:将一个圆分割成三个扇形,它们的圆心角的 度数比为1:2:3,求这三个扇形的圆心角的度数。
图(1)
2、如图(2)该图案中的
平面图形有_三__角__形__、_梯__形__、__长__方形 3、图(3)中共有___5___个三角形
图(2)
图(3)
4、图(4)中的扇形共有___3__个,弧共有___3___个
图(4)
24
5、如图、把一个圆分成三个扇形, 你能求出这三个扇形的圆心角吗?
30%
20%
25
课堂小结
(1)多边形 、正多边形 (2)圆、弧、扇形、圆心角
26
: 思考题 以两个圆.两个三角形.两条线段为构
件,尽可能多地构思独特且具有意义的图形,并 写上一两句贴切.诙谐的解说词,如:
一把小雨伞
一个和尚

浙教版八年级下册 4.1 多边形 课件(20张PPT)

浙教版八年级下册 4.1 多边形 课件(20张PPT)
4.1 多边形(一)
知识回顾
A
Bቤተ መጻሕፍቲ ባይዱ
C
定义:由不在同一条直线上的三条线段首尾顺次相接 所形成的图形叫三角形.
新课讲解
四边形的定义…
A D
B
C
在同一平面里, 由不在同一条直线上的四条线段 首尾顺次相接所形成的图形叫四边形 .
新课讲解
……
三角形 四边形 五边形 六边形 依此类推, 边数为5的多边形叫五边形, 边数为6的多边形叫六边形, 边数为n的多边形叫n边形. (n为正整数,且n≥3)
B.2π米2
C.3π米2
D.0.5π米2
练一练
4.如图,在四边形ABCD中,∠A=85°,
D
∠D=110°, ∠1的外角是71°, 则∠1= 109 °,∠2= 56°.
A 85° 110°
71° 1 B
2 C
5.如图,在四边形ABCD中, ∠C=110°,∠BAD,∠ABC的外 角都是120°,则∠ADC的外角a 的度数是 50 度.
∴∠1+∠2+∠3+∠4 = 4×180°- 360° = 360°
A1 D 4
2
C
B
3
四边形的外角和等于360°.
例题讲解
例1 如图,四边形风筝的四个内角∠A,∠B,∠C,∠D 的度数之比为1:1:0.6:1.求它的四个内角的度数.
解 ∵∠A+∠B+∠C+∠D=360° (四边形的内角和为360°)
顶点个数 边的条数
表示法
内角和 外角和
3个 3条
可以表示为△ABC、 △BCA、△CAB等
180˚ 360°
4个
4条
可以表示为四边形ABCD、 四边形BCDA、四边形 CDAB、四边形DABC等.

多边形的外角和精品课件

多边形的外角和精品课件
6、四边形 具有不稳定性.
进10m后左转24°,再沿直线前进10m,又向左24°,••••••, 照这样走下去,他第一次回到出发地点A时,一共走的路程
是 150 米.
【分析】 由题意知,当小华第一次回到出发地点A 时, 他走过的路线 正好构成一个边长为10米, 每个外角都是24°的正多边形.
24° 24°
∵ 多边形的外角和是360°, 且每一个外角都等于24° ∴ 多边形的边数为 360°÷24° =15 ∴ 小华一共走了 15×10 =150(m)
探究 3 你能求出n边形的外角和是多少度吗?
An
5 A5
4
A1
1 A2 2
A4
3
A3
整体思路: 1.先求n个外角+n个内角的和 2.再减去n边形的内角和
证明: ∵ n边形的每个外角与它相邻的内角互补 ∴ n个外角与n个内角的和是: n×180°
又∵ n边形的内角和是: (n-2)×180° ∴ n边形的外角和是:n×180° -(n-2)×180° =360°
几边形,它的内角和是多少? 解: ∵ 多边形的外角和是360°, 且每一个外角都等于45°
∴ 多边形的边数为 360°÷45° =8 ∴ 这个多边形的内角和为
(8-2)×180° =1080° 注意:
正多边形的边数= 360° ÷ 一个外角的度数
对应练习 4、[湖北十堰中考] 如图,小华从点A出发,沿直线前
7、一个正多边形每一个内角比每一个外角的3倍还大20°, 求这个正多边形的内角和.
方法2: 设这个多边形的每一个外角的度数为x°,则其每个 内角的度数为 (3x°+20°). 根据题意,得 (3x°+20°)+x°=180° 解得 x=40

