无穷积分的性质与收敛判别法

合集下载

无穷积分狄利克雷判别法证明

无穷积分狄利克雷判别法证明

无穷积分狄利克雷判别法证明你有没有想过,数学里那些看起来高深莫测的公式,背后其实藏着无数有趣的故事?今天,我们就来聊聊一个看似深不可测的话题——无穷积分。

你听过“狄利克雷判别法”吗?这可是解决无穷积分收敛性问题的法宝,尤其在求解一些难度颇高的积分时,简直就是拯救之神。

我们就用最轻松的方式,聊聊这个有点神秘的判别法,保证你能懂得一清二楚。

先说说什么是“无穷积分”。

其实就是那些被积分区间包围在无穷大或无穷小的积分。

比如你看那种从零到正无穷,或者从负无穷到正无穷的积分。

普通的定积分,我们习惯了,算来算去,结果很明确,最终的值也不大出乎意料。

但是到了无穷积分,问题就来了。

你看,无穷大在数学上可不是个小事,怎么让这个“无限”的东西变得有“边界”,这就是我们今天要聊的重点。

那狄利克雷判别法怎么解释的呢?狄利克雷的思路特别简单也特别聪明。

他说,你不需要每次都算出具体的积分值,只要知道积分的某些行为,就能判断它到底是“收敛”还是“不收敛”。

你可以把它理解成一种“心灵感应”,你不需要看结果,但凭直觉就能感受到它的趋势。

听起来是不是有点悬乎?但真的是这样,狄利克雷判别法就像是有一种“超能力”,能快速告诉你一个无穷积分是一个什么样的东西。

这个“判别法”到底怎么用呢?简单来说,如果你要证明一个无穷积分收敛或者发散,只要找到一个与它类似、能够比对的函数就行。

比如,假设你有一个从1到无穷的积分,积分里面是一个和x相关的复杂函数。

你根本不需要把这个函数积分出来,光凭它的“形状”和你手头上已经知道的类似函数,就可以判断它是否能收敛。

就像你走进一个屋子,第一眼就能判断出是个新房子还是二手房——直觉告诉你的一切,才是最重要的!狄利克雷判别法的核心其实就在于对比。

你拿自己手头的这个复杂积分,找一个比较简单、大家都知道的积分形式,比如“1/x^p”这种常见的函数。

你看看这个简单的函数它在类似的无穷区间上是怎样表现的,和你那个复杂函数比一比。

微积分学广义积分敛散性判别

微积分学广义积分敛散性判别


(1) 若积分

+∞ a
g ( x) d x 收敛 ,则下列极限存在
x → +∞
lim

x a
f (t ) d t = I .
由于有极限的量在该极限过程中必有界, 故可知
G ( x) = ∫ g (t ) d t 在 [a, + ∞) 上有上界 .
a
x
由 a ≤ x < +∞ 时, 0 ≤ f ( x) ≤ g ( x) 得
F ( x) = ∫ f (t ) d t
a x
在 [a, + ∞) 上单调增加且有上界. 由极限存在准则
可知极限 lim F ( x) = lim
x → +∞
x → +∞

x a
f (t ) d t 存在 .
即无穷积分 ∫
+∞ a
f ( x) d x 收敛 .
定理
( 比较判别法 )
设函数 f ( x) , g ( x) 在 [a, + ∞) 上有界, ∀ A ∈ R , A > a ,
一、无穷积分 —— 无穷区间上的广义积分
1. 无穷积分的概念
设函数 f ( x) 在 [a, + ∞) 上有定义 .
∀ A ∈ R , A > a , 且 f ( x) ∈ R ( [a, A] ) . 记

+∞ a
f ( x) d x = lim
A→ +∞

A a
f ( x) d x ,
称之为 f ( x) 在 [a, + ∞) 上的无穷积分 . 若式中的极限存在,则称此无穷积分收敛,极限值 即为无穷积分值;若式中的极限不存在,则称该无穷积

