人教版八年级数学测试题
人教版八年级上册数学期末考试试题带答案
人教版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。
人教版数学八年级上册第一年级测试试卷(含答案)
人教版数学8年级上册第1单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)若一个多边形的一个内角为144°,则这个图形为正( )边形.A.十一B.十C.九D.八2.(3分)下列长度的三条线段中,能组成三角形的是( )A.1cm,2cm,3cm B.2cm,3cm,4cmC.4cm,6cm,10cm D.5cm,8cm,14cm3.(3分)某三角形的三边长分别为3,6,x,则x可能是( )A.3B.9C.6D.104.(3分)有下列两种图示均表示三角形分类,则正确的是( )A.①对,②不对B.②对,①不对C.①、②都不对D.①、②都对5.(3分)一个正六边形的内角和的度数为( )A.1080°B.720°C.540°D.360°6.(3分)如图,为估计池塘岸边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,A、B间的距离不可能是( )A.12米B.10米C.20米D.8米7.(3分)如图,窗户打开后,用窗钩AB可将其固定,其所运用的几何原理是( )A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形具有稳定性8.(3分)在△ABC中,且满足∠A+∠B=90°,则△ABC一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.(3分)若一个正多边形的每一个外角都等于36°,则它是( )A.正九边形B.正十边形C.正十一边形D.正十二边形10.(3分)如图,∠1=40°,则∠C的度数为( )A.30°B.40°C.50°D.60°二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,BD是△ABC的中线,AB=8,BC=5,△ABD和△BCD的周长的差是 .12.(3分)在△ABC中,AC=3,BC=4,若∠C是锐角,那么AB长的取值范围是 .13.(3分)在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°,则这个多边形的内角和为 .14.(3分)如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC 沿直线AD折叠后,点C落到点E处,若∠BAE=50°,则∠DAC的度数为 °.15.(3分)如图所示,在△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是 .三、解答题(共10小题,满分75分)16.(7分)已知a,b,c是△ABC的三边,a=4,b=6,若三角形的周长是小于18的偶数.(1)求c边的长;(2)判断△ABC的形状.17.(7分)若a、b、c是△ABC的三边,化简:|a﹣b+c|﹣|c﹣a﹣b|+|a+b+c|.18.(7分)如图,五边形ABCDE的每个内角都相等,已知EF⊥BC,求证:EF平分∠AED.19.(7分)如图,四边形ABCD中,AB⊥AC.(1)若AB∥CD,且∠D=60°,求∠1的度数;(2)若∠1+∠B=90°,求证:AD∥BC.20.(7分)如图,∠ABE是四边形ABCD的外角,已知∠ABE=∠D.求证:∠A+∠C=180°.21.(7分)如图,在四边形ABCD中,BE平分∠ABC,交AD于点G,交CD的延长线于点E,F为DC延长线上一点,∠ADE+∠BCF=180°.(1)求证:AD∥BC;(2)若∠DGE=30°,求∠A的度数.22.(7分)如图,在△ABC中,∠B=30°,∠C=65°,AE⊥BC于E,AD平分∠BAC,(1)求∠DAE的度数;(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数.23.(8分)已知:如图,点D、E、F、G都在△ABC的边上,EF∥AC,且∠1+∠2=180°.(1)求证:AE∥DG;(2)若EF平分∠AEB,∠C=35°,求∠BDG的度数.24.(9分)如图,在△ABC中,∠CAE=18°,∠C=42°,∠CBD=27°.(1)求∠AFB的度数;(2)若∠BAF=2∠ABF,求∠BAF的度数.25.(9分)如图,在△ABC中,CD平分∠ACB,AE⊥CD,垂足为F,交BC于点E,若∠BAE=33°,∠B=37°,求∠EAC的度数.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B;2.B;3.C;4.B;5.B;6.C;7.D;8.B;9.B;10.C;二、填空题(共5小题,满分15分,每小题3分)11.3;12.1<AB<5;13.1260°;14.30;15.80°;三、解答题(共10小题,满分75分)16.解:(1)∵a,b,c是△ABC的三边,a=4,b=6,∴2<c<10,∵三角形的周长是小于18的偶数,∴2<c<8,∴c=4或6;(2)当c=4或6时,△ABC的形状都是等腰三角形.17.解:∵a、b、c是△ABC的三边,∴a﹣b+c>0,c﹣a﹣b<0,a+b+c>0,∴原式=a﹣b+c+c﹣a﹣b+a+b+c=a﹣b+3c.18.证明:∵五边形内角和为(5﹣2)×180°=540°且五边形ABCDE的5个内角都相等,∴∠A=∠B=∠AED=540°5=108°.∵EF⊥BC,∴∠3=90°.又∵四边形的内角和为360°,∴在四边形ABFE中,∠1=360°﹣(108°+108°+90°)=54°,又∵∠AED=108°,∴∠1=∠2=54°,∴EF平分∠AED.19.(1)解:∵AB⊥AC,∴∠BAC=90°,∵AB∥CD,∴∠BAC=∠ACD=90°,∵∠D=60°,∴∠1=30°;(2)证明:∵∠B+∠BCA=90°,∠1+∠B=90°,∴∠1=∠BCA,∴AD∥BC.20.证明:∵∠ABE=∠D,∠ABE+∠ABC=180°,∴∠ABC+∠D=180°,又∵四边形内角和等于360°,∴∠A+∠C=180°.21.(1)证明:∵∠ADE+∠BCF=180°,∠BCE+∠BCF=180°,∴∠ADE=∠BCE,∴AD∥BC;(2)解:由(1)得,AD∥BC,∴∠AGB=∠EBC,∵∠AGB=∠DGE,∴∠AGB=∠EBC=∠DGE=30°,∵BE平分∠ABC,∴∠AGB=∠EBC,∴∠A=180°﹣30°﹣30°=120°.22.解:(1)∵∠B=30°,∠C=65°,∴∠BAC=85°,∵AD平分∠BAC,∴∠CAD=42.5°,∵AE⊥BC,∴∠CAE=25°,∴∠DAE=∠CAD﹣∠CAE=17.5°;(2)如图,∵∠B=30°,∠C=65°,∴∠BAC=85°,∵AD平分∠BAC,∴∠CAD=42.5°,∴∠FAG=180°﹣∠CAD=137.5°,∵EF⊥BC,∴∠CGE=25°,∴∠AGF=25°,∴∠DFE=180°﹣∠AGF﹣∠FAG=17.5°.23.