平行四边形练习题及答案

合集下载

平行四边形练习题及答案

平行四边形练习题及答案

平行四边形练习题及答案1. 判断题:平行四边形的对角线是否一定相等?- 答案:错误。

只有矩形和正方形的对角线相等。

2. 选择题:下列哪个选项不是平行四边形的性质?- A. 对边相等- B. 对角相等- C. 对角线互相平分- D. 邻角互补- 答案:B。

平行四边形的对角不一定相等,这是矩形和正方形的特殊性质。

3. 计算题:如果一个平行四边形的一边长为10厘米,且相邻的两边夹角为60度,求对边的长度。

- 答案:由于平行四边形的邻角互补,所以另一个角也是60度。

这意味着平行四边形是一个菱形。

在菱形中,所有边长相等,所以对边的长度也是10厘米。

4. 证明题:证明平行四边形的对角线互相平分。

- 答案:设平行四边形为ABCD,对角线AC和BD相交于点E。

由于AB平行于CD,根据平行线的性质,∠BAC=∠DCA,同理∠ABC=∠BCD。

因此,△ABC和△CDA是相似三角形。

根据相似三角形的性质,我们可以得出AE/EC = BE/ED。

同理,我们可以证明AE/EC = BD/DC。

因此,AE = EC且BE = ED,证明了对角线互相平分。

5. 应用题:一个平行四边形的面积是64平方厘米,已知一边长为8厘米,求另一边的长度。

- 答案:平行四边形的面积公式是底乘以高。

设另一边的长度为x厘米,高为h厘米。

根据面积公式,8h = 64,解得h = 8厘米。

由于平行四边形的对边相等,另一边的长度也是8厘米。

练习题答案解析通过这些练习题,学生可以检验自己对平行四边形性质的理解,并通过计算和证明题来加深对平行四边形几何特性的认识。

这些题目覆盖了平行四边形的基本性质、面积计算以及证明题,有助于培养学生的逻辑推理能力和空间想象能力。

希望这些练习题和答案能够帮助学生更好地掌握平行四边形的相关知识。

在解决实际问题时,学生应该灵活运用所学知识,结合图形的特点进行分析和计算。

《平行四边形》习题精选及参考答案

《平行四边形》习题精选及参考答案

《平行四边形》习题精选及参考答案一、填空题1.过□ABCD的顶点A、C分别作对角线BD的垂直线,垂足为E、F,则四边形AECF是 .2.延长△ABC的中线AD到E,使DE=AD 则四边形ABEC是四边形.3.在四边形ABCD中∠A=50°欲使四边形为平行四边形,则∠B= ,∠C=,∠D= .4.在四边形中,任意相邻两个内角互补,则这个四边形是四边形.5.如图12-1-29,在□ABCD中,E、F为AB、CD的中点,连结DE、EF、BF则图中共有个平行四边形.6.在□ABCD中连结BD作AE⊥BD,CF⊥BD,垂足分别为E、F,连结CE、AF,点P、Q在线段BD上,且BP=DQ,连结AP、CP、AQ、CQ,MN分别交AB、CD于M、N连结AM、CM、NA、NC,那么图中平行四边形(除□ABCD外)有个,它们是 .二、判断题1.平行四边形的对边分别相等()2.平行四边形的对角线相等()3.平行四边形的邻角互补()4.平行四边形的对角相等()5.平行四边形的对角线互相平分一组对角()6.对角线平分平行四边形的四个三角形的面积相等()三、选择题1.能判断四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角相等C.一组对边平行,一组邻角互补D.一组对边相等,一组邻角相等2.能确定平行四边形的大小和形状的条件是()A.已知平行四边形的两邻边B.已知平行四边形的两邻角C.已知平形四边形的两对角线D.已知平行四边形的两边及夹角3.平行四边形一边为32,则它的两条对角线长不可能为()A.20和18 B.40和50C.60和30 D.32和504.如图12-1-30所示,已知□ABCD的对角线的交点是O,直线EF过O点且平行于BC,直线GH过O且平行AB,则图中有()个平行四边形.A.5个B.6个C.7个D.10个5.能判定四边形为平行四边形的是()A.一组对角相等B.两条对角线互相垂直C.两条对角线互相平分 D.一对邻角互补6.以下结论正确的是()A.对角线相等,且一组对角也相等的四边形是平行四边形.B.一边长为5,两条对角线分别是4和6的四边形是平行四边形.C.一组对边平行,且一组对角相等的四边形是平行四边形.D.对角线相等的四边形是平行四边形.7.在□ABCD中,点E、F分别在边BC、AD上,如果点E,F分别由下列各种情况得到的,那么四边形AECF不一定是平行四边形的是()A.AE、CF分别平分∠DAB、∠BCDB.AE,CF使∠BEA=∠CFDC.E、F分别是BC、AD的中点D.BE=BC,AF=AD8.□ABCD对角线交点为O,△OBC的周长为59cm,且AD=28cm,两对角线之差为14cm,则对角线长为()A.12cm和9cm B.24cm 和38cmC.8.5cm和22.5cm D.15.5cm 和29.5cm四、解答题1.如图12-1-31所示,在□ABCD中,AE平分∠BAD,CF平分∠BCD,四边形AECF是平行四边形吗?2.如图12-1-32所示,四边形ABCD中∠B=∠D,∠1=∠2,则四边形ABCD是平行四边形吗?为什么?3.如图12-1-33所示,四边形ABCD的对角线AC、BD相交于点O,E、F分别是OD、OB上一点,若∠ECD=∠FAB,EC=AF,则四边形AECF是平行四边形吗?为什么?4.如图12-1-34所示,四边形ABCD中AB=CD,∠DBC=90°,FD⊥AD于D,求证四边形ABCD 是平行四边形.5.如图12-1-35所示,△ABC中DE在BC边上,N、M在AB、AC上,且EN与DM互相平分,MD ∥AB,NE∥AC求证:BD=DE=CE五、证明题1.已知:如图12-1-18,在□ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)AE=CF(2)AE∥CF2.已知:如图12-1-19,四边形ABCD为平行四边形,E、F是直线BD延长线上的两点,且DE =BF,求证AE=CF参考答案一、填空题1.平行四边形点拨:由一组对边平行且相等,即可判断2.平行四边形3.130°,50°,130°4.平行四边形点拨:由题意可得两组对边分别平行5.4个点拨:□ABCD,□ADFE,□EFCB,□EDFB6.3个□AECF,□APCQ,□AMCN二、判断题1.√ 2.×点拨:对角线不一定相等,但互相平分3.√ 4.√5.×点拨:对角线不平分一组对角,只是自己互相平分 6.√三、选择题1.B 2.D 3.A 4.D 5.C 6.C 7.B 8.B四、解答题1.解:四边形AECF是平行四边形点拨:由□ABCD知∠BCD=∠BAD,又AE平分∠BAD,CF平分∠BCD,故∠EAF=∠ECF,又∠AF ∥EC,故∠AEC+∠EAF=18O°,即∠AEC+∠ECF=18O°,所以AE∥CF,故四边形AECF是平行四边形.2.解:四边形ABCD是平行四边形由∠1=∠2得DC∥AB,所以∠D+∠DAB=18O°,又∠B=∠D,所以∠DAB+∠B=180°,所以AD∥BC,即四边形ABCD为平行四边形.3.解:是平行四边形点拨:AB∥CD,故∠ACD=∠CAB,又∠ECD=∠FAB,故∠ACD-∠ECD=∠CAB-∠FAB,即∠ACE =∠CAF,所以CE=AF,CE=AF,故AFCE是平行四边形.4.证明:∵BD⊥AD ∴∠BDA=90°∵∠DBC=90°,DC=AB,DB=DB∴△ADB≌△CBD ∴AD=BC∴四边形ABCD是平行四边形5.证明:∵NE,MD互相平分∴四边形MNDE为平行四边形∴MN DE又∵MD∥AB,NE∥AC ∴四边形MNBD、MNEC为平行四边形∵MN=BD,MN=CE ∴BD=DE=CE五、证明题1.证明:∵四边形ABCD为平行四边形∴AB DC ∴∠ABE=∠CDF在△ABE和△CDF中∴△ABE≌△CDF(SAS)∴AE=CF ∴∠AEB=∠CFD∴∠AED=∠BFC(等角的补角相等)∴AE∥CF2.证明:如图(3)所示∵四边形ABCD是平行四边形∴AD∥BC,AD=BC ∴∠1=∠2∵BD是直线∴∠1+∠3=180°,∠2+∠4=180°∴∠3=∠4∴△ADE≌△CBF ∴AE=CF。

平行四边形练习题(含答案)

平行四边形练习题(含答案)

第十八章平行四边形18.1 平行四边形1.在ABCD中,对角线AC,BD相交于点O,若△AOB的面积为3,则ABCD的面积为A.6 B.9 C.12 D.182.若平行四边形中两个内角的度数比为1∶2,则其中较小的内角是A.90°B.60°C.120°D.45°3.如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD周长的316,那么BC的长是A.6 B.8 C.10 D.164.如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是A.AD=BC B.OA=OCC.AB=CD D.∠ABC+∠BCD=180°5.如图,AB∥CD,AD不平行于BC,AC与BD相交于点O,写出三对面积相等的三角形是__________.6.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=22 m,则AB=__________m.7.如图,在△ABC中,AD⊥BC于点D,E,F,G分别是BC,AC,AB的中点.若AB=23BC=3DE=12,DG=12AB,求四边形DEFG的周长.8.如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P 从点A出发沿射线AD方向以每秒1个单位长度的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位长度的速度运动,在线段QC上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长;(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.9.已知ABCD的对角线AC,BD的长分别为10,6,则AB长的范围是A.AB>2 B.AB<8 C.2<AB<8 D.2≤AB≤810.平行四边形ABCD与等边三角形AEF按如图所示的方式摆放,如果∠B=45°,则∠BAE的大小是A.75°B.80°C.100°D.120°11.如图,已知四边形ABCD中,AD∥BC,∠A=∠BCD=∠ABD,DE平分∠ADB,下列说法:①AB∥CD;②ED⊥CD;③∠DFC=∠ADC–∠DCE;④S△EDF=S△BCF,其中正确的结论是A.①②③B.①②④C.①③④D.①②③④12.如图,点A,B为定点,定直线l∥AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PMN的面积;③△PAB的周长;④∠APB的大小;⑤直线MN,AB之间的距离.其中会随点P的移动而不改变的是A.①②③B.①②⑤C.②③④D.②④⑤13.如图,在△ABC中,∠ACB=90°,AC=3,BC=4,点D是边AB的中点,将△ABC沿着AB平移到△DEF 处,那么四边形ACFB的面积等于__________.14.如图,DE 是ABC △的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,:DMN CEM S S △△等于_________.15.如图,在ABCD 中,对角线AC ,BD 相交于点O ,OA =5cm ,E ,F 为直线BD 上的两个动点(点E ,F 始终在ABCD 的外面),且DE =12OD ,BF =12OB ,连接AE ,CE ,CF ,AF . (1)求证:四边形AFCE 为平行四边形. (2)若DE =13OD ,BF =13OB ,上述结论还成立吗?由此你能得出什么结论? (3)若CA 平分∠BCD ,∠AEC =60°,求四边形AECF 的周长.16.(2018·贵州黔东南、黔南、黔西南)如图在ABCD 中,已知AC =4 cm ,若△ACD 的周长为13 cm ,则ABCD 的周长为A .26 cmB .24 cmC .20 cmD .18 cm17.(2018·甘肃兰州)如图,将ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若48ABD ∠=︒,40CFD ∠=︒,则E ∠为A .102︒B .112︒C .122︒D .92︒18.(2018·黑龙江绥化)下列选项中,不能判定四边形ABCD 是平行四边形的是A .AD BC ∥,AB CD ∥ B .AB CD ∥,AB CD =C .AD BC ∥,AB DC =D .AB DC =,AD BC =19.(2018·内蒙古呼和浩特)顺次连接平面上A 、B 、C 、D 四点得到一个四边形,从①AB ∥CD ②BC =AD③∠A =∠C ④∠B =∠D 四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有 A .5种B .4种C .3种D .1种20.(2018·广西玉林)在四边形ABCD 中:①AB ∥CD ;②AD ∥BC ;③AB =CD ;④AD =BC ,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有 A .3种B .4种C .5种D .6种21.(2018·四川德阳)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使3FO OC =,连接AB 、AC 、BC ,则在ABC ∆中::ABO AOC BOC S S S △△△A .621∶∶B .321∶∶C .632∶∶D .432∶∶ 22.(2018·安徽)ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是 A .BE =DF B .AE =CF C .AF ∥CED .∠BAE =∠DCF23.(2018·广西梧州)如图,已知在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =6 cm ,则DE 的长度是__________cm .24.(2018·湖北十堰)如图,已知ABCD 的对角线AC ,BD 交于点O ,且AC =8,BD =10,AB =5,则△OCD的周长为__________.25.(2018·江苏泰州)如图,ABCD 中,AC 、BD 相交于点O ,若AD =6,AC +BD =16,则△BOC 的周长为__________.26.(2018·辽宁抚顺)如图,ABCD 中,AB =7,BC =3,连接AC ,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连接AE ,则△AED 的周长是__________.27.(2018·山东淄博)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于__________.28.(2018·福建)如图,ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.29.(2018·广西梧州)如图,在ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.30.(2018·辽宁大连)如图,ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE =DF .31.(2018·湖北孝感)如图,B ,E ,C ,F 在一条直线上,已知AB DE ∥,AC DF ∥,BE CF ,连接AD .求证:四边形ABED 是平行四边形.32.(2018·江苏无锡)如图,平行四边形ABCD 中,E 、F 分别是边BC 、AD 的中点,求证:∠ABF =∠CDE .33.(2018·湖北恩施州)如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AB ∥ED ,AC ∥FD ,AD 交BE于O .求证:AD 与BE 互相平分.34.(2018·浙江衢州)如图,在ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.35.(2018·江苏宿迁)如图,在ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.36.(2018·青海)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.;(1)求证:AD BF(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.37.(2018·云南曲靖)如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.38.(2018·黑龙江大庆)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.1.【答案】C【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△AOD=S△COD=S△BOC=S△AOB.∵△AOB的面积为3,∴ABCD的面积为4×3=12.故选C.2.【答案】B【解析】如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B∶∠C=1∶2,∴∠B=13×180°=60°,故选B.3.【答案】C【解析】∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵AB=6,且AB的长是四边形ABCD周长的316,∴四边形ABCD周长为:6÷316=32,∴AB+BC=12×32=16,∴BC=10.故选C.5.【答案】△ADC和△BDC;△ADO和△BCO;△DAB和△CAB【解析】根据AB∥CD可得:△ABC和△ABD的面积相等,△ACD和△BCD的面积相等,则△ACD的面积减去△OCD的面积等于△BCD的面积减去△OCD的面积,即△AOD和△BOC的面积相等.【解析】∵E、F是AC,CB的中点,∴EF是△ABC的中位线,∴EF=12AB,∵EF=22m,∴AB=44m,故答案为44.7.【解析】∵AB=23BC=3DE=12,∴BC=18,DE=4,∴DG=12AB=6,∵E,F,G分别是BC,AC,AB的中点,∴FG=12BC=9,EF=12AB=6,∴四边形DEFG的周长为4+6+9+6=25.8.【解析】(1)作AM⊥BC于M,如图所示:∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=12BC=5,∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,∴PN=AP=t,CE=NE=5–t,∵CE=CQ–QE=2t–2,∴5–t=2t–2,解得:t=73,BQ=BC–CQ=10–2×71633;(2)存在,t=4;理由如下:若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,∴t=10–2t+2,解得:t=4,∴存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=4.【解析】如图,在平行四边形ABCD中,AO=CO=5,BO=DO=3,∴2<AB<8.故选C.10.【答案】A【解析】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD=180°–∠B=180°–45°=135°,∵△AEF是等边三角形,∴∠EAF=60°,∴∠BAE=∠BAD–∠EAF=75°.故选A.11.【答案】D【解析】∵AD∥BC,∴∠A+∠ABC=180°,∠ADC+∠BCD=180°,∵∠A=∠BCD,∴∠ABC=∠ADC,∵∠A=∠BCD,∴四边形ABCD是平行四边形,∴AB∥CD.∴①正确;∵∠A=∠ABD,DE平分∠ADB,∴DE⊥AB,∴DE⊥CD,∴②正确;∵∠A=∠ABD,四边形ABCD是平行四边形,∴AD=BD=BC,∴∠BDC=∠BCD,∵AD∥BC,∴∠ADB=∠DBC,∵∠ADC=∠ADB+∠BDC,∴∠ADC=∠DBC+∠BCD,∴∠ADC–∠DCE=∠DBC+ ∠BCD–∠DCE=∠DBC+∠BCF,∵∠DFC=∠DBC+BCF,∴∠DFC=∠ADC–∠DCE;∴③正确;∵AB∥CD,∴△BED的边BE上的高和△EBC的边BE上的高相等,∴由三角形面积公式得:S△BED= S△EBC,都减去△EFB的面积得:S△EDF=S△BCF,∴④正确;综上得①②③④都正确,故选D.12.【答案】B【解析】∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=12 AB,即线段MN的长度不变,故①正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故②正确;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故③错误;∠APB的大小点P的移动而变化,故④错误.直线MN,AB之间的距离不随点P的移动而变化,故⑤正确;综上所述,随点P的移动而不变化的是①②⑤.故选B.13.【答案】9【解析】∵将△ABC沿AB方向向右平移到△DEF,∴四边形ADFC是平行四边形,四边形ACFB是是梯形.∵∠ACB =90°,AC =3,BC =4,∴22345AB =+=.∵点D 是边AB 的中点,∴AD =BD =15522⨯=,∴CF =AD =12AB 52=, 设AB 边上的高为x .∵AB =5,AC =3,BC =4,AB 边上的高为x ,∴12AC ·BC =12AB ·x ,∴125x =.∴S 梯形ACFB =1512(5)9225⨯+⨯=. 14.【答案】1∶3【解析】如图,作EF AD ∥,M 是DE 的中点,则△DMN ≌△EMF ,得MN =MF ,E 是AC 的中点,则FC =NF ,所以13MF MC =,得13FEM CEMS S =△△,得:DMN CEM S S △△=1∶3.16.【答案】D【解析】∵AC =4 cm ,若△ADC 的周长为13 cm ,∴AD +DC =13-4=9(cm ).又∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∴平行四边形的周长为2(AB +BC )=18 cm .故选D . 17.【答案】B【解析】∵AD BC ∥,∴ADB DBC ∠=∠,由折叠可得ADB BDF ∠=∠,∴DBC BDF ∠=∠,又∵40DFC ∠=︒,∴20DBC BDF ADB ∠=∠=∠=︒,又∵48ABD ∠=︒,∴ABD △中,1802048112A ︒︒-︒∠=-=︒,∴112E A ∠∠==︒,故选B .18.【答案】C【解析】A 、由AD BC ∥,AB CD ∥可以判断四边形ABCD 是平行四边形,故本选项不符合题意; B 、由AB CD ∥,AB CD =可以判断四边形ABCD 是平行四边形,故本选项不符合题意; C 、由AD BC ∥,AB DC =不能判断四边形ABCD 是平行四边形,故本选项符合题意;D 、由AB DC =,AD BC =可以判断四边形ABCD 是平行四边形,故本选项不符合题意,故选C . 19.【答案】C【解析】当①③时,四边形ABCD 为平行四边形;当①④时,四边形ABCD 为平行四边形;当③④时,四边形ABCD 为平行四边形,故选C . 20.【答案】B【解析】(1)①②,利用两组对边平行的四边形是平行四边形判定; (2)③④,利用两组对边相等的四边形是平行四边形判定;(3)①③或②④,利用一组对边平行且相等的四边形是平行四边形判定,共4种组合方法,故选B . 21.【答案】B【解析】如图,连接BF .设平行四边形AFEO 的面积为4m .∵FO :OC =3:1,BE =OB ,AF ∥OE ,∴S △OBF =S △AOB =m ,S △OBC =13m ,S △AOC =23m ,∴S △AOB ∶S △AOC ∶S △BOC =m ∶23m ∶13m =3∶2∶1,故选B . 22.【答案】B【解析】A 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵BE =DF ,∴OE =OF ,∴四边形AECF 是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF∥CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE∥CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.23.【答案】3【解析】∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=12BC=162=3 cm,故答案为:3.24.【答案】14【解析】∵四边形ABCD是平行四边形,∴AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD的周长=5+4+5=14,故答案为:14.25.【答案】14【解析】∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14,故答案为14.26.【答案】10【解析】∵四边形ABCD是平行四边形,AB=7,BC=3,∴AD=BC=3,CD=AB=7,∵由作图可知,MN 是线段AC的垂直平分线,∴AE=CE,∴△ADE的周长=AD+(DE+AE)=AD+CD=3+7=10,故答案为:10.27.【答案】10【解析】∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=2,由折叠,∠DAC=∠EAC,∵∠DAC=∠ACB,∴∠ACB=∠EAC,∴OA=OC,∵AE过BC的中点O,∴AO=12BC,∴∠BAC=90°,∴∠ACE=90°,由折叠,∠ACD=90°,∴E、C、D共线,则DE=4,∴△ADE的周长为:3+3+2+2=10,故答案为:10.28.【解析】∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴OE=OF.29.【解析】∵ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,EAO FCO AO OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴AE=CF.31.【解析】∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F.∵BE=CF,∴BE+CE=CF+CE,∴BC=EF.在△ABC和△DEF中,B DEF BC EFACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE.又∵AB∥DE,∴四边形ABED是平行四边形.32.【解析】在ABCD中,AD=BC,∠A=∠C,∵E、F分别是边BC、AD的中点,∴AF=CE,在△ABF与△CDE中,AB CDA C AF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△CDE(SAS),∴∠ABF=∠CDE.33.【解析】如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,ABC DEF BC EFACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.34.【解析】∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.在△ABE与△CDF中,AEB CFDBAE DCF AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴得△ABE≌△CDF(AAS),∴AE=CF.35.【解析】∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC ,∠A =∠C , ∴∠E =∠F , 又∵BE =DF , ∴AD +DF =CB +BE , 即AF =CE ,在△CEH 和△AFG 中,E F EC FA C A ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CEH ≌△AFG , ∴CH =AG .36.【解析】(1)∵E 是AB 边上的中点,∴AE BE =, ∵AD BC ∥, ∴ADE F ∠=∠,在ADE △和BFE △中,ADE F ∠=∠,DEA FEB ∠=∠,AE BE =, ∴ADE △≌BFE △, ∴AD BF =.(2)如图,过点D 作DM AB ⊥于点M ,∵AB ∥DC ,∴DM 同时也是平行四边形ABCD 的高, ∴11113282244AED S AB DM AB DM =⋅⋅=⋅=⨯=△, ∴32824EBCD S =-=四边形.37.【解析】(1)∵四边形ABCD 是平行四边形,∴CD∥AB,∴∠AFN=∠CEM,∵FN=EM,AF=CE,∴△AFN≌△CEM(SAS).(2)∵△AFN≌△CEM,∴∠NAF=∠ECM,∵∠CMF=∠CEM+∠ECM,∴107°=72°+∠ECM,∴∠ECM=35°,∴∠NAF=35°.38.【解析】(1)∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥F C.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形.(2)∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25 cm,AC的长5 cm,∴BC=25-AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得AB=13 cm.。

