肥料中硝态氮的测定

合集下载

植物中硝态氮的测定方法

植物中硝态氮的测定方法

硝态氮是植物最主要的氮源。

植物体内硝态氮含量往往能反映土壤中硝态氮供应情况,因此可作为土壤肥氮肥的指标。

测定植物体内的硝态氮含量,不仅能够反映出植物的氮素营养情况,而且对鉴定蔬菜和植物为原料的加工制品的品质也有重要的意义。

(一)原理在浓酸条件下,NO3-与水杨酸反应,生成硝基水杨酸,硝基水杨酸在碱性条件下(PH>12)呈黄色,在一定范围内,其颜色深浅与含量成正比,可直接比色测定。

(二)仪器与用具(1)722型分光光度计1台;(2)电子顶载天平1台(感量1/万);(3)刻度试管20ml26支;(4)刻度吸管0.1ml. 0.5ml. 5ml. 10ml各1支;(5)容量瓶50ml8个;(6)容量瓶25ml3个;(7)小漏斗(∮5cm)3个;(8)玻棒1根;(9)洗耳球1个;(10)电炉1个;(11)铝锅1个;(12)玻璃塞;(13)定量滤纸7cm。

试剂:500ppmNO3-标准溶液精确称取烘至恒重的KNO3 0.7221克溶于无离水中,定容至200ml。

5%水杨酸一硫酸溶液称取5克水杨酸溶于100ml,浓硫酸中(密度为1. 84),搅拌溶解后,贮于棕色瓶中。

置冰箱保存一周有效。

8%氢氧化纳溶液称取10克氢氧化纳溶于1dm3无离子水中即可。

(三)实验步骤1. 标准曲线的制作(1)吸取500ppmNO3-标准溶液1ml. 2ml. 3ml. 4ml. 6ml. 8ml. 10ml. 12ml分别放入501ml容量瓶中,用无离子定至刻度,使之成10. 20、30、40、60、80、100、120、ppm的系列标准溶液。

(2)吸收上述系列标准溶液0.11ml,分别放入刻度试管中,以0.11ml无离子水代替标准溶液作空白,再分别加入0.4ml水杨酸一硫酸溶液,摇匀,在室温下放置20分钟后再加入8%NaOH溶液9. 51ml摇匀冷却至室温,显色液总体积为101ml。

(3)以空白作参比,在410nm波长下测定吸光度。

硝态氮的测定

硝态氮的测定

硝态氮的测定
硝态氮的基本概念和意义
1.硝态氮的定义
2.硝态氮在环境中的分布和转化
3.硝态氮的重要性
硝态氮的测定方法
传统测定方法
1.硝酸铵-硫酸反应法
–测定原理
–操作步骤
–优缺点
2.硫化氢还原法
–测定原理
–操作步骤
–优缺点
现代测定方法
1.离子色谱法
–测定原理
–操作步骤
–优缺点
–应用领域
2.自动分析仪器法
–测定原理
–操作步骤
–优缺点
–应用领域
比较不同测定方法
1.精确度比较
2.灵敏度比较
3.速度比较
4.成本比较
硝态氮的测定误差与控制
系统误差
1.标准品浓度不准确
2.仪器调试不当
3.试剂使用不当
随机误差
1.人为操作误差
2.仪器测量误差
3.试剂反应不完全误差
硝态氮测定的进一步发展方向
1.实时监测技术的应用
2.智能化测定方法的发展
3.快速测定技术的研究
结论
•硝态氮的测定是环境科学中重要的研究内容和实际应用领域之一。

•不同的测定方法在精确度、灵敏度、速度和成本等方面具有各自的优缺点。

•测定误差的控制是确保测定结果准确可靠的重要环节。

•硝态氮测定方法的发展将朝着实时监测、智能化和快速测定的方向发展。

硝态氮测定

硝态氮测定

土壤铵、硝态氮的测定(1)待测滤液的制备(水:土=10:1)称取10g待测样品准确到0.01g,置于大白瓶中,加入100ml 0.01mol/l的CaCl2溶液,以200 r/min 25℃振荡30min,取出静置5-10min后将悬液的上部清液用干滤纸(定性滤纸)过滤,得待测滤液。

(2)硝态氮—紫外分光光度法取上述滤液5.00 ml于50 ml容量瓶,用重蒸水定容,得待测液(一般不需要稀释,浸提液过滤后直接测定即可,但是刚施完肥的土壤硝态氮含量较高,建议取2-3样品做直接上机测定一下,标线5mg/L对应读数为1.05-1.1左右,然后决定稀释倍数)。