(1)证明:∵EF∥AC,∴∠1=∠CAE.∵∠1+∠2=180°,∴∠2+∠CAE=180°.∴AE∥DG.(2)解:∵EF∥AC,∠C=35°,∴∠BEF=∠C=35°.∵EF平分∠AEB,∴∠1=∠BEF=35°.∴∠AEB=70°.由(1)知AE∥DG,∴∠BDG=∠AEB=70°.24.解:(1)∵∠AEB=∠C+∠CAE,∠C=42°,∠CAE=18°,∴∠AEB=60°,∵∠CBD=27°,∴∠BFE=180°﹣27°﹣60°=93°,∴∠AFB=180°﹣∠BFE=87°;(2)∵∠BAF=2∠ABF,∠BFE=93°,∴3∠ABF=93°,∴∠ABF=31°,∴∠BAF=62°.25.解:∵AE⊥CD交CD于点F,∴∠AFC=∠EFC=90°,∵CD平分∠ACB,∴∠ACF=∠ECF,∵∠AFC+∠EAC+∠ACF=180°,∠EFC+∠CEA+∠ECF=180°,∴∠EAC=∠CEA,∵∠CEA=∠B+∠BAE,∠B=37°,∠BAE=33°,∴∠CEA=70°,∴∠EAC=70°.。
八年级数学试卷题库人教版
一、选择题1. 下列数中,是正数的是()A. -3B. 0C. 1.5D. -2.12. 下列图形中,是轴对称图形的是()A. 矩形B. 平行四边形C. 等腰三角形D. 梯形3. 下列代数式中,同类项的是()A. 3a^2bB. 2ab^2C. 4a^2b^2D. 5ab4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2 - 4C. y = 1/xD. y = 3x - 55. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (2,-3)B. (-2,-3)C. (-2,3)D. (2,3)二、填空题6. 3的平方根是______,-2的立方根是______。
7. 下列各式中,绝对值最小的是______。
8. 若a > 0,则a的平方根是______,a的立方根是______。
9. 在等腰三角形ABC中,AB=AC,若BC=6,则三角形ABC的周长是______。
10. 已知函数y=kx+b,若k>0,则函数图象在______象限。
三、解答题11. 计算下列各式的值:(1)(3 + 2√2) - (2 - √2)(2)√(16 - 9)12. 已知一个等边三角形的边长为6,求该三角形的面积。
13. 已知一次函数y=kx+b的图象经过点(1,-3)和(-2,5),求该函数的解析式。
14. 在直角坐标系中,点P(2,-1)到原点的距离是______。
15. 已知一次函数y=kx+b的图象与x轴、y轴分别交于点A、B,若A、B两点的坐标分别为(-4,0)和(0,2),求该函数的解析式。
四、应用题16. 一辆汽车从甲地出发,以每小时60公里的速度行驶,行驶了3小时后,与另一辆从乙地出发以每小时80公里的速度相向而行。
求两车相遇时,它们共行驶了多少公里?17. 一个长方形的长是x厘米,宽是x-2厘米,求长方形的面积表达式,并化简。
18. 某商店为促销,对一件商品进行打折,原价为200元,打八折后,再减去20元。
人教版八年级数学上册单元测试题及答案全套
人教版八年级数学上册单元测试题及答案全套一、选择题(每小题2分,共20分)1. 下列运算中,结果是有理数的是()。
A. √7 + √5B. √8 + √16C. √11 + 5D. √3 + 2√72. 已知a、b为正有理数,且a > b,下列不等式中正确的是()。
A. a√2 > b√2B. a√3 < b√3C. a√5 > b√5D. a√6 < b√63. 下列数中,不能化成√10 形式的无理数是()。
A. √10 –√5B. (√15 + √5) –√10C. √10 + √5D. (√15 –√5) + √104. 已知√3 + √2 > x,下列结论错误的是()。
A. √2 < xB. √6 > xC. 2 < xD. 1 < x5. 若(a+b)√2 = a√3 + b√6,那么a:b等于()。
A. 1:2B. 2:1C. 1:1D. 1:36. 已知数集A = {x | x = 2k – 1,k∈Z},则集合A的元素个数是()。
A. 0B. 3C. 4D. 57. 过已知点P(a,b),不与直线y = 2x + 1平行的直线的个数是()。
A. 0B. 1C. ∞D. 28. 两直线k1∶-2x + y = 4,k2∶ 6x – 3y = 1,那么k1和k2的关系是()。
A. 相交B. 平行C. 重合D. 垂直9. 若线段AB的中点坐标是(2,1),A的坐标是(5,3),则B的坐标是()。
A. (-1,-1)B. (4,1)C. (3,5)D. (1,4)10. 在平面直角坐标系xOy中,点A(7,3)关于y轴的对称点是()。
A. (7,3)B. (3,7)C. (-7,3)D. (7,-3)二、填空题(每小题2分,共20分)11. 设√a = √2 + √3,则a等于填空。
12. 若x∈R 且√(x+1) = 2,则x的值为填空。
人教版八年级数学上册单元测试题附答案全套
人教版八年级数学上册单元测试题附答案全套第一单元:有理数单项选择题1.下列数中,哪个是负有理数?a.0b. 5c. -3d. 22.哪组数中,有一个正有理数和一个负有理数?a.{-2, -3}b. {0, 1}c. {5, 7}d. {-4, 4}3.下列数中,哪些是无理数?a.√2b. -7c. 0.5d. 3/74.若 a、b 均为正有理数,且 a > b,那么 a < 0 的可能性是多少?a.0b. 1c. 无穷大d. 无法确定5.若 a 和 b 是互为倒数的数,且 a 是正有理数,则 b 是:a.正有理数b. 负有理数c. 正无理数d. 负无理数解答题1.请用画数轴的方法表示 -2.5 这个有理数。
数轴2.判断下列数中哪些是有理数,哪些是无理数:√3、0.75、-5.5、0、5/4–有理数:0.75、-5.5、0、5/4–无理数:√3答案单项选择题答案:1. c 2. b 3. a 4. a 5. d解答题答案: 1.2. 有理数:0.75、-5.5、0、5/4,无理数:√3第二单元:整式的加减单项选择题1.下列算式中,不是整式的是:a.3x + y + 5b. 2x² - 3x + 4c. 4√2 + 7d. 6x - 5y - 42.下列算式中,能简化为整式的是:a.3x - √2b. 6x - 2/xc. 5x + 1/2d. 4x - √33.若 a = 2x + 3y,b = 4x - 6y,则 a - b 的结果是:a.2x + 3yb. -2x - 9yc. 6x - 3yd. -6x + 9y解答题1.将算式 3xy + 7y² - 4yx - 5x²的项按 x 的次数从高到低写出来。