(完整版)平行四边形练习题及答案(DOC)

(完整版)平行四边形练习题及答案(DOC)

20.1平行四边形的判断一、选择题1 .四边形A BCD,从( 1)AB∥CD;( 2)AB=CD;( 3)BC∥AD;( 4) BC=AD这四个条件中任选两个,此中能使四边形ABCD是平行四边形的选法有()A .3种B.4种C.5种D.6种2.四边形的四条边长分别是a, b, c,d,此中 a,b 为一组对边边长, c,d?为另一组对边边长且知足a2+b2+c2+d2=2ab+2cd,则这个四边形是()A .随意四边形B.平行四边形C.对角线相等的四边形 D .对角线垂直的四边形3.以下说法正确的选项是()A.若一个四边形的一条对角线均分另一条对角线,则这个四边形是平行四边形B.对角线相互均分的四边形必定是平行四边形C.一组对边相等的四边形是平行四边形D.有两个角相等的四边形是平行四边形二、填空题4 .在□ ABCD中,点 E, F 分别是线段A D, BC上的两动点,点 E 从点 A 向 D 运动,点F从 C?向 B 运动,点 E 的速度边形.m与点F 的速度n 知足 _______关系时,四边形BFDE为平行四5.如图 1 所示,平行四边形ABCD中, E, F 分别为AD,BC边上的一点,连结EF,若再增添一个条件_______,就能够推出BE=DF.图1图26 .如图 2 所示, AO=OC,BD=16cm,则当 OB=_____cm时,四边形ABCD是平行四边形.三、解答题7.以下图,四边形 ABCD中,对角线 BD=4,一边长 AB=5,其他各边长用含有未知数 x 的代数式表示,且 AD⊥BD于点 D,BD⊥BC 于点 B.问:四边形 ABCD?是平行四边形吗?为什么?四、思虑题8.以下图,在□ABCD中, E,F 是对角线 AC上的两点,且 AF=CE,?则线段 DE?与 BF的长度相等吗?参照答案一、 1. B 点拨:可选择条件(1)(3)或(2)( 4)或( 1)( 2)或( 3)(4).故有 4 种选法.2. B 点拨: a2+b 2+c2+d2=2ab+2cd 即( a-b)2+( c-d )2=0,即( a-b )2=0 且( c-d )2=0.所以 a=b, c=d,即两组对边分别相等,所以四边形为平行四边形.3. B 点拨:娴熟掌握平行四边形的判断定理是解答这种题目的重点.二、 4.相等点拨:利用“一组对边平行且相等的四边形是平行四边形”来确立.5 .AE=CF 点拨:此题答案不唯一,只需增添的条件能使四边形EBFD?是平行四边形即可.6. 8 点拨:依据对角线相互均分的四边形为平行四边形来进行鉴别.三、 7.解:以下图,四边形ABCD是平行四边形.原因以下:在 Rt△BCD中,依据勾股定理,得BC2+BD 2=DC 2,即( x-5 )2+42=( x-3 )2,解得 x=8.所以 AD=11-8=3, BC=x-5=3, DC=x-3=8-3=5 ,所以 AD=BC, AB=DC.所以四边形ABCD是平行四边形.点拨:此题主要告诉的是线段的长度,故只需说明AD=BC, AB=DC即可,此题也可在Rt△ABD中求 x 的值.四、 8.解:线段DE与BF 的长度相等;连结BD交AC于O点,连结DF, BE,以下图.在ABCD中, DO=OB, AO=OC,又因为 AF=EC,所以 AF-AO=CE-OC,即 OF=OE,所以四边形 DEBF是平行四边形,所以DE=BF.点拨:此题若用三角形全等,也能够解答,但过程复杂,学了平行四边形性质后,要学会应用.20.2矩形的判断一、选择题1.矩形拥有而一般平行四边形不拥有的性质是()A.对角相等 B .对边相等 C .对角线相等 D .对角线相互垂直2.以下表达中能判断四边形是矩形的个数是()①对角线相互均分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线相互均分且相等的四边形.A . 1B. 2C. 3D. 43.以下命题中,正确的选项是()A.有一个角是直角的四边形是矩形B.三个角是直角的多边形是矩形C.两条对角线相互垂直且相等的四边形是矩形 D .有三个角是直角的四边形是矩形二、填空题4.如图 1 所示,矩形 ABCD中的两条对角线订交于点O,∠ AOD=120°, AB=4cm,则矩形的对角线的长为 _____.D E CF OA B图 1图 25.若四边形 ABCD的对角线 AC, BD相等,且相互均分于点 O,则四边形 ABCD?是_____ 形,若∠ AOB=60°,那么AB:AC=______.6.如图 2 所示,已知矩形ABCD周长为 24cm,对角线交于点O,OE⊥DC 于点 E,于点 F, OF-OE=2cm,则 AB=______, BC=______.三、解答题7.以下图,□ABCD的四个内角的均分线分别订交于E, F, G,H 两点,试说明四边形 EFGH是矩形.四、思虑题8.以下图,△ABC中, CE, CF分别均分∠ACB和它的邻补角∠ACD.AE⊥CE于 E,AF⊥CF 于F,直线EF分别交AB, AC于 M, N 两点,则四边形AECF是矩形吗?为何?参照答案一、 1. C点拨:A与B都是平行四边形的性质,而D是一般矩形与平行四边形都不具有的性质.2 .B点拨:③是矩形的判断定理;④中对角线相互均分的四边形是平行四边形,对角线相等的平行四边形是矩形,故④能判断矩形,应选B.3. D 点拨:选项 D 是矩形的判断定理.二、 4. 8cm5.矩; 1: 2 点拨:利用对角线相互均分来判断此四边形是平行四边形,再依据对角线相等来判断此平行四边形是矩形.由矩形的对角线相等且相互均分,?可知△ AOB 是等腰三角形,又因为∠ AOB=60°,所以AB=AO=1AC.26 . 8cm; 4cm三、 7.解:在□ABCD中,因为AD∥BC,所以∠ DAB+∠CBA=180°,又因为∠ HAB= 1∠DAB,∠ HBA=1∠CBA.22所以∠ HAB+∠HBA=90°,所以∠ H=90°.所以四边形EFGH是矩形.点拨:因为“两直线平行,同旁内角的均分线相互垂直”,所以很简单求出四边形EFGH 的四个角都是直角,从而求得四边形EFGH是矩形.四、 8.解:四边形AECF是矩形.原因:因为CE均分∠ ACB, ?CF?均分∠ ACD, ?所以∠ ACE=1∠ACB,∠ ACF=1∠ACD.所以∠ ECF=1(∠ ACB+∠ACD)=90°.222又因为 AE⊥CE,AF⊥CF, ?所以∠ AEC=∠AFC=90°,所以四边形AECF是矩形.点拨: ?此题是经过证四边形中三个角为直角得出结论.还能够经过证其为平行四边形,再证有一个角为直角得出结论.20.3菱形的判断一、选择题1.以下四边形中不必定为菱形的是()A .对角线相等的平行四边形B.每条对角线均分一组对角的四边形C.对角线相互垂直的平行四边形D.用两个全等的等边三角形拼成的四边形2.四个点 A, B, C,D 在同一平面内,从① AB∥CD;② AB=CD;③ AC⊥BD;④ AD=BC;5 个条件中任选三个,能使四边形ABCD是菱形的选法有().A .1种B.2种C.3种D.4种3 .菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和 4 3 cm B.4cm和83 cm C.8cm和83 cm D.4cm和43 cm二、填空题4.如图 1 所示,已知□ABCD,AC,BD订交于点O,?增添一个条件使平行四边形为菱形,增添的条件为 ________.(只写出切合要求的一个即可)图1图25.如图 2 所示, D, E,F 分别是△ ABC 的边 BC, CA,AB 上的点,且 DE∥AB,DF∥CA,要使四边形 AFDE是菱形,则要增添的条件是 ________.(只写出切合要求的一个即可)6 .菱形 ABCD的周长为48cm,∠ BAD:∠ ABC=1:?2,?则 BD=?_____,?菱形的面积是______.7.在菱形ABCD中, AB=4, AB 边上的高DE垂直均分边AB,则 BD=_____,AC=_____.三、解答题8.以下图,在四边形ABCD中, AB∥CD, AB=CD=BC,四边形 ABCD是菱形吗? ?说明理由.四、思虑题9.如图,矩形 ABCD的对角线订交于点 O,PD∥AC,PC∥BD, PD,PC订交于点 P,四边形 PCOD是菱形吗?试说明原因.参照答案一、 1. A点拨:此题用清除法作答.2. D 点拨:依据菱形的判断方法判断,注意不要漏解.3. C点拨:以下图,若∠ ABC=60°,则△ ABC为等边三角形,?所以 AC=AB=1×32=8( cm), AO=1AC=4cm.42因为 AC⊥BD,在 Rt△AOB中,由勾股定理,得OB=2222AB OA8 4 =43(cm ?),所以 BD=2OB=8 3 cm.二、 4. AB=BC 点拨:还可增添AC⊥BD 或∠ ABD=∠CBD等.5.点 D 在∠ BAC的均分线上(或 AE=AF)26. 12cm; 723 cm点拨:以下图,过 D 作 DE⊥AB 于 E,因为 AD∥BC, ?所以∠ BAD+∠ABC=180°.又因为∠ BAD:∠A BC=1:2,所以∠ BAD=60°,因为 AB=AD,所以△ ABD 是等边三角形,所以BD=AD=12cm.所以 AE=6cm.在 Rt△AED 中,由勾股定理,得 AE 2+ED 2=AD 2, 62+ED 2=12 2,所以 ED 2=108 ,所以 ED=6 3 cm,所以S菱形ABCD=12×63=72 3 (cm2).7. 4;4 3点拨:以下图,因为DE垂直均分 AB,又因为 DA=AB,所以 DA=DB=4.所以△ ABD 是等边三角形,所以∠ BAD=60°,由已知可得AE=2.在 Rt△AED中,2222222?AE +DE=AD,即 2 +DE=4,所以 DE=12,所以 DE=2 3 ,因为1AC·BD=AB·DE,即1AC·4=4×2 3 ,所以AC=4 3 .22三、 8.解:四边形ABCD是菱形,因为四边形ABCD中, AB∥CD,且AB=CD,所以四边形ABCD是平行四边形,又因为AB=BC,所以Y ABCD是菱形.点拨:依据已知条件,不难得出四边形ABCD为平行四边形,又AB=BC,即一组邻边相等,由菱形的定义能够鉴别该四边形为菱形.四、 9.解:四边形PCOD是菱形.原因以下:因为 PD∥OC,PC∥OD, ?所以四边形P COD是平行四边形.又因为四边形ABCD是矩形,所以OC=OD,所以平行四边形PCOD是菱形.20.4正方形的判断一、选择题1.以下命题正确的选项是()A.两条对角线相互均分且相等的四边形是菱形B.两条对角线相互均分且垂直的四边形是矩形C.两条对角线相互垂直,均分且相等的四边形是正方形D.一组邻边相等的平行四边形是正方形2.矩形四条内角均分线能围成一个()A.平行四边形B.矩形C.菱形 D .正方形二、填空题3.已知点 D, E,F 分别是△ ABC 的边 AB, BC, CA的中点,连结 DE, EF, ?要使四边形ADEF是正方形,还需要增添条件_______.4.如图 1 所示,直线L 过正方形ABCD的极点 B,点 A, C 到直线 L?的距离分别是 1 和2,则正方形ABCD的边长是 _______.图1图2图35.如图 2 所示,四边形 ABCD是正方形,点 E 在 BC的延伸线上, BE=BD且 AB=2cm,则∠E的度数是 ______, BE 的长度为 ____.6.如图 3 所示,正方形 ABCD的边长为 4,E 为 BC上一点, BE=1,F?为 AB?上一点, AF=2,P 为 AC上一动点,则当 PF+PE取最小值时, PF+PE=______.三、解答题7.以下图,在 Rt△ABC中, CF为∠ ACB的均分线, FD⊥AC 于 D,FE⊥BC于点 E,试说明四边形 CDFE是正方形.BEF四、思虑题8.已知以下图,在正方形 ABCD中, E,F 分别是(1) AF 与 DE相等吗?为何?(2) AF 与 DE能否垂直?说明你的原因.C D A AB,BC边上的点,且 AE=BF,?请问:参照答案一、 1. C点拨:对角线相互均分的四边形是平行四边形,?对角线相互垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形必定是正方形,应选 C.2. D 点拨:由题意画出图形后,利用“一组邻边相等的矩形是正方形”来判断.二、 3.△ ABC是等腰直角三角形且∠ BAC=90°点拨:还可增添△ ABC 是等腰三角形且四边形ADEF是矩形或∠ BAC=90°且四边形ADEF 是菱形等条件.4.5点拨:察看图形易得两直角三角形全等,由全等三角形的性质和勾股定理得正方形的边长为 2212=5.5. 67. 5°; 2 2 cm点拨:因为BD是正方形ABCD的对角线,所以∠ DBC=45°, AD=?AB=2cm.在 Rt△BAD中,由勾股定理得 AD 2+AB 2=BD 2,即 22+22=BD 2,所以 BD=2 2 cm,所以 BE=BD=2 2( cm),又因为BE=BD,所以∠ E=∠EDB= 1(180°- 45°)=67. 5°.26.17点拨:以下图,作 F 对于AC的对称点G.连结EG交AC于P,则 PF+?PE=PG+PE=GE为最短.过 E 作 EH⊥AD.在 Rt△GHE中,HE=4,HG=AG-AH=AF-BE=1,所以 GE= 4212 = 17,?即 PF+PE= 17.三、 7.解:因为∠ FDC=∠FEC=∠BCD=90°,所以四边形CDFE是矩形,因为 CF?均分∠ ACB,FE⊥BC,FD⊥AC,所以FE=FD,所以矩形CDFE是正方形.点拨:此题先说明四边形是矩形,再求出有一组邻边相等,?还能够先说明其为菱形,再求其一个内角为90°.四、 8.解:( 1)相等.原因:在△ ADE 与△ BAF 中, AD=AB,∠ DAE=∠ABF=90°, AE=BF,所以△ ADE≌△ BAF( S. A. S.),所以 DE=AF.( 2) AF 与 DE垂直.原因:如图,设DE与 AF 订交于点O.因为△ ADE≌△ BAF, ?所以∠ AED=∠BFA.又因为∠ BFA+∠EAF=90°,所以∠ AEO+∠EAO=90°,所以∠ EOA=90°,所以DE⊥AF.20.5等腰梯形的判断1 A C 一、选择题.以下结论中,正确的选项是(.等腰梯形的两个底角相等.一组对边平行的四边形是梯形)BD.两个底角相等的梯形是等腰梯形.两条腰相等的梯形是等腰梯形2.以下图,等腰梯形ABCD的对角线 AC,BD订交于点O,则图中全等三角形有()A.2对B.3对C.4对D.5对3.课外活动课上, ?老师让同学们制作了一个对角线相互垂直的等腰梯形形状的风筝,其面积为450cm,则两条对角线所用的竹条长度之和起码为()A. 30 2 cm B.30cm C.60cm D.60 2 cm二、填空题4.等腰梯形上底,下底和腰分别为 4,?10,?5,?则梯形的高为 _____,?对角线为 ______.5.一个等腰梯形的上底长为5cm,下底长为 12cm,一个底角为 60°,则它的腰长为____cm,周长为 ______cm.6.在四边形 ABCD中, AD∥BC,但 AD≠BC,若使它成为等腰梯形,则需要增添的条件是__________ (填一个正确的条件即可).三、解答题7.以下图,AD是∠ BAC的均分线, DE∥AB, DE=AC,AD≠EC.求证: ?四边形 ADCE是等腰梯形.四、思虑题8.以下图,四边形ABCD中,有 AB=DC,∠ B=∠C,且AD<BC,四边形 ABCD是等腰梯形吗?为何?参照答案一、 1. D点拨:梯形的底角分为上底上的角和下底上的角,?所以在等腰梯形的性质和鉴别方法中一定重申同一底上的两个内角(?指上底上的两个内角或下底上的两个内角),不然就会出现错误,所以A, B 选项都不正确,而 C 选项中遗漏了限制条件此外一组对边不平行,若平行该四边形就形成了平行四边形了,所以应选D.2. B点拨:因为△ ABC≌△ DCB,△ BAD≌△ CDA,△ AOB≌△ DOC,所以共有 3 对全等的三角形.3. C点拨:设该等腰梯形对角线长为Lcm,因为两条对角线相互垂直,?所以梯形面积为122L =450,解得 L=30,所以所用竹条长度之和起码为2L=2× 30=60(cm).二、 4. 4:65点拨:以下图,连结BD,过 A,D 分别作 AE⊥BC,DF⊥BC,垂足分别为E, F.易知△ BAE≌△ CDF,在四边形 AEFD为矩形,所以BE=CF=3, AD=EF=4.在 Rt△CDF 中, FC2+DF 2=CD 2,即 32+DF 2=52,所以 DF=4 ,在 Rt △BFD 中, BF2+DF 2=BD 2,即 72+42=BD 2,所以 BD=65 .5. 7;31点拨:以下图,过点D作 DE∥AB 交 BC于 E.因为ABED是平行四边形.所以 BE=AD=5(cm), AB=DE.又因为 AB=CD,所以 DE=?DC,又因为∠ C=60°,所以△ DEC 是等边三角形,所以 DE=DC=EC=7( cm),所以周长为5+?12+7+7=31(cm).6. AB=CD(或∠ A=∠D,或∠ B=∠C,或 AC=BD,或∠ A+∠C=180°,或∠B+∠D=180°)三、 7.证明:因为 AB∥ED,所以∠ BAD=∠ADE.又因为 AD是∠ BAC的均分线,所以∠ BAD=∠CAD,所以∠ CAD=∠ADE,所以 OA=OD.又因为AC=DE,所以 AC-OA=DE-OD即 OC=OE, ?所以∠ OCE=∠OEC,又因为∠ AOD=∠COE,所以∠ CAD=∠OCE.所以AD∥CE,而 AD≠CE,故四边形ADCE是梯形.又因为∠ CAD=∠ADE, AD=DA, AC=DE,所以△ DAC≌△ ADE,所以DC=?AE,所以四边形ADCE是等腰梯形.点拨:证明一个四边形是等腰梯形时,应先证其是梯形尔后再证两腰相等或同一底上的两个角相等.四、 8.解:四边形ABCD是等腰梯形.原因:延伸BA, CD,订交于点 E,以下图,由∠ B=∠C,可得EB=EC.又 AB=DC,所以 EB-AB=EC-DC,即 AE=DE,所以∠ EAD=∠EDA.因为∠ E+∠EAD+∠EDA=180°,∠ E+∠B+∠C=180°,所以∠ EAD=∠B.故 AD∥BC. ?又 AD<BC,所以四边形 ABCD是梯形.又 AB=DC,所以四边形 ABCD是等腰梯形.点拨:由题意可知,只需推出AD∥BC,再由AD<BC便可知四边形ABCD为梯形,再由AB=DC,即可求得此四边形是等腰梯形,由∠ B=∠C联想到延伸 BA,CD,即可获得等腰三角形,从而使 AD∥BC.华东师大版数学八年级(下)第 20 章平行四边形的判断测试(答卷时间: 90 分钟,全卷满分: 100 分)姓名得分 ____________一、认认真真选,沉稳应战!(每题 3 分,共 30 分)1. 正方形拥有菱形不必定拥有的性质是()(A )对角线相互垂直(B)对角线相互均分(C)对角线相等(D)对角线均分一组对角2.如图 (1),EF 过矩形 ABCD 对角线的交点 O,且分别交 AB 、CD 于 E、 F,那么暗影部分的面积是矩形ABCD 的面积的()(A )A 111( D )3A5(B )( C)1043D E FFEB C D HB C(1)(2)(3)3.在梯形ABCD 中, AD ∥ BC ,那么 A : B : C : D 能够等于()( A)4:5:6:3(B)6:5:4:3(C)6:4:5:3(D)3:4:5:64.如图 (2) ,平行四边形ABCD 中,DE ⊥ AB 于 E,DF⊥ BC 于 F,若Y ABCD的周长为48,DE = 5, DF= 10,则Y ABCD的面积等于 ()( A)87.5(B)80(C)75(D)72.55. A 、 B、 C、 D 在同一平面内,从① AB∥CD;② AB=CD;③ BC∥AD;④ BC=AD这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有()( A)3种(B)4种(C)5种(D)6种6.如图 (3) ,D、E、F分别是VABC各边的中点,AH 是高,假如 ED5cm ,那么 HF的长为()( A ) 5cm(B)6cm(C)4cm(D)不可以确立7.如图( 4):E 是边长为 1 的正方形 ABCD 的对角线 BD 上一点,且 BE = BC, P 为 CE 上随意一点, PQ⊥BC 于点 Q, PR⊥ BE 于点 R,则 PQ+PR 的值是()2132( A )2(B)2(C)2(D)38.如图( 5),在梯形ABCD 中, AD ∥ BC , AB CD , C 60 ,BD均分ABC ,假如这个梯形的周长为30,则AB的长()( A)4( B)5(C)6( D)7A DA DERPB C( 5)B(4)Q C9.右图是一个利用四边形的不稳固性制作的菱形晾衣架.A B C 已知此中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉 A 、 B 之间的距离为20 3 cm,则∠1等于()1)( A)90°(B) 60°(C) 45°(D) 30°10.某校数学课外活动研究小组,在老师的指引下进一步研究了完整平方公式.联合实数的性质发现以下规律:对于随意正数a、 b,都有 a+b ≥ 2ab 建立.某同学在做一个面积为3600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来做对角线用的竹条至少需要准备xcm.则 x 的值是()(A) 1202(B) 602(C) 120(D) 60二、仔认真细填,记录自信!( 每题 2 分,共20 分)11.一个四边形四条边按序是a、b、c、d,且a2 b 2 c 2 d 22ac 2bd,则这个四边形是 _______________ .12.在四边形ABCD中,对角线AC、BD交于点O,从(1)AB CD ;(2) AB∥CD ;(3)OA OC;(4)OB OD ;(5) AC ⊥ BD ;(6) AC 均分 BAD 这六个条件中,选用三个推出四边形ABCD是菱形.如( 1)( 2)( 5)ABCD 是菱形,再写出切合要求的两个:ABCD 是菱形;ABCD 是菱形.13. 如图,已知直线l 把 Y ABCD 分红两部分,要使这两部分的面积相等,直线l 所在地点需知足的条件是____________________. (只需填上一个你以为适合的条件)lA DB C(第 13 题)(第 16 题)14.梯形的上底长为 6cm ,过上底的一极点引一腰的平行线,与下底订交,所构成的三角形周长为 21cm ,那么梯形的周长为_________ cm。