数学《反常积分》讲义

数学《反常积分》讲义

第十一章 反常积分1 反常积分概念一、问题提出定积分 1) 积分区间的有穷性2) 被积函数的有界性如果函数(被积函数)的积分区间为无穷区间或被积函数在积分区间上无界,应如何讨论它们的积分,这类积分称为反常积分(或广义积分,Cauchy-Riemann 积分, C-R 积分), 而上一章的定积分称为正常积分.例 1 (第二宇宙速度) 例 2 (流水时间)二、两类反常积分的定义定义1 设函数f 定义在无穷区间[,)a +∞上, 且在任何有限区间[,]a u 上可积, 如果存在极限lim()uau f x dx J →+∞=⎰, 那么称极限J 为函数f 在[,)a +∞上的无穷限反常积分(无穷积分),记作()aJ f x dx +∞=⎰,并称()af x dx +∞⎰收敛, 有时也称f 在[,)a +∞上(Cauchy-Riemann )可积; 反之,若上述极限不存在, 则称()af x dx +∞⎰发散.注 1()af x dx +∞⎰收敛的几何意义:若f 在[,)a +∞上为非负连续函数,则介于曲线()y f x =,直线x a =及x 轴之间一块向右无限延伸的区域有面积J .注 2 类似可定义()lim()aauu f x dx f x dx -∞→-∞=⎰⎰()()()aaf x dx f x dx f x dx +∞+∞-∞-∞=+⎰⎰⎰lim()lim()uaauu u f x dx f x dx →+∞→-∞=+⎰⎰例 3 1) 讨论积分211dx x +∞+⎰,0211dx x -∞+⎰,211dx x +∞-∞+⎰的敛散性.2) 计算积分20125dx x x +∞++⎰.例4 讨论下列积分的敛散性.1) 11pdx x +∞⎰; 2) 21(ln )pdx x x +∞⎰.注3 设f 在[,)a +∞上连续,F 为f 的一个原函数,则()lim ()lim ()()()()uaau u f x dx f x dx F u F a F F a +∞→+∞→+∞==-=+∞-⎰⎰例 5 讨论sin axdx +∞⎰的敛散性注 4 ()f x dx +∞-∞⎰为两个非正常积分之和,而非lim()uuu f x dx -→+∞⎰.定义 2 设函数f 定义在区间(,]a b 上,在点a 的任一右邻域内无界, 但在任意内闭区间[,](,]b a b α⊂上有界且可积. 如果存在极限lim ()bu u af x dx J +→=⎰,那么称此极限为无界函数f 在(,]a b 上的反常积分,记作()baJ f x dx =⎰,并称反常积分()baf x dx ⎰收敛,如果上述极限不存在,则称反常积分()baf x dx ⎰发散.在上述定义中函数f 在点a 的附近无界, 我们称a 为f 的瑕点, 而无界函数的反常积分()ba f x dx ⎰也称为瑕积分.注 5 1) 类似可定义瑕点为b 的瑕积分()lim ()buaau bf x dx f x dx -→=⎰⎰其中f 在b 的任一左邻域内无界,且在任何内闭区间[,][,)a a b β⊂上可积.2) 若,a b 都为f 的瑕点,且在任一内闭子区间[,](,)u v a b ⊂上可积,此时可定义瑕积分()()()bc b aacf x dx f x dx f x dx =+⎰⎰⎰lim ()lim ()c vucu av bf x dx f x dx +-→→=+⎰⎰其中c 为(,)a b 内的任一实数,当且仅当右式两个瑕积分都收敛时,左式的瑕积分收敛.3) 若f 的瑕点(,)c a b ∈,则定义瑕积分()()()bc b aacf x dx f x dx f x dx =+⎰⎰⎰lim ()lim ()u bavu cv cf x dx f x dx +-→→=+⎰⎰其中f 在[,)(,]a c c b ⋃上有定义,在c 的任一邻域内无界, 且在任何闭子区间[,][,)a u a c ⊂, [,](,]v b c b ⊂都可积,当且仅当右边两个瑕积分收敛时, 左边的瑕积分收敛.例 6 1) 计算瑕积分1⎰2) 讨论瑕积分1pdxx ⎰的敛散性(p >0)3) 讨论瑕积分0p dxx+∞⎰的敛散性(p >0) 4) 24=⎰5) 1⎰三、两类反常积分的关系设()f x 连续,b 为瑕点,则11211()()t b xbab af x dx f b dt t t=-+∞-=-⎰⎰瑕积分可转化为无穷积分设0a >,1121()()t xaadtg x dx g t t =+∞=-⎰⎰12011()a g dt t t =⎰无穷积分可转化为瑕积分由此可见,瑕积分与无穷积分可相互转化,因而它们有平行的理论和性质. 例 7 讨论下列反常积分是否收敛 1) 2x xe dx +∞--∞⎰2) cos x e xdx +∞--∞⎰3) 2⎰4) 1(1)(ln )pdxp x x >⎰5) 1⎰例 8 举例说明瑕积分()b af x dx ⎰收敛,2()baf x dx ⎰未必收敛.例 9 1) 证明:若()af x dx +∞⎰收敛,且lim ()x f x A →+∞=,则0A =;2) 举例说明: ()af x dx +∞⎰收敛,f 在[,)a +∞上连续,未必有lim ()0x f x →+∞=成立.例 10 若f 在[,)a +∞上可导,且()af x dx +∞⎰与()af x dx +∞'⎰收敛,则lim ()0x f x →+∞=.2 无穷积分的性质与收敛判别一、 无穷积分性质由()af x dx +∞⎰收敛lim ()lim()duau u F u f x dx →+∞→+∞⇔=⎰存在, 根据函数极限收敛的Cauchy 准则,我们有定理 1 (Cauchy 准则) 无穷积分()af x dx +∞⎰收敛⇔120,,,:G a u u G ε∀>∃≥∀>1221()()()u u u aau f x dx f x dx f x dx ε-=<⎰⎰⎰.性质1 (线性性质) 若1()af x dx +∞⎰和2()af x dx +∞⎰都收敛, 12,k k 为任意常数, 则1122[()()]ak f x k f x dx +∞+⎰也收敛,且11221122[()()]()()aaak f x k f x dx k f x dx k f x dx +∞+∞+∞+=+⎰⎰⎰.性质2 (区间可加性) 若f 在任何有限区间[,]a u 上可积,b a >,则()af x dx +∞⎰与()bf x dx +∞⎰同敛散,且()()()b aabf x dx f x dx f x dx +∞+∞=+⎰⎰⎰.定理2 无穷积分()af x dx +∞⎰收敛0,,:()uG a u G f x dx εε+∞⇔∀>∃≥><⎰当.性质 3 (绝对收敛) 若f 在任何有限区间[,]a u 上可积,且()af x dx +∞⎰收敛,则()af x dx +∞⎰也收敛,且()()aaf x dx f x dx +∞+∞≤⎰⎰.定义1 若()af x dx +∞⎰收敛, 则称()af x dx +∞⎰绝对收敛.性质3 说明绝对收敛的无穷积分其本身一定收敛,而反之未必成立. 我们称收敛而不绝对收敛的无穷积分为条件收敛的无穷积分.性质4 (换元) 设:[,)[,)a ϕα+∞→+∞是光滑严格单调映射,且()a ϕα=,lim ()t t ϕ→+∞=+∞. 若()af x dx +∞⎰收敛,则(())()f t t dt αϕϕ+∞'⎰收敛,且()(())()af x dx f t t dt αϕϕ+∞+∞'=⎰⎰.性质5 (分部积分) 设,f g 为[,)a +∞上的光滑函数, 且lim ()()x f x g x →+∞⋅存在, 则()()af xg x dx +∞'⋅⎰与()()af xg x dx +∞'⎰同敛散,且它们收敛时有等式()()()()()()aaaf xg x dx f x g x f x g x dx +∞+∞+∞''⋅=⋅-⋅⎰⎰其中()()lim ()()()()ax f x g x f x g x f a g a +∞→+∞⋅=-.二、 无穷积分判别法1、比较判别法 (绝对收敛判别法)定理 3 (比较法则) 设定义在[,)a +∞上的两个函数f 和g 在任何有限区间[,]a u 上可积,且()()f x g x ≤,[,)x a ∈+∞. 则i) 当()ag x dx +∞⎰收敛时, 必有()af x dx +∞⎰收敛;ii) 当()af x dx +∞⎰发散时, 必有()ag x dx +∞⎰发散.例 1 判断积分22sin(1)5x dx x+∞++⎰的敛散性.1) Cauchy 判别法推论1 设f 定义在[,)(0)a a +∞>上,且在任何有限区间[,]a u 上可积,则有i) 当1(),[,)1p f x x a p x≤∈+∞>且时,()a f x dx +∞⎰收敛. ii) 当1(),[,)1p f x x a p x≥∈+∞≤且时,()a f x dx +∞⎰发散.2) 比较原则的极限形式推论 2 设f 和g 都在任何区间[,]a u 上可积, ()0g x >, 且()lim ()x f x c g x →+∞=. i) 当0c <<+∞时,()af x dx +∞⎰与()ag x dx +∞⎰同敛散;ii) 当0c =时,若()ag x dx +∞⎰收敛,则()af x dx +∞⎰收敛;iii) 当c =+∞时,若()ag x dx +∞⎰发散,则()af x dx +∞⎰发散.推论 3 设f 定义在[,)(0)a a +∞>上,且在任何有限区间[,]a u 上可积,且lim ()p x x f x λ→+∞=,则有i) 当1p >,0λ≤<+∞时,()af x dx +∞⎰收敛; ii) 当1p ≤,0λ<≤+∞时,()af x dx +∞⎰发散.例 2 讨论下列无穷积分的敛散性:1) 1x x e dx α-⎰2)21+∞⎰2、 Dirichlet 和Abel 判别法定理4 (Dirichlet ) 若()()ua F u f x dx =⎰在[,)a +∞上有界, ()g x 在[,)a +∞上x →+∞时单调趋于0, 则()()a f x g x dx +∞⋅⎰收敛.定理5 (Abel ) 若()af x dx +∞⎰收敛, ()g x 在[,)a +∞上单调有界, 则()()af xg x dx +∞⋅⎰收敛.定理6 (Dirichlet- Abel ) 设无穷积分()()()aaf x dx u x dv x +∞+∞=⎰⎰, 其中()u x单调, 且(),()u x v x 中一个有界, 另一个在x →+∞时趋于0, 则()af x dx +∞⎰收敛.例 3 讨论无穷积分1sin p xdx x +∞⎰与1cos (0)px dx p x +∞>⎰的敛散性.例 4 证明下列积分条件收敛.1) 21sin x dx +∞⎰,21cos x dx +∞⎰;2) 41sin x x dx +∞⋅⎰;3)1+∞⎰. 例 5 若()af x dx +∞⎰绝对收敛. 且lim ()0x f x →+∞=,则2()af x dx +∞⎰必收敛.例6 设,,f g h 为[,)a +∞上三个连续函数,且()()()h x f x g x ≤≤. 证明:如果()ah x dx +∞⎰,()ag x dx +∞⎰收敛,那么()af x dx +∞⎰亦收敛.例 7 证明: 若f 在[,)a +∞上一致连续,且()af x dx +∞⎰收敛,则lim ()0x f x →+∞=.例 8 讨论下列无穷积分的敛散性1) 1ln n xdx x+∞⎰2) 31arctan 1x xdx x +∞+⎰3)21x edx +∞-⎰4) 1ln(1)px dx x +∞+⎰5) 0ln(1)px dx p x+∞+ (>0)⎰6) 0xdx ⎰7)21cos x e xdx +∞-⎰8) 0sin arctan xxdx x+∞⎰例9 证明:若f 是[,)a +∞上的单调函数,()af x dx +∞⎰收敛,则lim ()0x f x →+∞=, 且1()()f x o x x= , →+∞.注: 由()lim 1()x f x g x →+∞=, ()ag x dx +∞⎰收敛, 推不出()af x dx +∞⎰收敛.3 瑕积分的性质与判别法一、 瑕积分的性质 (瑕点为x a =)定理1 瑕积分()ba f x dx ⎰收敛0,0,εδ⇔∀>∃>当12,(,)u u a a δ∈+时,2121()()()bbu u u u f x dx f x dx f x dx ε-=<⎰⎰⎰.性质1 设函数1f , 2f 的瑕点同为a ,1k ,2k 为常数,则当瑕积分1()baf x dx ⎰,2()baf x dx ⎰都收敛时,瑕积分1122[()()]bak f x k f x dx +⎰必收敛,且11221122[()()]()()bb baaak f x k f x dx k f x dx k f x dx +=+⎰⎰⎰.性质2 设函数f 的瑕点为x a =,(,)c a b ∈, 则瑕积分()baf x dx ⎰与()caf x dx ⎰同敛散且()()()b c b aacf x dx f x dx f x dx =+⎰⎰⎰, 其中()bcf x dx ⎰为定积分.性质3 若f 的瑕点为a , f 在(,]a b 的任一闭子区间[,]u b 上可积, 则当()baf x dx ⎰收敛时,()baf x dx ⎰必收敛且()()bbaaf x dx f x dx ≤⎰⎰.当()baf x dx ⎰收敛时,称()baf x dx ⎰为绝对收敛; 而称本身收敛但不绝对收敛的瑕积分为条件收敛的瑕积分.二、瑕积分判别法定理2 (比较原则) 定义在(,]a b 上的两个函数,f g , 瑕点同为a , 在任闭子区间[,](,]u b a b ⊂上可积,且()()(,]f x g x x a b ≤ ∈,则i) 当()bag x dx ⎰收敛时,()baf x dx ⎰必收敛 (从而()baf x dx ⎰也收敛) ;ii) 当()baf x dx ⎰发散时,()bag x dx ⎰发散.推论1 设f 定义在(,]a b 上,瑕点为a ,且在任何闭子区间[,](,]u b a b ⊂上可积,则 i) 当1()01()pf x p x a ≤, <<-时, ()baf x dx ⎰收敛;ii) 当1()1()pf x p x a ≥, ≥-时, ()baf x dx ⎰发散.推论2 若()0g x >,且()lim ()x af x cg x +→=, 则 i) 当0c <<+∞时,()b af x dx ⎰与()bag x dx ⎰同敛散;ii) 当0c =,()b ag x dx ⎰收敛时,()baf x dx ⎰收敛;iii) 当c =+∞,()b ag x dx ⎰发散时, ()b af x dx ⎰发散.推论3 在推论2的条件下,若lim()()p x ax a f x λ+→-=, 则 i) 01,0p λ<<≤<+∞时, ()baf x dx ⎰收敛;ii) 1,0p λ≥<≤+∞时, ()baf x dx ⎰发散.定理 3 (Dirichlet- Abel ) 设瑕积分()()()b baaf x dx u x dv x =⎰⎰有唯一奇点a ,其中()u x 单调, 且(),()u x v x 中一个有界, 另一个在x a +→时趋于0, 则()baf x dx ⎰收敛.例 1 讨论下列瑕积分的敛散性.1) 10⎰2) 21ln dx x⎰3) 130arctan 1xdx x -⎰4) 201cos mxdx xπ-⎰5) 1⎰6) 10⎰7) 20(,0)sin cos p q dxp q x xπ>⎰例 2 讨论反常积分1()1x x dx xα-+∞Φ=+⎰的敛散性.例 3 证明瑕积分20ln(sin )J x dx π=⎰收敛,且ln 22J π=-,同时利用上述结果证明:1) 2ln(sin )ln 22d ππθθθ=-⎰2) 0sin 2ln 21cos d πθθθπθ=-⎰三、反常积分与正常积分的区别1、 Riemann 积分 f 在[,]a b 上可积,则f 在[,]a b 上有界. 无穷积分 f 在[,)a +∞上可积(()af x dx +∞⎰收敛) f ⇒在[,)a +∞上有界.如4()sin f x x x =⋅ 或者 ,()0,n x nf x x n =⎧=⎨≠⎩.2、Riemann 积分 f 在[,]a b 上可积⇒()f x 在[,]a b 上可积,但反之未必, 故Riemann 积分是绝对型积分,而无穷积分 ()f x 在[,)a +∞上可积⇒f 在[,)a +∞上可积,但反之未必, 故Cauchy-Reimann 积分是非绝对型积分, 如sin (),[1,)xf x x x=∈+∞.3、Riemann 积分 ,f g 在[,]a b 上可积⇒f g ⋅在[,]a b 上可积, 而无穷积分 ,f g 在[,)a +∞上可积⇒f g ⋅在[,)a +∞上可积.例4 证明:1) 11111p p x x dx dx x x --+∞=++⎰⎰2) 12π<<⎰3) 设f 在[,)a +∞上连续0a b <<,若lim ()x f x k →+∞=,则()()((0))ln f ax f bx adx f k x b+∞-=-⎰例5 证明: 1) 设f 在[,)a +∞上非负连续, 若0()xf x dx +∞⎰收敛, 则0()f x dx +∞⎰也收敛.2) 设f 在[,)a +∞上连续可微且当x →+∞时,()f x 递减趋于0, 则()f x dx +∞⎰收敛⇔0()xf x dx +∞'⎰收敛.习 题 课例 1 论述题:1) 设f 在(,)-∞+∞上连续,且()f x dx +∞-∞⎰收敛,则()(),()()x x d d f t dt f x f t dt f x dx dx +∞-∞==-⎰⎰. 2) 积分0()f x dx +∞⎰收敛,则lim ()0x f x →+∞=.3) 积分()baf x dx ⎰收敛,则此积分可用和式公式01lim ()ni i T i f x ξ→=∑来计算.4) 若lim ()x f x A →+∞=存在,()af x dx +∞⎰收敛,则0A =.5) 若0()f x dx +∞⎰收敛,lim ()0x f x →+∞=,则2()af x dx +∞⎰必收敛.6) 若()af x dx A +∞=⎰,则lim()nan f x dx A →+∞=⎰,但反之不成立.7) 若()af x dx +∞⎰收敛,g 有界, 则()()af xg x dx +∞⎰收敛.8) 若lim ()AAA f x dx -→+∞⎰存在,则()f x dx +∞-∞⎰收敛.例 2 计算下列无穷积分: 1) 0()x n n I e x dx n N +∞-=∈⎰2) 21dxx x+∞++⎰3) (1)(ln )padxa x x +∞>⎰4) 24011x dx x +∞++⎰5) 31⎰6)1+∞⎰例 3 1) 设1()(2)x x x x ϕ+=-,求321()1()x dx x ϕϕ'+⎰;2) 已知01()cos x x dt tϕ=⎰,求(0)ϕ'.例 4 证明: 0cos 1xdx x+∞+⎰收敛, 且0cos 11xdx x+∞≤+⎰.例 5 讨论下列积分收敛性 1)2301dx x x x +∞+++⎰2)0cos (0)kx e xdx k +∞->⎰3)0ln(1)m x dx x +∞+⎰4)1+∞⎰5)20sin mx dx x +∞⎰6) 01m n x dx x +∞+⎰ 7) 10p x x e dx +∞--⎰ 8) 0cos (0)1n ax dx n x+∞≥+⎰。