-5x² + (3xy - 4yx) + 7y²2.将算式 a = 2x + 3y 和 b = 4x - 6y 相加,并合并同类项。
人教版八年级数学下册单元测试题全套(含答案)
人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。
人教版八年级数学上册第13章测试题及答案
人教版八年级数学上册第13章测试题及答案一、单选题1.下列润滑油1ogo 标志图标中,不是轴对称图形的是( )A .B .C .D .2.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A .ABC V 的三条中线的交点B .ABC V 三边的垂直平分线的交点C .ABC V 三条角平分线的交点D .ABC V 三条高所在直线的交点3.三角形的外心是三角形的( )A .三条中线的交点B .三条角平分线的交点C .三边垂直平分线的交点D .三条高所在直线的交点4.下列条件中,不能判定直线CD 是线段AB (C ,D 不在线段AB 上)的垂直平分线的是( )A .CA =CB ,DA =DB B .CA =CB ,CD ⊥ABC .CA =DA ,CB =DBD .CA =CB ,CD 平分AB5.如图,在 △ABC 中,AB =AC ,∠=36°,BD 平分∠ABC 交 AC 于点 D ,则图中的等腰三角形共有( )A .1 个B .2 个C .3 个D .4 个6.下列图形中,不是轴对称图形的是( )A .有一个角是45度的直角三角形B .有两个角相等的三角形C .有一个角是40度,另一个角是100度的三角形D .有一个角是30度的直角三角形7.如图,在ABC V 中,90,6,10,8BAC AC BC AB Ð=°===,过点A 的直线//,DE BC ABC Ð与ACB Ð的平分线分别交DE 于点E 、D ,则DE 的长为( )A .14B .16C .18D .208.若等腰三角形的顶角是40°,则它的底角是( )A .40°B .70°C .80°D .100°9.如图,在等边ABC V 中,AD 是它的角平分线,DE AB ^于点E ,若8AC =,则BD =( )A .4B .3C .2D .110.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,150ABC Ð=°,BC 的长是40m ,则乘电梯从点B 到点C 上升的高度h 是( )A .20mBCD .11.如图,△ABC 是边长为4的等边三角形,点P 在AB 上,过点P 作PE ⊥AC ,垂足为E ,延长BC 至点Q ,使CQ =PA ,连接PQ 交AC 于点D ,则DE 的长为( )A .1B .1.8C .2D .2.512.如图,等边三角形ABC 的三条角平分线相交于点O ,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,那么这个图形中的等腰三角形共有( )个A .4B .5C .6D .7二、填空题13.在“锐角、五角星、等边三角形、圆、正六边形”这五个图形中,是轴对称图形的有________个,按对称轴条数由多到少排列是_______________.14.如图,在ABC V 中,10cm AB AC ==,AB 的垂直平分线交AC 于点D ,且BCD △的周长为17cm ,则BC =________cm .15.如图,在ABC D 中,,MP NQ 分别垂直平分边,AB AC ,交BC 于点,P Q ,如果20BC =,那么APQ V 的周长为 __________.16.ABC D 中,AB =AC ,AB 的中垂线与AC 所在直线相交成的锐角为50°,则底角B 的大小为_________.17.如图,∠AOB =60°,C 是BO 延长线上一点,OC =10cm ,动点P 从点C 出发沿CB 以2cm/s 的速度移动,动点Q 从点O 出发沿OA 以1cm/s 的速度移动,如果点P 、Q 同时出发,用t (s )表示移动的时间,当t =______s 时,△POQ 是等腰三角形.三、解答题18.如图,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD 垂直平分EF .19.如图,在ABC V 中,,AB AC AB =的垂直平分线交AB 于点D ,交AC 于点E .已知BCE V 的周长为8,2AC BC -=,求AB 与BC 的长.20.如图,AD 是ABC V 的角平分线,EF 是AD 的垂直平分线.求证:(1)EAD EDA Ð=Ð;(2)//DF AC ;(3)EAC B Ð=Ð.21.如图,在四边形ABCD 中,//AD BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .22.如图,在△ABC中,∠BAC=90°,E为边BC上的任意点,D为线段BE的中点,AB=AE,EF⊥AE,∥.AF BC(1)求证:∠DAE=∠C;(2)求证:AF=BC.23.阅读下面材料:【原题呈现】如图1,在V ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到V DEC≌V DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知V ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD的长.参考答案1.C2.C3.C4.C5.C6.D7.A8.B9.A10.A11.C12.D解:①∵△ABC 为等边三角形,∴AB =AC ,∴△ABC 为等腰三角形;②∵BO ,CO ,AO 分别是三个角的角平分线,∴∠ABO =∠CBO =∠BAO =∠CAO =∠ACO =∠BCO ,∴AO =BO ,AO =CO ,BO =CO ,∴△AOB 为等腰三角形;③△AOC 为等腰三角形;④△BOC 为等腰三角形;⑤∵OD ∥AB ,OE ∥AC ,∴∠ABC =∠ODE ,∠ACB =∠OED ,∵∠ABC =∠ACB ,∴∠ODE =∠OED ,∴△DOE 为等腰三角形;⑥∵OD ∥AB ,OE ∥AC ,∴∠BOD =∠ABO ,∠COE =∠ACO ,∵∠DBO =∠ABO ,∠ECO =∠ACO ,∴∠BOD =∠DBO ,∠COE =∠ECO ,∴△BOD 为等腰三角形;⑦△COE 为等腰三角形.故选:D .13. 5 圆、正六边形、五角星、等边三角形、锐角14.715.2016.70°或20°17.103或1018.证明:Q AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,,EAD FAD DE EF\Ð=Ð=又AD AD=\AED AFDV V ≌\AE AF=\,A D 在EF 的垂直平分线上即AD 垂直平分EF .19.