初二平行四边形练习题含答案

初二平行四边形练习题含答案

初二平行四边形练习题含答案本篇文章将为初二学生提供一些关于平行四边形的练习题,并附带答案,帮助学生巩固对平行四边形的理解和应用。

以下是一些练习题,希望对同学们有所帮助。

练习题一:已知平行四边形ABCD中,点E、F分别为AB、CD的中点。

若AE的长度为8cm,求线段EF的长度。

解答:由平行四边形的性质可知,连结AC和BD两线段的中点为G,那么EG = GF。

由于AE的长度为8cm,AB和CD平行,所以AC的长度为16cm。

根据三角形EGC和GFC的相似性,可得EF与GF之比等于AC与CG之比,即EF/GF = AC/CG。

由于AC的长度为16cm,而CG的长度为8cm(CG为AC的中点),所以EF/GF = 16/8,即EF/GF = 2。

因此,EF的长度为GF的2倍,即EF = 2 * GF。

由于EG= GF,所以EF = 2 * EG。

代入已知条件,得到EF = 2 * 8 = 16。

因此,线段EF的长度为16cm。

练习题二:在平行四边形EFGH中,已知EF的长度为10cm,FG的长度为8cm,角EFG的度数为120°,求线段GH的长度。

解答:由平行四边形的性质可知,EF与GH的长度相同,FG与EH 的长度相同,且角EFG与角HGE互补(即两个角的度数之和为180°)。

已知EF的长度为10cm,FG的长度为8cm,所以GH的长度也为8cm。

又已知角EFG的度数为120°,根据平行四边形内角和定理,可得角HGE的度数为180° - 120° = 60°。

因此,线段GH的长度为8cm。

练习题三:已知平行四边形IJKL中,IJ的长度为12cm,KL的长度为20cm,角KJL的度数为110°,求角KIL的度数。

解答:由平行四边形的性质可知,角IJK与角KJL互补(即两个角的度数之和为180°),角IJK与角KIL互补。

已知角KJL的度数为110°,所以角IJK的度数为180° - 110° = 70°。

初中平行四边形试题及答案

初中平行四边形试题及答案

初中平行四边形试题及答案
1. 判断题:平行四边形的对边是平行的。

()
答案:正确。

2. 选择题:下列哪个选项不是平行四边形的性质?
A. 对边平行
B. 对角相等
C. 对角线相等
D. 对边相等
答案:C。

3. 填空题:若平行四边形的一组对边长分别为4cm和6cm,则其周长为_____cm。

答案:20。

4. 计算题:已知平行四边形的一边长为8cm,另一边长为10cm,且相邻两边的夹角为60°,求平行四边形的面积。

答案:40√3 cm²。

5. 简答题:平行四边形的对角线有什么性质?
答案:平行四边形的对角线互相平分。

6. 作图题:画出一个平行四边形ABCD,其中AB=5cm,BC=7cm,
∠ABC=90°。

答案:略。

7. 证明题:证明平行四边形的对角线互相平分。

答案:略。

8. 应用题:一个平行四边形的对角线长度分别为6cm和8cm,求平行四边形的面积。

答案:24cm²。

9. 多选题:平行四边形的对角线具有以下哪些性质?
A. 互相平分
B. 互相垂直
C. 互相平行
D. 互相垂直平分
答案:A。

10. 综合题:已知平行四边形ABCD,AB=4cm,BC=6cm,∠ABC=60°,求对角线AC的长度。

答案:4√3 cm。

八年级数学平行四边形30道经典题(含答案和解析)

八年级数学平行四边形30道经典题(含答案和解析)

八年级数学平行四边形30道经典题(含答案和解析)1.如图,平行四边形ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为().A.1B.2C.3D.4答案:B.解析:∵平行四边形ABCD,AE平分∠BAD交BC于点E.∴∠BAE=∠EAD,∠EAD=∠AEB.∴∠BAE=∠AEB.∴AB=BE=3.∴EC=2.所以答案为B.考点:三角形——全等三角形——角平分线的性质定理.四边形——平行四边形——平行四边形的性质.2.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AB的长为().A.13B.14C.15D.16答案:D解析:∵平行四边形ABCD,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.∴四边形ABEF为平行四边形.∴∠FAB+∠ABE=180°,∠FAE=∠EAB,∠ABF=∠FBE. ∴∠BAE+∠ABF=90°,AE⊥BF.∴四边形ABEF为菱形.设AE,BF交点为点O,则点O平分线段AE,BF.在△ABO中,AO2+BO2=AB2,(12AE)2+(12BF)2=AB2.∵BF=12,AB=10.解得AE=16.所以答案为D.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质.四边形——菱形——菱形的判定.3.如图,已知平行四边形纸片ABCD的周长为20,将纸片沿某条直线折叠,使点D与点B重合,折痕交AD于点E,交BC于点F,连接BE,则△ABE的周长为.答案:10.解析:依题可知,翻折轴对称BE=DE,△ABE的周长=AB+AE+BE=AB+AD=10.考点:四边形——平行四边形.几何变换——图形的对称——翻折变换(折叠问题).4.下列条件中,不能判断四边形是平行四边形的是().A. AB∥CD,AD∥BCB. AB=CD,AD∥BCC. AB∥CD,AB=CDD. ∠A=∠C,∠B=∠D答案:B.解析:如图:A选项,∵AB∥CD,AD∥BC .∴四边形ABCD是平行四边形,正确,故本选项错误.B选项,根据AB=CD和AD∥BC 可以是等腰梯形,错误,故本选项正确.C选项,∵AB∥CD,AB=CD.∴四边形ABCD是平行四边形,正确,故本选项错误.D选项,∵∠A=∠C,∠B=∠D.∴四边形ABCD是平行四边形,正确,故本选项错误.故选B.考点:四边形——平行四边形——平行四边形的判定.5.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,任意长为半径作弧,交直线l于点C.(2)分别以A,C为圆心,以BC,AB的长为半径作弧,两弧相交于点D.(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.答案:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线. 解析:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.考点:四边形——平行四边形——平行四边形的判定.尺规作图——过一点作已知直线的平行线.6.如图所示,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=√3.(1)求证:四边形ABDE是平行四边形.(2)求AB的长.答案:(1)证明见解析.(2)AB=√3.解析:(1)∵四边形ABCD是平行四边形.∴AB∥DC,AB=CD.∵AE∥BD.∴四边形ABDE是平行四边形.(2)由(1)知,AB=DE=CD.即D为CE中点.∵EF⊥BC.∴∠EFC=90°.∵AB∥CD.∴∠DCF=∠ABC=60°.∴∠CEF=30°.∴CE=2CF=2√3.∴AB=CD=√3.考点:三角形——直角三角形——含30°角的直角三角形.四边形——平行四边形——平行四边形的性质——平行四边形的判定.7.如图,在矩形ABCD中,E是BC边的中点,沿直线AE翻折△ABE,使B点落在点F处,连结CF并延长交AD于G点.(1)依题意补全图形.(2)连接BF 交AE 于点O ,判断四边形AECG 的形状并证明.(3)若BC =10,AB =203,求CF 的长.答案:(1)画图见解析. (2)四边形AECG 是平行四边形,证明见解析.(3)CF =6.解析:(1)依题意补全图形,如图:(2)依翻折的性质可知,点O 是BF 中点.∵E 是BC 边的中点. ∴EO ∥CG. ∵AG ∥CE.∴四边形AECG 是平行四边形.(3)在Rt △ABE 中.∵BE =12BC =5,AB =203.∴AE =253.∵S △BAE =12AB×BE =12AE×BO.∴BO =4. ∴BF =2BO =8. ∵BF ⊥AE ,AE ∥CG. ∴∠BFC =90°. ∴CF =6.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的判定.几何变换——图形的对称——作图:轴对称变换.8.如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB为().A.20B.15C.10D.5答案:D.解析:∵平行四边形的周长为40.∴AB+BC=20.又∵△BOC的周长比△AOB的周长多10.∴BC-AB=10.解得:AB=5,BC=15.故答案为:D.考点:四边形——平行四边形——平行四边形的性质.9.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′和B C′与AD交于点E,若AB=3,BC=4,则DE的长为.答案:25.8解析:由折叠得,∠CBD=∠EBD.由AD∥BC得,∠CBD=∠EDB.∴∠EDB=∠EBD.∴DE=BE.设DE=BE=x,则AE=4-x.在Rt△ABE中.AE2+AB2=BE2.(4−x)2+32=x2..解得x=258∴DE的长为25.8考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.几何变换——图形的对称——翻折变换(折叠问题).10.如图,矩形ABCD的对角线AC,BD交于点O,DE∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长.(2)求四边形OFCD的面积.答案:(1)BF=5..(2)S四边形OFCD=332解析:(1)∵四边形ABCD是矩形.∴∠BAD=90°.∴∠EAD=180°-∠BAD=90°.∵在Rt△EAD中,AE=6,AD=8.∴DE=√AE2+AD2=10.∵DE∥AC,AB∥CD.∴四边形ACDE 是平行四边形. ∴AC =DE =6.在Rt △ABC 中,∠ABC =90°. ∵OA =OC. ∴BO =12AC =5.∵BF =BO. ∴BF =5. (2)取BC 中点为O.∴BG =CG.∵四边形ABCD 是矩形.∴OB =OD ,∠BCD =90°,CD ⊥BC . ∴OG 是△BCD 的中位线. ∴OG ∥CD .由(1)知,四边形ACDE 是平行四边形,AE =6. ∴CD =AE =6. ∴OG =12CD =3.∵AD =8. ∴BC =AD =8.∴S △BCD =12BC×CD =24,S △BOF =12BF×OG =152. ∴S 四边形OFCD =S △BCD -S △BOF =332.考点:三角形——三角形基础——三角形中位线定理.直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质——平行四边形的判定. 矩形——矩形的性质. 四边形基础——四边形面积.11. 如图,在菱形ABCD 中,∠B =60°,AB =1,延长AD 到点E ,使DE =AD ,延长CD 到点F ,使DF =CD ,连接AC 、CE 、EF 、AF .(1)求证:四边形ACEF是矩形.(2)求四边形ACEF的周长.答案:(1)证明见解析.(2)四边形ACEF的周长为:2+2√3.解析:(1)∵DE=AD,DF=CD.∴四边形ACEF是平行四边形.∵四边形ABCD为菱形.∴AD=CD.∴AE=CF.∴四边形ACEF是矩形.(2)∵△ACD是等边三角形.∴AC=1.∴EF=AC=1.过点D作DG⊥AF于点G,则AG=FG=AD×cos30°=√3.2∴AF=CE=2AG=√3.∴四边形ACEF的周长为:AC+CE+EF+AF=1+√3+1+√3=2+2√3.考点:三角形——等腰三角形——等边三角形的判定.锐角三角函数——解直角三角形.四边形——平行四边形——平行四边形的判定.矩形——矩形的判定.菱形——菱形的性质.四边形基础——四边形周长.12.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别是OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形. (2)求证:四边形EFMN 是矩形.(3)连接DM ,若DM ⊥AC 于点M ,ON =3,求矩形ABCD 的面积.答案:(1)答案见解析. (2)证明见解析.(3)36√3.解析:(1)(2)∵点 E ,F 分别为OA ,OB 的中点.∴EF ∥AB ,EF =12AB .同理,NM ∥DC ,NM =12DC .∵四边形ABCD 是矩形. ∴AB ∥DC ,AB =DC ,AC =BD. ∴EF ∥NM ,EF =NM.∴四边形EFMN 是平行四边形.∵点E ,F ,M ,N 分别OA ,OB ,OC ,OD 的中点. ∴OE =12OA ,OM =12OC . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD.∴EM =OE +OM =12AC . 同理可证FN =12BD . ∴EM =FN .∴四边形EFMN 是矩形.(3)∵DM ⊥AC 于点M.由(2)可知,OM =12OC. ∴OD =CD . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD ,AC =BD. ∴OA =OB =OC =OD. ∴△COD 是等边三角形. ∴∠ODC =60°. ∵NM ∥DC.∴∠FNM =∠ODC =60°. 在矩形EFMN 中,∠FMN =90°. ∴∠NFM =90°-∠FNM =30°. ∵ON =3.∴FN =2ON =6,FM =3√3,MN =3. ∵点F ,M 分别OB ,OC 的中点. ∴BC =2FM =6√3.∴矩形ABCD 的面积为BC×CD =36√3.考点:直线、射线、线段——直线、射线、线段的基本概念——线段中点、等分点.三角形——三角形基础——三角形中位线定理. 直角三角形——含30°角的直角三角形——勾股定理. 四边形——矩形——矩形的性质——矩形的判定.13. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0) ,(2,0),点D 在y 轴正半轴上,则点C 的坐标是 .答案:(5,4).解析:由题意及菱形性质,得:AO=3,AD=AB=DC=5.根据勾股定理,得DO=√AD2−AO2=√52−32=4.∴点C的坐标是(5,4).考点:三角形——直角三角形——勾股定理的应用.四边形——菱形——菱形的性质.14.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且EF=AE+FC,则边BC的长为().√3A. 2√3B.3√3C. 6√3D.92答案:B.解析:∵四边形ABCD是矩形.∴∠A=90°,AD=BC,AB=DC=3.∵四边形BEDF是菱形.∴EF⊥BD,∠EBO=∠DBF,ED=BE=BF.∴AD-DE=BC-BF,即AE=CF.∵EF=AE+FC,EO=FO.∴AE=EO=CF=FO.∴△ABE≌△OBE.∴AB=BO=3,∠ABE=∠EBO.∴∠ABE=∠EBD=∠DBC=30°.∴在Rt△BCD中,BD=2DC=6.∴BC=√BD2−DC2=3√3.考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.菱形——菱形的性质.15.如图,在给定的一张平行四边形纸片上作一个菱形.小米的作法是:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.则小米的依据是.答案:一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.解析:根据平行四边形定义可知,一组对边平行且相等的四边形是平行四边形;根据菱形的定义可知对角线互相垂直的平行四边形是菱形,所以答案为一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.考点:四边形——平行四边形——平行四边形的判定.菱形——菱形的判定.16.在数学课上,老师提出如下问题:如图1:将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2:(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D.(2)c点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠得到菱形的依据是.答案:CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).解析:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.考点:四边形——菱形——菱形的判定.几何变换——图形的对称——翻折变换(折叠问题).17.如图,在平行四边形ABCD中,点E,M分别在边AB,CD上,且AE=CM.点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF.(2)连接EM,FN,若EM⊥FN,求证:四边形EFMN是菱形.答案:(1)证明见解析.(2)证明见解析.解析:(1)∵四边形ABCD是平行四边形.∴AD=BC,∠A=∠C.∵ND=BF.∴AD-ND=BC-BF.即AN=CF.在△AEN和△CMF中.{AN=CM ∠A=∠C AN=CF.∴△AEN ≌△CMF.(2)由(1)△AEN ≌△CMF.∴EN=FM.同理可证:△EBF ≌△MDB.∴EF=MN.∵EN=FM,EF=MN.∴四边形EFMN是平行四边形.∵EM⊥FN.∴四边形EFMN是菱形.考点:三角形——全等三角形——全等三角形的判定.四边形——平行四边形——平行四边形的性质.菱形——菱形的判定.18.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,分别过点A,C作AE∥DC和CE∥AB,两线交于点E.(1)求证:四边形AECD是菱形.(2)若∠B=60°,BC=2,求四边形AECD的面积.答案:(1)证明见解析.(2)S菱形AECD=2√3.解析:(1)∵AE∥DC,CE∥AB.∴四边形AECD是平行四边形.∵Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.∴CD=AD.∴四边形AECD是菱形.(2)连结DE.∵∠ACB=90°,∠B=60°.∴∠BAC=30°.∴AB=4,AC=2√3.∵四边形AECD是菱形.∴EC=AD=DB.又∵CE∥DB.∴四边形ECBD是平行四边形. ∴ED=CB=2.∴S菱形AECD=AC×ED2=2√3×22=2√3.考点:四边形——平行四边形——平行四边形的性质——平行四边形的判定.菱形——菱形的性质——菱形的判定.四边形基础——四边形面积.19.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于.答案:√2.解析:∵线段AC是正方形ABCD的对角线.∴F对线段AC的对称点永远落在线段DC上.如图所示,做F对线段AC的对称点于F’,连接EF’,EF’的长就是PE+PF的值.根据两平行线的距离定义,从一条平行线上的任意一点到另外一条直线做垂线,垂线段的长度叫两条平行线之间的距离.∴PE+PF的最小值等于垂线段EH的长度.根据平行线间的距离处处相等,可知EH=AD.∵正方形ABCD的面积是2.∴AD=EH=√2.所以答案为√2.考点:几何变换——图形的对称——轴对称与几何最值.20.如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为正方形,设△AFC的面积为S,则().A. S=2B. S=2.4C. S=4D. S随BE长度的变化而变化答案:A.解析:法一:∵AC∥BF.∴S△AFC=S△ABC=2.法二:∵S△AFC=S正方形ABCD+S正方形EFGB+S△AEF-S△FGC-S△ADC.∴设正方形EFGB的边长为a.∴S△AFC=2×2+a2+12a(2−a)−12(2+a)a−12×2×2.=4+a2+a−12a2−a−12a2−2.=2.考点:三角形——三角形基础——三角形面积及等积变换.四边形——正方形.21.将正方形A的一个顶点与正方形的对角线交点重合,如图1位置,则阴影部分面积是正方形A面积的18,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的.(几分之几)答案:12.解析:在图1中,∠GBF +∠DBF =∠CBD +∠DBF =90°.∴∠GBF =∠CBD ,∠BGF =∠CDB =45°,BD =BG. ∴ △FBG ≌△CBD.∴阴影部分的面积等于△DGB 的面积,且是小正方形的面积的14,是大正方形面积的18.设小正方形的边长为x ,大正方形的边长为y. 则有14X 2=18y 2. ∴y =√2x .同上,在图2中,阴影部分的面积是大正方形的面积的14,为14y 2=12x 2.∴阴影部分的面积是正方形B 面积的12.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.四边形——正方形——正方形的性质.22. 如图,正方形 的对角线交于O ,OE ⊥AB ,EF ⊥OB ,FG ⊥EB .若△BGF 的面积为1,则正方形ABCD 的面积为 .答案:32.解析:∵两条对角线将正方形分成四个全等的等腰直角三角形.且OE ⊥AB 于点E ,EF ⊥OB 于点F ,FG ⊥EB 于点G. ∴E 为AB 的中点,F 为BO 的中点,G 为EB 的中点. ∴AB =EB =EO =12AB ,EF =BF =FO ,GF =BG =EG =12EB .∴BGAB =14.∴S△BGFS△BAD =(BGAB)2=116.∴S△BAD=16.∴S正方形ABCD=2S△ABD=32.故答案为32.考点:三角形——相似三角形——相似三角形的性质.四边形——正方形——正方形的性质.23.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.答案:(1)证明见解析.(2)1+12√14.解析:(1)如图1,延长EB交DG于点H.∵四边形ABCD与四边形AEFG是正方形.∴AD=AB,∠DAG=∠BAE=90°,AG=AE.∴△ABC≌△ABE(SAS).∴∠AGD=∠AEB,DG=BE.∵△ADG中,∠AGD+∠ADG=90°.∴∠AEB+∠ADG=90°.∴△DEH中,∠AEB+∠ADG+∠DHE=180°.∴∠DHE=90°.∴DG⊥BE.(2)如图2,过点A作AM⊥DG交DG于点M.∴∠AMD=∠AMG=90°.∵BD是正方形ABCD的对角线.∴∠MDA=45°.在Rt△AMD中.∵∠MDA=45°,AD=2.∴AM=DM=√2.在Rt△AMG中.∵AM2+GM2=AG2.∴GM=√7.∵DG=DM+GM=√2+√7.∴S△ADG=12×DG×AM=12×(√2+√7)×√2=1+12√14.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.直角三角形——勾股定理.四边形——正方形——正方形的性质.24.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°.若AB=5,BC=8,则EF的长为.答案:32.解析:∵DE 为△ABC 的中位线.∴DE =12BC =4,点D 是线段AB 的中点. 又∵∠AFB =90°. ∴DF =12AB =52. ∴EF =DE −DF =32.所以答案为32.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.25. 如图,在四边形ABCD 中,对角线AC ⊥BD ,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA的中点.若AC =8,BD =6,则四边形EFGH 的面积为( ).A. 14B. 12C. 24D.48 答案:B解析:∵点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点.∴EF =HG =12AC =4,FG =EH =12BD =3,EF ∥HG ,FG ∥EH. ∴四边形EFGH 是平行四边形.∵AC⊥BD.∴EF⊥FG.∴四边形EFGH是矩形.∴四边形EFGH的面积为3×4=12.考点:三角形——三角形基础——三角形中位线定理.四边形——矩形——矩形的判定.四边形基础——四边形面积.26.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm .答案:6.解析:由题意,得:EFAB =12.在Rt△ABC中,D是AB的中点.∴CD=EF=12AB.又∵CD=6.∴EF=CD=6cm.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.27.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点.那么CH的长是.答案:√5.解析:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3.∴AB=BC=1,CE=EF=3,∠E=90°.延长AD交EF于M,连接AC、CF.则AM=BC+CE=1+3=4,FM=EF-AB=3-1=2.∵四边形ABCD和四边形GCEF是正方形.∴∠ACD=∠GCF=45°.∴∠ACF=90°.∵H为AF的中点.AF.∴CH=12在Rt△AMF中,由勾股定理得:AF=√AM2+FM2=√42+22=2√5.∴CH=√5.故答案为:√5.考点:三角形——直角三角形——直角三角形斜边上的中线——勾股定理.四边形——正方形——正方形的性质.28.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是(填序号).答案:①④.解析:由于菱形和正方形中都有四边相等的特点,而直角三角形不一定有两边相等,故两个全等的直角三角形不一定能拼成菱形和正方形.由于等边三角形三个角均为60°,而直角三角形不一定含60°角,故个全等的直角三角形不一定能拼成等边三角形.两个全等的直角三角形一定能拼成矩形和等腰三角形,如图.考点:三角形——等腰三角形——等腰三角形的判定——等边三角形的判定.四边形——矩形——矩形的判定.菱形——菱形的判定——正方形——正方形的判定.29. 边长为a 的菱形是由边长为a 的正方形“形变”得到的,若这个菱形一组对边之间的距离为h ,则称ah 为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为 . (2)如图,A 、B 、C 为菱形网格(每个小菱形的边长为1,“形变度”为98)中的格点,则△ABC 的面积为 .答案:(1)1:3.(2)12. 解析:(1)如图所示.∵“形变度”为3. ∴ah =3,即h =13a .∴一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为aℎa 2=ℎa =13. (2)在正方形网格中,△ABC 的面积为:6×6−12×3×3-12×3×6−12×3×6=272.由(1)可得,在菱形网格中,△ABC的面积为89×272=12.考点:式——探究规律——定义新运算.三角形——三角形基础——三角形面积及等积变换.四边形——菱形——菱形的性质.30.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:___________________________.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.答案:(1)求证:∠B=∠D.证明见解析.(2)筝形的两条对角线互相垂直.(3)不成立.解析:(1)求证:∠B =∠D .已知:如图,筝形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D . 证明:连接AC ,如图. 在△ABC 和△ADC 中.{AB =AD CB =CD AC =AC.∴△ABC ≌△ADC . ∴∠B =∠D .(2)筝形的其他性质.①筝形的两条对角线互相垂直. ②筝形的一条对角线平分一组对角. ③筝形是轴对称图形.(3)不成立.反例如图2所示.在平行四边形ABCD 中,AB≠AD ,对角线AC ,BD 相交于点O .由平行四边形性质可知此图形满足∠ABC =∠ADC ,AC 平分BD ,但该四边形不是筝形.考点:四边形——平行四边形.。