积分的无穷级数

积分的无穷级数

积分的无穷级数积分是高等数学中非常重要的一个概念,它可以用于求解曲线下的面积、求解概率密度函数等问题。

而积分的无穷级数则是指一种特殊的级数,它由一列积分组成,而不是由一列数值组成。

这种无穷级数的研究对于理解积分的性质和应用非常有帮助。

在介绍积分的无穷级数之前,我们先需要回顾一下一般的无穷级数的定义:设有实数列${a_n}$,则称级数$\sum_{n=1}^{\infty}a_n$为收敛的,如果其部分和数列有极限,即$\lim_{n\to\infty}\sum_{i=1}^{n}a_i$存在。

否则,称级数发散。

积分的无穷级数是由一列积分组成的级数。

具体来说,设$f(x)$在区间$[a,b]$上可积(或可积于Riemann-Stieltjes意义下),则称级数$\sum_{n=1}^{\infty}\int_{a}^{b}f_n(x)dx$为收敛的,如果其部分和数列有极限,即$\lim_{n\to\infty}\sum_{i=1}^{n}\int_{a}^{b}f_i(x)dx$存在。

否则,称级数发散。

需要注意的是,积分的无穷级数并不是对于所有的可积函数都存在的。

事实上,对于某些函数族,它们的无穷级数可能会发散。

下面我们将介绍一些积分的无穷级数的性质和判别法。

1. 比较判别法比较判别法是判断级数的敛散性的一种常用方法。

类似地,我们可以将其推广到积分的无穷级数上。

比较判别法的基本思想是:将待定极限与已知级数或积分进行比较,如果待定极限的模长小于等于已知极限的模长,并且已知级数或积分收敛,则待定极限收敛。

例:比较级数$\sum_{n=1}^{\infty}\frac{1}{n+n\sin^2n}$和级数$\sum_{n=1}^{\infty}\frac{1}{n}$的敛散性。

解:设$f_n(x)=\frac{1}{n+n\sin^2n}$,则有$\int_{0}^{\pi}f_n(x)dx=\frac{\pi}{2n(1+\frac{1}{2}\sin^2n)}\geq \frac{\pi}{4n}$又由于级数$\sum_{n=1}^{\infty}\frac{1}{n}$是发散的,因此可以利用比较判别法得出,级数$\sum_{n=1}^{\infty}\frac{1}{n+n\sin^2n}$也是发散的。

5.4 反常积分

5.4 反常积分
x → −∞
则有类似牛 – 莱公式的计算表达式 :
∫a
+∞
f ( x ) dx = F ( x )
= F (+∞ ) − F (a ) = F (b) − F (−∞ ) = F (+∞) − F (−∞)
8
∫−∞ f ( x) dx = F ( x) ∫−∞ f ( x) dx = F ( x)
+∞

+∞
a
f ( x)dx = lim
u →+∞ a

u
f ( x)dx.
4
例1. 求曲线
和直线
及 x 轴所围成的开口曲
边梯形的面积。 解: 面积的含义可理解为Βιβλιοθήκη A=∫+ ∞ dx
1 y= 2 x
A
b
1
x
2 b
1 dx A = lim ∫ 2 = lim − b → + ∞ x 1 b→ +∞ 1 x 1 = lim 1 − = 1 b → + ∞ b
u →+∞ a
lim

u
f ( x)dx = J ,
(1)
则称此极限J为函数 f ( x)在 [a, +∞) 上的无穷限反常积分 (简称无穷积分), 记作
并称

+∞
J =∫
+∞
a
f ( x)dx,
+∞
a
f ( x)dx, 收敛.
如果极限(1)不存在, 称 即:

+∞

a
f ( x)dx 发散.
a
f ( x)dx = lim

十一章反常积分

十一章反常积分
y= 1 x2
0
1
b
x
二、两类反常积分的定义. 两类反常积分的定义
定义1: 定义 设函数 f (x)定义在区间[a, +∞)上, 且在任何 有限区间[a, u]上可积,如果存在极限
u →+∞ a
lim
∫ f ( x )dx = J
u
则称此极限为函数 f (x)在无穷区间[a, +∞)上 (x) [a, +∞) 的无穷限反常积分, 记作
u2
u 1
f (x)d <ε. x
2,比较原则
设定义在[ a,+∞)上的两个函数f和g都在任何有限区间上可积,
且满足
f (x ≤g(x x∈ a+ ) ) ), [, ∞
定理11.2(比较原则) (比较原则) 定理
设定义在[ a,+∞)上的两个函数f和g都在任何有限区间上可积,
[, ∞ 且满足 f (x) ≤g(x), x∈ a+ ) 则
若 g(x d 收 ,则 ∫ )x 敛 ∫
a
+ ∞
+ ∞
a
f (x d 收 ; ) x 敛
若 ∫
例1 : 讨论 ∫
+∞ 0
+ ∞
a
f (x d 发 ,则 g(x d 发 . ) x 散 ∫ )x 散
a
+ ∞
sin x dx的收敛性. 2 1+ x
a sin x x +b
3 2
例 2 : 讨论 ∫
+∞
a
+∞
a +∞
[k1 f1 ( x) + k 2 f 2 ( x)]dx也收敛, 且 [k1 f1 ( x) + k 2 f 2 ( x)]dx = k1 ∫

无穷积分的性质与收敛判别

无穷积分的性质与收敛判别

§2 无穷积分的性质与收敛判别1.证明定理11.2及其推论1定理11.2(比较法则)设定义在[),+∞a 上的两个函数f 和g 都在任何区间],[u a 上可积,且满足),[),(|)(|+∞∈≤a x x g x f ,则当∫+∞adx x g )(收敛时,∫+∞adx x f |)(|必收敛(或者,当∫+∞adx x g )(收敛,所以a A >∃,当A u u >>12时,有∫<21)(u u dx x g ε由于)(|)(|x g x f ≤,),[+∞∈∀a x ,因此更有∫∫<≤2121)(|)(|u u u u dx x g dx x f ε,故∫+∞adx x f |)(|收敛。

推论1 若f 和g 都在任何],[u a 上可积,1)(>x g ,且c x g x f x =∞→)(|)(|lim,则有(I )当+∞<<c 0时,∫+∞adx x f |)(|与dx x g a∫+∞)(同敛态;(ii )当0=c 时,由∫+∞adx x g )(收敛可推知,dx x f a |)(|∫+∞出收敛;(iii )当+∞=c 时,由∫+∞adx x g )(发散可推知∫+∞adx x f |)(|也发散。

证:(I )因为+∞<=<+∞→c x g x f x )(|)(|lim0,所以)(0c <>∀εε存在a A >,使得当Ax >时,有εε+<<−<c x g x f c )(|)(|0,即 dx x g c x f x g g c )()(|)(|)(()(0εε+<<−< (*)从而,若∫+∞adx x g )(收敛,那么∫+∞+Adx x g c )()(ε收敛。

于是由∫∫+∞+=AaAdx x f dx x f dx x f |)(||)(||)(|收敛。

2 无穷积分的性质

2 无穷积分的性质

无穷积分的性质:⑴在区间上可积 , — Const , 则函数在区间上可积 ,且.⑵和在区间上可积 , 在区间上可积 , 且.⑶无穷积分收敛的Cauchy准则: ( 翻译)定理积分收敛.⑷绝对收敛与条件收敛: 定义概念.绝对收敛收敛, ( 证 ) 但反之不确. 绝对型积分与非绝对型积分无穷积分收敛判别法非负函数无穷积分判敛法: 对非负函数,有↗. 非负函数无穷积分敛散性记法.⑴比较判敛法: 设在区间上函数和非负且,又对任何>, 和在区间上可积 . 则< , < ;, . ( 证 )例1 判断积分的敛散性.比较原则的极限形式 : 设在区间上函数,. 则ⅰ> < < , 与共敛散 :ⅱ> , < 时, < ;ⅲ> , 时,. ( 证 )⑵Cauchy判敛法: ( 以为比较对象, 即取.以下> 0 )对任何>, , 且, < ;且, .Cauchy判敛法的极限形式 : 设是在任何有限区间上可积的正值函数.且. 则ⅰ> < ;ⅱ>. ( 证 )例2 讨论以下无穷积分的敛散性 :ⅰ> ⅱ> [1]P 324 E6⑶其他判敛法:Abel判敛法: 若在区间上可积 , 单调有界 , 则积分收敛.Dirichlet判敛法: 设在区间上有界,在上单调,且当时,. 则积分收敛.例6 讨论无穷积分与的敛散性. [1]P325 E7例7 证明下列无穷积分收敛 , 且为条件收敛 :, ,. [1]P326 E8例8 ( 乘积不可积的例 ) 设, . 由例6的结果,积分收敛 . 但积分却发散.( 参阅例6 )。

无穷级数的定义,性质和及敛散性判别

无穷级数的定义,性质和及敛散性判别

一、问题的提出
1. 计算圆的面积
正六边形的面积 a1
R
正十二边形的面积 a1 a2
n 正 3 2 形的面积 a1 a2 an
即 A a1 a2 an 1 3 3 3 3 2. n 3 10 100 1000 10
二、级数的概念
1 1 1 1 解 un ( ), ( 2n 1)(2n 1) 2 2n 1 2n 1 1 1 1 sn 1 3 3 5 ( 2n 1) ( 2n 1)
1 1 1 1 1 1 1 1 (1 ) ( ) ( ) 2 3 2 3 5 2 2n 1 2n 1 1 1 (1 ), 2 2n 1 1 1 1 lim sn lim (1 ) , n n 2 2n 1 2
n 2,3,
于是有
1 3 2 3 3 lim An A1 (1 ) A1 (1 ) . n 4 5 5 1 9 雪花的面积存在极限(收敛).
n
lim Pn
结论:雪花的周长是无界的,而面积有界.
例 1 讨论等比级数(几何级数)
n 2 n aq a aq aq aq ( a 0) n 0
若记
un n 1

任意加括号
bk u pk 1 1 u pk
bk k 1 bk 的部分和记为 k k 1

则加括号后级数成为

un n 1

的部分和为 sn
则 k s pk 由数列和子数列的关系知 lim sn 存在, lim k 必定存在
1 dx 即 x 1 1 1 Sn 1 2 n n1 1 dx ln( n 1) , ( n ) x 1 故调和级数发散

无穷积分的性质及收敛判别

无穷积分的性质及收敛判别

极限的柯西准则,此等价于
前页 后页 返回
0, G a, u1 ,u2 G, F (u1) F (u2 ) ,

u1 f ( x)dx u2 f ( x)dx u2 f ( x)dx .
a
a
u1
根据反常积分定义,容易导出以下性质1 和性质2.
性质1 若
a
f1
(
x
)
dx

a
f
2
(
x
)
dx
都收敛
,
k1, k2
为任意常数,则
也收敛 ,且
a k1
f1(
x)

k2
f2
(
x)dx
前页 后页 返回
a
k1
f1
(
x
)

k2
f
2
(
x
)
dx


k1 a f1( x)dx k2 a f2( x)dx.
再由柯西准则的充分性, 证得 h( x)dx收敛. a
前页 后页 返回
二、非负函数无穷积分的收敛判别法
定理11.2(非负函数无穷积分的判别法) 设定义在
[a,) 上的非负函数 f 在任何 [a, u] 上可积, 则
f ( x)dx 收敛的充要条件是: M 0, 使 a u u [a, ), a f ( x)dx M .
性质2 若 f 在任何有限区间 [a, u] 上可积,则
f ( x) dx 与

f ( x) dx (b a ),
a
b
同时收敛或同时发散,且

b

无穷限反常积分敛散性及审敛法则(教案)