解: ∵BCE V 的周长为8,∴8BE EC BC ++=∵AB 的垂直平分线交AB 于点D ,交AC 于点E ,∴AE BE =,∴8AE EC BC ++=,即8AC BC +=,∵2AC BC -=,∴5AC =,3BC =,∵AB AC =,∴5AB =.20解析:(1)根据线段垂直平分线上任意一点,到线段两端的距离相等可得到AE DE =,再根据三角形全等得到EAD EDA Ð=Ð;(2)根据线段垂直平分线的性质证明AF DF =,进而得到BAD ADF Ð=Ð,再利用角平分线的性质可得到BAD CAD Ð=Ð,利用等量代换可得ADF CAD Ð=Ð,再根据平行线的判定即可得到//DF AC ;(3)根据三角形内角与外角的关系可得到结论.答案:证明:(1)如图,连接AE ,设AD 与EF 相交于点Q ,∵EF 是AD 的垂直平分线,∴AE DE =,AQ DQ =,在AEQ △和DEQ V 中,∵,,,AQ DQ EQ EQ AE DE =ìï=íï=î∴AEQ DEQ V V ≌(SSS ),∴EAD EDA Ð=Ð;(2)∵EF 是AD 的垂直平分线,∴AF DF =,在AFQ △和DFQ V 中,∵,,,AQ DQ FQ FQ AF DF =ìï=íï=î∴AFQ DFQ V V ≌(SSS ),∴BAD ADF Ð=Ð,∵AD 是ABC V 的角平分线,∴BAD CAD Ð=Ð,∴ADF CAD Ð=Ð,∴//DF AC ;(3)由(1)知EAD EDA Ð=Ð,EAD CAD EAC Ð=Ð+Ð,∴EDA CAD EAC Ð=Ð+Ð,又∵EDA BAD B Ð=Ð+Ð,∴CAD EAC BAD B Ð+Ð=Ð+Ð,∵BAD CAD Ð=Ð,∴EAC B Ð=Ð.易错:证明:(1)∵EF 是AD 的垂直平分线,∴AE DE =,在AEQ △和DEQ V中,,,,AQ DQ AEQ DEQ AE DE =ìïÐ=Ðíï=î∴AEQ DEQ V V ≌(SAS ),∴EAD EDA Ð=Ð.错因:角不是夹角,随意找三个条件证明全等.满分备考:掌握线段的垂直平分线和角平分线的性质与判定的应用,可以快速解决有关线段相等,角相等或距离相等的问题.21(1)//AD BC Q ,,F DAE ECF D \Ð=ÐÐ=Ð,Q 点E 是CD 的中点,CE DE \=,在CEF △和DEA △中,F DAE ECF D CE DE Ð=ÐìïÐ=Ðíï=î,()CEF DEA AAS \@V V ,FC AD \=;(2)由(1)已证:CEF DEA @V V ,FE AE \=,又BE AE ^Q ,BE \是线段AF 的垂直平分线,AB FB BC FC \==+,由(1)可知,FC AD =,AB BC AD \=+.22.(1)证明:∵AB =AE ,D 为线段BE 的中点,∴AD ⊥BC ,∴∠C +∠DAC =90°,∵∠BAC =90°,∴∠BAD +∠DAC =90°,∴∠C =∠BAD ,∵AB =AE ,AD ⊥BE ,∴∠BAD =∠DAE ,∴∠DAE =∠C ;(2)证明:∵AF ∥BC ,∴∠FAE =∠AEB ,∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠FAE ,又∠AEF =∠BAC =90°,AB =AE ,∴△ABC ≌△EAF (ASA ),∴AC =EF .23.解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =ìïÐ=Ðíï=î,∴△ACD ≌△ECD (SAS ),∴AD =DE ,∠A =∠DEC ,∵∠A =2∠B ,∴∠DEC =2∠B ,∴∠B =∠EDB ,∴△BDE 是等腰三角形;∴BE =DE =AD =2.2,AC =EC =3.6,∴BC 的长为5.8;(2)∵△ABC 中,AB =AC ,∠A =20°,∴∠ABC =∠C =80°,∵BD 平分∠B ,∴∠1=∠2=40°,∠BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =ìïÐ=Ðíï=î,∴△DEB ≌△DBC (SAS ),∴∠BED =∠C =80°,∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF =DB ,连接FE ,同理可得△BDE ≌△FDE ,∴∠5=∠1=40°,BE =EF =2,∵∠A =20°,∴∠6=20°,∴AF =EF =2,∵BD =DF =2.3,∴AD =BD +BC =4.3.人教版八年级数学上册第13章测试题及答案一、单选题1.下列润滑油1ogo 标志图标中,不是轴对称图形的是( )A .B .C .D .2.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A .ABC V 的三条中线的交点B .ABC V 三边的垂直平分线的交点C .ABC V 三条角平分线的交点D .ABC V 三条高所在直线的交点3.三角形的外心是三角形的( )A .三条中线的交点B .三条角平分线的交点C .三边垂直平分线的交点D .三条高所在直线的交点4.下列条件中,不能判定直线CD 是线段AB (C ,D 不在线段AB 上)的垂直平分线的是( )A .CA =CB ,DA =DB B .CA =CB ,CD ⊥ABC .CA =DA ,CB =DBD .CA =CB ,CD 平分AB5.如图,在 △ABC 中,AB =AC ,∠=36°,BD 平分∠ABC 交 AC 于点 D ,则图中的等腰三角形共有( )A .1 个B .2 个C .3 个D .4 个6.下列图形中,不是轴对称图形的是( )A .有一个角是45度的直角三角形B .有两个角相等的三角形C .有一个角是40度,另一个角是100度的三角形D .有一个角是30度的直角三角形7.如图,在ABC V 中,90,6,10,8BAC AC BC AB Ð=°===,过点A 的直线//,DE BC ABC Ð与ACB Ð的平分线分别交DE 于点E 、D ,则DE 的长为( )A .14B .16C .18D .208.若等腰三角形的顶角是40°,则它的底角是( )A .40°B .70°C .80°D .100°9.如图,在等边ABC V 中,AD 是它的角平分线,DE AB ^于点E ,若8AC =,则BD =( )A .4B .3C .2D .110.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,150ABC Ð=°,BC 的长是40m ,则乘电梯从点B 到点C 上升的高度h 是( )A .20mBCD .11.如图,△ABC 是边长为4的等边三角形,点P 在AB 上,过点P 作PE ⊥AC ,垂足为E ,延长BC 至点Q ,使CQ =PA ,连接PQ 交AC 于点D ,则DE 的长为( )A .1B .1.8C .2D .2.512.如图,等边三角形ABC 的三条角平分线相交于点O ,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,那么这个图形中的等腰三角形共有( )个A .4B .5C .6D .7二、填空题13.