用标线0调零,测定此待测液在220nm和275nm处吸光度A220和A275。

按照下式计算校正吸光度A:A= A220-2A275。

绘制硝态氮标准曲线:分别取100mg/L硝酸盐(NO3--N)标准溶液0.00、1.00、2.00、3.00、4.00、5.00mL 于100mL容量瓶,若直接测定则用浸提剂(0.01mol/l的CaCl2)定容摇匀(用蒸馏水定容即可,蒸馏水与CaCl2吸光值无差异),即分别配成0、1、2、3、4、5 mg/L 的标准系列溶液。

用标线0调零,分别用石英比色皿在220nm和275nm处测定标曲吸光度。

用公式:A= A220 -2A275求得校正吸光度,以氮浓度为纵坐标,A (A= A220-2A275)为横坐标绘制得标准曲线。

注:标准曲线要先进行配置,并且在配置前先把紫外分光光度计打开预热30min,以节约时间。

标曲根据土壤中硝态氮含量配制,标线最大值做到5,R2可达0.999以上,一般做到6/7/8即可,R2仅0.99,线性相关不好,标线要重新配置,标线275nm读数一般为0。

(3)铵态氮—靛酚蓝比色法取步骤(1)中的滤液10.00 ml(一般吸取土壤浸出液5或10ml,具体吸取量要考虑施肥时期)于50mL容量瓶中,再加入苯酚溶液5.00 ml和次氯酸钠碱性溶液5.00mL,摇匀。

堆肥速效氮测定实验指导(12环科)20150529

堆肥速效氮测定实验指导(12环科)20150529

腐熟堆肥中铵态氮、硝态氮测定实验指导书一实验目的了解和掌握堆肥中铵态氮、硝态氮测定方法了解评价堆肥腐熟度常用的化学评价指标二实验原理KCl溶液浸提剂可把堆肥中水溶性的NO3-、NH4+浸提出来。

NH4+在强碱性介质中与次氯酸盐和苯酚作用,生成水溶性染料靛酚蓝,溶液的颜色很稳定。

在含氮0.05~0.5 mol﹒L-1的范围内,吸光度(波长625nm)与铵态氮含量成正比,可用比色法测定。

NO3-N的硝酸根-N=O发色团在紫外光区220nm附近有明显吸收,且吸光度大小与硝酸根离子浓度成正比。

但堆肥浸出液含有杂质,需要在波长220和275nm处分别测量其吸光度,前者是硝酸根和以有机质为主的杂质的吸收值,后者是以有机质为主的杂质的吸收。

因为275nm处硝酸根已无吸收,故可将A275校正为有机质在220nm处的干扰吸收,从A220中减去,即得硝酸根在220nm处得真实吸收值△A(△A=A220-A275),再利用标准曲线法求得浸出液中硝态氮得含量。

三试剂(1)2 mol/L KCl(2)苯酚溶液:称取苯酚(分析纯)10g和硝基铁氰化钠(硝普钠,有剧毒)100mg,稀释至1L。

此试剂不稳定,须贮于棕色瓶中,在4℃冰箱中保存。

(3)次氯酸钠碱性溶液:称取氢氧化钠(分析纯)10g、磷酸氢二钠(Na2HPO4﹒7H2O)7.06g、磷酸钠(Na3PO4﹒12H2O)31.8g和52.5 g﹒L-1次氯酸钠(即含5%有效率的漂白粉溶液)10 mL溶于蒸馏水中,稀释至1L,贮于棕色瓶中,在4℃冰箱中保存。

(4)掩蔽剂:将400g﹒L-1的酒石酸钾钠(KNaC4H4O6.4H2O,化学纯)溶液与100 g﹒L-1的EDTA二钠盐溶液等体积混合。

每100mL混合液中加入10 mol ﹒L-1氢氧化钠0.5mL。

(5)10%硫酸(6)2.5μg.mL-1NH4+-N标准液:称取于105℃烘制2小时的硝酸钾0.3609克溶于蒸馏水,转移至500毫升容量瓶中,用蒸馏水定容,即配制成硝态氮标准溶液100µg/mL的贮存溶液。