无穷限反常积分敛散性及审敛法则(教案)

无穷限反常积分敛散性及审敛法则一、教学目标分析在开始本节课程学习之前,学生已经对定积分有所了解,并初步掌握定积分的基本知识,本节通过介绍反常积分,加深学生对积分的了解,使同学对积分的了解更加系统化,并通过讲解让同学们减轻对积分的迷惑。

让学生反常积分在一些实际问题中的应运。

二、学情/学习者特征分析学生通过对前面课程的学习,对积分已经有了初步的了解。

但对于一些特殊积分或者有关实际问题的积分还是存在着一定的迷惑。

由于本节内容有点枯燥,所以要积极调动学生的兴趣,培养好课堂气氛,使学生充分掌握本节课的内容。

三、学习内容分析1.本节的作用和地位通过对本节的学习来解决一些不属于定积分的问题,这些问题通常是一些实际问题。

例如:常会遇到积分区间为无穷区间,或者被积函数为无界函数的积分等问题。

2.本节主要内容1. 无穷限反常积分的定义与计算方法2. 无穷限反常积分的性质3. 无穷限反常积分的比较审敛法则4. 条件收敛与绝对收敛 3.重点难点分析教学重点:无穷限反常积分计算,无穷限反常积分的比较审敛法则; 教学难点:无穷限反常积分的比较审敛法则。

4.课时要求:2课时四、教学理念学生在之前就已经掌握了一定的知识,通过本节对学生的教学使学生进一步了解反常积分,尤其是其在一些实际问题中的应运。

五、教学策略在教学中主要讲清反常积分的定义及其性质,并适时举例讲解,引导学生互动,相互讨论解决问题。

六.教学环境网络环境下的多媒体教室与课堂互动。

七、教学过程一、无穷限反常积分的定义定义1 设函数/定义在无穷区间[+∞,a )上,且在任何有限区间[u a ,]上可积.如果存在极限 则称此极限J 为函数f 在[+∞,a )上的无穷限反常积分(简称无穷积分),记作dx x f J a⎰+∞=)(,并称dxx f a ⎰+∞)(收敛.如果极限J dx x f uau =⎰+∞→)(lim不存在,亦称dx x f a ⎰+∞)(发散.类似地,可定义f 在(b ,∞-]上的无穷积分:.)(lim )(dx x f dx x f buu b⎰⎰-∞→∞-=对于f 在(+∞∞-,)上的无穷积分,它用前面两种无穷积分来定义:,)()()(dx x f dx x f dx x f a a ⎰⎰⎰+∞∞-∞-+∞+=其中a 为任一实数,当且仅当右边两个无穷积分都收敛时它才是收敛的.注: dx x f a⎰+∞)(收敛的几何意义是:若f 在],[+∞a 上为非负连续函数,则介于曲线)(x f y =,直线ax =以及x 轴之间那一块向右无限延伸的阴影区域有面积J .例1 讨论无穷积分.1)102⎰+∞+x dx ,.1)22⎰∞+∞-+xdx ,.)302⎰+∞-dx xe x 的收敛性. 例2 讨论下列无穷积分的收敛性:⎰+∞1)1p xdx, ;)(ln )22⎰+∞p x x dx 二、无穷积分的性质由定义知道,无穷积分⎰+∞adx x f )(收敛与否,取决于积分上限函数=)(u F ⎰uadx x f )(在+∞→u 时是否存在极限.因此可由函数极限的柯西准则导出无穷积分收敛的柯西准则. 定理11.1 无穷积分⎰+∞adx x f )(收敛的充要条件是:任给ε>0,存在G ≥a ,只要G u u >21,,便有ε<=-⎰⎰⎰2121)()()(u u u au adx x f dx x f dx x f .此外,还可根据函数极限的性质与定积分的性质,导出无穷积分的一些相应性质.性质1 若dx x f a)(1⎰+∞与dx x f a)(2⎰+∞都收敛,1k ,2k 为任意常数,则[]dx x f k x f k a⎰+∞+)()(2211也收敛,且[]dx x f k dx x f k dx x f k x f k aaa )()()()(22112211⎰⎰⎰+∞+∞+∞+=+.性 质 2 若f 在任何有限区间[u a ,)上可积,且有⎰+∞adx x f )(收敛,则⎰+∞adx x f )(亦必收敛,并有⎰⎰+∞+∞≤aadx x f dx x f )()(.证:⎰+∞adx x f )( 由收敛,根据柯西准则(必要性),任给0>ε,存在G ≥a ,当G u u >>12时,总有⎰⎰≤2121)()(u u u u dx x f dx x f . 利用定积分的绝对值不等式,又有⎰21)(u u dx x f ≤ε<⎰21)(u u dx x f .再由柯西准则(充分性),证得⎰+∞adx x f )(收敛又因⎰uadx x f )(≤⎰uadx x f )(,令+∞→u 取极限,立刻得到不等式.当⎰+∞adx x f )(收敛时,称⎰+∞adx x f )(为绝对收敛.性质3指出:绝对收敛的无穷积分,它自身也一定收敛.但是它的逆命题不成立,称收敛而不绝对收敛的无穷积分为条件收敛.性质3 若f 在任何有限区间[u a ,]上可积,b a <,则⎰+∞adx x f )(与⎰+∞bdx x f )(同敛态(即同时收敛或同时发散),且有⎰+∞adx x f )(=⎰b adx x f )(+⎰+∞bdx x f )(,性质2相当于定积分的积分区间可加性,由它又可导出⎰+∞adx x f )(收敛的另一充要条件:任给ε>0,存在0≥G ,当u >G 时,总有.)(ε<⎰+∞adx x f .事实上,这可由⎰⎰⎰+∞+∞+=uaudx x f dx x f dx x f )()()(结合无穷积分的收敛定义而得.三、比较判别法首先给出无穷积分的绝对收敛判别法.由于⎰uadx x f )(关于上限u 是单调递增的,因此⎰+∞adx x f )(收敛的充要条件是⎰uadx x f )(存在上界.根据这一分析,便立即导出下述比较判别法:定理11.2 (比较法则) 设定义在[+∞,a )上的两个函数f 和g 都在任何有限区间[u a ,]上可积,且满足 则当⎰+∞adx x g )(收敛时dx x f a⎰+∞)(必收敛(或当dx x f a⎰+∞)(发散时,⎰+∞adx x g )(必发散).例3 讨论dx x x⎰+∞+021sin 的收敛性. 解:由于],0[,111sin 22+∞∈+≤+x x x x ,而2102π=+⎰+∞x dx 为收敛,故dx xx ⎰+∞+021sin 为绝对收敛. 当选用⎰+∞1p xdx作为比较对象⎰+∞a dx x g )(时,比较判别法有如下两个推论(称为柯西判别法). 推论1 设f 定义于[+∞,a ] (0>a ),且在任何有限区间[u a ,]上可积,则有:(i)当 ),[,1)(+∞∈≤a x xx f p ,且1>p 时, dx x f a ⎰+∞)(收敛; (ii)当),[,1)(+∞∈≥a x xx f p 且1≥p 时, dx x f a ⎰+∞)(发散.推论2 设定义于[+∞,a ),在任何有限区间[u a ,.]上可积,且λ=+∞→)(lim x f xpx .则有:(i)当 +∞<≤>λ0,1p 时, dx x f a⎰+∞)(收敛; (ii)当 +∞≤<≤λ0,1p 时,dx x f a⎰+∞)(发散.推论3 若f 和g 都在任何[u a ,)上可积,0)(>x g ,且,)()(lim c x g x f x =+∞→则有(i)当+∞<≤c 0时,由⎰+∞adx x g )(收敛可推知dx x f a ⎰+∞)(也收敛; (ii)当+∞≤<c 0时,由⎰+∞adx x g )(发散可推知dx x f a⎰+∞)(也发散.四、狄利克雷判别法与阿贝尔判别法这里来介绍两个判别一般无穷积分收敛的判别法. 定理11.3 (狄利克雷判别法) 若⎰=uadx x f u F )()(在[+∞,a )上有界,)(x g 在[+∞,a )上当+∞→x 时单调趋于0,则无穷积分⎰+∞adx x g x f )()(收敛.定理11.4 (阿贝尔(Abel)判别法) 若⎰+∞adx x f )(收敛,)(x g 在[+∞,a )上单调有界,则无穷积分⎰+∞adx x g x f )()(收敛.用积分第二中值定理来证明狄利克雷判别法与阿贝尔判别法. 例5 讨论dx x xp ⎰+∞1sin 与)0(cos 1>⎰+∞p dx xx p 的收敛性. 解:这里只讨论前一个无穷积分,后者有完全相同的结论.下面分两种情形来讨论: (i)当p >1时dx x xp ⎰+∞1sin 绝对收敛.这是因为),,[,1sin +∞∈≤a x x x x p p 而⎰+∞1p xdx 当p >1时收敛,故由比较法则推知dx x xp⎰∞+1sin 收敛. (ii)当10≤<p 时dx x x p ⎰+∞1sin 条件收敛.这是因为对任意u ≥1,有2co s 1co s si n 1≤-=⎰u x d x u ,而p x 1当0>p 时单调趋于)(0+∞→x ,故由狄利克雷判别法推知dx x xp ⎰+∞1sin 工当0>p 时总是收敛的. 另一方面,由于),1[,22cos 21sin sin 2+∞∈-=≥x x x x x x x x p ,其中dt ttdx x x ⎰⎰+∞+∞=21cos 2122cos 是收敛的,而⎰+∞12xdx是发散的,因此当10≤<p 时该无穷积分不是绝对收敛的.所以它是条件收敛的. 例6 证明下列无穷积分都是条件收敛的.,sin 12⎰+∞dx x ,cos 12⎰+∞dx xdx x x ⎰+∞14sin证:前两个无穷积分经换元2x t =得到,2sin sin 112dt tt dx x ⎰⎰+∞+∞=.2cos cos 112dt tt dx x ⎰⎰+∞+∞=由例5知它们是条件收敛的.对于第三个无穷积分,经换元2x t =而得⎰⎰+∞+∞=1214sin 21sin dt t dx x x ,它也是条件收敛的.从例6中三个无穷积分的收敛性可以看到,当+∞→x 时被积函数即使不趋于零,甚至是无界的,无穷积分仍有可能收敛.八、学习评价本节成功向学生讲解了两种定积分的推广即反常积分,尤其对无穷反常积分进行介绍,并对其敛散性及审敛性附带介绍。