在“锐角、五角星、等边三角形、圆、正六边形”这五个图形中,是轴对称图形的有________个,按对称轴条数由多到少排列是_______________.14.如图,在ABC V 中,10cm AB AC ==,AB 的垂直平分线交AC 于点D ,且BCD △的周长为17cm ,则BC =________cm .15.如图,在ABC D 中,,MP NQ 分别垂直平分边,AB AC ,交BC 于点,P Q ,如果20BC =,那么APQ V 的周长为 __________.16.ABC D 中,AB =AC ,AB 的中垂线与AC 所在直线相交成的锐角为50°,则底角B 的大小为_________.17.如图,∠AOB =60°,C 是BO 延长线上一点,OC =10cm ,动点P 从点C 出发沿CB 以2cm/s 的速度移动,动点Q 从点O 出发沿OA 以1cm/s 的速度移动,如果点P 、Q 同时出发,用t (s )表示移动的时间,当t =______s 时,△POQ 是等腰三角形.三、解答题18.如图,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD 垂直平分EF .19.如图,在ABC V 中,,AB AC AB =的垂直平分线交AB 于点D ,交AC 于点E .已知BCE V 的周长为8,2AC BC -=,求AB 与BC 的长.20.如图,AD 是ABC V 的角平分线,EF 是AD 的垂直平分线.求证:(1)EAD EDA Ð=Ð;(2)//DF AC ;(3)EAC B Ð=Ð.21.如图,在四边形ABCD 中,//AD BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .22.如图,在△ABC中,∠BAC=90°,E为边BC上的任意点,D为线段BE的中点,AB=AE,EF⊥AE,∥.AF BC(1)求证:∠DAE=∠C;(2)求证:AF=BC.23.阅读下面材料:【原题呈现】如图1,在V ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到V DEC≌V DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知V ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD的长.参考答案1.C2.C3.C4.C5.C6.D7.A8.B9.A10.A11.C12.D解:①∵△ABC 为等边三角形,∴AB =AC ,∴△ABC 为等腰三角形;②∵BO ,CO ,AO 分别是三个角的角平分线,∴∠ABO =∠CBO =∠BAO =∠CAO =∠ACO =∠BCO ,∴AO =BO ,AO =CO ,BO =CO ,∴△AOB 为等腰三角形;③△AOC 为等腰三角形;④△BOC 为等腰三角形;⑤∵OD ∥AB ,OE ∥AC ,∴∠ABC =∠ODE ,∠ACB =∠OED ,∵∠ABC =∠ACB ,∴∠ODE =∠OED ,∴△DOE 为等腰三角形;⑥∵OD ∥AB ,OE ∥AC ,∴∠BOD =∠ABO ,∠COE =∠ACO ,∵∠DBO =∠ABO ,∠ECO =∠ACO ,∴∠BOD =∠DBO ,∠COE =∠ECO ,∴△BOD 为等腰三角形;⑦△COE 为等腰三角形.故选:D .13. 5 圆、正六边形、五角星、等边三角形、锐角14.715.2016.70°或20°17.103或1018.证明:Q AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,,EAD FAD DE EF\Ð=Ð=又AD AD=\AED AFDV V ≌\AE AF=\,A D 在EF 的垂直平分线上即AD 垂直平分EF .19.解: ∵BCE V 的周长为8,∴8BE EC BC ++=∵AB 的垂直平分线交AB 于点D ,交AC 于点E ,∴AE BE =,∴8AE EC BC ++=,即8AC BC +=,∵2AC BC -=,∴5AC =,3BC =,∵AB AC =,∴5AB =.20解析:(1)根据线段垂直平分线上任意一点,到线段两端的距离相等可得到AE DE =,再根据三角形全等得到EAD EDA Ð=Ð;(2)根据线段垂直平分线的性质证明AF DF =,进而得到BAD ADF Ð=Ð,再利用角平分线的性质可得到BAD CAD Ð=Ð,利用等量代换可得ADF CAD Ð=Ð,再根据平行线的判定即可得到//DF AC ;(3)根据三角形内角与外角的关系可得到结论.答案:证明:(1)如图,连接AE ,设AD 与EF 相交于点Q ,∵EF 是AD 的垂直平分线,∴AE DE =,AQ DQ =,在AEQ △和DEQ V 中,∵,,,AQ DQ EQ EQ AE DE =ìï=íï=î∴AEQ DEQ V V ≌(SSS ),∴EAD EDA Ð=Ð;(2)∵EF 是AD 的垂直平分线,∴AF DF =,在AFQ △和DFQ V 中,∵,,,AQ DQ FQ FQ AF DF =ìï=íï=î∴AFQ DFQ V V ≌(SSS ),∴BAD ADF Ð=Ð,∵AD 是ABC V 的角平分线,∴BAD CAD Ð=Ð,∴ADF CAD Ð=Ð,∴//DF AC ;(3)由(1)知EAD EDA Ð=Ð,EAD CAD EAC Ð=Ð+Ð,∴EDA CAD EAC Ð=Ð+Ð,又∵EDA BAD B Ð=Ð+Ð,∴CAD EAC BAD B Ð+Ð=Ð+Ð,∵BAD CAD Ð=Ð,∴EAC B Ð=Ð.易错:证明:(1)∵EF 是AD 的垂直平分线,∴AE DE =,在AEQ △和DEQ V中,,,,AQ DQ AEQ DEQ AE DE =ìïÐ=Ðíï=î∴AEQ DEQ V V ≌(SAS ),∴EAD EDA Ð=Ð.错因:角不是夹角,随意找三个条件证明全等.满分备考:掌握线段的垂直平分线和角平分线的性质与判定的应用,可以快速解决有关线段相等,角相等或距离相等的问题.21(1)//AD BC Q ,,F DAE ECF D \Ð=ÐÐ=Ð,Q 点E 是CD 的中点,CE DE \=,在CEF △和DEA △中,F DAE ECF D CE DE Ð=ÐìïÐ=Ðíï=î,()CEF DEA AAS \@V V ,FC AD \=;(2)由(1)已证:CEF DEA @V V ,FE AE \=,又BE AE ^Q ,BE \是线段AF 的垂直平分线,AB FB BC FC \==+,由(1)可知,FC AD =,AB BC AD \=+.22.