平行四边形的判定练习题(含(答案))

平行四边形的判定练习题(含(答案))

平行四边形的判定及中位线知能点1 平行四边形的判定方法1.能够判定四边形ABCD是平行四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平行四边形的为().A.相邻的角互补 B.两组对角分别相等C.一组对边平行,另一组对边相等 D.对角线交点是两对角线中点3.如下左图所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平行四边形;B.若AC=BD,则ABCD是平行四边形;C.若AO=BO,CO=DO,则ABCD是平行四边形;D.若AO=OC,BO=OD,则ABCD是平行四边形4.如上右图所示,对四边形ABCD是平行四边形的下列判断,正确的打“∨”,错误的打“×”.(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E 为□ABCD 中DC 边的延长线上的一点,且CE=DC ,连接AE ,分别交BC ,BD 于点F ,G ,连接AC 交BD 于点O ,连接OF ,求证:AB=2OF .12.如图所示,在ABCD 中,EF ∥AB 且交BC 于点E ,交AD 于点F ,连接AE ,BF•交于点M ,连接CF ,DE 交于点N ,求证:MN ∥AD 且MN=12AD .13.如图所示,DE 是△ABC 的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD 中,对角线AC ,BD 交于点O ,OE ∥BC 交CD•于E ,•若OE=3cm ,则AD 的长为( ). A .3cm B .6cm C .9cm D .12cm15.如图所示,在四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,•则四边形EFGH 是平行四边形吗?为什么?16.如图所示,在△ABC 中,AC=6cm ,BC=8cm ,AB=10cm ,D ,E ,F 分别是AB ,BC ,CA 的中点,求△DEF 的面积.规律方法应用17.如图所示,A ,B 两点被池塘隔开,在A ,B 外选一点C ,连接AC 和BC ,•并分别找出AC 和BC 的中点M ,N ,如果测得MN=20m ,那么A ,B 两点间的距离是多少?18.如图所示,在□ABCD 中,AB=2AD ,∠A=60°,E ,F 分别为AB ,CD 的中点,EF=1cm ,那么对角线BD 的长度是多少?你是怎样得到的?19.如图所示,在△ABC 中,E 为AB 的中点,CD 平分∠ACB ,AD ⊥CD 于点D .• 试说明:(1)DE ∥BC .(2)DE=12(BC-AC ).开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH:S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在ABCD中,E,F分别是AB,CD的中点.求证:(1)•△AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)×(2)×(3)∨(4)∨(5)∨(6)× 5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CFE(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//12AB,即AB=2OF.12.证明:∵四边形ABCD是平行四边形,∴AB ∥CD ,AD ∥BC . 又∵EF ∥AB ,∴EF ∥CD .∴四边形ABEF ,ECDF 均为平行四边形.又∵M ,N 分别为ABEF 和ECDF 对角线的交点. ∴M 为AE 的中点,N 为DE 的中点, 即MN 为△AED 的中位线. ∴MN ∥AD 且MN=12AD . 13.4 14.B15.解:EFGH 是平行四边形,连接AC ,在△ABC 中,∵EF 是中位线,∴EF //12AC . 同理,GH //12AC . ∴EF //GH ,∴四边形EFGH 为平行四边形. 16.解:∵EF ,DE ,DF 是△ABC 的中位线, ∴EF=12AB ,DE=12AC ,DF=12BC . 又∵AB=10cm ,BC=8cm ,AC=6cm ,∴EF=5cm ,DE=3cm ,DF=4cm ,而32+42=25=52,即DE 2+DF 2=EF 2. ∴△EDF 为直角三角形. ∴S △EDF =12DE ·DF=12×3×4=6(cm 2). 17.解:∵M ,N 分别是AC ,BC 的中点. ∴MN 是△ABC 的中位线,∴MN=12AB . ∴AB=2MN=2×20=40(m ).故A ,B 两点间的距离是40m . 18.解:连接DE .∵四边形ABCD 是平行四边形, ∴AB //CD . ∵DF=12CD ,AE=12AB , ∴DF //AE .∴四边形ADFE 是平行四边形.∴EF=AD=1cm .∵AB=2AD ,∴AB=2cm .∵AB=2AD ,∴AB=2AE ,∴AD=AE . ∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°, ∴∠1=∠A=∠4=60°.∴△ADE 是等边三角形,∴DE=AE . ∵AE=BE ,∴DE=BE ,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°. ∴∠ADB=∠3+∠4=90°. ∴BD=222221AB AD -=-=3(cm ).19.解:延长AD 交BC 于F .(1)∵AD ⊥CD ,∴∠ADC=∠FDC=90°.∵CD 平分∠ACB ,∴∠ACD=∠FCD . 在△ACD 与△FCD 中,∠ADC=∠FDC ,DC=DC ,∠ACD=∠FCD . ∴△ACD ≌△FCD ,∴AC=FC ,AD=DF .又∵E 为AB 的中点,∴DE ∥BF ,即DE ∥BC .(2)由(1)知AC=FC ,DE=12BF . ∴DE=12(BC-FC )=12(BC-AC ). 20.解:AE=CF .理由:过E 作EG ∥CF 交BC 于G , ∴∠3=∠C .∵∠BAC=90°,AD ⊥BC ,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°. ∴∠C=∠BAD ,∴∠3=∠BAD . 又∵∠1=∠2,BE=BE , ∴△ABE ≌△GBE (AAS ),∴AE=GE . ∵EF ∥BC ,EG ∥CF ,∴四边形EGCF 是平行四边形,∴GE=CF , ∴AE=CF .21.答案不唯一,如AB=CD 或AD ∥BC . 22.1223.解:(1)在□ABCD 中,AD=CB ,AB=CD ,∠D=∠B . ∵E ,F 分别为AB ,CD 的中点, ∴DF=12CD ,BE=12AB ,∴DF=BE , ∴△AFD ≌△CEB .(2)在□ABCD 中,AB=CD ,AB ∥CD . 由(1)得BE=DF ,∴AE=CE ,∴四边形AECF 是平行四边形.。