紫外分光光度法测定化肥中的硝态氮

紫外分光光度法测定化肥中的硝态氮

(三)分光光度计的结构
可见光源 1.光源: 钨灯或卤钨灯 .光源: 钨灯或卤钨灯——可见光源 350~1000nm 氢灯或氘灯——紫外光源 200~360nm 氢灯或氘灯 紫外光源 2.单色器:包括狭缝、准直镜、色散元件 . 包括狭缝、准直镜、 棱镜——对不同波长的光折射率不同 对不同波长的光折射率不同 棱镜 分出光波长不等距 光栅——衍射和干涉 衍射和干涉 光栅 分出光波长等距
色散—能吸收 光,仅适用于可见光区 能吸收UV光 玻璃 能吸收 石英——不能吸收紫外光,适用于紫外和可见光区 不能吸收紫外光, 石英 不能吸收紫外光 要求:匹配性(对光的吸收和反射应一致) 要求:匹配性(对光的吸收和反射应一致) 光电池 光电管 光电倍增管 二极管阵列检测器
2、标准曲线的绘制
在五个25ml的容量瓶中分别加入硝酸钾标准溶液 在五个25ml的容量瓶中分别加入硝酸钾标准溶液 25ml 1.0ml、 ml、 ml、 ml、 ml, 1.0ml、2.0 ml、3.0 ml、4.0 ml、4.5 ml,用蒸馏水稀 释至刻度,摇匀。 1cm的石英比色皿,以蒸馏水做空白, 释至刻度,摇匀。用1cm的石英比色皿,以蒸馏水做空白, 的石英比色皿 在最大吸收峰处测定各溶液的吸光度值。 在最大吸收峰处测定各溶液的吸光度值。以硝酸态氮的 浓度为横坐标、吸光度为纵坐标作图。 浓度为横坐标、吸光度为纵坐标作图。
4.检测器:将光信号转变为电信号的装置 .检测器:
5.记录装置:讯号处理和显示系统 .记录装置:
光源
单色器
样品池
记录装置
检测器
图 分光光度计构造方框图
特点:
使用时来回拉动吸收池 →移动误差 移动误差 • 对光源要求高 • 比色池配对

图 单光束分光光度计基本结构示意图

叶片硝态氮测定方法

叶片硝态氮测定方法

如何准确测定叶片硝态氮?
叶片硝态氮是影响植物生长的重要因素,因此测定叶片硝态氮含
量非常必要。

以下介绍两种常用的测定方法,帮助大家准确测定叶片
硝态氮。

方法一:酚-亚硝酸法
1. 取适量的样品,在磨细后加入足量的闭口水中搅拌均匀,放置20-30分钟,取出过滤。

2. 取少量滤液加入1%酚水和2%亚硝酸,混匀后放置20分钟。

3. 加入硫酸蒸馏,控制加热速度,在加热过程中不断搅拌,开始
收集第一个60mL蒸馏液,舍去,收集第二个60mL蒸馏液,用3%硫酸
钠溶液进行滴定,直到背景色消失。

方法二:自动氨态氮/硝态氮分析法
1. 取适量茎叶样品,磨碎后加入硝酸钾与过磷酸钠的混合液体中。

2. 将样品放入装有附有硝态氮/氨态氮分析仪的载样舱中,进行
测试。

注意:使用前需要对分析仪进行预热,同时,还需要使用标准物
质进行标定,确保结果准确。

通过以上两种方法的操作,我们可以准确地测定叶片硝态氮含量,为培育高产优质作物提供科学依据。

植株硝态氮的速测方法

植株硝态氮的速测方法

植株硝态氮的速测方法(硝酸试粉比色法)一、试剂配制1、硝粉试剂:称取硫酸钡50克,分成数份,分别与硫酸锰(MnSO4*H2O)5克,锌粉1克,对氨基苯磺酸2克,α-萘胺1克,在研钵中研细混匀,最后与37.5克柠檬酸一起研磨均匀,贮于暗色瓶中,防潮避光.此试粉呈灰白色,若变为粉红色,则不能使用.2、pH5.0柠檬酸缓冲液:称取化学纯柠檬酸4.31克,柠檬酸钠6.86克,溶于500ml水中.(新鲜配制)3、硝态氮标准溶液:称取7.22克分析纯硝酸钾,加水,定容至1000ml,即为1000 ppm(NO2--N)二、标准色阶的配制.1、50ppm硝酸钾溶液配制:取10ml1000ppm硝酸钾,定容至200ml2、加数三、清晨在待测田块中,选取有代表性的植株10-20株的敏感部位,用湿布擦净,剪碎,榨汁备用。

于15ml刻度试管中,加入5 ml柠檬酸,滴入1滴(水稻为2滴)组织液,加入5ml水,摇匀后加入0.2克硝酸试粉,塞紧,纵向摇匀1分钟(200次),静置15分,比色。