(1)证明:∵AB =AE ,D 为线段BE 的中点,∴AD ⊥BC ,∴∠C +∠DAC =90°,∵∠BAC =90°,∴∠BAD +∠DAC =90°,∴∠C =∠BAD ,∵AB =AE ,AD ⊥BE ,∴∠BAD =∠DAE ,∴∠DAE =∠C ;(2)证明:∵AF ∥BC ,∴∠FAE =∠AEB ,∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠FAE ,又∠AEF =∠BAC =90°,AB =AE ,∴△ABC ≌△EAF (ASA ),∴AC =EF .23.解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =ìïÐ=Ðíï=î,∴△ACD ≌△ECD (SAS ),∴AD =DE ,∠A =∠DEC ,∵∠A =2∠B ,∴∠DEC =2∠B ,∴∠B =∠EDB ,∴△BDE 是等腰三角形;∴BE =DE =AD =2.2,AC =EC =3.6,∴BC 的长为5.8;(2)∵△ABC 中,AB =AC ,∠A =20°,∴∠ABC =∠C =80°,∵BD 平分∠B ,∴∠1=∠2=40°,∠BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =ìïÐ=Ðíï=î,∴△DEB ≌△DBC (SAS ),∴∠BED =∠C =80°,∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF =DB ,连接FE ,同理可得△BDE ≌△FDE ,∴∠5=∠1=40°,BE =EF =2,∵∠A =20°,∴∠6=20°,∴AF =EF =2,∵BD =DF =2.3,∴AD =BD +BC =4.3.。
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。
人教版数学八年级上册 全册全套试卷测试卷附答案
人教版数学八年级上册 全册全套试卷测试卷附答案一、八年级数学三角形填空题(难)1.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.【答案】78.【解析】【分析】利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.【详解】∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D∴∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒,∴∠D=12∠A=30︒, ∵84BEH ︒∠=,∴∠DEH=96︒,∵EFD ∆与EFH ∆关于直线EF 对称,∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,∵∠DFG=∠D+∠DEG=78︒,∴n=78.故答案为:78.【点睛】此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12∠A=30︒是解题的关键.2.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.3.某多边形内角和与外角和共1080°,则这个多边形的边数是__________.【答案】6【解析】∵多边形内角和与外角和共1080°,∴多边形内角和=1080°−360°=720°,设多边形的边数是n,∴(n−2)×180°=720°,解得n=6.故答案为6.点睛:先根据多边形的外角和为360°求出其内角和,再根据多边形内角和定理即可求出多边形的边数.4.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.【答案】45°【解析】【分析】根据正多边形的外角度数等于外角和除以边数可得.【详解】∵硬币边缘镌刻的正多边形是正八边形,∴它的外角的度数等于360÷8=45°.故答案为45°.【点睛】本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.5.如图,A 、B 、C 三点在同一条直线上,∠A =50°,BD 垂直平分AE ,垂足为D ,则∠EBC 的度数为_____.【答案】100°【解析】【分析】根据线段垂直平分线的性质,得BE BA =,根据等腰三角形的性质,得50E A ∠=∠=︒,再根据三角形外角的性质即可求解.【详解】∵BD 垂直平分AE ,∴BE BA =,∴50E A ∠=∠=︒,∴100EBC E A ∠=∠+∠=︒,故答案为100°.【点睛】考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的关键.6.将直角三角形(ACB ∠为直角)沿线段CD 折叠使B 落在B '处,若50ACB '︒∠=,则ACD ∠度数为________.【答案】20°.【解析】【分析】根据翻折的性质可知:∠BCD=∠B′CD,又∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,继而即可求出∠BCD的值,又∠ACD+∠BCD=∠ACB=90°,继而即可求出∠ACD的度数.【详解】解:∵△B′CD时由△BCD翻折得到的,∴∠BCD=∠B′CD,又∵∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,∴∠BCD=70°,又∵∠ACD+∠BCD=∠ACB=90°,∴∠ACD=20°.故答案为:20°.【点睛】本题考查翻折变换的知识,难度适中,解题关键是掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、八年级数学三角形选择题(难)7.已知△ABC的两条高分别为4和12,第三条高也为整数,则第三条高所有可能值为()A.3和4 B.1和2 C.2和3 D.4和5【答案】D【解析】【分析】先设长度为4、12的高分别是a 、b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求a=24S ;b=212S ;c=2S h,结合三角形三边的不等关系,可得关于h 的不等式,解不等式即可.【详解】 设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么a=24S ;b=212S ;c=2S h∵a-b <c <a+b , ∴24S -212S <c <24S +212S , 即 3S <2S h <23S , 解得3<h <6,∴h=4或h=5,故选D.【点睛】主要考查三角形三边关系;利用三角形面积的表示方法得到相关等式是解决本题的关键.8.