平行四边形综合练习附答案

平行四边形综合练习附答案

平行四边形综合练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形【答案】D【解析】【分析】分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C、四条边都相等的四边形是菱形,符合菱形的判定,故本选项正确,不符合题意;D、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D.【点睛】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.2.如图,平行四边形ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE ,则AB的长为()6cm【答案】D【解析】【分析】根据平行四边形的性质,可得出点O 平分AC ,则OE 是三角形ABC 的中位线,则AB =2OE ,继而求出答案.【详解】解:∵四边形ABCD 为平行四边形,∴AO =CO ,∵点E 是CB 的中点,∴OE 为△ABC 的中位线,∴AB =2OE ,∵OE =6cm ,∴AB =12cm .故选:D .【点睛】本题考查了平行四边形的性质和三角形的中位线定理,关键是根据平行四边形的性质得出OE 为△ABC 的中位线.3.如图,点P 是矩形ABCD 的对角线上一点,过点P 作EF //BC ,分别交,AB CD 于,E F ,连接,PB PD ,若1,3AE PF ==,则图中阴影部分的面积为( )A .3B .6C .9D .12 【答案】A【解析】【分析】先根据矩形的性质证得DFP PBE SS =,然后求解即可.【详解】∴四边形AEPM 、四边形DFPM 、四边形CFPN 和四边形BEPN 都是矩形,∵ADC ABC S S =△△,AMP AEP S S =,PBE PBN S S =,PFD PDM S S =,PFC PCN S S =, ∴S 矩形DFPM =S 矩形BEPN ,∵PM =AE =1,PF =NC =3, ∴131322DFP PBE S S ==⨯⨯=△△, ∴S 阴=33+=322, 故选:A .【点睛】本题主要考查矩形的性质、三角形的面积等知识,证得DFP PBE S S =是解答本题的关键. 4.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( ) A .AC =BD ,AB ∥CD ,AB =CDB .AD ∥BC ,∠A =∠C C .AO =BO =CO =DO ,AC ⊥BDD .AO =CO ,BO =DO ,AB =BC【答案】C【解析】【详解】试题分析:根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.解:A ,不能,只能判定为矩形;B ,不能,只能判定为平行四边形;C ,能;D ,不能,只能判定为菱形.故选C .5.如图,ABC ∆中,DE BC ∥,EF AB ∥,要判定四边形DBFE 是菱形,还需要添加的条件是( )A .BE 平分ABC ∠B .AD BD =C .BE AC ⊥D .AB AC =【答案】A【解析】【分析】 当BE 平分∠ABC 时,四边形DBFE 是菱形,可知先证明四边形BDEF 是平行四边形,再证明BD=DE 即可解决问题.【详解】解:当BE 平分ABC ∠时,四边形DBFE 是菱形,理由:∵DE BC ∥,∴DEB EBC ∠=∠,∵EBC EBD ∠=∠,∴EBD DEB ∠=∠,∴BD DE =,∵DE BC ∥,EF AB ∥,∴四边形DBFE 是平行四边形,∵BD DE =,∴四边形DBFE 是菱形.其余选项均无法判断四边形DBFE 是菱形,故选A.【点睛】本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 6.若一个菱形的边长为2,则这个菱形两条对角线长的平方和为( )A .16B .8C .4D .1【答案】A根据菱形的对角线互相垂直平分,即菱形被对角线平分成四个全等的直角三角形,根据勾股定理,即可求解.【详解】解:设两对角线长分别是:a ,b . 则(12a )2+(12b )2=22,故有a 2+b 2=16.故选:A .【点睛】本题主要考查了菱形的性质和勾股定理,菱形被两个对角线平分成四个全等的直角三角形,因为菱形的这个性质,使得菱形的题目一般都会和勾股定理结合起来,同学们要注意掌握.7.如图,把一张矩形纸片ABCD 按所示方法进行两次折叠,得到等腰直角三角形BEF ,若BC =1,则AB 的长度为( )A 2B 21+C 51+D .43【答案】A【解析】 【分析】 先判断出∠ADE =45°,进而判断出AE =AD ,利用勾股定理即可得出结论.【详解】解:由折叠补全图形如图所示,∵四边形ABCD 是矩形,∴∠ADA '=∠B =∠C =∠A =90°,AD =BC =1,CD =AB ,由第一次折叠得:∠DAE =∠A =90°,∠ADE =12∠ADC =45°,∴∠AED =∠ADE =45°,∴AE =AD =1,在Rt △ADE 中,根据勾股定理得,DE 2AD 2,由第二次折叠可知,DC DE =【点睛】本题考查了图形的折叠和勾股定理,搞清楚折叠中线段的数量关系是解决此类题的关键.8.如图,矩形ABCD 的对角线相交于点O ,过点O 作OG AC ⊥,交AB 于点G ,连接CG ,若15BOG ∠=,则BCG ∠的度数是( )A .15B .15.5C .20D .37.5【答案】A【解析】【分析】 根据矩形的性质求出OCB ∠的度数,从而得到GAC ∠的度数,再根据垂直平分线的性质得到GCA GAC ∠=∠,最后求出BCG ∠的度数.【详解】解:∵OG AC ⊥,∴90COG ∠=︒,∵15BOG ∠=︒,∴901575COB COG BOG ∠=∠-∠=︒-︒=︒,∵四边形ABCD 是矩形,∴AC BD =,12OC OA AC ==,12OB OD BD ==,//AB DC ,90BCD ∠=︒, ∴OC OB =, ∴1801807552.522COB OCB OBC ︒-∠︒-︒∠=∠===︒, ∴37.5ACD BCD OCB ∠=∠-∠=︒,∵//AB CD ,∴37.5GAC ACD ∠=∠=︒,∴GO 是AC 的垂直平分线,∴AG CG =,∴37.5GCA GAC ∠=∠=︒,∴52.537.515BCG OCB GCA ∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查矩形的性质,垂直平分线的性质,解题的关键是熟练掌握这些性质定理,并结合题目条件进行证明.二、填空题9.正方形是有一组邻边_______,并且有一个角是_______的平行四边形,因此它既是______又是________.【答案】 相等 直角 矩形 菱形【解析】【分析】根据正方形的定义和性质填空即可.【详解】 正方形是有一组邻边相等,并且有一个角是直角的平行四边形,因此它既是矩形又是菱形.故答案为:相等,直角,矩形,菱形【点睛】本题考查了正方形的定义,解题关键是明确正方形的定义:正方形是有一组邻边相等,并且有一个角是直角的平行四边形,因此它既是矩形又是菱形.10.如图,在矩形ABCD 中,5AB =,4BC =,将矩形ABCD 翻折,使得点B 落在CD 边上的点E 处,折痕AF 交BC 于点F ,则FC =______【答案】32【分析】在Rt△ADE中,AD2+DE2=AE2,可得DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,可得(4-x)2=22+x2,解方程即可.【详解】解∵△ABF≌△AEF,∴AE=AB=5,在矩形ABCD中,AD=BC=4,在Rt△ADE中,AD2+DE2=AE2,∴DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,即(4-x)2=22+x2,8x=12,x=32,∴FC=32.故此答案为32.【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.11.如图所示,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_______.【答案】8【解析】【分析】形ABED 是平行四边形,最后根据平行四边形的面积公式即可得.【详解】由平移的性质得2AD BE ==,4DF AC ==,90C DFE ∠=∠=︒∴四边形ACFD 是矩形//AD CF ∴//AD BE ∴∴四边形ABED 是平行四边形(一组对边平行且相等的四边形是平行四边形) 则四边形ABED 的面积为428DF BE ⋅=⨯=故答案为:8.【点睛】本题考查了平移的性质、平行四边形的判定、矩形的判定与性质等知识点,掌握平移的性质是解题关键.12.如图,ACE ∆是以ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,33)-,则D 点的坐标是_____.【答案】(5,0)【解析】【分析】设CE 和x 轴交于H ,由对称性可知63CE =63AC CE ==根据勾股定理即可求出AH 的长,进而求出AO 和DH 的长,所以OD 可求,又因为D 在x 轴上,纵坐标为0,问题得解.【详解】解:点C 与点E 关于x 轴对称,E 点的坐标是(7,33)-, C ∴的坐标为(7,33),33CH ∴=3CE =63AC ∴=,9AH ∴=,7OH =,2AO DH ∴==,5OD ∴=,D ∴点的坐标是(5,0),故答案为:(5,0).【点睛】本题考查了平行四边形的性质、等边三角形的性质、点关于x 轴对称的特点以及勾股定理的运用,解题的关键是综合应用以上知识点.13.如图,在矩形ABCD 中,6AB =,8AD =,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足为E ,F ,则PE PF +的值为______.【答案】245【解析】【分析】连接OP ,利用勾股定理列式求出BD ,再根据矩形的对角线相等且互相平分求出OA 、OD ,然后根据S △AOD =S △AOP +S △DOP 列方程求解即可.【详解】解:如图,连接OP ,∵AB=6,AD=8,∴2222.6810BD AB AD ++=,∵四边形ABCD 是矩形,∵S△AOD=S△AOP+S△DOP,∴12×12×6×8=12×5•PE+12×5•PF,解得PE+PF=245.故答案为:245.【点睛】本题考查了矩形的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.14.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_____.【答案】(2,6)【解析】【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用.过点M作MF⊥CD于F,过C作CE⊥OA于E,在Rt△CMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C的坐标.【详解】∵四边形OCDB是平行四边形,点B的坐标为(16,0),CD∥OA,CD=OB=16,过点M作MF⊥CD于F,则182CF CD,==过C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM−ME=OM−CF=10−8=2,连接MC,110,2MC OA==∴在Rt△CMF中,2222108 6.MF MC CF=-=-=∴点C的坐标为(2,6).故答案为(2,6).【点睛】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键.三、解答题15.如图是某区部分街道示意图,其中AB AF⊥,E、D分别是FA和FG的中点,点C、D、E在一条直线上,点A、G、B在一条直线上,//BC FG.从B站乘车到E站只有两条路线有直接到达的公交车,路线1是B D A E⇒⇒⇒,且长度为5公里,路线2是B C F E⇒⇒⇒,求路线2的长度.【答案】5公里【解析】【分析】证明四边形BCDG是平行四边形,得到DG=CB,再证四边形BCFD是平行四边形,根据平行四边形的性质计算,得到答案.【详解】解:∵E、D分别是FA和FG的中点,∴AB∥DE,∵BC∥GF,∴四边形BCDG是平行四边形,∴DG=CB.∵FD=DG,∴CB=FD.又∵BC ∥DF ,∴四边形BCFD 是平行四边形,∴CF =BD ,∵AB ∥DE ,AB AF ⊥,FE =AE ,∴CE 垂直平分AF ,∴AE =FE ,FD =DA ,∴BC =DA ,∴路线2的长度:BC +CF +FE =AD +BD +AE =5(公里).【点睛】本题考查的是平行四边形的判定和性质、线段垂直平分线的性质,掌握平行四边形的判定定理和性质定理是解题的关键.16.已知:如图,ABCD 中,5AB =,3BC =.(1)作DAB ∠的角平分线,交CD 于点E (用直尺和圆规作图,不写作法,保留作图痕迹);(2)求CE 的长.【答案】(1)见解析;(2)CE 的长为2【解析】【分析】(1)根据尺规作图作DAB ∠的平分线即可;(2)根据平行四边形的性质和角平分线的定义,求出DE =DA =BC =3,再求出CE 即可.【详解】解:如图,(1)AE 即为∠DAB 的角平分线;(2)∵AE 为∠DAB 的角平分线,∴∠DAE =∠BAE ,在▱ABCD中,CD∥AB,∴∠BAE=∠DEA,∴∠DAE=∠DEA,∴DE=DA=BC=3,∵DC=AB=5,∴CE=CD﹣DE=2.答:CE的长为2.【点睛】当平行线遇上角平分线时,通过角的转化,可以得到等腰三角形,这是初中几何一个很重要的数学模型,要深刻领会.17.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF =BD .∴AF =DC .(2)四边形ADCF 是菱形,证明如下:∵AF ∥BC ,AF =DC ,∴四边形ADCF 是平行四边形.∵AC ⊥AB ,AD 是斜边BC 的中线,∴AD =DC .∴平行四边形ADCF 是菱形.18.如图,四边形ABCD 是边长为13cm 的菱形,其中对角线BD 长10cm .求:(1)对角线AC 的长度;(2)菱形ABCD 的面积.【答案】(1)24cm AC =;(2)2120cm【解析】【分析】(1)根据菱形的对角线互相垂直平分,可利用勾股定理求出AE 的长,从而求出AC 的长;(2)根据菱形的面积公式:两条对角线乘积的一半即可求得面积.【详解】解:(1)∵四边形ABCD 是菱形,AC 与BD 相交于点E ,∴90AED ∠=︒(菱形的对角线互相垂直),11105(cm)22DE BD ==⨯=(菱形的对角线互相平分). ∴222213512(cm)AE AD DE =--=.∴221224(cm)AC AE ==⨯=(菱形的对角线互相平分);(2)ABD BDC ABCD S S S =+菱形1122BD AE BD CE =⋅+⋅ 1()2BD AE CE =⋅+ 12BD AC =⋅ 110242=⨯⨯ 2120(cm )=.【点睛】本题主要考查了菱形的性质、菱形的面积公式、勾股定理,熟知菱形的性质是解本题的关键.19.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F .(1)求证:△ADE ≌△FCE .(2)若∠BAF =90°,BC =5,EF =3,求CD 的长.【答案】(1)证明过程见解析;(2)8【解析】【分析】(1)由平行四边形的性质得出AD ∥BC ,AB ∥CD ,证出∠DAE =∠F ,∠D =∠ECF ,由AAS 证明△ADE ≌△FCE 即可;(2)由全等三角形的性质得出AE =EF =3,由平行线的性质证出∠AED =∠BAF =90°,由勾股定理求出DE ,即可得出CD 的长.【详解】(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAE =∠F ,∠D =∠ECF ,∵E 是▱ABCD 的边CD 的中点, ∴DE =CE ,在△ADE 和△FCE 中,DAE F D ECF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△FCE (AAS );(2)∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE=2222-=-=4,AD AE53∴CD=2DE=8【点睛】考点:(1)平行四边形的性质;(2)全等三角形的判定与性质20.(1)如图,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为() A.平行四边形B.菱形C.矩形D.正方形(2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1图2【答案】(1)C;(2)①证明见解析;1010【解析】【详解】试题分析:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AE E′D的形状为矩形,故选C;(2)①证明:∵纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=3.如图2:∵△AEF ,将它平移至△DE′F′,∴AF ∥DF′,AF=DF′,∴四边形AFF′D 是平行四边形.在Rt △AEF 中,由勾股定理,得AF=2222=34++AE EF =5,∴AF=AD=5,∴四边形AFF′D 是菱形;②连接AF′,DF ,如图3:在Rt △DE′F 中E′F=FF′﹣E′F′=5﹣4=1,DE′=3,∴DF=2222=13=10''++E D E F ,在Rt △AEF′中EF′=EF+FF′=4+5=9,AE=3,∴AF′=2222=39'++AE F E =310. 考点:①图形的剪拼;②平行四边形的性质;③菱形的判定与性质;④矩形的判定;⑤平移的性质.21.如图,在正方形ABCD 中,E 、F 分别为边AD 和CD 上的点,且AE=CF ,连接AF 、CE 交于点G .求证:AG=CG .【答案】证明见解析.【解析】【分析】先用SAS 证明△ADF ≌△CDE ,得∠DAF=∠DCE ,再用AAS 证明△AGE ≌△CGF 即可.【详解】∵四边形ABCD 是正方形,∴∠ADF=∠CDE=90°,AD=CD .∵AE=CF ,∴DE=DF ,在△ADF 和△CDE 中,AD AD ADF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△CDE (SAS ),∴∠DAF=∠DCE ,在△AGE 和△CGF 中,GAE GCF AGE CGF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AGE ≌△CGF (AAS ),∴AG=CG .22.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB ,AF=AC ,∠EAF=∠BAC ,则∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,利用AB=AC 可得AE=AF ,得出△ACF ≌△ABE ,从而得出BE=CF ;(2)由菱形的性质得到DE=AE=AC=AB=1,AC ∥DE ,根据等腰三角形的性质得∠AEB=∠ABE ,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE 为等腰直角三角形,所以22BD=BE ﹣DE 求解.【详解】(1)∵△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,∴AE=AB ,AF=AC ,∠EAF=∠BAC ,∴∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,在△ACF 和△ABE 中,AC AB CAF BAE AF AE =⎧⎪∠=∠⎨⎪=⎩∴△ACF ≌△ABE∴BE=CF.(2)∵四边形ACDE 为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC ∥DE ,∴∠AEB=∠ABE ,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE 为等腰直角三角形,∴BE=2AC=2,∴BD=BE ﹣DE=21-.考点:1.旋转的性质;2.勾股定理;3.菱形的性质. 23.如图,AD 是ABC 的中线,//AE BC ,且12AE BC =,连接DE ,CE .(1)求证:AB DE =;(2)当ABC 满足条件__________时,四边形ADCE 是矩形.【答案】(1)见解析;(2)AB =AC 或 ABC ACB ∠=∠【解析】【分析】(1)根据三角形中位线定理和平行四边形的判定和性质解答即可; (2)根据矩形的判定解答即可.【详解】(1)∵AD 是ABC 的中线,∴12BD BC =, ∵12AE BC =, ∴AE BD =,∵//AE BC ,∴四边形ABDE 是平行四边形,∴AB DE =(2)当△ABC 满足AB =AC 或ABC ACB ∠=∠时,四边形ADCE 是矩形, 11,,22BC BD AE CD BC =∴== ∴AE =CD ,∵AE ∥BC ,∴四边形ADCE 是平行四边形,∵AB =DE ,∴当AB =AC 或ABC ACB ∠=∠时,AC =DE ,∴四边形ADCE 是矩形.【点睛】此题考查了平行四边形的判定与性质、等腰三角形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用.24.在边长为5的正方形ABCD 中,点E 在边CD 所在直线上,连接BE ,以BE 为边,在BE 的下方作正方形BEFG ,并连接AG .(1)如图1,当点E 与点D 重合时,AG = ;(2)如图2,当点E 在线段CD 上时,DE =2,求AG 的长;(3)若AG =5172,请直接写出此时DE 的长.【答案】(1)5(2109(3)52或152. 【解析】【分析】 (1)如图1,连接CG ,证明△CBD ≌△CBG (SAS ),可得G ,C ,D 三点共线,利用勾股定理可得AG 的长;(2)如图2,作辅助线,构建全等三角形,证明△BCE ≌△BKG ,可得AK 和KG 的长,利用勾股定理计算AG 的长;(3)分三种情况:①当点E在边CD的延长线上时,如图3,同(2)知△BCE≌△BKG (AAS),BC=BK=5,根据勾股定理可得KG的长,即可CE的长,此种情况不成立;②当点E在边CD上;③当点E在DC的延长线上时,同理可得结论.【详解】(1)如图1,连接CG,∵四边形ABCD和四边形EBGF是正方形,∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,∴∠CBG=45°,∴∠CBG=∠CBD,∵BC=BC,∴△CBD≌△CBG(SAS),∴∠DCB=∠BCG=90°,DC=CG=5,∴G,C,D三点共线,∴AG=22+=22AD DG+=55,510故答案为:55;(2)如图2,过点G作GK⊥AB,交AB的延长线于K,∵DE=2,DC=5,∴CE=3,∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,∵BE=BG,∠K=∠BCE=90°,∴△BCE≌△BKG(AAS),∴CE=KG=3,BC=BK=5,∴AK=10,由勾股定理得:AG=22103+=109;(3)分三种情况:①当点E在CD的延长线上时,如图3,由(2)知△BCE≌△BKG(AAS),∴BC=BK=5,∵AG=5172,由勾股定理得:KG=22517102⎛⎫-⎪⎪⎝⎭=52,∴CE=KG=52,此种情况不成立;②当点E在边CD上时,如图4,由(2)知△BCE≌△BKG(AAS),∵AG=5172,由勾股定理得:KG=22517102⎛⎫-⎪⎪⎝⎭=52,∴CE=KG=52,∴DE=CD-CE=52;③当点E在DC的延长线上时,如图5,同理得CE=KG=52,∴DE=5+52=152;综上,DE的长是52或152.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。

(完整版)平行四边形的性质练习题及答案

(完整版)平行四边形的性质练习题及答案

(完整版)平⾏四边形的性质练习题及答案平⾏四边形的性质、课中强化(10分钟训练)1?如图3,在平⾏四边形 ABCD 中,下列各式不⼀定正确的是()A. / 1 + Z 2=180 °B. / 2+ / 3=180 °C. / 3+Z 4=180的周长为()3. 如图5,」ABCD 中,EF 过对⾓线的交点 O,如果AB=4 cm,AD=3 cm,OF=1 cm,则四边形 BCFE 的周长为 ____________________ .4. 如图6,已知在平⾏四边形 ABCD 中,AB=4 cm , AD=7 cm , / ABC 的平分线交 AD 于点E ,5. 如图7,在平⾏四边形 ABCD 中,点E 、F 在对⾓线6. 如图 8,在 ABCD 中,AE 丄BC 于 E,AF 丄 CD 于 F,BE=2 cm,DF=3 cm, / EAF=60° ,试求 CF 的长.D. /2+ /4=180O , OE 丄AC 交AD 于丘,则⼛DCEA.4 cmB.6 cmC.8 cmD.10 cm交CD 的延长线于点 F ,贝U DF= _____________cm.BD 上,且 BE=DF ,求证:AE=CF.图32?如图4,⼆ABCD 的周长为图5图6图7图8三、课后巩固(30分钟训练)1?⼆ABCD中,/A⽐/ B⼤20。

,则/ C的度数为()A.60 °B.80 °C.100 °D.120 2?以A、B、C三点为平⾏四边形的三个顶点,作形状不同的平⾏四边形,⼀共可以作(A.0个或3个B.2个C.3个D.4个3?如图9 所⽰,在—ABCD 中,对⾓线AC、BD交于点0,下列式⼦中⼀定成⽴的是()A.AC 丄BDB.OA=OCC.AC=BDD.AO=OD4?如图10,平⾏四边形ABCD中,对⾓线AC、BD相交于点O ,将⼛AOD平移⾄△ BEC的位置,则图中与OA相等的其他线段有()A.1条B.2条C.3条D.4条5?如图11,在平⾏四边形ABCD中,EF // AB , GH // AD , EF与GH交于点O,则该图中的平⾏四边形的个数共有()6?如图12,平⾏四边形ABCD中,AE丄BD , CF丄BD,垂⾜分别为E、F,求证:/ BAE= / DCF.7、如图13所⽰,已知平⾏四边形ABCD中,E、F分别是BC和AD上的点,且BE=DF.求证:△ ABE CDF.A.7个B.8个C.9个D.11 个图12图138?如图14,已知四边形ABCD是平⾏四边形,/ BCD的平分线CF交边AB于F,/ ADC的平分线DG交边AB于G.⑴求证:AF=GB ;(2)请你在已知条件的基础上再添加⼀个条件,使得△EFG是等腰直⾓三⾓形,并说明理由?19.1.2平⾏四边形的判定⼆、课中强化(10分钟训练)1?如图3,在ABCD中,对⾓线AC、BD相交于点O,E、F是对⾓线AC上的两点,当E、F满⾜下列哪个条件时,四边形DEBF不⼀定是平⾏四边形()A.AE=CFC.Z ADE= / CBFD. / AED= / CFB,使四边形AECF是平⾏四边形.4. 如图6,AD=BC,要使四边形ABCD是平⾏四边形,还需补充的⼀个条件是:__________________5. 如图,在,ABCD中,已知M和N分别是边AB、DC的中点,试说明四边形BMDN也是平⾏四边形.2.如图4,AB 喪DC ,DC=EF=10 ,DE=CF=8,则图中的平⾏四边形有,理由分别是图4 图53.如图5,E、F是平⾏四边形ABCD对⾓线BD上的两点,B.DE=BF图14三、课后巩固(30分钟训练)1?以不在同⼀直线上的三个点为顶点作平⾏四边形最多能作()是平⾏四边形的是()4?已知四边形 ABCD 的对⾓线 AC 、BD 相交于点② OA=OC :③ AB=CD ;④/ BAD= / DCB :⑤ AD // BC.(1)从以上5个条件中任意选取 2个条件,能推出四边形 ABCD 是平⾏四边形的有(⽤序号表⽰): _____________________________ :(2)对由以上5个条件中任意选取 2个条件,不能推出四边形请选取⼀种情形举出反例说明平⾏四边形?6?如图,E 、F 是四边形ABCD 的对⾓线 AC 上的两点,AF=CE , DF=BE , DF // BE. 求证:⑴△AFD ◎△ CEB;(2)四边形ABCD 是平⾏四边形A.4个B.3个C.2个D.1个2?下⾯给出了四边形 ABCD 中/A 、/ B 、/ C 、/ D 的度数之⽐,其中能判定四边形 ABCDA.1 : 2 : 3 : 4B. 2 : 2 : 3 : 3C. 2 : 3 : 3 : 2D. 2 : 3 : 2 : 33?九根⽕柴棒排成如右图形状,图中 ____ 个平⾏四边形 ,你判断的根据是O ,给出下列 5个条件:①AB // CD ;5?若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对⾓线 ABCD 是平⾏四边形的,,另17?如图,已知DC // AB,且DC= — AB , E为AB的中点.2(1) 求证:△ AED ◎△ EBC ;(2) 观察图形,在不添加辅助线的情况下,除△EBC⼣⼘,请再写出两个与△ AED的⾯积相等的三⾓形(直接写出结果,不要求证明): ___________________________8?如图,已知⼆ABCD中DE丄AC,BF丄AC,证明四边形DEBF为平⾏四边形9?如图,已知■ ABCD中,E、F分别是AB、CD的中点?求证:(1) △ AFD ◎△ CEB;(2) 四边形AECF是平⾏四边形?⼆、课中强化(10 分钟训练)1 答案:D2. 解析:因为四边形ABCD 是平⾏四边形,所以OA=OC. ⼜0E丄AC , 所以EA=EC.贝U △ DCE 的周长=CD+DE+CE=CD+DE+EA=CD+AD. 在平⾏四边形ABCD 中,AB=CD ,AD=BC ,且AB+BC+CD+AD=16 cm ,所以CD+AD=8 cm.答案:C3?解析:0E=0F=1,其周长=BE+BC+CF+EF=CD+BC+EF=AD+AB+2DF=8(cm).答案:8 cm4?解析:由平⾏四边形的性质AB // DC,知/ ABE= / F,结合⾓平分线的性质/ ABE= / EBC,得/ EBC= / F,再根据等⾓对等边得到BC=CF=7 ,再由AB=CD=4 , AD=BC=7 得到DF=DE=AD-AE=3.答案:35?答案:证明:四边形ABCD是平⾏四边形,AB // CD , AB=CD./ ABE= / CDF.AB CD,在⼛ABE和⼛CDF中,ABE CDF ,BE DF .△ ABE ◎△ CDF.AE=CF.6. 解:/ EAF=60°AE 丄BC,AF 丄CD, C=120°. B=60°「./ BAE=30° .AB=2BE=4(cm). CD=4(cm). CF=1(cm).三、课后巩固(30 分钟训练)1 答案:C2. 解析:分两种情况,A、B、C三点共线时,可作0个当点A、B、C不在同⼀直线上时,可作3 个. 答案:A3. 解析:平⾏四边形对⾓线互相平分,所以OA=OC. 答案:B4. 解析:由平⾏四边形的对⾓线互相平分知OA=OC;再由平移的性质:经过平移,对应线段平⾏且相等可得OA=BE.答案:B5?解析:本题借助于平⾏四边形的定义,按照从左到右,从⼩到⼤的顺序,可找到下列的平⾏四边形:DEOH,.HOFC,. DEFC, EAGO,OGBF,EABF,■ DAGH,■ HGBC,⼆ABCD.答案:C6?答案:证明:四边形ABCD是平⾏四边形,AB // CD , AB=CD. /-Z ABE= / CDF ?/ AE 丄BD , CF 丄BD ,「./ AEB= / CFD=90 .△ABE ◎△ CDF. /.Z BAE= Z DCF.7、答案:证明:四边形ABCD是平⾏四边形,AB=CD, Z B= Z D.在⼛ABE和⼛CDF中,AB CD,B D, ?/△ ABE 也⼛CDF.BE DF.8?答案:(1)证明:四边形ABCD是平⾏四边形,? AB // CD. AGD= Z CDG.vZ ADG= Z CDG,/?/ ADG= Z AGD. ? AD=AG ?同理,BC=BF.⼜四边形ABCD 是平⾏四边形,? AD=BC,AG=BF. ? AG-GF=BF-GF ,即AF=GB.(2)解:添加条件EF=EG.理由如下:1 1由(1)证明易知Z AGD= Z ADG= Z ADC , Z BFC= Z BCF= Z BCD.2 2/ AD // BC,/?/ ADC+ Z BCD=180 ./Z AGD+ Z BFC=90 ./Z GEF=90 .⼜v EF=EG ,?△ EFG为等腰直⾓三⾓形.⼆、课中强化(10分钟训练)1. 解析:当E、F满⾜AE=CF时,由平⾏四边形的对⾓线相等知OB=OD,OA=OC , 故OE=OF.可知四边形DEBF是平⾏四边形.当E、F满⾜Z ADE= Z CBF 时,因为AD // BC,所以Z DAE= Z BCF.⼜AD=BC,可证出⼛ADE ◎△ CBF,所以DE=BF , Z DEA= Z BFC.故Z DEF= Z BFE.因此DE // BF,可知四边形DEBF是平⾏四边形.类似地可说明D也可以.。