微积分学广义积分敛散性判别ppt课件

微积分学广义积分敛散性判别ppt课件

f (x), g(x) R( [a, A] ) , 且满足 g(x) f (x) 0,
则 (1) 当 g(x) d x 收敛时,积分 f (x) d x 也收敛.
a
a
(2) 当 f (x) d x 发散时,积分 g(x) d x 也发散.
a
a
11

x
F (x) a f (t) d t
在[a, ) 上单调增加且有上界. 由极限存在准则
可知极限 lim F(x) lim
x
f (t) d t
存在.
x
x a
即无穷积分 f (x) d x 收敛 . a
10
定理 ( 比较判别法 )
设函数 f (x) , g(x) 在[a, ) 上有界, A R , A a ,
若积分上限函数 F(x)
x
f (t) d t
在[a, )
a
上有上界, 则无穷积分 f (x) d x 收敛 . a
9
证 因为 f (x) C( [a, ) ) , 且 f (x) 0 , 所以,
积分上限函数F(x) 在[a, ) 上单调增加.
又已知函数F(x) 在[a, ) 上有上界, 从而

c

对 f (x) d x 而言,由定积分对区间的可加性,
显然其收敛性与 c 值无关. 为方便起见,通常取 c 0.
2
例1 解
计算 x ex2 d x . 0
x ex2 d x lim A x ex2 d x
0
A 0
令 u x2
,
a


a 1 p

数学分析11.2无穷积分的性质与收敛判别

数学分析11.2无穷积分的性质与收敛判别

第十一章 反常积分 2 无穷积分的性质与收敛判别定理:无穷积分⎰+∞a f(x )dx 收敛的充要条件是:任给ε>0,存在 G ≥a ,只要u 1,u 2>G ,便有|⎰2u a f(x )dx-⎰1u a f(x )dx |=|⎰21u u f(x)dx |<ε.性质1:若⎰+∞a 1(x )f dx 与⎰+∞a 2(x )f dx 都收敛,则⎰++∞a2211(x )]f k (x )f [k dx 也收敛(k 1,k 2为任意常数),且 ⎰++∞a2211(x )]f k (x )f [k dx=k 1⎰+∞a1(x )f dx+k 2⎰+∞a2(x )f dx.性质2:若f 在任何有限区间[a,u]上可积,a<b ,则⎰+∞a f(x )dx 与⎰+∞b f(x )dx 同敛态(即同时收敛或同时发散),且有⎰+∞a f(x )dx=⎰b a f(x )dx+⎰+∞b f(x )dx.注:性质2相当于定积分区间可加性,由它又可导出⎰+∞a f(x )dx 收敛的另一充要条件:任给ε>0,存在G ≥a ,只要u>G ,总有|⎰+∞a f(x )dx|<ε. 又可由⎰+∞a f(x )dx=⎰ua f(x )dx+⎰+∞u f(x )dx 结合无穷积分的收敛定义而得.性质3:若f 在任何有限区间[a,u]上可积,且有⎰+∞a |f(x )|dx 收敛,则⎰+∞af(x )dx 亦必收敛,并有|⎰+∞af(x )dx |≤⎰+∞a|f(x )|dx.证:由⎰+∞a |f(x )|dx 收敛,根据柯西准则的必要性,任给ε>0, 存在G ≥a ,当u 2>u 1>G 时,总有|⎰21u u |f(x)|dx |=⎰21u u |f(x)|dx <ε.利用定积分的绝对值不等式,又有|⎰21u u f(x)dx |≤⎰21u u |f(x)|dx<ε.又根据柯西准则的充分性,证得⎰+∞a f(x )dx 收敛.对|⎰u a f(x )dx |≤⎰ua |f(x )|dx(u>a)两边令u →+∞取极限,可得 |⎰+∞a f(x )dx |≤⎰+∞a |f(x )|dx.注:当⎰+∞a |f(x )|dx 收敛时,称⎰+∞a f(x )dx 为绝对收敛. 性质3指出:绝对收敛的无穷积分,它自身也一定收敛. 但逆命题一般不成立. 收敛而不绝对收敛的反常积分又称为条件收敛.二、比较判别法定理:(比较法则)设定义在[a,+∞)上的两个函数f 和g 都在任何有限区间[a,u]上可积,且满足|f(x)|≤g(x), x ∈[a,+∞),则当⎰+∞ag(x )dx 收敛时⎰+∞a|f(x )|dx 必收敛(或者当⎰+∞a|f(x )|dx 发散时,⎰+∞ag(x )dx 必发散).证:若⎰+∞a g(x )dx 收敛,则任给ε>0,存在G ≥a ,只要u 2>u 1>G , 总有|⎰21u u g(x)dx|<ε. 又|f(x)|≤g(x), x ∈[a,+∞),∴|⎰21u u |f(x)|dx |=⎰21u u |f(x)|dx ≤⎰21u u g(x)dx ≤|⎰21u u g(x)dx|<ε,∴⎰+∞a |f(x )|dx 收敛.若⎰+∞a |f(x )|dx 发散,则存在ε0>0,对任何G ≥a ,只要u 2>u 1>G , 总有|⎰21u u |f(x)|dx |>ε0. 又|f(x)|≤g(x), x ∈[a,+∞),∴|⎰21u u g(x)dx|≥⎰21u u g(x)dx ≥⎰21u u |f(x)|dx =|⎰21u u |f(x)|dx|>ε0.∴⎰+∞a g(x )dx 发散.例1:讨论⎰++∞2x1sinxdx 的收敛性.解:∵2x 1sinx +≤2x11+, x ∈[0,+∞);又⎰++∞02x 11dx=∞u lim +→arctanu=2π, 收敛.根据比较法则知:⎰++∞02x1sinxdx 绝对收敛.推论1:若f 和g 都在[a,u]上可积,g(x)>0,且)x (g |)x (f |lim∞x +→=c ,则有: (1)当0<c<+∞时,⎰+∞a |f(x )|dx 与⎰+∞a g(x )dx 同敛态;(2)当c=0时,由⎰+∞a g(x )dx 收敛可推知⎰+∞a |f(x )|dx 也收敛; (3)当c=+∞时,由⎰+∞a g(x )dx 发散可推知⎰+∞a |f(x )|dx 也发散. 证:∵)x (g |)x (f |lim∞x +→=c ,∴任给ε>0,存在N ,当x>N 时,有|)x (g |)x (f |-c|<ε, 即有(c-ε)g(x)<|f(x)|<(c+ε)g(x).(1)由比较原则得⎰+∞a |f(x )|dx 与⎰+∞a g(x )dx 同敛态;(2)由|f(x)|<εg(x)知,若⎰+∞a g(x )dx 收敛,则⎰+∞a |f(x )|dx 也收敛; (3)当x=+∞时,)x (g |)x (f |lim∞x +→=+∞,任给M>0,存在G ,当x>G 时,就有 )x (g |)x (f |>M ,即|f(x)|>Mg(x),∴当⎰+∞a g(x )dx 发散,⎰+∞a |f(x )|dx 也发散.推论2:设f 定义于[a,+∞)(a>0),且在任何有限区间[a,u]上可积,则有:(1)当|f(x)|≤p x1, x ∈[a,+∞), 且p>1时,⎰+∞a |f(x )|dx 收敛;(2)当|f(x)|≥p x1, x ∈[a,+∞), 且p ≤1时,⎰+∞a |f(x )|dx 发散.推论3:设f 定义于[a,+∞),在任何[a,u]上可积,且∞x lim +→x p |f(x)|=λ.则有:(1)当p>1, 0≤λ<+∞时,⎰+∞a |f(x )|dx 收敛; (2)当p ≤1, 0<λ≤+∞时,⎰+∞a |f(x )|dx 发散.注:推论2、3又称为柯西判别法.例2:讨论下列无穷限积分的收敛性: (1)⎰+∞1x-ae x dx ;(2)⎰++∞521x x dx.解:(1)∵对任意实数a ,有-xa 2∞x e x x lim⋅+→=x 2a ∞x e x lim ++→=0, 由推论3(p=2, λ=0)可知, 对任何实数a, ⎰+∞1x -a e x dx 收敛.(2)∵有1x x x lim5221∞x ++→=1,由推论3(p=21, λ=1)可知,⎰++∞0521x x dx 发散.三、狄利克雷判别法与阿贝尔判别法定理:(狄利克雷判别法)若F(u)=⎰ua f(x )dx 在[a,+∞)上有界,g(x)在[a,+∞)上当x →+∞时单调趋于0,则⎰+∞a f(x )g(x )dx 收敛.证:由条件设|⎰ua f(x )dx |≤M, u ∈[a,+∞), 任给ε>0,∵∞x lim +→g(x)=0,∴存在G ≥a, 当x>G 时,有|g(x)|<M4ε. 又g 为单调函数, 利用积分第二中值定理,对任何u 2>u 1>G, 存在ξ∈[u 1,u 2], 使得⎰21u u f(x)g(x)dx=g(u 1)⎰ξu 1f(x)dx+g(u 2)⎰2u ξf(x)dx. 于是有|⎰21u u f(x)g(x)dx |≤|g(u 1)|·|⎰ξu 1f(x)dx|+|g(u 2)|·|⎰2u ξf(x)dx|=|g(u 1)|·|⎰ξa f(x )dx-⎰1u af(x )dx|+|g(u 2)|·|⎰2u af(x )dx -⎰ξaf(x )dx|=M 4ε·2M+M4ε·2M=ε. 由柯西准则可知:⎰+∞a f(x )g(x )dx 收敛.定理:(阿贝尔(Abel)判别法)若⎰+∞a f(x )dx 收敛,g(x)在[a,+∞)上单调有界,则⎰+∞a f(x )g(x )dx 收敛.证:记F(u)=⎰ua f(x )dx, ∵⎰+∞a f(x )dx 收敛,∴⎰+→ua∞u f(x )lim dx 存在,记为J , 取ε=1,存在A ,当n>A 时,有|F(u)-J|<1,∴|F(u)|<|J|+1. 又F(u)在[a,+∞)上连续,从而有界.又g(x)在[a,+∞)上单调有界,∴∞x lim +→g(x)存在,记为B ,令g 1(x)=g(x)-B ,则有∞x lim +→g 1(x)= ∞x lim +→g(x)-B=0,∴g 1(x)单调趋于0,由狄利克雷判别法知:⎰+∞a 1(x )f(x )g dx=⎰+∞a B]-f(x )[g(x )dx 收敛. ∴⎰+∞a f(x )g(x )dx=⎰+∞a B]-f(x )[g(x )dx+B ⎰+∞a f(x )dx 收敛.例3:讨论⎰+∞1p x sinxdx 与⎰+∞1p xcosx dx (p>0)的收敛性. 解:当p>1时,p x sinx ≤p x 1, x ∈[1,+∞),而⎰+∞1p xdx 当p>1时收敛,由比较法则推知:⎰+∞1p x sinxdx 收敛,即⎰+∞1p xsinx dx 绝对收敛. 同理,可证当p>1时,⎰+∞1p xcosxdx 绝对收敛. 当0<p ≤1时,对任意u ≥1, 有|⎰u1px sinxdx|=|cos1-cosu|<2, 当p>0时,p ∞x x 1lim+→=0,且p x1在[1,+∞)单调减, 根据狄利克雷判别法知:⎰+∞1p xsinxdx (p>0)收敛. 