《多边形》PPT课件

《多边形》PPT课件
➢ 多边形内角和为( − ) × °
➢ 正多边形属于多边形,正多边形的内角和为( − ) × °
➢ 正多边形内角都相等,边也都相等
➢ 正边形的每个内角的度数均为
(−)×°

多边形的外角和
➢ 在边形的每个顶点处各取一个外角,这些外角的和叫做n边形的外角和
➢边形的外角和为°
(2)多边形的内角和为(n-2)×180°;多边形的外角和为360°
(3)三角形是最简单的多边形,以上公式对三角形依然成立
(4)一个多边形的内角和取决于它的边数,随着边数的增加、内角和也随之增加,
并且每增加一条边,内角和就增加180°;
多边形的外角和与边数无关,总是等于360°
(5)正多边形,边相等,内角也相等,外角也相等。
- .
第一课时
多边形的相关概念
➢ 多边形的概念
➢ 凸多边形与凹多边形
➢ 多边形的表示
➢ 正多边形的概念
➢ 多边形的对角线(重点)
复习
三角形的定义:由不在同一条直线上的三条线段首尾
顺次相连所组成的图形
三角形的边:
组成三角形的线段
三角形的顶点:相邻两边的公共端点
三角形的内角:相邻两条边所组成的角
三角形的外角:三角形内角的一边与另一边的反向延
(3)在平面内,内角都相等,边也都相等的多边形叫做正多边形
(4)对角线:连接多边形不相邻的两个顶点的线段
①从n边形的一个顶点出发可以引(n-3)条对角线
②这些对角线把这个多边形分成(n-2)个三角形
(−)
③n边形共有

条对角线
练习
1.下列图形为正多边形的是
A
B
C
D
2.下列图形不是凸多边形的是

人教版八年级上册数学多边形说课课件

人教版八年级上册数学多边形说课课件

问题2:你能说出生活中的多边形吗? 教师利用投影出示图片,学生观察图片,并进行讨论、交流.之后学生自由发言. 然后教师指出相关的概念. 多边形:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.按组成多边形线段的条数分为三角形、四边形、五边形……如果一个多边形由n条线段组成,这个多边形叫做n边形.
添加标题
点击此处添加段落文本点击此处添加段落文本
添加标题
点击此处添加段落文本点击此处添加段落文本
添加标题
点击此处添加段落文本点击此处添加段落文本
教学分析
教学方案
教学内容
教学成果
教学总结
23%
61%
48%
36%
目录 标题
单击添加详细文字说明,或复制文本黏贴自此右键只保留文字
单击添加详细文字说明,或复制文本黏贴自此右键只保留文字
在此添加标题
请在此处输入具体想要描述的内容,言简意赅,说明用意即可。
教学分析
教学方案
教学内容
教学成果
教学总结
01
02
03
04
在此添加标题
单击添加详细文字说明,或复制文本黏贴自此右键只保留文字单击添加详细文字说明,或复制文本黏贴自此右键只保留文字
在此添加标题
单击添加详细文字说明,或复制文本黏贴自此右键只保留文字单击添加详细文字说明
2000-2006
请在此处输入具体想要描述的内容,言简意赅,说明用意即可。
2006-2008
请在此处输入具体想要描述的内容,言简意赅,说明用意即可。
2008-2013
教学分析
教学方案
教学内容
教学成果
教学总结
A
STEP
B
STEP