平行四边形测试题及答案

平行四边形测试题及答案

平行四边形测试题及答案一、选择题1. 平行四边形的定义是什么?A. 两组对边分别平行的四边形B. 两组对边分别相等的四边形C. 对角线互相平分的四边形D. 四边形的对角线互相垂直答案:A2. 平行四边形的对角线具有什么性质?A. 互相垂直B. 互相平分C. 相等D. 互相平行答案:B3. 下列哪个图形不是平行四边形?A. 矩形B. 菱形C. 梯形D. 正方形答案:C4. 平行四边形的对边具有什么性质?A. 相等B. 平行C. 垂直D. 互相垂直答案:B5. 平行四边形的对角线将平行四边形分成几个全等的三角形?A. 1B. 2C. 4D. 8答案:B二、填空题6. 平行四边形的对角线互相________。

答案:平分7. 平行四边形的对边互相________。

答案:平行8. 如果一个四边形的对角线互相平分且相等,那么这个四边形一定是________。

答案:矩形9. 平行四边形的面积可以通过底和高的乘积来计算,公式为________。

答案:面积 = 底× 高10. 菱形是特殊的平行四边形,它的四条边都________。

答案:相等三、简答题11. 请描述平行四边形的判定定理。

答案:一个四边形是平行四边形,如果满足以下任一条件:(1)两组对边分别平行;(2)两组对边分别相等;(3)对角线互相平分;(4)一组对边平行且相等。

12. 在平行四边形中,如果一组对边是垂直的,那么这个平行四边形是什么形状?答案:如果一组对边垂直,那么这个平行四边形是矩形。

四、计算题13. 已知平行四边形的底为10cm,高为5cm,求其面积。

答案:面积= 10cm × 5cm = 50平方厘米14. 已知平行四边形的对角线长度分别为8cm和6cm,且对角线互相平分,求平行四边形的面积。

答案:设平行四边形的面积为S,对角线交点为O,那么OA=4cm,OB=3cm,根据三角形面积公式,S = 2 × (1/2) × OA × OB = 2 × (1/2) × 4cm × 3cm = 12平方厘米。

初中数学平行四边形练习题(含答案和解析)

初中数学平行四边形练习题(含答案和解析)

一般平行四边形习题1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD 于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.9.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C 向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?答案与评分标准1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD 于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。

平行四边形试题及答案

平行四边形试题及答案

平行四边形试题及答案一、选择题1. 平行四边形ABCD中,∠ABC = 120°,则∠ADC等于:A. 30°B. 40°C. 50°D. 60°2. 平行四边形ABCD中,AB = 3cm,BC = 4cm,则对角线AC的长度为:A. 5cmB. 6cmC. 7cmD. 8cm3. 平行四边形ABCD中,AB = 10cm,BC = 6cm,对角线AC的长度为8cm,求BD的长度是:A. 3cmB. 4cmC. 5cmD. 6cm度为10cm,求BD的长度是:A. 1cmB. 2cmC. 3cmD. 4cm二、解答题1. 已知平行四边形ABCD中,AB = 6cm,AD = 8cm,AC的长度为10cm,求BD的长度及四边形的周长。

解答:根据平行四边形性质,可以得出AC = BD,所以BD = 10cm。

平行四边形的周长等于各边长之和,所以周长为:AB + BC + CD + AD = 6cm + 10cm + 6cm + 8cm = 30cm。

2. 平行四边形ABCD中,AB = 5cm,∠ABC = 60°,求∠BCD的大小。

解答:由平行四边形性质可知,对角线分割平行四边形,所以∠BCD =∠ABC = 60°。

度为15cm,求平行四边形的面积。

解答:平行四边形的面积等于底边乘以高,即AB × AD。

因为对角线AC将平行四边形分成两个全等的三角形,所以三角形ABD和三角形ACD的面积相等。

根据海伦公式,可以使用三角形的三边长度计算面积:s = (AB + AD + BD) / 2,其中BD为平行四边形的对角线,也就是15cm。

带入数值计算得到s = (9cm + 12cm + 15cm) / 2 = 18cm。

根据三角形面积公式,面积S = √[s(s-AB)(s-AD)(s-BD)],把数值带入计算得到S ≈ 54cm²。

平行四边形测试题及答案

平行四边形测试题及答案

平行四边形测试题及答案一、选择题(每题3分,共30分)1. 平行四边形的对边具有什么性质?A. 平行且相等B. 垂直且相等C. 平行且垂直D. 垂直且不等答案:A2. 如果一个平行四边形的对角线互相平分,那么这个平行四边形是:A. 矩形B. 菱形C. 梯形D. 任意平行四边形答案:A3. 平行四边形的面积可以通过以下哪种方式计算?A. 底乘以高B. 对角线乘积的一半C. 周长乘以半径D. 以上都不是答案:A4. 如果一个平行四边形的对角线相等,那么这个平行四边形是:A. 矩形B. 菱形C. 正方形D. 梯形答案:C5. 菱形的四个角中,相邻角的度数之和是多少?A. 90°B. 180°C. 270°D. 360°答案:B6. 下列哪个选项不是平行四边形的性质?A. 对边平行B. 对角相等C. 对角线互相平分D. 对角线垂直答案:D7. 矩形的对角线有什么特点?A. 相等B. 垂直C. 平行D. 以上都不是答案:A8. 梯形的中位线与两底边的关系是什么?A. 等于两底边之和的一半B. 等于两底边之差的一半C. 等于两底边之和D. 等于两底边之差答案:A9. 平行四边形的内角和是多少度?A. 360°B. 540°C. 720°D. 1080°答案:A10. 以下哪个图形不是平行四边形?A. 矩形B. 菱形C. 梯形D. 正方形答案:C二、填空题(每题2分,共20分)11. 平行四边形的对角线________。

答案:互相平分12. 如果平行四边形的两组对边分别相等,那么这个平行四边形是________。

答案:矩形13. 菱形的面积公式是________。

答案:底乘以高14. 正方形是特殊的________。

答案:矩形15. 平行四边形的周长是________。

答案:两组对边之和的两倍16. 梯形的上底和下底的长度之和等于________。

《平行四边形》专题练习(含答案)

《平行四边形》专题练习(含答案)

平行四边形专题练习一、选择题1. (2018·宜宾)在ABCD Y 中,若BAD Ð与CDA Ð的平分线交于点E ,则AED Ð的形状是() A.锐角三角形锐角三角形 B.直角三角形直角三角形 C.钝角三角形钝角三角形 D.不能确定不能确定2. (2018·黔西南州)如图,在ABCD Y 中,4AC =cm.若ACD D 的周长为13 cm ,则AB C D Y的周长为( ) A. 26 cm B. 24 cm C. 20 cmD. 18 cm3. (2018·海南)如图ABCD Y 的周长为36,对角线,AC BD 相交于点O ,E 是CD 的中点,12BD =,则DOE D 的周长为() A.15 B. 18 C. 21D. 24 4. ( 2018·台州)如图,在ABCD Y 中,2,3AB BC ==.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点,P Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( ) A.12B. 1C. 65D. 325. (2018·东营)如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F ,AB BF =.添加一个条件使四边形ABCD 是平行四边形,你认为下列四个条件中可选择的是( ) A. AD BC = B. CD BF = C. A C Ð=Ð D. F CDF Ð=Ð 6. (2018·安徽)在ABCD Y 中,,E F 是对角线BD 上不同的两点.下列条件中,不能得出四边形AECF 一定为平行四边形的是() A. BE DF = B. AE CF = C. //AF CED. BAE DCF Ð=Ð 7. (2018·玉林)在四边形ABCD 中:①//AB CD ;②//AD BC ;③AB CD =;④AD BC =,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有() A. 3种 B. 4种 C. 5种D. 6种8. (2018·呼和浩特)顺次连接平面上,,,A B C D 四点得到一个四边形,从①//AB CD ;②BC AD =;③A C Ð=Ð;④B D Ð=Ð四个条件中任取其中两个,可以得出‘“四边形ABCD 是平行四边形”这一结论的情况共有() A. 5种 B. 4种 C. 3种D. 1种 9. (2018·眉山)如图,在ABCD Y 中,2CD AD =,BE AD ^于点E ,F 为DC 的中点,连接,EF BF ,下列结论:①2ABC ABF Ð=Ð;②EF BF =;③2EFBDEBCS SD =四边形;④3CFE DEF Ð=Ð.其中正确的结论共有() A.1个 B. 2个 C. 3个D. 4个10. (2018·通辽)如图,ABCD Y 的对角线,AC BD 交于点O ,DE 平分ADC Ð交AB 于点E ,60BCD Ð=°,12AD AB =,连接OE .下列结论:①ABCDS AD BD =Y g ; ②DB 平分CDE Ð; ③AO DE =;④5ADEOFES SD D =.其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 二、填空题11. (2018·常州)如图,在ABCD Y 中,70A Ð=°,DC DB =,则CDB Ð=.12. (2018·十堰)如图,ABCD Y 的对角线,AC BD 相交于点O ,且8AC =,10BD =,5AB =,则OCD D 的周长为的周长为 . 13. (2018·泰州)如图,在ABCD Y 中,,AC BD 相交于点O .若6,16AD AC BD =+=,则BOC D 的周长为的周长为. 14. (2018·衡阳)如图,ABCD Y 的对角线相交于点O ,且A D C D ¹,过点O 作OM AC ^,交AD 于点M .如果CDM D 的周长为8,那么ABCD Y 的周长是的周长是.15.(2018·临沂)如图,在ABCD Y 中,10,6AB AD ==,AC BC ^,则BD 的长为. 16. (2018·东营)如图,(3,3)B -,(5,0)C ,以,OC CB 为边作OABC Y ,则经过点A 的反比例函数的解析式为比例函数的解析式为. 17. (2018·株洲)如图,在ABCD Y 中,连接BD ,且BD CD =,过点A 作AM BD ^于点M ,过点D 作DN AB ^于点N ,且32DN =,在DB 的延长线上取一点P ,满足ABD MAP PAB Ð=Ð+Ð,则AP 的长为的长为.18.(导学号78816053)(2018·无锡)如图,60XOY Ð=°,点A 在边OX 上,2OA =.过点A作AC OY ^于点C ,以AC 为一边在XOY Ð内作等边三角形ABC ,P 是ABC D 围成的区域(包括各边)内的一点,过点P 作//PD OY 交OX 于点D ,作//PE OX 交OY于点E .设,OD a OE b ==,则2a b +的取值范围是的取值范围是 . 三、解答题19. (2018·无锡)如图,在A B C D Y 中,,E F 分别是边,B C A D 的中点.求证:ABF CDE Ð=Ð.20. (2018·衢州)如图,在ABCD Y 中,AC 是对角线,BE AC ^,DF AC ^,垂足分别为E ,F .求证:AE CF =.21. (2018·大连)如图,ABCD Y 的对角线,AC BD 相交于点O ,点,E F 在AC 上,且AF CE =.求证:BE DF =.22. (2018·福建)如图,ABCD Y 的对角线,AC BD 相交于点O ,EF 过点O 且与,AD BC分别相交于点,E F .求证:OE OF =.23. (2018·宿迁)如图,在ABCD Y 中,点,E F 分别在边,CB AD 的延长线上,且BE DF =,EF 分别与,AB CD 交于点,G H .求证:AG CH =.24. (2018·曲靖)如图,在ABCD Y 的边,AB CD 上截取,AF CE ,使得AF CE =,连接,,EF M N 是线段EF 上两点,且EM FN =,连接,AN CM .(1)求证: AFN CEM D @D ;(2)若107CMF Ð=°,72CEM Ð=°,求NAF Ð的度数.25. (2018·岳阳)如图,在ABCD Y 中,AE CF =.求证:四边形BFDE 是平行四边形.26. (2018·孝感)如图,,,,B E C F 在一条直线上,已知//,//,AB DE AC DF BE CF =,连接AD 求证:四边形ABED 是平行四边形.27. (2018·陕西)如图,//AB CD ,,E F 分别为,AB CD 上的点,且//EC BF ,连接AD ,分别与,EC BF 相交于点,G H ,若AB CD =,求证:AG DH =.28. (2018·巴中)如图,在ABCD Y 中,过点B 作BM AC ^于点E ,交CD 于点M ,过点D 作DN AC ^于点F ,交AB 于点N .(1)求证:四边形BMDN 是平行四边形;(2)已知12,5AF EM ==,求AN 的长.29. (2018·江西)如图,在四边形ABCD 中,//AB CD ,2AB CD =,E 为AB 的中点,请仅用无刻度的直尺分别按下面的要求画图.(保留画图痕迹)(1)在图①中,画出ABD D 的BD 边上的中线; (2)在图②中,若BA BD =,画出ABD D 的AD 边上的高.30. (2018·黄冈)如图,在ABCD Y 中,分别以边,BC CD 作等腰三角形BCF 、等腰三角形CDE ,使,BC BF CD DE ==,CBF CDE Ð=Ð,连接,AF AE .(1)求证: ABF EDA D @D ;(2)延长AB 与CF ,相交于点G ,若AF AE ^,求证: BF BC ^.31. (2018·永州)如图,在ABC D 中,90ACB Ð=°,30CAB Ð=°,以线段AB 为边向外作等边三角形ABD ,E 是线段AB 的中点,连接CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)若6AB =,求BCFD Y 的面积.32. (2018·重庆)如图,在ABCD Y 中,O 是对角线AC 的中点,E 是BC 上一点,且AB AE =,连,连 接EO 并延长交AD 于点F .过点B 作AE 的垂线,垂足的垂线,垂足 为H ,交AC 于点G .(1)若3,1AH HE ==,求ABE D 的面积;(2)若45ACB Ð=°,求证:2DF CG =.参考答案参考答案一、1. B 2. D 3. A 4. B 5. D 6. B 7. B 8. C9. D10. B 二、填空题二、填空题11. 40° 12. 1413. 14 14. 16 15. 41316. 6y x= 17. 618. 225a b £+£ 三、三、19. 点拨:证明()ABF CDE SAS D @D ,即可得ABF CDE Ð=Ð. 20. 点拨:证明()ABE CDF AAS D @D ,即可得AE CF =. 21. 点拨:证明()BEO DFO SAS D @D ,即可得BE DF =. 22. 点拨:证明()AOE COF ASA D @D ,即可得OE OF =. 23. 点拨:证明()AGF CHE ASA D @D ,即可得AG CH =.24. (1)点拨:由FN EM AFN CEM AF CE =ìïÐ=Ðíï=î,得到AFN CEM D @D(2) 35NAF Ð=°25. 点拨:由//BF DEBF DF ìí=î,得到四边形BFDE 是平行四边形是平行四边形26. 点拨:证明()ABC DEF ASA D @D ,得到AB DE =, 又∵//AB DE ,∴四边形ABED 是平行四边形.27. 点拨:证明()AEG DFH ASA D @D ,得到AG DH =.28. (1) 点拨:由////CD ABDN BM ìíî,得到四边形BMDN 是平行四边形;(2)13AN = 29. (1)如图①,连接CE ,交BD 于点F ,连接AF ,线段AF 即为所求即为所求 (2)如图②,连接CE ,交BD 于点F ,连接AF ,DE 交于点G ,连接BG ,并延长BG ,交AD 于点H ,线段BH 即为所求即为所求30. (1) 点拨:由BF DA ABF EDA AB DE=ìïÐ=Ðíï=î,得到ABF EDA D @D(2) 点拨:由90CBF EAF Ð=Ð=°,得到BF BC ^ 31. (1) 点拨:由////BC DFCF BD ìíî,得到四边形BCFD 为平行四边形; (2) 93BCFD S =Y 32. (1) 27ABE S D =(2) 点拨:AOF COE D @D ,得到AF CE =, ∵AD BC =, ∴DF BE =.AME BNG D @D ,得到ME NG =,∴22BE ME NG ==在Rt GNC D 中,45GCN Ð=°,∴2CG NG =,∴22CG NG =, ∴2DF CG =。

中考数学复习《平行四边形》专项练习题-附带有答案

中考数学复习《平行四边形》专项练习题-附带有答案

中考数学复习《平行四边形》专项练习题-附带有答案一、单选题1.平行四边形ABCD中,对角线AC=12,BD=8,交点为点O,则边AB的取值范围为()A.1<AB<2 B.2<AB<10 C.4<AB<10 D.4<AB<202.如图,在△ABC中,DE∥CA,DF∥BA,下列四个判断不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC,且AB=AC,那么四边形AEDF是菱形3.平行四边形ABCD与等边△AEF如图放置,如果∠B=45°,则∠BAE的大小是()A.75°B.70°C.65°D.60°4.如图是由七巧板拼成的正方形,则小正方形和大正方形的面积之比是()A.1:4 B.1:6 C.1:8 D.1:95.如图,D,E,F分别是△ABC各边的中点.添加下列条件后,不能得到四边形ADEF是矩形的是()A.∠BAC=90°B.BC=2AE C.DE平分∠AEB D.AE⊥BC6.如图,在菱形ABCD中∠A=60°,AB=4 O为对角线BD的中点,过O点作OE⊥AB,垂足为E.则下列说法错误的是()A.点O为菱形ABCD的对称中心B.OE=2C.ΔCDB为等边三角形D.BD=47.如图所示,正方形ABCD中,E为BC边上一点,连接AE,作AE的垂直平分线交AB于G,交CD于F,若DF=2,BG=4则AE的长为( )A.4√7B.3√10C.10 D.128.我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形与中间的小正方形EFGH拼成的一个大正方形ABCD,连接AC,交BE于点P,如图所示,若正方形ABCD的面积为28,AE+EB=7,则S△CFP−S△AEP的值是()A.3 B.3.5 C.4 D.7二、填空题9.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为cm.10.如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,若EF=3,则菱形ABCD的边长是.11.如图,平行四边形ABCD中AE⊥BC,AF⊥CD垂足分别为E、F,∠EAF=60°,DF=3cm则AD= cm.12.如图,在矩形ABCD中,AD=2AB,E是AD上一点,且BE=BC,则∠ECD的度数是.13.如图,正方形ABCD的边长为2,将它绕着中心O顺时针旋转45°得到正方形A′B′C′D′,与原正方形AD、AB边交于点M′,N,则M′N的长度是.三、解答题14.已知:如图,在▱ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F.求证:△BEF≌△CDF.15.如图,在四边形ABCD中E,F分别为CD,AB上的点,且DE=BF,连接AE,CF若四边形AECF是平行四边形.求证:四边形ABCD是平行四边形.16.如图,矩形ABCD中,点P是BC中点,线段AP的延长线与DC的延长线交于点E.(1)求证:△ABP≌△ECP;(2)连接AC,BE,求证:四边形ABEC是平行四边形.17.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.18.如图,在□ABCD 中,以点 A 为圆心,AB 长为半径画弧交 AD 于点 F,再分别以点 B、F 为圆心, BF 的相同长为半径画弧,两弧交于点 P,连接 AP 并延长交 BC 于点 E,连接 EF.大于12(1)根据以上尺规作图的过程,证明四边形 ABEF 是菱形;(2)若菱形 ABEF 的边长为 2,AE= 2 √3,求菱形 ABEF 的面积.答案1.B2.C3.A4.C5.D6.B7.B8.B9.410.611.612.15°13.2√2−214.证明:在▱ABCD中,AB=CD,AB∥CD∴∠C=∠FBE∵BE=AB∴BE=CD在△BEF和△CDF中∴△BEF≌△CDF(AAS)15.解:∵四边形AECF是平行四边形∴AF=CE,AF//CE∵E,F分别为CD,AB上的点∴AB//CD∵DE=BF∴AF+BF=CE+DE,即AB=CD∴四边形ABCD是平行四边形.16.(1)证明:∵四边形ABCD矩形∴∠ABP=∠ECP=90°,AB//DC∴∠BAP=∠CEP∵点P是BC中点∴BP =CP∴△ABP ≌△ECP(AAS)(2)解:由△ABP ≌△ECP 可得AP =EP ∵点P 是BC 中点∴BP =CP∴四边形ABEC 是平行四边形.17.(1)证明:在△ABC 和△ADC 中{AB =AD CB =CD AC =AC∴△ABC ≌△ADC(SSS)∴∠BAC=∠DAC在△ABF 和△ADF 中{AB =AD∠BAF =∠DAF AF =AF∴△ABF ≌△ADF(SAS)∴∠AFB=∠AFD∵∠CFE=∠AFB∴∠AFD=∠CFE∴∠BAC=∠DAC ,∠AFD=∠CFE ;(2)证明:∵AB ∥CD∴∠BAC=∠ACD∵∠BAC=∠DAC∴∠BAC=∠ACD∴∠DAC=∠ACD∴AD=CD∵AB=AD ,CB=CD∴AB=CB=CD=AD∴四边形ABCD 是菱形;(3)解:BE ⊥CD 时,∠BCD=∠EFD ;理由如下: ∵四边形ABCD 是菱形∴BC=CD ,∠BCF=∠DCF∵CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵BE⊥CD∴∠BEC=∠DEF=90°∴∠BCD=∠EFD.18.(1)解:根据题意由作法可知,AP平分∠BAF∴∠EAB=∠EAF∵AD∥BC∴∠EAF=∠AEB=∠EAB∴BE=AB=AF.∵AF∥BE∴四边形ABEF是平行四边形∵AB=BE∴四边形ABEF是菱形;(2)解:如图,连结BF,交AE于G.∵菱形ABEF的边长为2,AE= 2√3AE= √3,AE⊥BF ∴AB=BE=EF=AF=2,AG= 12∴∠AGF=90°,GF= √22−(√3)2=1∴BF=2GF=2×2√3×2=2√3∴菱形的面积为:S=12。