又由p x sinx≥x x sin 2=2x 1-2xcos2x , x ∈[1,+∞),其中⎰+∞12x cos2x dx =⎰+∞1tcost 21dt 满足狄利克雷判别条件而收敛, 而⎰+∞12x dx发散,∴当0<p ≤1时,⎰+∞1px cosx dx 条件收敛. 同理,可证当0<p ≤1时,⎰+∞1p xcosxdx 条件收敛.例4:证明下列无穷积分都是条件收敛的:⎰+∞12x sin dx; ⎰+∞12cosx dx; ⎰+∞14x cosx dx.证:⎰+∞12x sin dx=⎰+∞1t2t sin dt; ⎰+∞12cosx dx=⎰+∞1t2cost dt;由例3可知⎰+∞12x sin dx 和⎰+∞12cosx dx 都是条件收敛.又⎰+∞14x cosx dx=⎰+∞12cost 21dt ,∴⎰+∞14x cosx dx 条件收敛.习题1、设f 与g 是定义在[a,+∞)上的函数,对任何u>a ,它们在[a,u]上都可积. 证明:若⎰+∞a 2)x (f dx 与⎰+∞a 2)x (g dx 都收敛,则⎰+∞a )x (f(x )g dx与⎰++∞a 2)]x (g [f(x )dx 也都收敛证:∵⎰+∞a 2)x (f dx 与⎰+∞a 2)x (g dx 都收敛,∴)]x (g )x ([f 2∞a 2+⎰+dx 也收敛. 又|2f(x)g(x)|≤f 2(x)+g 2(x),由比较法则知2⎰+∞a |)x (f(x )g |dx 也收敛. ∴⎰+∞a )x (f(x )g dx 收敛.∴⎰++∞a 2)]x (g [f(x )dx=⎰+∞a 2)x (f dx+2⎰+∞a )x (f(x )g dx+⎰+∞a 2)x (g dx ,也收敛.2、设f,g,h 是定义在[a,+∞)上的三个连续函数,且有h(x)≤f(x)≤g(x).证明:(1)若⎰+∞a )x (h dx 与⎰+∞a )x (g dx 都收敛,则⎰+∞a f(x )dx 也收敛; (2)又若⎰+∞a )x (h dx=⎰+∞a )x (g dx=A ,则⎰+∞a f(x )dx=A. 证:(1)若0≤f(x)≤g(x),∵⎰+∞a )x (g dx 收敛, 由比较法则知⎰+∞a f(x )dx 也收敛.若h(x)≤f(x)≤0,则|f(x)|≤-h(x),∵⎰+∞a )x (h -dx=-⎰+∞a )x (h dx 收敛, 由比较法则知⎰+∞a |f(x )|dx 也收敛,∴⎰+∞a f(x )dx 也收敛.(2)由⎰+∞a )x (h dx=⎰+∞a )x (g dx=A 得,⎰+→u a ∞u )x (h limdx=⎰+→ua ∞u )x (g lim dx=A. 又h(x)≤f(x)≤g(x),由极限的夹逼定理得:⎰+→ua ∞u )x (f limdx=A , ∴⎰+∞a f(x )dx=A.3、讨论下列无穷积分的收敛性: (1)⎰+∞+0341x dx ;(2)⎰∞+1x e -1xdx ;(3)⎰+∞+0x1dx ;(4)⎰+∞+13x 1xarctanxdx ;(5)⎰+∞+1nxx)ln(1dx ;(6)⎰+∞+0n mx 1x dx (n,m ≥0). 解:(1)∵3434∞x 1x 1x lim +⋅+→=1,p>1,0<λ<+∞,∴⎰+∞+0341x dx 收敛.(2)∵x 2∞x e-1xx lim ⋅+→=0,p=2,λ=0,∴⎰∞+1x e -1x dx 收敛.(3)∵x11x lim∞x +⋅+→=1,p=21,λ=1,∴⎰+∞+0x 1dx dx 发散.(4)∵arctanx x 1xarctanxlim 3∞x ++→=0,且⎰∞+1arctanx dx=2π-arctan1收敛,∴⎰+∞+13x1xarctanxdx 收敛. (5)当n>1时,取p ∈(1,n),∵n p ∞x xx)ln(1x lim +⋅+→=0,∴⎰+∞+1n x x)ln(1dx 收敛.当n ≤1时,∵n n ∞x xx)ln(1x lim +⋅+→=+∞,∴⎰+∞+1n x x)ln(1dx 发散. (6)∵n mm-n ∞x x1x x lim +⋅+→=1, ∴当n-m>1时,⎰+∞+0n mx 1x dx 收敛; 当n-m ≤1时,⎰+∞+0nmx 1x dx 发散.4、讨论下列无穷积分为绝对收敛还是条件收敛: (1)⎰∞+1x xsin dx ;(2)⎰+∞+02x 1sgn(sinx)dx ;(3)⎰+∞+0x 100cosx x dx ;(4)x sin nx1ln(lnx)∞+e⎰dx. 解:(1)⎰∞+1x x sin dx=2⎰∞+1t sint dt ,∵t1单调趋于0(t →+∞),|⎰u 1sint dt|<2 (u>1); 由狄利克雷判别法知:⎰∞+1xxsin dx 收敛. 又t sint≥t t sin 2=2t 1-2tcos2t t ∈[1,+∞),其中⎰∞+12t cos2tdt 收敛,而⎰∞+12tdt 发散,∴⎰∞+1x x sin dx ,即原积分条件收敛.(2)∵⎰+∞+02x 1sgn(sinx )dx =⎰+∞+02x11dx=2π,∴原积分绝对收敛. (3)∵x100x+在[0,+∞)上单调且调趋于0(x →+∞),|⎰u 0cosx dx|≤1, 由狄利克雷判别法知:⎰+∞+0x100cosxx dx 收敛. 又x100cosxx +≥x 100x cos x 2+=x 2200x ++x 2200x 2cos x +,其中⎰+∞+0x 2200x 2cos x dx 收敛,⎰+∞+0x2200x dx 发散,∴⎰+∞+0x100cosxx dx 发散,即原积分条件收敛.(4)x sin nx 1ln(lnx)∞+e ⎰dx=x sin nx1ln(lnx)e e 0⎰dx +x sin nx 1ln(lnx)∞+e e ⎰dx , ∵|⎰∞+e ex sin dx|<2 (u>e e),且在[e e,+∞)上,'⎪⎭⎫ ⎝⎛nx 1ln(lnx)=2nx )1(x ln(lnx )-1+<0, ∴nx1ln(lnx)在[e e ,+∞)上单调减,且nx 1ln(lnx)lim ∞x +→=nx 11lim ∞x +→=0, 由狄利克雷判别法知,x sin nx1ln(lnx)∞+e e⎰dx 收敛,∴原积分收敛. 又x sin nx 1ln(lnx )≥x sin nx 1ln(lnx)2=nx 21ln(lnx)-x 2cos nx21ln(lnx), 其中⎰∞+eenx 21ln(lnx)dx 发散,⎰∞+e ex 2cos nx21ln(lnx)dx 收敛,∴⎰∞+e ex sin nx1ln(lnx )dx 发散,即原积分条件收敛.5、举例说明:⎰+∞a f(x )dx 收敛时,⎰+∞a 2)x (f dx 不一定收敛;⎰+∞af(x )dx 绝对收敛时,⎰+∞a2)x (f dx 也不一定收敛.解:令f(x) =xsinx,由狄利克雷判别法知⎰+∞1f(x )dx 收敛,但⎰+∞12)x (f dx=⎰+∞12x xsin dx=⎰+∞1dx 2x 1+⎰+∞1dx 2xcos2x ,发散. 又令f(x)=⎪⎩⎪⎨⎧+<≤++<≤1n x n 1n 0 n 1n x n n 33,,,则⎰+∞1|f(x )|dx=∑∞=1i 2n 1收敛, 但⎰+∞12)x (f dx=∑∞=1i n1发散.6、证明:若⎰+∞a f(x )dx 绝对收敛,且f(x)lim ∞x +→=0,则⎰+∞a 2)x (f dx 必收敛.证法1:∵f(x)lim ∞x +→=0,∴对ε=1,有M ,当x>M 时,|f(x)|<1.⎰+∞af(x )dx=⎰+1M af(x )dx+⎰++∞1M f(x )dx ,∵⎰+∞a f(x )dx 绝对收敛,∴⎰++∞1M f(x )dx 绝对收敛.又当x ∈[M+1,+∞)时,|f(x)|<1,∴|f 2(x)|<|f(x)|,∴⎰++∞1M 2(x )f dx 收敛.∴⎰+∞a 2)x (f dx=⎰+1M a 2(x )f dx+⎰++∞1M 2(x )f dx ,收敛.证法2:∵f(x )(x )f lim 2∞x +→=f(x)lim ∞x +→=0,又⎰+∞a f(x )dx 绝对收敛所以收敛, ∴⎰+∞a 2)x (f dx 收敛.7、证明:若f 是[a,+∞)上的单调函数,且⎰+∞a f(x )dx 收敛,则f(x)lim ∞x +→=0,且f(x)=o (x1), x →+∞.证:不妨设f(x)单调减,若存在x 1∈[a,+∞),使f(x 1)<0, 则当x>x 1时,有f(x)<f(x 1) <0,即-f(x)>|f(x 1)|. 又⎰+∞a 1|)f(x |dx 发散,∴⎰+∞a f(x )dx 发散,矛盾. ∴f(x 1)≤0. ∵⎰+∞a f(x )dx 收敛,∴任给ε>0,存在M ≥a ,只要x>M ,就有 |⎰2xx f(t)dt |<ε, 即⎰2xx f(t)dt<ε. 当x>2M 时,0≤xf(x)=2⎰x2x f(x)dt ≤2⎰x2x f(t)dt<2ε. ∴xf(x)lim ∞x +→=0, 即有f(x)=o (x1), x →+∞,从而f(x)lim ∞x +→=0.若f(x)单调增,则取g(x)=-f(x)单调减,同理有g(x)=-f(x)= o (x1), x →+∞,从而g(x)lim ∞x +→=-f(x)lim ∞x +→=0. 结论仍成立.8、证明:若f 在[a,+∞)上一致连续,且⎰+∞a f(x )dx 收敛,则f(x)lim ∞x +→=0.证:∵f 在[a,+∞)上一致连续,∴任给ε>0,存在δ>0, 当x 1,x 2∈[a,+∞),|x 1-x 2|<δ时,有|f(x 1)-f(x 2)|< ε. 又⎰+∞af(x )dx 收敛,∴对ε1=εδ,存在M>a ,当x>M 时,有|⎰+δx xf(t)dt|<εδ.对⎰+δx x f(t)dt ,∵x<t<x+δ,即|x-t|<δ,∴|f(x)-f(t)|< ε,即f(t)- ε<f(x)<f(t)+ε.从而⎰+δx x f(t)dt -εδ<⎰+δx x f(x )dt<⎰+δx x f(t)dt +εδ,即|⎰+δx x f(x )dt -⎰+δx x f(t)dt |<εδ. ∴当x>M 时,|f(x)|= δ1|⎰+δx x f(x )dt |≤δ1(|⎰+δx x f(x )dt-⎰+δx x f(t)dt|+|⎰+δx x f(t)dt|)<2ε. ∴f(x)lim ∞x +→=0.。