正多边形和圆-ppt课件

正多边形和圆-ppt课件

“各边相等,各内角相等”是正多边形的两
个基本特征,当边数n>3时,二者必须同时具备,
缺一不可,否则多边形就不是正多边形.
感悟新知
3. 正多边形的有关概念
知1-讲
(1)正多边形的中心: 一个正多边形的外接圆的圆心叫作正
多边形的中心 .
(2)正多边形的半径: 正多边形的外接圆的半径叫作正多边形
的半径 .
心,OA 为半径作⊙ O,直径 FC ∥ AB, AO, BO
的延长线交⊙ O 于点 D, E.
求证:六边形 ABCDEF 为圆内接
正六边形 .
感悟新知
知1-练
思路导引:
感悟新知
知1-练
证明: ∵三角形 AOB 是正三角形,
∴∠ AOB= ∠ OAB= ∠ OBA=60°, OB=OA.
∴点 B 在⊙ O 上 .
(1)作半径为 0.9 cm 的⊙ O;
(2)用量角器画∠ AOB = ∠ BOC=120°,其中 A, B,C
均为圆上的点;
(3)连接 AB, BC, CA,则△ ABC 为
所求作的正三角形 ,如图 24. 3-4所示.
感悟新知
作法二
(1)作半径为 0.9 cm 的⊙ O;
知3-练
(2)作⊙ O 的任一直径 AB;




︵ ︵
∴BDE-CDE=CDA-CDE,即BC=AE.∴BC=AE.
同理可证其余各边都相等,
∴五边形 ABCDE 是正五边形.
感悟新知
知识点 2 正多边形的有关计算
1. 正 n 边形的每个内角都等于
(-)· °
.

2. 正 n 边形的每个中心角都等于

多边形和圆的初步认识ppt

多边形和圆的初步认识ppt

圆周长的计算
圆周长是指圆一周的长度。
圆周长可以通过圆周率(π)和直径(d)或半径(r)的关系式来计算,即C=πd或C=2πr 。
圆周长是圆的特征之一,它是圆的重要属性,反映了圆的形状和大小。
03
多边形和圆的面积计算
多边形面积的计算
三角形面积计算
三角形面积等于底边乘以高再除 以2,即A=1/2bh。
05
多边形和圆的实际应用
建筑设计中的多边形和圆
建筑物的窗户和门的设计
多边形的窗户和门的设计,不仅美观大方,而且能够增加室内光 线,使房间更加明亮和舒适。
建筑的立面和屋顶设计
利用多边形设计的建筑立面和屋顶,能够增加建筑物的美观性和 稳定性。
建筑物的室内设计
室内设计师可以利用多边形来设计出独特的家具、吊顶等,增加 室内的空间感和视觉效果。
多边形和圆在很多领域都有应用,如 建筑设计、机械制造、地理测量等。
要点三
多边形和圆的拓展
我们可以通过拓展多边形和圆的定义 、性质和应用,来进一步深化对其的 理解。例如,将多边形拓展到n维空 间,将圆拓展到椭圆的范围等。
THANKS
谢谢您的观看
圆的半径和直径
圆的半径是指圆心到圆周上任意一点的距离,而直径是 圆周上通过圆心的线段的长度。
多边形和圆的基本性质
多边形和圆有一些基本性质,例如,多边形的内角和公 式为(n-2) × 180°,圆周角为360°等。
总结多边形和圆的初步认识
多边形和圆的基本概念
掌握了多边形和圆的基本概念,才能更好地理解其性质和应用。
多边形的分类
等边多边形
每个内角都相等的多边形,如 正三角形、正方形、正六边形
等。
等腰多边形

24.3.正多边形和圆课件PPT(共22张)