如图P 为ABC ∆内一点,070,BAC ∠=0120,BPC ∠=BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,BD 与CE 交于F ,则BFC ∠=( )A .085B .090C .095D .0100【答案】C【解析】 ∵070,BAC ∠= 0120,BPC ∠=∴∠ABC+∠ACB=110°,∠PBC+∠PCB=60°,∴∠ABP+∠ACP=(∠ABC+∠ACB)-(∠PBC+∠PCB)=110°-60°=50°,∵BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,∴∠FBP+∠FCP=12 (∠ABP+∠ACP)=00150252⨯=; ∴∠FBC+∠FCB=∠FBP+∠FCP+∠PBC+∠PCB=25°+60°=85°,∴BFC ∠=180°-(∠FBC+∠FCB )=180°-85°=95°.故选C.点睛:本题主要考查了三角形的内角和定理和角平分线的定义,根据图形正确找出角与角之间的数量关系是解题的关键.9.一个多边形的内角和是1260°,这个多边形的边数是()A.6 B.7 C.8 D.9【答案】D【解析】试题解析:设这个多边形的边数为n,由题意可得:(n-2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D.10.已知正多边形的一个外角等于40,那么这个正多边形的边数为()A.6 B.7 C.8 D.9【答案】D【解析】【分析】根据正多边形的外角和以及一个外角的度数,即可求得边数.【详解】正多边形的一个外角等于40,且外角和为360,÷=,则这个正多边形的边数是:360409故选D.【点睛】本题主要考查了多边形的外角和定理,熟练掌握多边形的外角和等于360度是解题的关键.11.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35°B.40°C.45°D.55°【答案】C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:如图,根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3-∠1=95°-50°=45°,∵a∥b,∴∠2=∠4=45°.故选C.【点睛】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.12.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°【答案】D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.三、八年级数学全等三角形填空题(难)13.如图,P为等边△ABC内一点,∠APC=150°,且∠APD=30°,AP=6,CP=3,DP=7,则BD的长为______.【答案】234.【解析】【分析】将△CPA绕点C逆时针旋转60°得到△CEB,连接EP,由全等三角形的性质可得CE=CP,∠ECB=∠PCA,∠CEB=∠CPA=150°,BE=AP=6,结合等边三角形的性质可得出∠ECP=60°,进而证明△ECP为等边三角形,由等边△ECP的性质进而证明D、P、E三点共线以及∠DEB=90°,最后利用勾股定理求出BD的长度即可.【详解】将△CPA绕点C逆时针旋转60°得到△CEB,连接EP,∴CE=CP,∠ECB=∠PCA,∠CEB=∠CPA=150°,BE=AP=6,∵等边△ABC,∴∠ACP+∠PCB=60°,∴∠ECB+∠PCB=60°,即∠ECP=60°,∴△ECP为等边三角形,∴∠CPE=∠CEP=60°,PE=6,∴∠DEB=90°,∵∠APC=150°,∠APD=30°,∴∠DPC=120°,∴∠DPE=180°,即D、P、E三点共线,∴ED=3+7=10,∴BD=22DE BE=234.故答案为234.【点睛】本题主要考查全等三角形的性质、勾股定理、等边三角形的判定与性质以及三点共线的判定,运用旋转构造全等三角形是解题的关键.14.如图,已知ABC △是等边三角形,点D 在边BC 上,以AD 为边向左作等边ADE ,连结BE ,作BF AE ∥交AC 于点F ,若2AF =,4CF =,则AE =________.【答案】27【解析】【分析】证明△BAE ≌△CAD 得到ABE BAC ∠=∠,从而证得BEAF ,再得到AEBF 是平行四边形,可得AE=BF ,在三角形BCF 中求出BF 即可.【详解】作FH BC ⊥于H ,∵ABC 是等边三角形,2AF =,4CF =∴BC=AC=6在HCF 中, CF=4, 060BCF ∠=030,2CFD CH ∴∠==2224212FH ∴=-=22241227BF BH FH ∴++=∵ABC 是等边三角形,ADE 是等边三角形∴AC=AB ,AD=AE ,060CAB DAE ∠=∠=CAD BAE ∴∠=∠CAD BAE ∴∆≅∆060ABE ACD ∴∠=∠=ABE BAC ∴∠=∠BE AF ∴∵BF AE∴AEBF 是平行四边形∴AE=BF= 27【点睛】本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.15.已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=6,DE//AB 交BC 于点E.若在射线BA 上存在点F ,使DCF BDE S S ∆∆=,请写出相应的BF 的长:BF =_________【答案】23或43.【解析】【分析】过点D 作DF 1∥BE ,求出四边形BEDF 1是菱形,根据菱形的对边相等可得BE=DF 1,然后根据等底等高的三角形的面积相等可知点F 1为所求的点,过点D 作DF 2⊥BD ,求出∠F 1DF 2=60°,从而得到△DF 1F 2是等边三角形,然后求出DF 1=DF 2,再求出∠CDF 1=∠CDF 2,利用“边角边”证明△CDF 1和△CDF 2全等,根据全等三角形的面积相等可得点F 2也是所求的点,然后在等腰△BDE 中求出BE 的长,即可得解.【详解】如图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形,所以BE=DF 1,且BE 、DF 1上的高相等,此时S △DCF1=S △BDE ;过点D 作DF 2⊥BD ,∵∠ABC=60°,F 1D ∥BE ,∴∠F 2F 1D=∠ABC=60°,∵BF 1=DF 1,∠F 1BD=12∠ABC=30°,∠F 2DB=90°, ∴∠F 1DF 2=∠ABC=60°,∴△DF 1F 2是等边三角形,∴DF 1=DF 2, ∵BD=CD ,∠ABC=60°,点D 是角平分线上一点,∴∠DBC=∠DCB=12×60°=30°, ∴∠CDF 1=180°-∠BCD=180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,∵在△CDF 1和△CDF 2中,1212DF DF CDF CDF CD CD ⎧⎪∠∠⎨⎪⎩=== , ∴△CDF 1≌△CDF 2(SAS ),∴点F 2也是所求的点,∵∠ABC=60°,点D 是角平分线上一点,DE ∥AB ,∴∠DBC=∠BDE=∠ABD=12×60°=30°, 又∵BD=6,∴BE=12×6÷cos30°∴BF 1=BF 2=BF 1+F 1F 2故BF 的长为故答案为:【点睛】本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F 有两个.16.