无穷积分的性质与收敛判别法

无穷积分的性质与收敛判别法

§2 无限积分的性质与收敛判别法教授教养目标与请求:控制前提收敛与绝对收敛的概念,收敛的无限积分具有的四共性质;控制收敛的Cauchy准则.比较判别法及其三个推论.阿贝耳判别法.狄利克雷判别法等.教授教养重点,难点:无限积分的收敛性比较判别法.柯西判别法.狄利克雷判别法等.教授教养内容:本节介绍了无限积分的三共性质和四种判别收敛的办法一无限积分的性质由界说知道,,取决于函数F(u)在u→+∞时是否消失极限.是以由函数极限的柯西准则导出无限积分收敛的柯西准则.0,消失G≥a,只要u1.u2>G,便有证实: 所以a,只要u1.u2>G,便有此外,还可依据函数极限的性质与定积分的性质,导出无限积分的一些响应性质.性质1 (线性性质) ,k1.k2为随意率性常数,则也收敛,且(1)证实:性质 2 若f在任何有限区间[a,u]上可积,a<b,,且有(2)个中右边第一项是定积分.证实: .又个中右边第一项是定积分.,且有. □解释: (1) 性质2相当于定积分的积分区间可加性;(2) 由性质2前提: 0,消失G≥a,当u>G时,总有事实上性质 3 若f在任何有限区间[a,u] 上可积,,则,并有≤. (3),依据柯西准则(须要性),0,消失G证实:≥a,当u2>u1>G时,总有应用定积分的绝对值不等式,又有再由柯西准则(充分性),令u→+∞取极限,连忙得到不等式(3).□,绝对收敛, 称收敛而不断对收敛者为前提收敛.性质3.但其逆命题一般不成立,往后将举例解释收敛的无限积分不一定绝对收敛(本节例3中当0<p≤1时).二比较判别法这一部分介绍无限积分的绝对收敛判别法(比较准则及其三个推论).u是单调递增的,.依据这一剖析,便连忙导出下述比较判别法(请读者本身写出证实):定理11.2(比较轨则)设界说在[a,+∞]上的两个函数f和g都在任何有限区G(u)间[a,u]可积,且知足则当收敛时必收敛(或者,当发散时发散).证实法一[ 依据P55 习题2结论:设f(减)函数.消失的充要前提为f(下)界 ].. 又G(u)单增, 从而消失M>0, 使得F(u)有上界M. 又显然F(u)单增., 从而., 依据柯西准则(须要性),消失G ≥a,当u 2>u 1>G 时,总有依据柯西准则(充分性),收敛.□例1.解1例4),依据比较轨则,为绝对收敛.□上述比较法极限情势如下:推论1若f 和g 都在任何[a,u]上可积,g(x)>0,则有(ⅰ)当0<c <+∞时;(ⅱ)当c=0时,; (ⅲ)当c=+∞时,.证实 (i)对当时,从而由比较轨则联合性质2知.(ii) 由对当时,从而从而由比较轨则联合性质2知,敛.(iii) 由对当时,从而从而由比较轨则联合性质2知,散. □,比较判别法及其极限情势成为如下两个推论(称为柯西判别法).推论2 设f >0),且在任何有限区间[a,u]上可积,则有:且p >1;且p ≤1.推论3设f在任何有限区间[a,u]上可积,且则有:(ⅰ)当p >1,0+∞时; (ⅱ)当p ≤1,0+∞时.例2评论辩论下列无限限积分的收敛性:1解 本例中两个被积函数都长短负的,故收敛与绝对收敛是统一回事. 1是以依据上述推论3(),推知1.2)因为是以依据上述推论3(),推知2)是发散的..三 狄利克雷判别法与阿贝尔判别法这里来介绍两个判别一般无限积分收敛的判别法.定理11.3(狄利克雷判别法)若F (u ),g (xx →+∞时单调趋于0,.证实M,u0,是以消失G ≥a,当x >G 时,又因g 为单调函数,应用积分第二中值定理(定理9.10的推论),对于任何u 2>u 1>G,[u1,u2],使得于是有依据柯西准则,. □定理11.4(阿贝尔(Abel,g(x)在上单调有界,.这定理同样可用积分第二中值定理来证实,但又可应用狄利克雷判别法更便利地获得证实(留作习题10).例3p>0)的收敛性.解这里只评论辩论前一个无限积分,后者有完整雷同的结论.下面分两种情况来评论辩论:(ⅰ)当p>1.p>1时收敛,.(ⅱ)当0<p≤1.这是因为对随意率性u≥1,有p>0时单调趋于0(x→+∞),故由狄利p>0时老是收敛的.另一方面,知足狄利克雷判别前提,是收敛的,,是以当0<p ≤1时该无限积分不是绝对收敛的.所以它是前提收敛的. □例4 证实下列无限积分都是前提收敛的:证 前两个无限积分经换元t=x2得到由例3已知它们是前提收敛的.对于第三个无限积分,经换元t=x 2它也是前提收敛的.从例4中三个无限积分的收敛性可以看到,当x →+∞时被积函数即使不趋于零,甚至是无界的,无限积分仍有可能收敛(P 269 exe 4). 课后功课题:3,4(2).(4),5(2).(4)。

《数学分析》第十一章 反常积分

《数学分析》第十一章 反常积分
⑷ 绝对收敛与条件收敛: 定义概念.
绝对收敛 收敛, ( 证 ) 但反之不确. 绝对型积分与非绝对型积
分.
3. 无穷积分判敛法:
非负函数无穷积分判敛法: 对非负函数,有 F (A) ↗. 非负函数无穷积
分敛散性记法. ⑴ 比较判敛法:
设在区间 [ a , ) 上函数 f (x) 和 g (x) 非负且
下一页
上一页
例 2 从盛满水开始打开小孔,问需多
长 时 间 才能 把 桶里 水 全部 放 完?
解 由物 理 学知 识 知道 ,( 在 不计 摩 擦情
况 下 ), 桶 里水 位 高度 为 h x 时 , 水 从小
孔 里 流 出的 速 度为
xO
O
v 2g(h x)
设在很短一段时间 t 内,桶里水面降低的
ⅰ> p 1, 0 , f < ;
a
ⅱ> p 1, 0 , f .
a
例 5 讨论以下无穷积分的敛散性 :
ⅰ> x ex dx, ( 0);
0
ⅱ>
x 2 dx.
b
a
t
1 bx
f (x)dx
1
f
b
1 t
1 t2
dt ,
ba
3. 把瑕积分化成了无穷积分;
设a
0,

t 1 x
g(x)dx
a
0 1
g
1 t
dt t2
1 a
0
g1 t
dt t2

a
把无穷积分化成了瑕积分.
可见 , 瑕积分与无穷积分可以互化 . 因此 , 它们有平行的理论和结果 .
例 11 证明
无穷限反常积分几何意义

大学数学易考知识点无穷级数与收敛性

大学数学易考知识点无穷级数与收敛性

大学数学易考知识点无穷级数与收敛性在大学数学中,无穷级数与收敛性是一个重要的知识点。

本文将介绍无穷级数的概念、收敛性的判定方法以及相关的应用。

一、无穷级数的概念无穷级数是一种特殊的数列求和形式,它是由无穷多个项相加而得到的结果。

一般来说,无穷级数可以写成如下形式:S = a₁ + a₂ + a₃ + ...其中,a₁、a₂、a₃等为级数的各项。

二、收敛性的判定方法判断一个无穷级数的收敛性是数学中常见的问题之一,下面将介绍几种常用的判定方法。

1. 级数收敛的必要条件如果一个无穷级数收敛,那么它的通项必须趋于零,即lim(n→∞)aₙ = 0。

2. 正项级数的收敛性判定如果无穷级数的所有项都是非负数,并且该级数的前n项和有上界(即求和式Sn有上确界),则该级数收敛;若前n项和没有上界(即求和式Sn没有上确界),则该级数发散。

3. 比值判别法设有一个正项级数Σaₙ,若lim(n→∞)aₙ₊₁/aₙ存在且小于1,则该级数收敛;若lim(n→∞)aₙ₊₁/aₙ存在且大于1,则该级数发散;若lim(n→∞)aₙ₊₁/aₙ等于1,则该判定法不起作用,需要使用其他方法进行判定。

4. 根值判别法设有一个正项级数Σaₙ,若lim(n→∞)√(aₙ)存在且小于1,则该级数收敛;若lim(n→∞)√(aₙ)存在且大于1,则该级数发散;若lim(n→∞)√(aₙ)等于1,则该判定法不起作用,需要使用其他方法进行判定。

5. 绝对收敛与条件收敛若一个级数及其绝对值级数都收敛,则称该级数为绝对收敛;若一个级数收敛但其绝对值级数发散,则称该级数为条件收敛。

三、收敛性的应用无穷级数的收敛性在数学和物理学等领域中有着广泛的应用。

1. 泰勒级数泰勒级数是无穷级数在微积分中的一种重要应用。

它可以将一个函数以无穷项的形式表示为一个级数,从而可以方便地进行近似计算和研究函数的性质。

2. 随机事件概率计算在概率论中,无穷级数的收敛性常用于计算随机事件的概率。

高等数学第11章第2节无穷积分的性质与收敛判别

高等数学第11章第2节无穷积分的性质与收敛判别

§2 无穷积分的性质与收敛判别一 无穷积分的性质:⑴ )(x f 在区间 ) , [∞+a 上可积 , k — Const , 则函数k )(x f 在区间) , [∞+a 上可积, 且⎰+∞=ak dx x kf )(⎰+∞adx x f )(.⑵ )(x f 和)(x g 在区间 ) , [∞+a 上可积 , ⇒ )(x f ±)(x g 在区间 ) , [∞+a 上可积 , 且⎰+∞=±ag f )(⎰+∞±af ⎰+∞ag .⑶ 无穷积分收敛的Cauchy 准则: ( 翻译 . ,)(+∞→→A B A F )定理: 无穷 积分⎰+∞adx x f )(收敛 εε<⇒>'''∀∃>∀⇔⎰'''A A dx x f A A A A )( ,, , , 0 .⑷ 绝对收敛与条件收敛: 定义概念.绝对收敛 ⇒ 收敛, ( 证 ) 但反之不真. 绝对型积分与非绝对型积分 .二 无穷积分判敛法:非负函数无穷积分判敛法: 对非负函数,有)(A F ↗. 非负函数无穷积分敛散性记法.⑴ 比较判别法: 设在区间 ) , [∞+a 上函数)(x f 和)(x g 非负且)(x f ≤)(x g ,又对任何A >a ,)(x f 和)(x g 在区间 ] , [A a 上可积 . 则⎰+∞ag < ∞+, ⇒ ⎰+∞af < ∞+; ⎰+∞af=∞+, ⇒ ⎰+∞ag =∞+. ( 证 )例4 判断积分 ⎰+∞++0225)1sin(dx x x 的敛散性. 比较原则的极限形式 : 设在区间 ) , [∞+a 上函数0 , 0≥>f g ,c gfx =+∞→lim . 则ⅰ> 0< c < ∞+, ⇒⎰+∞af 与 ⎰+∞ag 共敛散 :ⅱ> c =0, ⇒⎰+∞ag < ∞+时, ⎰+∞af < ∞+;ⅲ> c =∞+, ⇒ ⎰+∞ag = ∞+时, ⎰+∞af=∞+. ( 证 )⑵ Cauchy 判敛法:( 以⎰+∞1p xdx为比较对象, 即取)(x g =p x 1.以下a > 0 ) 设对任何A >a , )(x f ∈],[A a C , 0≤)(x f ≤p x1且p 1>, ⇒⎰+∞af < ∞+;若)(x f ≥p x1且p 1≤, ⇒⎰+∞af=∞+.Cauchy 判敛法的极限形式 : 设)(x f 是在任何有限区间] , [A a 上可积的正值函数,且λ=+∞→)(lim x f x p x . 则ⅰ>,0 , 1⇒+∞<≤>λp ⎰+∞a f < ∞+;ⅱ> ⇒+∞≤<≤ , 0 , 1λp⎰+∞af=∞+. ( 证 )例5 讨论以下无穷积分的敛散性 :ⅰ>⎰+∞->0);0( ,ααdx e xxⅱ>⎰+∞+052.1dx x x⑶ 其他判敛法:Abel 判敛法: 若)(x f 在区间 ) , [∞+a 上可积 , )(x g 单调有界 , 则积分 ⎰+∞adx x g x f )()(收敛.Dirichlet 判敛法: 设⎰=Aaf A F )(在区间 ) , [∞+a 上有界 ,)(xg 在) , [∞+a 上单调,且当+∞→x 时,)(x g 0→. 则积分⎰+∞adx x g x f )()(收敛.例6 讨论无穷积分⎰+∞1sin dx xxp 与⎰+∞1cos dx x x p ) 0 (>p 的敛散性.例7 证明下列无穷积分收敛 , 且为条件收敛 :⎰+∞12sin dx x , ⎰+∞12cos dx x , ⎰+∞14sin dx x x .例8 ( 乘积不可积的例 ) 设)(x f xx sin =, ∈x ) , 1 [∞+. 由例6的结果, 积分⎰+∞1)(dx x f 收敛 .但积分⎰+∞1)()(dx x f x f ⎰+∞=12sin dx x x却发散.( 参阅例6 )作业:P275 2, 3, 4(3)(4)(5)(6), 5(1)(4)。