初中平行四边形试题及答案

初中平行四边形试题及答案

初中平行四边形试题及答案一、选择题1. 平行四边形的对边相等,其对角线互相平分,以下哪个选项不是平行四边形的性质?A. 对边相等B. 对角线互相平分C. 相邻角互补D. 对角相等答案:C2. 如果一个平行四边形的对角线长度相等,那么这个平行四边形是:A. 矩形B. 平行四边形C. 菱形D. 梯形答案:A二、填空题1. 平行四边形的对角线将平行四边形分成四个________的三角形。

答案:全等2. 如果一个平行四边形的一组对边平行且相等,那么这个平行四边形是________。

答案:矩形三、判断题1. 平行四边形的对角线相等。

()答案:错误2. 平行四边形的对角线互相垂直。

()答案:错误四、简答题1. 请简述平行四边形的性质。

答案:平行四边形的性质包括:对边平行且相等;对角相等;对角线互相平分;邻角互补;对角线互相平分且将平行四边形分成四个全等的三角形。

2. 如何证明一个四边形是平行四边形?答案:证明一个四边形是平行四边形的方法包括:两组对边分别平行;两组对边分别相等;一组对边平行且相等;两组对角分别相等;对角线互相平分。

五、计算题1. 如图所示,平行四边形ABCD中,AB=4cm,BC=5cm,∠A=60°,求平行四边形ABCD的面积。

答案:由于∠A=60°,且AB=4cm,BC=5cm,根据30°-60°-90°三角形的性质,我们可以知道这是一个等边三角形,所以AD=5cm。

平行四边形的面积等于底乘以高,这里的底可以是AB或BC,高是另一条边的高。

由于∠A=60°,高等于边长的一半,即2cm。

所以平行四边形ABCD的面积是5cm×2cm=10cm²。

六、证明题1. 已知平行四边形ABCD中,AB=CD,AD=BC,证明ABCD是矩形。

答案:由于AB=CD,AD=BC,根据平行四边形的性质,我们知道AB∥CD,AD∥BC。

(完整版)平行四边形练习题附答案

(完整版)平行四边形练习题附答案

平行四边形测试题一、选择题1.若平行四边形ABCD 的周长是40cm ,△ABC 的周长是27cm ,则AC 的长为( )A .13cmB .3cmC .7cmD .11.5 cm2.根据下列条件,不能判定四边形是平行四边形的是( )A .一组对边平行且相等的四边形 B .两组对边分别相等的四边形 C .对角线相等的四边形D .对角线互相平分的四边形3.已知平行四边形周长为28cm ,相邻两边的差是4cm ,则两边的长分别为( )A .4cm 、10cmB .5cm 、9cmC .6cm 、8cmD .5cm 、7cm4.下列条件中,能判定一个四边形是平行四边形的是( )A .一组对边平行,另一组对边相等 B .一组对边平行,一组对角相等 C .一组邻边相等,一组对角相等D .一组对边平行,一组对角互补5.若A 、B 、C 三点不在同一条直线上,则以其为顶点的平行四边形共有( )个A .1B .2C .3D .46.能够判定四边形是平行四边形的条件是( )A .一组对角相等 B .两条对角线互相垂直C .两条对角线互相平分D .一条邻角互补7.已知平行四边形的一条边长为14,下列各组数中能分别作它的两条对角线长的是( )A .10与6B .12与16C .20与22D .10与188.四边形ABCD 中,AD ∥BC ,当满足条件( )时,四边形ABCD 是平行四边形A .∠A +∠C =B .∠B +∠D = ︒180︒180C .∠A +∠B =D .∠A +∠D =︒180︒1809.已知下列三个命题⑴两组对角分别相等的四边形是平行四边形⑵一个角与相邻两角都互补的四边形是平行四边形⑶一组对角相等,一组对边平行的四边形是平行四边形其中错误的命题的个数是( )A .0个B .1个C .2个D .3个10.平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC = 10,BD = 8,则AD 的取值范围是( ) A .AD >1 B . AD <9 C .1<AD <9 D .AD >9二、填空题11.一个平行四边形的周长为40,两邻边的比为3∶5,则四边形的长为_________.12.一个平行四边形的一个内角比它的邻角大,则这个四边形的四个内角分别是________.︒2413.在平行四边形ABCD 中,EF 过对角线交点O ,交CD 、AB 于E 、F ,若AB = 4cm ,AD = 3cm ,OF = 1.3cm ,则四边形BCEF 周长为_____________.14.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长为_____.15.在平行四边形ABCD 中,对角线BD = 7cm ,∠DBC =,BC = 5cm ,则平行四边形ABCD 的面积为︒30___________.16.从平行四边形的一锐角顶点引另两条边的垂线,两垂线夹角,则此四边形的四个角分别为︒135_____________.三、解答题:17.平行四边形周长等于68cm ,被两条对角线分成两个不同的三角形的周长和等于80cm ,两对角线的长度之比是2∶3,求两条对角线的长度.18.如图,AD 、BC 垂直相交于点O ,AB ∥CD ,又BC = 8,AD = 6,求:AB +CD 的长.19.如图,某村有一口呈四边形的池塘,在它的四个角A 、B 、C 、D 处均种有一棵大核桃树,这村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形形状,请问这村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由.20.已知如图,在平行四边形ABCD 中,∠A =,E 、F 分别为AB 、CD 的中点,AB = 2AD ,求证:BD ︒60=EF .3参考答案:一、选择题:C .C .B . B . C .C .C .D .A .C .二、填空题:11.7.5、12.5、7.5、12.5 12.、、、︒102︒78︒102︒7813.9.6 cm14.6815.17.5 cm 16. ,,,2︒45︒135︒45︒135ADB AB OCDEAEC三、解答题:17.设一条对角线长为2a ,则另一条对角线长为3a .∵平行四边形周长等于68cm ,∴相邻两边的长为 34cm ,∴34+2a +3a = 80,解得a = 9.2,2a = 18.4,3a = 27.6.即两条对角线的长度分别为18.4 cm 和3a = 27.6 cm .18.过点C 作CE ∥AD 交BA 延长线于E ,∵AB ∥CD ,∴四边形AECD 是平行四边形,∴AE = CD ,∠BCE =∠BOA =,CE = AD = 6,︒90BE === 10.22CE BC +2268+∵ BE = AB +AE =AB +CD ,∴AB +CD = 10.19.这村能实现他们的设想.①分别过点A 、C 作BD 的平行线、,1l 2l ②分别过点B 、D 作AC 的平行线、,交、于点3l 4l 3l 1l 2l M 、N ;交、于点P 、Q ,则四边形MNPQ 就是所求的平行4l 1l 2l 四边形.20.连结DE ,在平行四边形ABCD 中,AB CD ,DF =CD ,AE =AB ,=//2121∴DF AE ,=//∴四边形AEFD 是平行四边形,∴EF = AD .又∵AB = 2AD ,AB = 2AE ,∴AD = AE ,且∠A =,︒60ADCB AQ DPCNB M 1l 2l 3l 4l ABOCDABOCDEECA∴DE = AE = BE ,∴∠1 =∠2 =×,∴∠ADB =,2121︒30︒90BD ===AD ,22AD AB -22)2(AD AD -3∴BD =EF .3。

平行四边形练习题(3套)附答案

平行四边形练习题(3套)附答案

卷1一、选择题(3′×10=30′)1.下列性质中,平行四边形具有而非平行四边形不具有的是().A.内角和为360° B.外角和为360° C.不确定性 D.对角相等2.ABCD中,∠A=55°,则∠B、∠C的度数分别是().A.135°,55° B.55°,135° C.125°,55° D.55°,125°3.下列正确结论的个数是().①平行四边形内角和为360°;②平行四边形对角线相等;③平行四边形对角线互相平分;④平行四边形邻角互补.A.1 B.2 C.3 D.44.平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是().A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm5.在ABCD中,AB+BC=11cm,∠B=30°,S ABCD=15cm2,则AB与BC的值可能是(). A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm6.在下列定理中,没有逆定理的是().A.有斜边和一直角边对应相等的两个直角三角形全等;B.直角三角形两个锐角互余;C.全等三角形对应角相等;D.角平分线上的点到这个角两边的距离相等.7.下列说法中正确的是().A.每个命题都有逆命题 B.每个定理都有逆定理C.真命题的逆命题是真命题 D.假命题的逆命题是假命题8.一个三角形三个内角之比为1:2:1,其相对应三边之比为().A.1:2:1 B.12:1 C.1:4:1 D.12:1:29.一个三角形的三条中位线把这个三角形分成面积相等的三角形有()个.A.2 B.3 C.4 D.510.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=•14,•AC=19,则MN的长为().A.2 B.2.5 C.3 D.3.5二、填空题(3′×10=30′)11.用14cm长的一根铁丝围成一个平行四边形,短边与长边的比为3:4,短边的比为________,长边的比为________.12.已知平行四边形的周长为20cm,一条对角线把它分成两个三角形,•周长都是18cm,则这条对角线长是_________cm.13.在ABCD中,AB的垂直平分线EF经过点D,在AB上的垂足为E,•若ABCD•的周长为38cm,△ABD的周长比ABCD的周长少10cm,则ABCD的一组邻边长分别为______.14.在ABCD中,E是BC边上一点,且AB=BE,又AE的延长线交DC的延长线于点F.若∠F=65°,则ABCD的各内角度数分别为_________.15.平行四边形两邻边的长分别为20cm,16cm,两条长边的距离是8cm,•则两条短边的距离是_____cm.16.如果一个命题的题设和结论分别是另一个命题的______和_______,•那么这两个命题是互为逆命题.17.命题“两直线平行,同旁内角互补”的逆命题是_________.18.在直角三角形中,已知两边的长分别是4和3,则第三边的长是________.19.直角三角形两直角边的长分别为8和10,则斜边上的高为________,斜边被高分成两部分的长分别是__________.20.△ABC的两边分别为5,12,另一边c为奇数,且a+b+•c•是3•的倍数,•则c•应为________,此三角形为________三角形.三、解答题(6′×10=60′)21.如右图所示,在ABCD中,BF⊥AD于F,BE⊥CD于E,若∠A=60°,AF=3cm,CE=2cm,求ABCD的周长.22.如图所示,在ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)AE=CF;(2)AE∥CF.F C DAEB23.如图所示,ABCD的周长是103+62,AB的长是53,DE⊥AB于E,DF⊥CB交CB•的延长线于点F,DE的长是3,求(1)∠C的大小;(2)DF的长.24.如图所示,ABCD中,AQ、BN、CN、DQ分别是∠DAB、∠ABC、∠BCD、•∠CDA的平分线,AQ与BN交于P,CN与DQ交于M,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程(要求:•推理过程中要用到“平行四边形”和“角平分线”这两个条件).25.已知△ABC的三边分别为a,b,c,a=n2-16,b=8n,c=n2+16(n>4).求证:∠C=90°.26.如图所示,在△ABC中,AC=8,BC=6,在△ABE中,DE⊥AB于D,DE=12,S△ABE=60,•求∠C的度数.27.已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,•求三条中位线的长.28.如图所示,已知AB=CD,AN=ND,BM=CM,求证:∠1=∠2.29.如图所示,△ABC的顶点A在直线MN上,△ABC绕点A旋转,BE⊥MN于E,•CD•⊥MN 于D,F为BC中点,当MN经过△ABC的内部时,求证:(1)FE=FD;(2)当△ABC继续旋转,•使MN不经过△ABC内部时,其他条件不变,上述结论是否成立呢?30.如图所示,E是ABCD的边AB延长线上一点,DE交BC于F,求证:S△ABF =S△EFC.答案:一、1.D 2.C 3.C 4.B 5.A 6.C 7.A 8.B 9.C 10.C二、11.3cm 4cm 12.8 13.9cm和10cm 14.50°,130°,50°,130° • • 15.10 16.结论题设 17.同旁内角互补,两直线平行18.5.13 直角三、21.ABCD的周长为20cm 22.略23.(1)∠C=45°(2) 24.略25.•略 26.∠C=90° 27.三条中位线的长为:12cm;20cm;24cm28.提示:连结BD,取BD•的中点G,连结MG,NG29.(1)略(2)结论仍成立.提示:过F作FG⊥MN于G 30.略卷二一、填空题(每空2分,共28分)1.已知在 中,AB =14cm ,BC =16cm ,则此平行四边形的周长为 cm .2.要说明一个四边形是菱形,可以先说明这个四边形是 形,再说明 (只需填写一种方法)3.如图,正方形ABCD 的对线AC 、BD 相交于点O .那么图中共有 个等腰直角三角形.4.把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的 拼合而成; (第3题)(2)菱形可以由两个能够完全重合的 拼合而成;(3)矩形可以由两个能够完全重合的 拼合而成. 5.矩形的两条对角线的夹角为 60,较短的边长为12cm ,则对角线长为 cm .6.若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的度数分别为 和 .7.平行四边形的周长为24cm ,相邻两边长的比为3:1,那么这个平行四边形较短的边长为 cm .8.根据图中所给的尺寸和比例,可知这个“十”字标志的周长为 m .(第8题) (第10题) 9.已知平行四边形的两条对角线互相垂直且长分别为12cm 和6cm ,那么这个平行四边形 的面积为 2cm .10.如图,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB ⊥BC ;(4)AO=OC .其中正确的结论是 .(把你认为正确的结论的序号都填上)二、选择题(每题3分,共24分)11. 如果一个多边形的内角和等于一个三角形的外角和,那么这个多边形是( )A 、三角形B 、四边形C 、五边形D 、六边形12.下列说法中,错误的是 ( )A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C. 平行四边形的对角相等D.对角线互相垂直的四边形是平行四边形13.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有 ( )A.1个B.2个C.3个D.4个14. 四边形ABCD 中,AD//BC ,那么 的值可能是( )A 、3:5:6:4B 、3:4:5:6C 、4:5:6:3D 、6:5:3:415.如图,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中ABC ∆的面积 ( )A.变大B.变小C.不变D.无法确定 AB C D EF 1m 1m A B C a b ABCD A B CD O A B CD O l(第15题) (第16题) (第17题)16.如图,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果 60=∠BAF ,则DAE ∠ 等于 ( )A. 15B. 30C. 45D. 6017.如图,在ABC ∆中,AB=AC =5,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F , 那么四边形AFDE 的周长是 ( )A.5B.10C.15D.2018.已知四边形ABCD 中,AC 交BD 于点O ,如果只给条件“AB ∥CD ”,那么还不能判定四形 ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形;(2)如果再加上条件“BCD BAD ∠=∠”,那么四边形ABCD 一定是平行四边形;(3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形;(4)如果再加上条件“CAB DBA ∠=∠”,那么四边形ABCD 一定是平行四边形其中正确的说法是( )A.(1)(2)B.(1)(3)(4)C.(2)(3)D.(2)(3)(4)三、解答题(第19题8分,第20~23题每题10分,共48分)19.如图, 中,DB=CD , 70=∠C ,AE ⊥BD 于E .试求DAE ∠的度数. (第19题)20.如图,中,G 是CD 上一点,BG 交AD 延长线于E ,AF=CG , 100=∠DGE . (1)试说明DF=BG ; (2)试求AFD ∠的度数.(第20题)21.工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH ;(2)摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ;(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: .A BC D EABCD A B C D F E GABCD(图①) (图②) (图③) (图④)(第21题)22.李大伯家有一口如图所示的四边形的池塘,在它的四个角上均有一棵大柳树,李大伯开挖池塘,使池塘面积扩大一倍,又想保持柳树不动,如果要求新池塘成平行四边形的形状.请问李大伯愿望能否实现?若能,请画出你的设计;若不能,请说明理由.(第22题)ADBC答案1.60.2.平行四边形;有一组邻边相等.3.8. 提示:它们是.,,,,,,,ACDBCDABCABDAODCODBOCAOB∆∆∆∆∆∆∆∆4.(1)等腰直角三角形; (2)等腰三角形; (3)直角三角形.7.3.8.4. 提示:如图所示,将“十”字标志的某些边进行平移后可得到一个边长为1m的正方形,所以它的周长为4m.8题)9. 36. 提示:菱形的面积等于菱形两条对角线乘积的一半.10. (1)(2)(4). 提示:四边形ABCD是菱形.11.B. 12.D.13.C. 14.C.15.C. 提示:因为ABC∆的底边BC的长不变,BC边上的高等于直线ba,之间的距离也不变,所以ABC∆的面积不变.16.A. 提示:由于()BAFDAEFAEDAEFAE∠-=∠=∠∠∠9021,所以通过折叠后得到的是由. 17.B. 提示:先说明DF=BF,DE=CE,所以四边形AFDE的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC.18.C.19.因为BD=CD,所以,CDBC∠=∠又因为四边形ABCD是平行四边形,所以AD∥BC,所以,DBCD∠=∠因为20709090,,=-=∠-=∠∆⊥DDAEAEDBDAE中所以在直角.20.(1)因为四边形ABCD是平行四边形,所以AB=DC,又AF=CG,所以AB-AF=DC-CG,即GD=BF,又DG∥BF,所以四边形DFBG是平行四边形,所以DF=BG;(2)因为四边形DFBG是平行四边形,所以DF∥GB,所以AFDGBF∠=∠,同理可得DGEGBF∠=∠,所以100=∠=∠DGEAFD.21.(1)平行四边,两组对边分别相等的四边形是平行四边形;(2)矩,有一个是直角的平行四边形是矩形.22.如图所示,连结对角线AC、BD,过A、B、C、D分别作BD、AC、BD、AC的平行线,且这些平行线两两相交于E、F、G、H,四边形EFGH即为符合条件的平行四边形.ABCDEFGH练习31、把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.2、四边形ABCD 、DEFG 都是正方形,连接AE 、CG .(1)求证:AE =CG ;(2)观察图形,猜想AE 与CG 之间的位置关系,并证明你的猜想.3、将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为EF .(1)求证:△ABE ≌△AD ′F ;(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.挑战自我:1、 (2010年眉山市).如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°2、(2010福建龙岩中考)下列图形中,单独选用一种图形不能进行平面镶嵌的图形是( )A. 正三角形B. 正方形C. 正五边形D. 正六边形3.(2010年北京顺义)若一个正多边形的一个内角是120°,则这个正多边形的边数是( )A .9B .8C .6D .4A B C D E F D ′ DC A B G H F E4、(2010年福建福州中考)如图4,在□ABCD 中,对角线AC 、BD 相交于点O ,若AC=14,BD=8,AB=10,则△OAB 的周长为 。

平行四边形性质及判定练习题及答案

平行四边形性质及判定练习题及答案

平行四边形性质及判定练习题及答案1、已知平行四边形ABCD中,AE⊥BC,AF⊥CD,E,F分别是BC,CD的中点,则2、已知平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是多少?3、已知平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,求AB的长。

4、下列哪些命题是正确的:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形。

5、已知平行四边形ABCD中,AB=6,AC=4,E,D,F 分别是AB,BC,CA的中点,求四边形AEDF的周长。

6、已知平行四边形ABCD的对角线AC、BD相交于点O,下列哪个结论不正确:(A)DC∥AB;(B)OA=OC;(C)AD=BC;(D)DB平分∠ADC。

7、已知平行四边形ABCD中,AB=4,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,求BC的长。

8、已知平行四边形ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF,若EF=3,则CD的长为多少?9、已知平行四边形ABCD中,对角线AC、BD相交于点O,点E是BC的中点,OE=3,求AB的长。