24.3.正多边形和圆课件PPT(共22张)
24.3 正多边形(zhèngduōbiānxíng) 和圆
点击页面即可演示
第1页,共22页。
观察下列图形它们有什么(shén 特 me) 点?
第2页,共22页。
三条边相等,
四条边相等,四
正三 三个角相等 角形 (60°).
正方形 个角相等 (90°).
一、正多边形的定义
各边相等,各角也相等的多边形叫做(jiàozuò)正多边 形.
边形ABCDE的 内切圆的半径(bànjìng). D
7.∠AOB叫做正五边形
ABCDE的 中心角,
它的度数是 72°.
E
C
.O
AF
B
第12页,共22页。
8.图中正(zhōnɡ zhènɡ)六边形ABCDEF的中心角∠是AOB
它的度数是 60°
9.你发现正六边形
ABCDEF的半径
与边长具有什么
数量关系?
第5页,共22页。
A
D
B
C
弧相等
弦相等 (多边形的边相等 ) (xiāngděng)
(xiāngděng)
圆周角相等(多边形的角相等)
—多边形是正多边形
第6页,共22页。
A
E B
H D
G
C
弧相等
F
全等三角形
边相等
(xiāngděng)
角相等
多边形是正多边形
第7页,共22页。
定理:
把圆分成n(n≥3)等份: ⑴依次连接各分点所得(suǒ dé)的多边形是这个圆 的
相等
E F
D
.O
C
A
B
第13页,共22页。
判断题
①各边都相等的多边形是正多边形.( ) ×

《多边形的面积》课件

《多边形的面积》课件
《多边形的面积》 ppt课件
目录
CONTENTS
• 多边形的定义与分类 • 面积计算公式 • 面积计算方法 • 面积计算实例 • 面积计算中的常见错误及纠正方法
01 多边形的定义与分类
定义
总结词
明确多边形的定义
详细描述
多边形是由至少三条直线段依次首尾顺次连接围成的平面图形。
分类(三角形、四边形、五边形等)
四边形面积计算方法
总结词
对角线乘积的一半
详细描述
四边形的面积可以通过其对角线的长 度乘积再除以2来计算。这种方法适用 于平行四边形、矩形、正方形等四边 形。
五边形面积计算方法
总结词
分割成三角形求和
详细描述
五边形的面积可以通过将其分割成若干个三角形,然后求出 这些三角形的面积之和来计算。这种方法适用于任意五边形 。
05 面积计算中的常见错误及 纠正方法
常见错误
误用面积公式
学生在计算多边形面积时,可 能会错误地将公式应用于不适 用规则图 形,而忽视了其不规则性,导 致面积计算错误。
计算错误
学生在进行面积计算时,可能 会因为粗心或计算能力不足而 犯错。
培养图形识别能力
教师应教导学生如何识别多边形的特征,以 便选择正确的面积计算方法。
感谢您的观看
THANKS
五边形面积计算公式
总结词:较为复杂
详细描述:五边形面积计算公式相对复杂,需要将其划分为多个三角形或四边形 进行计算。常见的五边形包括正五边形和不规则五边形,其面积计算方法也有所 不同。
03 面积计算方法
三角形面积计算方法
总结词
基乘高的一半
详细描述
三角形的面积可以通过基乘高再 除以2来计算。基是指三角形的底 ,高是指从基边到顶点的垂直距 离。

多边形ppt课件

多边形ppt课件

适用范围
注意事项
在推算面积与周长的关系时,需要确 保多边形的边数和边长已知。
适用于所有多边形,包括三角形、四 边形、五边形等,以及不规则多边形 。
04 多边形的对称性
对称轴
对称轴的定义
对称轴是一条通过多边形中心的 直线,将多边形分为两个相等的
部分。
对称轴的寻找方法
通过观察多边形的特性,可以找到 其对称轴。例如,正方形有两条对 称轴,分别通过其相对顶点和对角 线中点。
多边形PPT课件
目录
CONTENTS
• 多边形的定义与性质 • 多边形的分类 • 多边形的面积与周长 • 多边形的对称性 • 多边形在实际生活中的应用 • 多边形的拓展知识
01 多边形的定义与性质
定义与特性
总结词
多边形是由至少三条线段依次首尾相连围成的平面图形。
详细描述
多边形是由至少三条线段依次首尾相连围成的平面图形,具有封闭性和凸凹性等特性。封闭性是指多边形的所有 边都首尾相连,围成一个封闭的平面图形;凸凹性则是指多边形的内角和外角的大小关系,凸多边形的内角都小 于外角,而凹多边形的内角可能大于外角。
多边形的内角和
总结词
多边形的内角和等于(n-2)*180°,其中n是多边形的边数。
详细描述
多边形的内角和等于(n-2)*180°,其中n是多边形的边数。这个公式是计算 多边形内角和的基础,对于任意一个多边形,都可以使用这个公式来计算其内 角和。