无穷级数微积分知识分享

无穷级数微积分知识分享

正项级数及其审敛法
正项级数:级数 an,an 0
n 1
部分和数列 {S n }单调上升,若数列 {S n }有界,

lim
n
S
n
存在,级数
an收敛。
n 1
正项级数收敛的充要条 件是:
部分和数列 {S n }有界。
比较审敛法
设 a n, b n 是正项级数,
n 1 n 1
若 a n bn , n 1,2, , 则
0, 若 bn收敛,则
n 1
a n也收敛;
n 1
(3)lim n
an bn
,若
b n 发散,则
n 1
a n也发散。
n 1
可用于比较的级数
(1)几何级数
n 1
ar
n
收敛
发散
,| ,|
r r
| |
1时 ; 1时 .
( 2) p级数
n 1
1 np
收敛 , p
发散
,
p
1时 ; 1时 .
i1
un (x)是x的函数。
例: sinn x sin x sin2 x sin3 x sinn x n1
收敛点
例 : sin n x sin x sin 2 x sin 3 x sin n x
n 1
x 时, 6
sin n sin sin 2 sin 3 sin n
ex
2:
n 1
sin 2 n2
n
ex 3: P 级数
, 1,
1,
n1 n p
1
ex 4 : sin
n 1
n
交错级数
(1)n1an a1 a2 a3 a4 (1)n1an
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2 无穷积分的性质与收敛判别法教学目的与要求:掌握条件收敛与绝对收敛的概念,收敛的无穷积分具有的四个性质;掌握收敛的Cauchy 准则、比较判别法及其三个推论、阿贝耳判别法、狄利克雷判别法等。

教学重点,难点:无穷积分的收敛性比较判别法、柯西判别法、狄利克雷判别法等。

教学内容:本节介绍了无穷积分的三个性质和四种判别收敛的方法 一 无穷积分的性质由定义知道,无穷积分()dx x f a⎰+∞收敛与否,取决于函数F (u )=()dx x f ua⎰在u →+∞时是否存在极限。

因此由函数极限的柯西准则导出无穷积分收敛的柯西准则。

&定理 无穷积分()dx x f a⎰+∞收敛的充要条件是:任给ε>0,存在G ≥a ,只要u 1、u 2>G ,便有()()()2121u u u aau f x dx f x dx f x dx ε-=<⎰⎰⎰。

证明: 由于()lim au f x dx +∞→+∞=⎰()dx x f ua⎰=(),lim u F u →+∞所以()dx x f a⎰+∞收敛⇔()lim u F u →+∞存在⇔0,G ε∀>∃≥a ,只要u 1、u 2>G ,便有()()()221121|()()|.u u u u aaf x dx f x dx f x dx F u F u ε=-=-<⎰⎰⎰此外,还可根据函数极限的性质与定积分的性质,导出无穷积分的一些相应性质。

性质1 (线性性质) 若()dx x f a⎰+∞1与()dx x f a⎰+∞2都收敛,k 1、k 2为任意常数,则()()[]dx x f k x f k a⎰+∞+2211 也收敛,且()()[]dx x f k x f k a ⎰+∞+2211=()()dx x f k dx x f k aa⎰⎰+∞+∞+2211。

(1)证明: 记()()111lim u aau J f x dx f x dx +∞→+∞==⎰⎰, ()()222lim uaau J f x dx f x dx +∞→+∞==⎰⎰,!则()()[]dx x f k x f k a ⎰+∞+2211=()()1122lim ua u k f x k f x dx →+∞+⎡⎤⎣⎦⎰=1122[()()]lim uuaau k f x dx k f x dx →+∞+⎰⎰ =1122()()lim lim u uaau u k f x dx k f x dx →+∞→+∞+⎰⎰=1122k J k J +=1122()().aak f x dx k f x dx +∞+∞+⎰⎰□性质2 若f 在任何有限区间[a ,u]上可积,a <b ,则()dx x f a⎰+∞与()dx x f b⎰+∞同敛态(即同时收敛或同时发散),且有()()()dx x f dx x f dx x f bb aa⎰⎰⎰+∞+∞+=, (2)其中右边第一项是定积分。

证明: 由于()dx x f a⎰+∞收敛⇔ ()lim uau f x dx →+∞⎰存在.又()lim uau f x dx →+∞⎰=()()()lim buabu f x dx f x dx →+∞+⎰⎰=()()lim buabu f x dx f x dx →+∞+⎰⎰, 其中右边第一项是定积分。

所以()dx x f a⎰+∞与()dx x f b⎰+∞同敛态(即同时收敛或同时发散),且有'()()()dx x f dx x f dx x f bbaa⎰⎰⎰+∞+∞+=. □说明: (1) 性质2相当于定积分的积分区间可加性;(2) 由性质2及无穷积分的收敛定义可推出()dx x f a⎰+∞收敛的另一充要条件: 任给ε>0,存在G≥a ,当u >G 时,总有()uf x dx ε+∞<⎰。

事实上,()dx x f a⎰+∞收敛⇔J=()lim u au f x dx →+∞⎰存在⇔0,,G a ε∀>∃≥ 当u G >时,()uaf x dx Jε-<⎰⇔0,,G a ε∀>∃≥ 当u G >时,()()()()uuaauf x dx f x dx f x dx ε+∞-+<⎰⎰⎰⇔0,,G a ε∀>∃≥ 当u G >时,()uf x dx ε+∞<⎰性质3 若f 在任何有限区间[a ,u] 上可积,且有()dx x f a⎰+∞收敛,则()dx x f a⎰+∞亦必收敛,并有()dx x f a⎰+∞≤()dx x f a⎰+∞。

(3)证明: 由()dx x f a⎰+∞收敛,根据柯西准则(必要性),任给ε>0,存在G ≥a ,当u 2>u 1>G 时,总有、()()2211||,u u u u f x dx f x dx ε=<⎰⎰利用定积分的绝对值不等式,又有()21u u f x dx ≤⎰()21u u f x dx ε<⎰.再由柯西准则(充分性),证得()dx x f a⎰+∞收敛又因()()()uuaaf x dx f x dx u a ≤>⎰⎰,令u →+∞取极限,立刻得到不等式(3). □当()dx x f a⎰+∞收敛时,称()dx x f a⎰+∞为绝对收敛, 称收敛而不绝对收敛者为条件收敛。

性质3指出:绝对收敛⇒收敛。

但其逆命题一般不成立,今后将举例说明收敛的无穷积分不一定绝对收敛(本节例3中当0<p ≤1时dx xxp ⎰+∞1sin 条件收敛)。

二 比较判别法这一部分介绍无穷积分的绝对收敛判别法(比较准则及其三个推论)。

由于()⎰u adx x f 关于上限u 是单调递增的,因此()dx x f a⎰+∞收敛的充要条件是()⎰uadx x f 存在上界。

根据这一分析,便立即导出下述比较判别法(请读者自己写出证明):定理(比较法则)设定义在[a ,+∞]上的两个函数f 和g 都在任何有限区G(u)间[a ,u] :可积,且满足()()),[,+∞∈≤a x x g x f ,则当()ag x dx +∞⎰收敛时()dx x f a⎰+∞必收敛(或者,当()dx x f a⎰+∞发散时,()ag x dx +∞⎰发散)。

证明 法一[ 根据P 55 习题2结论: 设f 为定义在[,)a +∞上的增(减)函数. 则()lim x f x →+∞存在的充要条件为f 在[,)a +∞上有上(下)界 ]. 当()ag x dx +∞⎰收敛时,()()lim lim uau u g x dx G u →+∞→+∞=⎰存在. 又G(u)单增, 从而存在M>0, 使得F(u)=()()(),[,),uu aaf x dxg x dx G u M u a ≤=≤∀∈+∞⎰⎰即F(u)有上界M. 又显然F(u)单增.故|()|()lim lim u au u f x dx F u →+∞→+∞=⎰存在, 从而()dx x f a⎰+∞必收敛.法二 由于()ag x dx +∞⎰收敛, 根据柯西准则(必要性), 对任意0,ε>存在G ≥a ,当u 2>u 1>G 时,总有()21.u u g x dx ε<⎰又()||(),[,).f x g x x a ≤∀∈+∞ 因此有()()2211||.u u u u f x dx g x dx ε≤<⎰⎰根据柯西准则(充分性),|()|af x dx +∞⎰收敛. □(例1 讨论dx xx⎰+∞+021sin 的收敛性。

解 由于21sin x x +≤211x +,x ∈[0,)+∞,以及2102π=+⎰+∞x dx 为收敛(§1例4),根据比较法则,dx xx⎰+∞+021sin 为绝对收敛。

□ 上述比较法极限形式如下:推论1若f 和g 都在任何[a ,u]上可积,g(x)>0, 且()(),lim x f x c g x →+∞=,则有(ⅰ)当0<c <+∞时,()dx x f a⎰+∞与()ag x dx +∞⎰同敛态;(ⅱ)当c=0时,由()ag x dx +∞⎰收敛可推知()dx x f a⎰+∞也收敛; (ⅲ)当c=+∞时,由()ag x dx +∞⎰发散可推知()dx x f a⎰+∞也发散。

证明 (i)(),(0,).limx f x c c g x →+∞=∈+∞ 对0,,2cM a ε=∃>当x M >时, |()|||,()2f x c c g x -< 即|()|3,2()2c f x cg x << 从而由比较法则结合性质2知,()dx x f a⎰+∞与()ag x dx +∞⎰同敛态.(ii) 由()()0,lim x f x g x →+∞=对0,,M a ε∀>∃>当x M >时,|()|,()f xg x ε<从而|()|(),f x g x ε< 从而由比较法则结合性质2知, 由()ag x dx +∞⎰收敛可推知()dx x f a⎰+∞也收敛.?(iii) 由(),lim x f x g x →+∞=+∞对0,,G M a ∀>∃≥当x M >时,|()|,()f x Gg x ≥从而|()|(),f x Gg x ≥从而由比较法则结合性质2知, 由()ag x dx +∞⎰发散可推知()dx x f a⎰+∞也发散. □当选用padxx +∞⎰作为比较对象()a g x dx +∞⎰时,比较判别法及其极限形式成为如下两个推论(称为柯西判别法)。

推论2 设f 定义于[,)a +∞(a >0),且在任何有限区间[a ,u]上可积,则有:(ⅰ)当()p xx f 1≤,x ∈[,)a +∞,且p >1时()dx x f a ⎰+∞收敛;(ⅱ)当()p xx f 1≥,x ∈[,)a +∞,且p ≤1时()dx x f a ⎰+∞发散。

推论3 设f 定义于[,)a +∞,在任何有限区间[a ,u]上可积,且()lim px xf x λ→+∞=,则有:(ⅰ)当p >1,0≤λ<+∞时,()dx x f a ⎰+∞收敛; (ⅱ)当p ≤1,0<λ≤+∞时,()dx x f a⎰+∞发散。

-例2 讨论下列无穷限积分的收敛性: 1)1xx e dx α+∞-⎰; 2)20+∞⎰.解 本例中两个被积函数都是非负的,故收敛与绝对收敛是同一回事。

1)由于对任何实数α都有220lim lim xx x x x xx eeαα+-→+∞→+∞⋅==. 因此根据上述推论3(P=2,λ=0),推知1)对任何实数α都是收敛的。

2)由于122lim x x→+∞=1,因此根据上述推论3(P=21,λ=1),推知2)是发散的。

相关文档
最新文档