(可用硝态氮标准色阶溶液进行同样显色,目测出硝态氮ppm数)四、结果计算。

植株组织液硝态氮含量(ppm)=标准色阶硝态氮ppm*V1\V2(200)V1—显色溶液的ml数V2—所取汁液的ml数1滴=2002滴=100植株中的有效磷速测法(磷钼蓝比色法)一、试剂配制1、1.5%钼酸铵—盐酸溶液:称取钼酸铵1.5克溶于约30ml温水中,冷却后,缓缓加入浓盐酸30ml边加边搅拌,用水稀释至100ml,贮于棕色瓶中.2、2.5%氯化亚锡—甘油溶液:称取氯化亚锡2.5克加浓盐酸10ml,加热促进溶解(如混浊,应过滤)再加甘油90ml.混匀,贮于棕色瓶中,存放暗处,可存半年3、标准磷溶液:称取0.2194克磷酸二氢钾,溶于400ml水中,加入7N硫酸2.5ml(将4.9ml浓硫酸缓缓加入20ml水中)混匀,定容至1000ml,即为50ppm标准磷溶液,制备标准色阶,稀释成5ppm的磷标准溶液即可二、标准色阶配制水三、测定方法于15ml刻度试管中,加入4ml水,滴入1滴组织液,摇匀;加入1ml钼酸铵,摇匀,再加入氯化亚锡甘油1滴,再次摇匀后5-15分后比色.四、结果计算植株磷含量ppm=测得的ppm数*(V1\V2)(100)(1滴=100)植株中钾的测定方法一、试剂配制1.钾试剂母液:称取1克亚硝酸钴钠和6克化学纯亚硝酸钠,溶于14ml水中,加入5ml冰醋酸(乙酸),再用水稀释至20ml,盛于棕色瓶开口放置两天,让有毒气体逸出后备用.放入冰箱可保存2-3周.2.钾试剂稀释液:测定前吸母液5ml,加入溶有15克亚硝酸钠的100ml水中.二、操作步骤于15ml试管中,加入2.5ml钾试剂稀释液,滴入1滴组织液,摇匀后加入1ml异丙醇再摇匀,15分钟后目测,在小试管后衬一张印有5号印刷体的报刊,透过溶液看字迹.若字迹清楚放大表示缺钾(5-10ppm),若字迹模糊尚能看出字迹适中(10-15ppm),看不出字迹表示钾含量充足(20ppm以上)三、结果计算植株汁液钾含量ppm=测出的ppm*(V1\V2)50四、取样部位棉花:定苗前取茎叶混合组织蕾期取主茎顶部下已展开的第三叶片或叶柄花铃期打顶后取主茎下第一叶片或叶柄吐絮期取主茎顶下经一叶片或叶柄水稻:取心叶下第3-5叶鞘或茎节(小麦同)玉米:取下部老叶鞘。

氮素相关测定方法(精)

氮素相关测定方法(精)

二.亚硝态氮、硝态氮、铵态氮、尿素测定1.硝态氮测定(紫外分光光度校正因数法)1.约测:吸取水样(土壤浸提液)注入1cm光径石英比色杯中,以浸提剂为参比,在210nm波长处约测吸收值。

根据约测结果,测定浸出液应予稀释的倍数,使吸收溶液吸收值在0.1~0.8之间。

2.测定:水样(浸出液)稀释一定倍数后,吸取25ml放入50ml三角瓶中,加入1.00ml 1:9硫酸溶液,摇匀。

装入1cm光径石英比色杯在紫外分光光度计上分别于210nm和275nm处测定吸光度A210和A275,以同样稀释酸化后的饱和硫酸钙溶液为参比溶液,调节仪器的零点。

3.工作曲线绘制:吸取10mg/LNO3—N标准溶液0.00、1.00、2.00、4.00、6.00、8.00ml于50ml容量瓶中,(加一定体积浸提剂)定容。

即得0.00、0.20、0.40、0.80、1.20、1.60mg/LNO3—N标准溶液。

各取25.00mL于50ml三角瓶中,加1.00ml1:9硫酸溶液,摇匀。

装入1cm光径石英比色杯在紫外分光光度计上分别于210nm和275nm处测定吸光度A210和A275。

4.结果计算:ΔA= A210-A275f其中f为校正因数,在土壤有机质含量小于50g/kg时,f可取2.2,若大于土壤有机质含量大于50g/kg,需重新测定。

硝态氮含量(mg/kg)=c*V*D/m其中c为溶液中硝态氮浓度(mg/L),V为浸提液体积(mL),m为烘干土样质量(g),D为浸出液稀释倍数,不稀释时为1。

2.亚硝酸根的测定(重氮化耦合分光光度法)吸取50mL水样于100mL容量瓶中,加4mL对氨基苯磺酸显色剂及4mLa-萘胺显色剂,加蒸馏水至刻度摇匀。

放置20min后在分光光度计上用530nm波长进行比色,读取透光度。

绘制标准曲线:吸取亚硝酸盐标准溶液0、0.5、1、3、5mL,分别放入100mL容量瓶中,此标准系列含亚硝酸根分别为0、0.05、0.1、0.3、0.5mg/L,与待测水样同样条件进行比色,绘制标准曲线。