多边形的外角和
总结词
多边形的外角和等于360°。
详细描述
多边形的外角和等于360°,这是多边形的一个基本性质。无论多边形的形状如何 变化,其外角和始终保持不变,恒等于360°。这个性质在几何学中非常重要,也 是解决许多几何问题的基础。

《多边形的面积复习》课件

《多边形的面积复习》课件
详细描述
多边形在生活中的应用广泛,如建筑、艺术、科技等领 域都有涉及,举例说明多边形的应用场景和价值。
02
多边形面积的基础公式
三角形面积公式
总结词
基础且常用
详细描述
三角形面积公式是计算三角形面积的标准方法,其公式为“底乘以高再除以2” 。这个公式适用于任何类型的三角形,是几何学中最基础和常用的公式之一。
详细描述
多边形的面积和周长是两个不同的几何量,它们之间存在一定的关系。一般来说,对于 给定的多边形,其面积越大,周长也越大。这是因为随着多边形形状的变化(保持面积 不变),其周长也会相应地发生变化。了解这一关系有助于更好地理解几何形状的变化
规律。
如何应用多边形面积公式解决实际问题?
总结词
多边形面积公式的实际应用
分类
总结词
阐述多边形的分类标准
详细描述
根据不同的分类标准,如边数、内角大小、平面或立体 等,将多边形进行分类,如三角形、四边形、五边形等 。
总结词
列举不同类型多边形的特点
详细描述
针对不同类型多边形,分别介绍其特点,如三角形具有 稳定性,四边形可以分为平行四边形和梯形等。
总结词
强调多边形在生活中的应用
03
多边形面积的推导与证明
三角形面积的推导
01
02
03
04
三角形面积公式:基底乘高的 一半。
推导方法:通过将两个相同的 三角形拼成一个矩形,然后利 用矩形面积公式进行推导。
适用范围:适用于任何三角形 ,包括直角三角形、等腰三角
形等。
注意事项:在计算三角形面积 时,需要特别注意基底和高度 的选择,以确保计算结果的准
总结词
不规则多边形的面积计算方法

北师大版七年级上册数学4.3 多边形和圆的初步认识PPT课件

北师大版七年级上册数学4.3 多边形和圆的初步认识PPT课件

4. 如图是地球表面积统计图的一部分,扇形A表示地球 某几种水域的面积,则此扇形的圆心角为___1_4_4___度.
课堂检测
能力提升题
从多边形的某一个顶点出发,分别连接这个顶点与
其余各顶点,把这个多边形分成10个三角形,那么这个
多边形是 ( A )
A. 十二边形
B.十一边形
C. 九边形
D.八边形
课堂检测
连接中考
1. 下列图形为正多边形的是( D )
A.
B.
C.
D.
2. 一个扇形的半径是6,圆心角是120°,该扇形的面积是( C )
A. 2π B. 4π
C. 12π
D.24π
课堂检测
基础巩固题
1. 如图所示的图形中,属于多边形的有几个( A )
A.3个
B.4个
C.5个
D.6个
课堂检测
基础巩固题
(2)圆心角的度数与周角的比与扇形的面积 与圆的面积比有怎样的关系?
结论:扇形的圆心角与周角的比等于扇形面积与圆的面积比.
即S扇形=
圆心角 周角
× S圆=
nπr2 360°
探究新知
做一做 画一个半径是2厘米的圆,并在其中画一个圆心角 为60°的扇形,你会计算这个扇形的面积吗?小组交流.
S扇形=
60° 360°
你能在我们生活周围找出这些平面图形吗?
探究新知 找出我们生活中基本的平面图形
探究新知
找出我们生活中基本的平面图形
探究新知 找出我们生活中基本的平面图形
探究新知
多边形的概念
定义:多边形是由一些 不在同一条直线上的 线段首尾 顺次 相连组成的 封闭平面图形.
【注意】 ①组成多边形的线段在“同一平面内”; ②线段必须“不在同一直线上”且线段条数不少于3条; ③首尾顺次相连; ④封闭图形. 我们平常所说的多边形都是指凸多边形,即多边形总在任何一 条边所在直线的同一侧.

