标准正态分布分位数表
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正态分布的概念在统计学中非常普遍,标准正态分布表在与正态分布有关的计算中经常使用。如果你知道一个值的标准得分,即z 得分,你可以很方便地在标准正态分布表中找到与标准得分对应的概率值。任何数值,只要符合正态分布规律,都可以用标准正态分布表来查询其出现概率。使用时,第一步是计算标准值的标准值,然后将标准值四舍五入到小数点后的第二位,第二步是在标准正态分布表的左侧找到小数点后的第一位直到标准值,然后在相应标准值的小数点后的第二位找到正态分布。
正态分布,也称为“正态分布”,是一个非常重要的概率分布。它在数学、物理学、工程学以及统计学的许多方面都有很大的影响,它最初是由a. de moivre 在二项分布的渐近公式中得到的。在研究测量误差时,从另一个角度导出了c。f。高斯。拉普拉斯和高斯研究了它的性质,正常曲线呈钟形,两端低,中间高,对称。因为它的曲线是钟形的,所以人们通常称之为钟形曲线,如果随机变量x 服从一个带有数学期望和方差2的正态分布,则称为n (,2)。概率密度函数为正态分布的期望值决定了它的位置,其标准差决定了分布的振幅。当= 0和= 1时,正态分布是标准正态分布。
正态分布的概念最早是由德国数学家和天文学家莫伊弗尔在1733年提出的,但由于德国数学家高斯率先将其应用于天文学家的研究,它也被称为正态分布分布。高斯的作品对后世有很大的影响。他同时给
正态分布命名为“正态分布”,后人因此将最小二乘法的发明权归于他。而今天的德国10马克钞票上印有高斯头像,密度曲线呈正态分布。这传达了一个观点: 在高斯的所有科学贡献中,对人类文明影响最大的就是这个。在这个发现的开始,也许人们只能从简单化的理论来评价它的优越性,它的全部影响是不能完全看到的。这是在20世纪小样本理论得到充分发展之后。拉普拉斯很快了解到高斯的工作,并立即将其与他发现的中心极限定理联系起来。
基于这个原因,他在一篇即将发表的文章(1810年出版)中增加了一篇补充文章,指出如果按照他的中心极限定理,这个误差可以被看作是多个量的叠加,那么这个误差应该有正态分布。这是历史上第一次提到所谓的“元错误理论”——错误是由各种原因产生的大量元错误叠加而形成的。后来,在1837年,g ·哈根在一篇论文中正式提出了这个理论。事实上,他提出的形式有相当大的局限性: 哈根把错误想象成大量独立的同分布的“元错误”的总和,每个元错误取两个值,其概率是1/2。根据de mofo 的中心极限定理,由此可以立即得出结论,误差服从正态分布(大约)。
拉普拉斯的这一观点对于正常的误差理论给出了更加自然、合理和令人信服的解释,具有重要的意义。由于高斯的论述有一点圆论元的味道: 由于算术平均数很好,导出误差必须服从正态分布,另一方面,由后一个结论推导出算术平均数和最小二乘估计的优越性,因此必须
以算术平均数和误差正态性的优越性作为起点。然而,没有理由建立算术平均数本身。把它作为理论上的一个预设出发点,最终会有它的缺陷。拉普拉斯的理论将这个断裂的环节连接起来,使之成为一个和谐的整体,这具有重大意义。