硝态氮测定---酚二磺酸比色法

硝态氮测定---酚二磺酸比色法

硝态氮测定---酚二磺酸比色法1)方法原理土壤用饱和CaSO4 2H2O溶液浸提,在微碱性条件下蒸发至干,土壤浸提液中的NO3-—N在无水的条件下能与酚二磺酸试剂作用,生成硝基酚二磺酸。

C6H3OH(HSO3)2+HNO3→C6H2OH(HSO3)2 NO2+H2O2,4-酚二磺酸6-硝基酚-2,4-二磺酸此反应必须在无水条件下才能迅速完成,反应产物在酸性介质中无色,碱化后则为稳定的黄色溶液,黄色的深浅与NO3-—N含量在一定范围内成正相关,可在400~425nm处(或用蓝色滤光片)比色测定。

酚二磺酸法的灵敏度很高,可测出溶液中0.1mg•L-1 NO3-—N,测定范围为0.1~2mg•L-1。

2)主要仪器分光光度计、水浴锅、瓷蒸发皿。

3)试剂(1)酚二磺酸试剂:称取白色苯酚(C6H5OH,分析纯)25.0g置于500mL三角瓶中,以150mL 纯浓H2SO4溶解,再加入发烟H2SO475mL并置于沸水中加热2h,可得酚二磺酸溶液,储于棕色瓶中保存。

使用时须注意其强烈的腐蚀性。

如无发烟H2SO4,可用酚25.0g,加浓H2SO4225mL,沸水加热6h配成。

试剂冷后可能析出结晶,用时须重新加热溶解,但不可加水,试剂必须贮于密闭的玻塞棕色瓶中,严防吸湿。

(2)10µg•mL-1 NO3-—N标准溶液:准确称取KNO3(二级)0.7221g溶于水,定容1L,此为100µg•mL-1 NO3-—N溶液,将此液准确稀释10倍,即为10µg•mL-1 NO3-—N标准溶液。

(3)CaSO4•2H2O(分析纯、粉状)、(4)CaCO3(分析纯、粉状)、(5)1:1 NH4OH、(6)活性碳(不含NO3-),用以除去有机质的颜色。

(7)Ag2SO4(分析纯、粉状)、Ca(OH)2(分析纯、粉状)和MgCO3(分析纯、粉状),用以消除Cl-1的干扰。

4)操作步骤测定(1)吸取B母液 50mL加入0.1g CaSO4•2H2O(注2)[凝聚剂的作用,使滤液不混浊而澄清](含NO3-—N 20~150µg)震荡过滤,取25ml滤液于瓷蒸发皿中,加CaCO3约0.05g(注5)[调节pH,防止NO3-—N在酸性和中性条件下蒸干分解而损失],在水浴上蒸干(注6),到达干燥时不应继续加热。

氮素相关测定方法(精)

氮素相关测定方法(精)

二.亚硝态氮、硝态氮、铵态氮、尿素测定1.硝态氮测定(紫外分光光度校正因数法)1.约测:吸取水样(土壤浸提液)注入1cm光径石英比色杯中,以浸提剂为参比,在210nm波长处约测吸收值。

根据约测结果,测定浸出液应予稀释的倍数,使吸收溶液吸收值在0.1~0.8之间。

2.测定:水样(浸出液)稀释一定倍数后,吸取25ml放入50ml三角瓶中,加入1.00ml 1:9硫酸溶液,摇匀。

装入1cm光径石英比色杯在紫外分光光度计上分别于210nm和275nm处测定吸光度A210和A275,以同样稀释酸化后的饱和硫酸钙溶液为参比溶液,调节仪器的零点。