画正多边形课件

画正多边形课件
画正多边形ppt课件
目录
CONTENTS
• 正多边形的定义与性质 • 画正多边形的方法 • 正多边形的几何应用 • 画正多边形的工具与软件 • 画正多边形的技巧与注意事项
01 正多边形的定义与性质
正多边形的定义
正多边形是指各边相 等,各内角也相等的 多边形。
正多边形的所有顶点 连接其中心(称为正 多边形的中心)的距 离相等。
正多边形的分类
01
02
03
04
等边三角形
三边长度相等,三个内角都是 60度。
等腰三角形
两边长度相等,两个内角相等 ,另一个内角与之互补。
等腰梯形
两腰长度相等,两底角相等。
正方形
四边长度相等,四个内角都是 90度。
02 画正多边形的方法
几何作图法
• 定义:通过使用简单的几何工具(如直尺、圆规等)来绘 制正多边形。
使用圆规和直尺
这是最基本的几何作图工具,用 于画出圆形和直线。
利用等分线段
通过等分线段,可以将线段分成若 干等份,从而更容易画出正多边形 。
利用垂线
通过画出垂直于线段的垂线,可以 确定正多边形的顶点位置。
代数计算技巧
计算内角和外角
通过计算正多边形的内角和外角,可以确定正多边形的形状和大 小。
利用正弦和余弦函数
注意精度设置
在绘制正多边形时,需要注意精 度设置,以确保绘制的图形准确
无误。
感谢您的观看
THANKS
04 画正多边形的工具与软件
几何作图工具
几何画板
专业的几何作图工具,可以方便 地绘制各种正多边形,并具有丰 富的几何变换功能。
GeoGebra
动态几何软件,支持绘制和操作 正多边形,并可进行动态演示和 探索。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图中的∠A、∠B、∠C
多边形的内角:
B
A C
多边形相邻两边组成的角叫做它的内角. A
B
如:五边形ABCDE的内角有
∠A、∠B、∠C、∠D、∠E
共5个.
C
E D
三角形的外角
A
三角形一边与另一边的延长线组成的角
如∠1就是∆ABC的一个外角 多边形的外角:
B
C
1
A2
B
多边形的边与它的邻边的延长 线组成的角叫做多边形的外角.
2、小学学过的下列图形中不可能是正多边形
的是( D )
A、三角形
B、正方形
C、四边形
D、梯形
3、已知一个多边形有35条对角线,你能 求出它的边数吗?
4、有一个家庭联谊会,参加的家庭全部 是三口之家,在联谊会期间,每个人都 要和别的家庭的每个成员握一次手。 (1)若参加会议的人数为15,则一共要 握手多少次? (2)若一共握手170次,则参加会议的 人数是多少?
多边形的对角线:
A
连接多边形不相邻的两个顶点
的线段,叫做多边形的对角线. B E
如图中的线段AC、AD、BE等
C
D
三角形是最简单的多边形,研究可借助对角线将 其分为若干个三角形
01 23 4 1 234 5 0 2 5 9 14
n-3
n-2 n(n-3)
2
3.多边形的分类
比一比.画一画
请分别画出下列两个图形各边所在的直线,你能
A
B D
C
四边形
四边形是由四条不在同一直线CD
生活中的平面图形
A
B E
C
D
五边形,它是由五条不在同一直 线上的线段首尾顺次连结组成的 平面图形,记为五边形ABCDE
生活中的平面图形
由这图形你抽象出什么几何图形?
六边形
六边形,它是由六条不在同一直 线上的线段首尾顺次连结组成的
小结
1、多边形的定义 在平面内,由一些线段首尾顺次相接组成的图形
2、多边形的相关概念
a.多边形的内角
多边形相邻两边组成的角
b.多边形的外角 多边形的一边与它相邻边的延长线组成的角
c.多边形的对角线 连接多边形不相邻的两个顶点的线段
5、凸多边形和正多边形 各个角相等,各条边都相等的多边形
得到什么结论?
D
E
A
C
G
B (1)
F
(2)
H
多边形的分类