10、已知平行四边形ABCD中,AB=8,AD=5,E,F分别是AB,AD的中点,连接EF,求四边形CDEF的周长。

11、已知平行四边形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,OE=3,求AD的长。

12、已知平行四边形ABCD中,AB=5,BC=7,对角线AC,BD相交于点O,点E是BC的中点,求AE的长。

13、已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,求DC边上的高AF的长度。

14、在平行四边形ABCD中,AB=2cm,BC=3cm,∠B、∠C的平分线分别交AD于F、E,求EF的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.1 平行四边形的判定一、选择题1.四边形ABCD,从(1)AB∥CD;(2)AB=CD;(3)BC∥AD;(4)BC=AD这四个条件中任选两个,其中能使四边形ABCD是平行四边形的选法有()A.3种 B.4种 C.5种 D.6种2.四边形的四条边长分别是a,b,c,d,其中a,b为一组对边边长,c,d•为另一组对边边长且满足a2+b2+c2+d2=2ab+2cd,则这个四边形是()A.任意四边形 B.平行四边形C.对角线相等的四边形 D.对角线垂直的四边形3.下列说法正确的是()A.若一个四边形的一条对角线平分另一条对角线,则这个四边形是平行四边形B.对角线互相平分的四边形一定是平行四边形C.一组对边相等的四边形是平行四边形D.有两个角相等的四边形是平行四边形二、填空题4.在□ABCD中,点E,F分别是线段AD,BC上的两动点,点E从点A向D运动,点F 从C•向B运动,点E的速度m与点F的速度n满足_______关系时,四边形BFDE为平行四边形.5.如图1所示,平行四边形ABCD中,E,F分别为AD,BC边上的一点,连结EF,若再增加一个条件_______,就可以推出BE=DF.图1 图26.如图2所示,AO=OC,BD=16cm,则当OB=_____cm时,四边形ABCD是平行四边形.三、解答题7.如图所示,四边形ABCD中,对角线BD=4,一边长AB=5,其余各边长用含有未知数x的代数式表示,且AD⊥BD于点D,BD⊥BC于点B.问:四边形ABCD•是平行四边形吗?为什么?四、思考题8.如图所示,在□ABCD中,E,F是对角线AC上的两点,且AF=CE,•则线段DE•与BF的长度相等吗?参考答案一、1.B 点拨:可选择条件(1)(3)或(2)(4)或(1)(2)或(3)(4).故有4种选法.2.B 点拨:a2+b2+c2+d2=2ab+2cd即(a-b)2+(c-d)2=0,即(a-b)2=0且(c-d)2=0.所以a=b,c=d,即两组对边分别相等,所以四边形为平行四边形.3.B 点拨:熟练掌握平行四边形的判定定理是解答这类题目的关键.二、4.相等点拨:利用“一组对边平行且相等的四边形是平行四边形”来确定. 5.AE=CF 点拨:本题答案不惟一,只要增加的条件能使四边形EBFD•是平行四边形即可.6.8 点拨:根据对角线互相平分的四边形为平行四边形来进行判别.三、7.解:如图所示,四边形ABCD是平行四边形.理由如下:在Rt △BCD中,根据勾股定理,得BC2+BD2=DC2,即(x-5)2+42=(x-3)2,解得x=8.所以AD=11-8=3,BC=x-5=3,DC=x-3=8-3=5,所以AD=BC,AB=DC.所以四边形ABCD是平行四边形.点拨:本题主要告诉的是线段的长度,故只要说明AD=BC,AB=DC即可,本题也可在Rt△ABD中求x的值.四、8.解:线段DE与BF的长度相等;连结BD交AC于O点,连结DF,BE,如图所示.在ABCD中,DO=OB,AO=OC,又因为AF=EC,所以AF-AO=CE-OC,即OF=OE,所以四边形DEBF是平行四边形,所以DE=BF.D A CF O E B点拨:本题若用三角形全等,也可以解答,但过程复杂,学了平行四边形性质后,要学会应用.20.2 矩形的判定一、选择题1.矩形具有而一般平行四边形不具有的性质是( )A .对角相等B .对边相等C .对角线相等D .对角线互相垂直2.下列叙述中能判定四边形是矩形的个数是( )①对角线互相平分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形.A .1B .2C .3D .43.下列命题中,正确的是( )A .有一个角是直角的四边形是矩形B .三个角是直角的多边形是矩形C .两条对角线互相垂直且相等的四边形是矩形D .有三个角是直角的四边形是矩形二、填空题4.如图1所示,矩形ABCD 中的两条对角线相交于点O ,∠AOD=120°,AB=4cm ,则矩形的对角线的长为_____.图1 图25.若四边形ABCD 的对角线AC ,BD 相等,且互相平分于点O ,则四边形ABCD•是_____形,若∠AOB=60°,那么AB :AC=______.6.如图2所示,已知矩形ABCD 周长为24cm ,对角线交于点O ,OE⊥DC 于点E , OF⊥AD 于点F ,OF-OE=2cm ,则AB=______,BC=______.三、解答题7.如图所示,□ABCD的四个内角的平分线分别相交于E,F,G,H两点,试说明四边形EFGH是矩形.四、思考题8.如图所示,△ABC中,CE,CF分别平分∠ACB和它的邻补角∠ACD.AE ⊥CE于E,AF⊥CF于F,直线EF分别交AB,AC于M,N两点,则四边形AECF是矩形吗?为什么?参考答案一、1.C 点拨:A与B都是平行四边形的性质,而D是一般矩形与平行四边形都不具有的性质.2.B 点拨:③是矩形的判定定理;④中对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故④能判定矩形,应选B.3.D 点拨:选项D是矩形的判定定理.二、4.8cm5.矩;1:2 点拨:利用对角线互相平分来判定此四边形是平行四边形,再根据对角线相等来判定此平行四边形是矩形.由矩形的对角线相等且互相平分,•可知△AOB是等腰三角形,又因为∠AOB=60°,所以AB=AO=12 AC.6.8cm;4cm三、7.解:在□ABCD中,因为AD∥BC,所以∠DAB+∠CBA=180°,又因为∠HAB=12∠DAB,∠HBA=12∠CBA.所以∠HAB+∠HBA=90°,所以∠H=90°.同理可求得∠HEF= ∠F= ∠FGH=90°,所以四边形EFGH是矩形.点拨:由于“两直线平行,同旁内角的平分线互相垂直”,所以很容易求出四边形EFGH 的四个角都是直角,从而求得四边形EFGH是矩形.四、8.解:四边形AECF是矩形.理由:因为CE平分∠ACB,•CF•平分∠ACD,•所以∠ACE=12∠ACB,∠ACF=12∠ACD.所以∠ECF=12(∠ACB+∠ACD)=90°.又因为AE⊥CE,AF⊥CF,•所以∠AEC=∠AFC=90°,所以四边形AECF是矩形.点拨:•本题是通过证四边形中三个角为直角得出结论.还可以通过证其为平行四边形,再证有一个角为直角得出结论.20.3 菱形的判定一、选择题1.下列四边形中不一定为菱形的是()A.对角线相等的平行四边形 B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形2.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD= BC;⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有().A.1种 B.2种 C.3种 D.4种3.菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和43cm B.4cm和83cm C.8cm和83cm D.4cm和43cm二、填空题4.如图1所示,已知□ABCD,AC,BD相交于点O,•添加一个条件使平行四边形为菱形,添加的条件为________.(只写出符合要求的一个即可)图1 图25.如图2所示,D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,且DE∥AB,DF∥CA,要使四边形AFDE 是菱形,则要增加的条件是________.(只写出符合要求的一个即可)6.菱形ABCD 的周长为48cm ,∠BAD: ∠ABC= 1:•2,•则BD=•_____,•菱形的面积是______.7.在菱形ABCD 中,AB=4,AB 边上的高DE 垂直平分边AB ,则BD=_____,AC=_____.三、解答题8.如图所示,在四边形ABCD 中,AB∥CD,AB=CD=BC ,四边形ABCD 是菱形吗?•说明理由.四、思考题9.如图,矩形ABCD 的对角线相交于点O ,PD∥AC,PC∥BD,PD ,PC 相交于点P ,四边形PCOD 是菱形吗?试说明理由.参考答案一、1.A 点拨:本题用排除法作答.2.D 点拨:根据菱形的判定方法判断,注意不要漏解.3.C 点拨:如图所示,若∠ABC=60°,则△ABC 为等边三角形,•所以AC=AB=14×32=8(cm ),AO=12AC=4cm . 因为AC⊥BD,在Rt△AOB 中,由勾股定理,得OB=222284AB OA -=-=43(cm ),•所以BD=2OB=83cm .二、4.AB=BC 点拨:还可添加AC⊥BD 或∠ABD=∠CBD 等.5.点D 在∠BAC 的平分线上(或AE=AF )6.12cm ;723cm 2点拨:如图所示,过D 作DE⊥AB 于E ,因为AD∥BC,•所以∠BAD+∠ABC=180°.又因为∠BAD:∠A BC=1:2,所以∠BAD=60°,因为AB=AD ,所以△ABD 是等边三角形,所以BD=AD=12cm .所以AE=6cm .在Rt △AED 中,由勾股定理,得AE 2+ED 2=AD 2,62+ED 2=122,所以ED 2=108, 所以ED=63cm ,所以S 菱形ABCD =12×63=723(cm 2).7.4;43 点拨:如图所示,因为DE 垂直平分AB ,又因为DA=AB ,所以DA=DB=4.所以△ABD 是等边三角形,所以∠BAD=60°,由已知可得AE=2.在Rt△AED 中,•AE 2+DE 2=AD 2,即22+DE 2=42,所以DE 2=12,所以DE=23,因为12AC ·BD=AB ·DE ,即12AC ·4=4×23,所以AC=43.三、8.解:四边形ABCD 是菱形,因为四边形ABCD 中,AB∥CD,且AB=CD ,所以四边形ABCD 是平行四边形,又因为AB=BC ,所以 ABCD 是菱形.点拨:根据已知条件,不难得出四边形ABCD 为平行四边形,又AB=BC ,即一组邻边相等,由菱形的定义可以判别该四边形为菱形.四、9.解:四边形PCOD是菱形.理由如下:因为PD∥OC,PC∥OD,•所以四边形PCOD是平行四边形.又因为四边形ABCD是矩形,所以OC=OD,所以平行四边形PCOD是菱形.20.4 正方形的判定一、选择题1.下列命题正确的是()A.两条对角线互相平分且相等的四边形是菱形B.两条对角线互相平分且垂直的四边形是矩形C.两条对角线互相垂直,平分且相等的四边形是正方形D.一组邻边相等的平行四边形是正方形2.矩形四条内角平分线能围成一个()A.平行四边形 B.矩形 C.菱形 D.正方形二、填空题3.已知点D,E,F分别是△ABC的边AB,BC,CA的中点,连结DE,EF,•要使四边形ADEF是正方形,还需要添加条件_______.4.如图1所示,直线L过正方形ABCD的顶点B,点A,C到直线L•的距离分别是1和2,则正方形ABCD的边长是_______.图1 图2 图3D AC F E B5.如图2所示,四边形ABCD 是正方形,点E 在BC 的延长线上,BE=BD 且AB=2cm ,则∠E 的度数是______,BE 的长度为____.6.如图3所示,正方形ABCD 的边长为4,E 为BC 上一点,BE=1,F•为AB•上一点,AF=2,P 为AC 上一动点,则当PF+PE 取最小值时,PF+PE=______.三、解答题7.如图所示,在Rt△ABC 中,CF 为∠ACB 的平分线,FD⊥AC 于D ,FE⊥BC 于点E ,试说明四边形CDFE 是正方形.四、思考题 8.已知如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 边上的点,且AE=BF ,•请问:(1)AF 与DE 相等吗?为什么?(2)AF 与DE 是否垂直?说明你的理由.参考答案一、1.C 点拨:对角线互相平分的四边形是平行四边形,•对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形一定是正方形,故选C .2.D 点拨:由题意画出图形后,利用“一组邻边相等的矩形是正方形”来判定.二、3.△ABC 是等腰直角三角形且∠BAC=90°点拨:还可添加△ABC 是等腰三角形且四边形ADEF 是矩形或∠BAC=90°且四边形ADEF 是菱形等条件.4.5 点拨:观察图形易得两直角三角形全等,由全等三角形的性质和勾股定理得正方形的边长为2221+=5.5.67.5°;22cm点拨:因为BD 是正方形ABCD 的对角线,所以∠DBC=45°,AD=•AB=2cm .在Rt△BAD 中,由勾股定理得AD 2+AB 2=BD 2,即22+22=BD 2,所以BD=22cm ,所以BE=BD=22(cm ),又因为BE=BD ,所以∠E=∠EDB=12(180°-45°)=67.5°. 6.17 点拨:如图所示,作F 关于AC 的对称点G .连结EG 交AC 于P ,则PF+•PE=PG+PE=GE 为最短.过E 作EH⊥AD.在Rt△GHE 中,HE=4,HG=AG-AH=AF-BE=1,所以GE=2241+=17,•即PF+PE=17.三、7.解:因为∠FDC=∠FEC=∠BCD=90°,所以四边形CDFE 是矩形,因为CF•平分∠ACB,FE⊥BC,FD⊥AC,所以FE=FD ,所以矩形CDFE 是正方形.点拨:本题先说明四边形是矩形,再求出有一组邻边相等,•还可以先说明其为菱形,再求其一个内角为90°.四、8.解:(1)相等.理由:在△ADE 与△BAF 中,AD=AB ,∠DAE=∠ABF=90°,AE=BF , 所以△ADE≌△BAF(S .A .S .),所以DE=AF .(2)AF 与DE 垂直.理由:如图,设DE 与AF 相交于点O .因为△ADE≌△BAF,•所以∠AED=∠BFA.又因为∠BFA+∠EAF=90°,所以∠AEO+∠EAO=90°,所以∠EOA= 90°,所以DE⊥AF.20.5 等腰梯形的判定一、选择题1.下列结论中,正确的是()A.等腰梯形的两个底角相等 B.两个底角相等的梯形是等腰梯形C.一组对边平行的四边形是梯形 D.两条腰相等的梯形是等腰梯形2.如图所示,等腰梯形ABCD的对角线AC,BD相交于点O,则图中全等三角形有()A.2对 B.3对 C.4对 D.5对3.课外活动课上,•老师让同学们制作了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm,则两条对角线所用的竹条长度之和至少为()A.302cm B.30cm C.60cm D.602cm二、填空题4.等腰梯形上底,下底和腰分别为4,•10,•5,•则梯形的高为_____,•对角线为______. 5.一个等腰梯形的上底长为5cm,下底长为12cm,一个底角为60°,则它的腰长为____cm,周长为______cm.6.在四边形ABCD中,AD∥BC,但AD≠BC,若使它成为等腰梯形,则需要添加的条件是__________(填一个正确的条件即可).三、解答题7.如图所示,AD是∠BAC的平分线,DE∥AB,DE=AC,AD≠EC.求证:•四边形ADCE是等腰梯形.四、思考题8.如图所示,四边形ABCD中,有AB=DC,∠B=∠C,且AD<BC,四边形ABCD是等腰梯形吗?为什么?参考答案一、1.D 点拨:梯形的底角分为上底上的角和下底上的角,•因此在等腰梯形的性质和判别方法中必须强调同一底上的两个内角(•指上底上的两个内角或下底上的两个内角),否则就会出现错误,因此A,B选项都不正确,而C选项中漏掉了限制条件另外一组对边不平行,若平行该四边形就形成了平行四边形了,因此应选D.2.B 点拨:因为△ABC≌△DCB,△BAD≌△CDA,△AOB≌△DOC,所以共有3对全等的三角形.3.C 点拨:设该等腰梯形对角线长为Lcm,因为两条对角线互相垂直,•所以梯形面积为12L2=450,解得L=30,所以所用竹条长度之和至少为2L=2×30=60(cm).二、4.4:65点拨:如图所示,连结BD,过A,D分别作AE⊥BC,DF⊥BC,垂足分别为E,F.易知△BAE≌△CDF,在四边形AEFD为矩形,所以BE=CF=3,AD=EF=4.在Rt△CDF中,FC2+DF2=CD2,即32+DF2=52,所以DF=4,在Rt△BFD中,BF2+DF2=BD2,即72+42=BD2,所以BD=65.5.7;31点拨:如图所示,过点D作DE∥AB交BC于E.因为AD∥BC,AB ∥DE,所以四边形ABED是平行四边形.所以BE=AD=5(cm),AB=DE.又因为AB=CD,所以DE=•DC,又因为∠C=60°,所以△DEC是等边三角形,所以DE=DC=EC=7(cm),所以周长为5+•12+7+7=31(cm).6.AB=CD(或∠A=∠D,或∠B=∠C,或AC=BD,或∠A+∠C=180°,或∠B+∠D=180°)三、7.证明:因为AB∥ED,所以∠BAD=∠ADE.又因为AD是∠BAC的平分线,所以∠BAD=∠CAD,所以∠CAD=∠ADE,所以OA=OD.又因为AC=DE,所以AC-OA=DE-OD即OC=OE,•所以∠OCE=∠OEC,又因为∠AOD=∠COE,所以∠CAD=∠OCE.所以AD∥CE,而AD≠CE,故四边形ADCE是梯形.又因为∠CAD=∠ADE,AD=DA,AC=DE,所以△DAC≌△ADE,所以DC=•AE,所以四边形ADCE是等腰梯形.点拨:证明一个四边形是等腰梯形时,应先证其是梯形而后再证两腰相等或同一底上的FBE D CA HF ED CBA两个角相等.四、8.解:四边形ABCD 是等腰梯形.理由:延长BA ,CD ,相交于点E ,如图所示,由∠B=∠C,可得EB=EC . 又AB=DC ,所以EB-AB=EC-DC ,即AE=DE ,所以∠EAD= ∠EDA. 因为∠E+∠EAD+∠EDA=180°,∠E+∠B+∠C=180°,所以∠EAD=∠B. 故AD∥BC.•又AD<BC ,所以四边形ABCD 是梯形. 又AB=DC ,所以四边形ABCD 是等腰梯形.点拨:由题意可知,只要推出AD∥BC,再由AD<BC 就可知四边形ABCD 为梯形,再由AB=DC ,即可求得此四边形是等腰梯形,由∠B=∠C 联想到延长BA ,CD ,即可得到等腰三角形,从而使AD∥BC.华东师大版数学八年级(下)第20章 平行四边形的判定测试(答卷时间:90分钟,全卷满分:100分)姓名 得分____________一、认认真真选,沉着应战!(每小题3分,共30分) 1. 正方形具有菱形不一定具有的性质是 ( )(A )对角线互相垂直 (B )对角线互相平分 (C )对角线相等 (D )对角线平分一组对角2. 如图(1),EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( ) (A )51 (B )41 (C )31 (D )103)1CBA(1) (2) (3) 3.在梯形ABCD 中,AD ∥BC ,那么:::A B C D ∠∠∠∠可以等于( )(A )4:5:6:3 (B )6:5:4:3 (C )6:4:5:3 (D )3:4:5:6 4.如图(2),平行四边形ABCD 中,DE ⊥AB 于E ,DF ⊥BC 于F ,若A B C D 的周长为48,DE =5,DF =10,则ABCD 的面积等于( )(A )87.5 (B )80 (C )75 (D )72.55. A 、B 、C 、D 在同一平面内,从①AB ∥CD; ②AB=CD; ③BC ∥AD; ④BC=AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( )(A )3种 (B )4种 (C )5种 (D )6种6.如图(3),D 、E 、F 分别是ABC 各边的中点,AH 是高,如果5ED cm =,那么HF 的长为( )(A )5cm (B )6cm (C )4cm (D )不能确定 7. 如图(4):E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值是( ) (A )22 (B )21 (C )32 (D )238.如图(5),在梯形ABCD 中,AD ∥BC ,AB CD =,60C ∠=︒,BD 平分ABC ∠,如果这个梯形的周长为30,则AB 的长 ( )(A )4 (B )5 (C )6 (D )79.右图是一个利用四边形的不稳定性制作的菱形晾衣架. 已知其中每个菱形的边长为20cm ,墙上悬挂晾衣架的两 个铁钉A 、B 之间的距离为203cm ,则∠1等于( )(A )90° (B)60° (C)45° (D)30° 10.某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a 、b , 都有a+b ≥2ab 成立.某同学在做一个面积为3 600cm 2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来做对角线用的竹条至少需要准备x cm . 则x 的值是( )(A) 1202 (B) 602 (C) 120 (D) 60ED CB A R QP(4) DCB A (5)A B C Dl N M D C BA 二、仔仔细细填,记录自信!(每小题2分,共20分)11.一个四边形四条边顺次是a 、b 、c 、d ,且bd ac d c b a 222222+=+++,则这个四边形是_______________.12.在四边形ABCD 中,对角线AC 、BD 交于点O ,从(1)AB CD =;(2)AB CD ∥;(3)OA OC =;(4)OB OD =;(5)AC BD ⊥;(6)AC 平分BAD ∠这六个条件中,选取三个推出四边形ABCD 是菱形.如(1)(2)(5)⇒ABCD 是菱形,再写出符合要求的两个: ⇒A B C D 是菱形; ⇒A B C D是菱形. 13. 如图,已知直线l 把ABCD 分成两部分,要使这两部分的面积相等,直线l 所在位置需满足的条件是____________________.(只需填上一个你认为合适的条件)(第13题) (第16题)14. 梯形的上底长为6cm ,过上底的一顶点引一腰的平行线,与下底相交,所构成的三角形周长为21cm ,那么梯形的周长为_________cm 。

相关文档
最新文档