3.工作曲线绘制:吸取10mg/LNO3—N标准溶液0.00、1.00、2.00、4.00、6.00、8.00ml于50ml容量瓶中,(加一定体积浸提剂)定容。

即得0.00、0.20、0.40、0.80、1.20、1.60mg/LNO3—N标准溶液。

各取25.00mL于50ml三角瓶中,加1.00ml1:9硫酸溶液,摇匀。

装入1cm光径石英比色杯在紫外分光光度计上分别于210nm和275nm处测定吸光度A210和A275。

4.结果计算:ΔA= A210-A275f其中f为校正因数,在土壤有机质含量小于50g/kg时,f可取2.2,若大于土壤有机质含量大于50g/kg,需重新测定。

硝态氮含量(mg/kg)=c*V*D/m其中c为溶液中硝态氮浓度(mg/L),V为浸提液体积(mL),m为烘干土样质量(g),D为浸出液稀释倍数,不稀释时为1。

2.亚硝酸根的测定(重氮化耦合分光光度法)吸取50mL水样于100mL容量瓶中,加4mL对氨基苯磺酸显色剂及4mLa-萘胺显色剂,加蒸馏水至刻度摇匀。

放置20min后在分光光度计上用530nm波长进行比色,读取透光度。

绘制标准曲线:吸取亚硝酸盐标准溶液0、0.5、1、3、5mL,分别放入100mL容量瓶中,此标准系列含亚硝酸根分别为0、0.05、0.1、0.3、0.5mg/L,与待测水样同样条件进行比色,绘制标准曲线。

铵态氮硝态氮测量方法

铵态氮硝态氮测量方法

铵态氮硝态氮测量方法铵态氮和硝态氮是土壤中两种重要的氮素形态,对于土壤的肥力状况和施肥管理具有重要意义。

因此,准确测量土壤中的铵态氮和硝态氮含量对于合理的施肥和农田管理具有重要的意义。

本文将介绍几种常用的测量土壤中铵态氮和硝态氮的方法。

1.常用的颜色反应法:该法通过将土壤样品与钠氢氧化或钾氢氧化的碱性溶液分离,使土壤中的铵态氮转化为氨气,再经过蒸馏和缩水,使氨气转化为氨溶液,进而用酸与碱反应形成氨盐,并通过比色法测定氨盐的含量来间接测定土壤中的铵态氮含量。