A
在图1中,画出任意一边所在的直线,
D
整个多边形都在直线的同侧,这样的
多边形叫做凸多边形.
B 图1 C
图2中,多边形ABCD不在CD所在
A
直线的同侧,就不是凸多边形,叫
凹多边形.
没有特别说明,我们研究的 多边形都是指凸多边形.
C
B
图2 D
观察图中的多边形,他们的边、角有什么特点?
5、正多边形的__边___相等,__角__相等.
6、多边形分为__凸__多__边__形___和___凹__多__边__形___两类.
谁愿挑战?
1、下列叙述正确的是( D ) A、每条边都相等的多边形是正多边形。 B、如果画出多边形某一条边所在的直线, 这个多边形都在这条直线的同一侧,那么 它一定是凸多边形。 C、每个角都相等的多边形叫正多边形。 D、每条边、每个角都相等的多边形叫正多边形。
多边形的定义
美国国防部大楼——五角大楼
中国第一奇村诸葛八卦村
生活中的平面图形
§7.3.1
多边形
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
1.多边形的定义
生活中的平面图形
由这图形你抽象出什么几何图形?
三角形
三角形是由三条不在同一条直线上的 线段首尾顺次连结组成的平面图形
既然我们已经知道什么叫三角形,你能根据三角形 的定义,说出什么叫四边形吗?
例题讲解
例1:请列出生活中的一些多边形,并指出其特征
分析:生活中存在很多的多边形,它们的形状都 是为了与生活相适应。
解:房屋顶是三角形,因为三角形有稳定性; 螺母底面为六边形,是为了方便安装和拆卸; 黑板为四边形,是为了满足教学的使用;等等
2.多边形的相关概念
三角形的内角
三角形两边的夹角叫做三角形的内角
E
C
D
如:∠2是五边形ABCDE的一个外角.
关于多边形的角
那么五边形有几个内角?几条边?几个外角呢? 五边形有5个内角,5条边,10个外角
那么六边形有几个内角?几条边?几个外角呢? 六边形有6个内角,6条边,12个外角
那么n边形有几个内角?几条边?几个外角呢? n边形有n个内角,n条边,2n个外角
正三角形 正方形
菱形
矩形
课堂练习
小试身手
1、如图,此多边形应记作__五___边形__A_B_C_D_E__, AB边的邻边是___A_E___、____B_C_____,顶点E处 的内角为__∠_A_E_D_____,过顶点A画出这个多边形的 对角线,共有______2___条,它们把多边形分成 ____3_____个三角形。
平面图形
生活中的平面图形
由这图形你抽象出什么几何图形?
八边形
八边形,它是由八条不在同一直 线上的线段首尾顺次连结组成的
平面图形
多边形的定义
那么多边形的定义呢?
一般地,由n条不在同一直线 上的线段首尾顺次连结组成的 平面图形称为n边形,又称为 多边形.
多边形概念的重要提示:
在多边形的概念中,要分清以下几个方面 (1)在平面内; (2)若干线段不在同一直线上; (3)首尾顺次相接; (4)所形成的封闭图形
E
D A
B
C
2、n边形有___n___个顶点,__n___边,有__n___个 角,有____n____个不共顶点外角. 3、四边形有__2___条对角线。五边形有___5___条 对角线。四边形的一条对角线将它分成___2___个
三角形.
4、从五边形的一个顶点出发可以画__2___条对角 线,它们将五边形分成___3___个三角形.
正三角形 正方形 正五边形 正六边形 正八边形
正多边形的概念
在平面内,各个角都相等、各条边都相等的多 边形叫做正多边形。
判断一个n边形是正n边形的条件是:
当n>3时,必须同时满足以下两个条件:
(1)是各边相等, (2)是各角相等.
两者缺一不可 如长方形各角相等,但各边不一定相等,菱形各 边相等,但各角不一定相等,所以它们都不是正 多边形。
相关文档
最新文档