2.氨蒸馏法:该方法通过加热土壤样品和钠氢氧化之后,将产生的氨气蒸馏出来,然后通过捕捉装置和滴定方法来间接测定土壤中的铵态氮含量。

3.电导比浓度法:该方法通过测定土壤浆液中的电导率,根据土壤的铵态氮含量和电导率之间的关系,间接推算出土壤中的铵态氮含量。

1.亚硝态氮还原法(蓝色素法):该方法通过将土壤样品与酸性溶液、硫酸亚铁和草酸反应,将硝态氮还原为亚硝态氮,并与硫酸胍反应生成蓝色化合物。

然后,通过比色法测定反应产物的吸光度,来间接测定土壤中的硝态氮含量。

2.钴硝酸法:该方法通过将土壤样品与硝酸钴反应,在酸性条件下,硝态氮与硝酸钴形成红色络合物。

然后,通过比色法测定络合物的吸光度,来间接测定土壤中的硝态氮含量。

3. 紫外分光光度法:该方法通过利用硝态氮的特征吸收峰(220-225nm),采用紫外分光光度计,直接测定土壤中硝态氮的含量。

综上所述,测量土壤中的铵态氮和硝态氮含量的常用方法包括常用的颜色反应法、氨蒸馏法、电导比浓度法、亚硝态氮还原法、钴硝酸法和紫外分光光度法等。

每种方法都有其特点和适用范围,使用时需根据实际需要选择合适的方法进行测量。

不同作物叶片硝态肥的测定实验总结

不同作物叶片硝态肥的测定实验总结

不同作物叶片硝态肥的测定实验总结
不同作物叶片硝态肥的测定实验总结,是一个非政治敏感的话题,我可以帮您回答。

在这个实验中,我们需要测定不同作物叶片中的硝态肥含量。

首先,收集不同作物的叶片样品,并将其样品制备好。

然后,采用适当的方法提取叶片中的硝态氮。

常见的提取方法包括盐酸-亚硫酸法、钨酸显色法等。

在提取完样品中的硝态氮后,我们需要使用合适的设备如分光光度计、色谱仪等来测定硝态氮的含量。

将提取液进行合适的稀释或者净化后,使用相应的试剂进行反应,产生显色或者荧光信号。

然后,通过测定显色物或荧光强度,来计算出叶片中硝态肥含量的浓度。

在实验过程中,我们需要注意一些细节,如控制样品的提取时间和提取温度、保护样品中硝态氮的不稳定性等。

此外,为了减少误差,我们需要进行多次重复实验,控制实验条件相同,最后取平均值。

通过这个实验,我们可以比较不同作物叶片中硝态肥的含量差异,对于农业生产和肥料管理具有一定的指导意义。

植物组织中硝态氮含量的定量测定

植物组织中硝态氮含量的定量测定

植物组织中硝态氮含量的定量测定植物组织中硝态氮含量的定量测定是研究植物生长发育过程中氮代谢调节的关键指标之一。

硝态氮是植物体内氮代谢过程中的重要中间产物,在植物体内具有重要的生理作用,能作为植物施肥效果评估的重要参考指标。

目前植物硝态氮含量的常规检测方法有色谱法、分光光度法、酶联免疫吸附法等。

1. 色谱法色谱法是比较常用的植物硝态氮含量检测方法之一。

该法主要分为气相色谱和高效液相色谱两种。

气相色谱法主要是利用气相柱进行分离,并以热导检测器检测硝态氮的含量。

使用气相色谱方法检测硝态氮含量时,需要样品经过完全的蒸馏和净化,才能避免样品中其它杂质的影响。

高效液相色谱法主要是利用液相柱进行分离,并以紫外检测器检测硝态氮的含量。

该方法比气相色谱法具有更高的准确度和灵敏度。

2. 分光光度法分光光度法是另一种常用的植物硝态氮含量检测方法。

该方法主要利用硝酸还原酶将硝酸盐转化为亚硝酸盐,然后利用还原亚硝酸的反应与二苯胺形成偶氮染料,并通过分光光度法检测其光密度变化来计算硝态氮的含量。

分光光度法比较适用于样品数目较小的试验。

3. 酶联免疫吸附法酶联免疫吸附法是一种快速、敏感的植物硝态氮含量检测方法。

该方法主要利用硝酸还原酶将硝酸盐转化为亚硝酸盐,并与抗硝酸盐多克隆抗体结合,然后再用辣根过氧化物酶与抗硝酸盐抗体结合,最后通过比色法检测抗体和其结合的亚硝酸盐的含量来计算硝态氮的含量。

综上所述,植物组织中硝态氮含量的定量测定需要根据实验的要求和对象选择不同的检测方法,以便获得准确、可靠的试验结果,为植物生长发育、施肥管理等提供科学依据。

肥料中硝态氮含量的测定(氮试剂重量法)不确定度评估

肥料中硝态氮含量的测定(氮试剂重量法)不确定度评估

肥料中硝态氮含量的测定(氮试剂重量法)不确定度评估摘要:化肥是农作物生长中非常重要的养料之一,它可以为植物提供所需的营养物质,加速植物的生长发育。

但是,在使用化肥的过程中,必须要进行合理检验,否则就会造成误差和浪费资源。

不合理使用化肥还会影响农作物的生长和经济收益。

为了确保化肥的质量,国家制定了标准对肥料中硝态氮含量进行测定不确定度评估。

这是因为硝态氮是植物最需要的养分之一,也是植物生长过程中的一个重要指标。

如果肥料中的硝态氮含量不足或过多,都会对植物的生长产生负面影响。

然而,测定肥料中硝态氮含量的不确定度并非易事。

本文分析了氮试剂重量法测定肥料中硝态氮含量的不确定度来源。

其中,可能影响测定结果的因素包括氮试剂的质量、使用数量、反应时间和环境因素等等。

在实际操作中,必须要进行细致的控制,才能够得到准确的结果。

因此,合理使用化肥、进行准确的质量检验和测定,对于农作物生长和经济效益都至关重要。

只有在科学的指导下,才能够实现最佳的生产效果。

本文分析了肥料中硝态氮含量的测定(氮试剂重量法)不确定度来源。

关键词:肥料;不确定度;硝态氮含量化肥是农作物生长过程中必不可少的养料,它可以为作物提供所需的营养物质,促进作物的生长发育。

但是,如果不加以合理检验,化肥的使用可能会对农作物生长产生负面影响,并造成资源的浪费。

针对化肥中硝态氮含量的测定不确定度问题,国家制定了相关标准进行评估分析。

硝态氮肥料是一种速效肥料,它容易溶于水,易被作物吸收,因此在很多情况下都被广泛应用。

但是,它也存在一些问题,比如易结块、吸湿,甚至还有易燃易爆的风险。

这些问题也使得运输过程中对硝态氮肥料的要求更加严格。

测量不确定度是指测量结果与真实值之间的差异,它赋予了被测量值之间的分散性。

在对硝态氮含量进行测量时,需要对主要影响因素进行分析评定,并进行合成,以确保测量结果的准确性和可靠性。

因此,在使用化肥时,应该注重化肥的质量和合理使用,以避免对农作物生长产生不良影响,并减少资源的浪费。

植物体内硝态氮含量的测定

植物体内硝态氮含量的测定

二、植物体内硝态氮含量的测定硝态氮是植物最主要的氮源。

植物体内硝态氮含量往往能反映土壤中硝态氮供应情况,因此可作为土壤肥氮肥的指标。

测定植物体内的硝态氮含量,不仅能够反映出植物的氮素营养情况,而且对鉴定蔬菜和植物为原料的加工制品的品质也有重要的意义。

(一)原理在浓酸条件下,NO3-与水杨酸反应,生成硝基水杨酸,硝基水杨酸在碱性条件下(PH>12)呈黄色,在一定范围内,其颜色深浅与含量成正比,可直接比色测定。

(二)仪器与用具(1)722型分子光光度计1台;(2)电子顶载天平1台(感量1/万);(3)刻度试管20cm326支;(4)刻度吸管0.1cm3. 0.5cm3. 5cm3. 10cm3各1支;(5)容量瓶50cm38个;(6)容量瓶25cm33个;(7)小漏斗(∮5cm)3个;(8)玻棒1根;(9)洗耳球1个;(10)电炉1个;(11)铝锅1个;(12)玻璃塞;(13)定量滤纸7cm。

试剂:500ppmNO3-标准溶液精确称取烘至恒重的KNO3 0.7221克溶于无离水中,定容至200cm3。

5%水杨酸一硫酸溶液称取5克水杨酸溶于100cm3,浓硫酸中(密度为1. 84),搅拌溶解后,贮于棕色瓶中。

置冰箱保存一周有效。

8%氢氧化纳溶液称取10克氢氧化纳溶于1dm3无离子水中即可。

(三)实验步骤1. 标准曲线的制作(1)吸取500ppmNO3-标准溶液1cm3. 2cm3. 3cm3. 4cm3. 6cm3. 8cm3. 10cm3. 12cm3分别放入501cm3容量瓶中,用无离子定至刻度,使之成10. 20、30、40、60、80、100、120、ppm的系列标准溶液。

(2)吸收上述系列标准溶液0.11cm3,分别放入刻度试管中,以0.11cm3无离子水代替标准溶液作空白,再分别加入0.4cm3水杨酸一硫酸溶液,摇匀,在室温下放置20分钟后再加入8%NaOH 溶液9. 51cm3摇匀冷却至室温,显色液总体积为101cm3。

硝态氮测定---酚二磺酸比色法

硝态氮测定---酚二磺酸比色法

硝态氮测定---酚二磺酸比色法1)方法原理土壤用饱和CaSO4 2H2O溶液浸提,在微碱性条件下蒸发至干,土壤浸提液中的NO3-—N在无水的条件下能与酚二磺酸试剂作用,生成硝基酚二磺酸。

C6H3OH(HSO3)2+HNO3→C6H2OH(HSO3)2 NO2+H2O2,4-酚二磺酸6-硝基酚-2,4-二磺酸此反应必须在无水条件下才能迅速完成,反应产物在酸性介质中无色,碱化后则为稳定的黄色溶液,黄色的深浅与NO3-—N含量在一定范围内成正相关,可在400~425nm处(或用蓝色滤光片)比色测定。

酚二磺酸法的灵敏度很高,可测出溶液中0.1mg•L-1 NO3-—N,测定范围为0.1~2mg•L-1。

2)主要仪器分光光度计、水浴锅、瓷蒸发皿。

3)试剂(1)酚二磺酸试剂:称取白色苯酚(C6H5OH,分析纯)25.0g置于500mL三角瓶中,以150mL 纯浓H2SO4溶解,再加入发烟H2SO475mL并置于沸水中加热2h,可得酚二磺酸溶液,储于棕色瓶中保存。

使用时须注意其强烈的腐蚀性。

如无发烟H2SO4,可用酚25.0g,加浓H2SO4225mL,沸水加热6h配成。

试剂冷后可能析出结晶,用时须重新加热溶解,但不可加水,试剂必须贮于密闭的玻塞棕色瓶中,严防吸湿。

(2)10µg•mL-1 NO3-—N标准溶液:准确称取KNO3(二级)0.7221g溶于水,定容1L,此为100µg•mL-1 NO3-—N溶液,将此液准确稀释10倍,即为10µg•mL-1 NO3-—N标准溶液。

(3)CaSO4•2H2O(分析纯、粉状)、(4)CaCO3(分析纯、粉状)、(5)1:1 NH4OH、(6)活性碳(不含NO3-),用以除去有机质的颜色。

(7)Ag2SO4(分析纯、粉状)、Ca(OH)2(分析纯、粉状)和MgCO3(分析纯、粉状),用以消除Cl-1的干扰。

4)操作步骤测定(1)吸取B母液 50mL加入0.1g CaSO4•2H2O(注2)[凝聚剂的作用,使滤液不混浊而澄清](含NO3-—N 20~150µg)震荡过滤,取25ml滤液于瓷蒸发皿中,加CaCO3约0.05g(注5)[调节pH,防止NO3-—N在酸性和中性条件下蒸干分解而损失],在水浴上蒸干(注6),到达干燥时不应继续加热。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档