如图,点E 是等边△ABC 内一点,且EA =EB ,△ABC 外一点D 满足BD =AC ,且BE 平分∠DBC ,则∠D =__________.【答案】30°【解析】试题解析:(1)连接CE ,∵△ABC 是等边三角形,∴AC=BC ,在△BCE 与△ACE 中,{AC BCAE BE CE CE===∴△BCE ≌△ACE (SSS )∴∠BCE=∠ACE=30°∵BE 平分∠DBC ,∴∠DBE=∠CBE ,在△BDE 与△BCE 中,{BD BCDBE CBE BE BE∠∠===∴△BDE ≌△BCE (SAS ),∴∠BDE=∠BCE=30°.17.如图,已知AB ∥CD ,O 为∠CAB 、∠ACD 的角平分线的交点,OE ⊥AC 于E ,且OE =2,CO =3,则两平行线间AB 、CD 的距离等于________.【答案】4【解析】试题解析:如图,过点O 作MN ,MN ⊥AB 于M ,交CD 于N ,∵AB ∥CD ,∴MN ⊥CD ,∵AO 是∠BAC 的平分线,OM ⊥AB ,OE ⊥AC ,OE=2,∴OM=OE=2,∵CO 是∠ACD 的平分线,OE ⊥AC ,ON ⊥CD ,∴ON=OE=2,∴MN=OM+ON=4,即AB 与CD 之间的距离是4.点睛:要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.18.把两个三角板如图甲放置,其中90ACB DEC ∠=∠=︒,45A ∠=︒,30D ∠=︒,斜边12AB =,14CD =,把三角板DCE 绕着点C 顺时针旋转15︒得到△11D CE (如图乙),此时AB 与1CD 交于点O ,则线段1AD 的长度为_________.【答案】10【解析】试题分析:如图所示,∠3=15°,∠1E =90°, ∴∠1=∠2=75°, 又∵∠B=45°,∴∠OF 1E =∠B+∠1=45°+75°=120° ∴∠1D FO=60° ∵∠C 11D E =30°,∴∠5=∠4=90°, 又∵AC=BC ,AB=12, ∴OA=OB=6 ∵∠ACB=90°,∴CO=12AB=6, 又∵C 1D =CD=14, ∴O 1D =C 1D -OC=14-6=8, 在Rt △A 1D O 中,222211A 6810D OA OD =+=+=点睛:本题主要考查的就是旋转的性质、三角形的外角性质、直角三角形的性质及判定以及勾股定理的应用.解决这个问题的关键就是首先根据三角形外角的性质以及旋转图形的性质得出△AO 1D 为直角三角形,然后根据直角三角形的性质得出AO 和O 1D 的长度,最后根据直角三角形的勾股定理得出答案.四、八年级数学全等三角形选择题(难)19.如图,已知AB =AC ,AF =AE ,∠EAF=∠BAC,点C 、D 、E 、F 共线.则下列结论,其中正确的是( )①△AFB≌△AEC;②BF=CE ;③∠BFC=∠EAF;④AB=BC .A .①②③B .①②④C .①②D .①②③④【答案】A【解析】【分析】 根据题意结合图形证明△AFB ≌△AEC ;利用四点共圆及全等三角形的性质问题即可解决.【详解】如图,∵∠EAF=∠BAC ,∴∠BAF=∠CAE ;在△AFB 与△AEC 中,AF AE BAF CAE AB AC ⎧⎪∠∠⎨⎪⎩===,∴△AFB ≌△AEC (SAS ),∴BF=CE ;∠ABF=∠ACE ,∴A 、F 、B 、C 四点共圆,∴∠BFC=∠BAC=∠EAF ;故①、②、③正确,④错误.故选A..【点睛】本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.20.如图,AD 是ABC 的角平分线,DE AC ⊥;垂足为,//E BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.给出下列三个结论:①DE DF =;②DB DC =;③AD BC ⊥.其中正确的结论共有( )个A .0B .1C .2D .3【答案】D【解析】【分析】 由BF ∥AC ,AD 是ABC 的角平分线,BC 平分ABF ∠得∠ADB=90︒;利用AD 平分∠CAB 证得△ADC ≌△ADB 即可证得DB=DC ;根据DE AC ⊥证明△CDE ≌△BDF 得到DE DF =.【详解】∵DE AC ⊥,BF ∥AC,∴EF ⊥BF ,∠CAB+∠ABF=180︒,∴∠CED=∠F=90︒,∵AD 是ABC 的角平分线,BC 平分ABF ∠,∴∠DAB+∠DBA=12(∠CAB+∠ABF)=90︒, ∴∠ADB=90︒,即AD BC ⊥,③正确; ∴∠ADC=∠ADB=90︒,∵AD 平分∠CAB,∴∠CAD=∠BAD,∵AD=AD,∴△ADC ≌△ADB,∴DB=DC,②正确;又∵∠CDE=∠BDF,∠CED=∠F,∴△CDE≌△BDF,∴DE=DF,①正确;故选:D.【点睛】此题考查平行线的性质,三角形全等的判定及性质,角平分线的定义.21.具备下列条件的两个三角形,可以证明它们全等的是( ).A.一边和这一边上的高对应相等B.两边和第三边上的中线对应相等C.两边和其中一边的对角对应相等D.直角三角形的斜边对应相等【答案】B【解析】【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL分别进行分析.【详解】解:A、一边和这边上的高对应相等,无法得出它们全等,故此选项错误;B、两边和第三边上的中线对应相等,通过如图所示方式(倍长中线法)可以证明它们全等(△ABC≌△A′B′C′),故此选项正确..C、两边和其中一边的对角对应相等,无法利用ASS得出它们全等,故此选项错误;D、直角三角形的斜边对应相等,无法得出它们全等,故此选项错误.故选:B.【点睛】本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、 AB′,下列说法:① ∠BAD=30°; ② ∠BFC=135°;③ AF=2B′ C;正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】依据点D是等腰直角△ABC腰BC上的中点,可得tan∠BAD=12,即可得到∠BAD≠30°;连接B'D,即可得到∠BB'C=∠BB'D+∠DB'C=90°,进而得出△ABF≌△BCB',判定△FCB'是等腰直角三角形,即可得到∠CFB'=45°,即∠BFC=135°;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C;依据△AEF与△CEB'不全等,即可得到S△AFE≠S△FCE.【详解】∵点D是等腰直角△ABC腰BC上的中点,∴BD=12BC=12AB,∴tan∠BAD=12,∴∠BAD≠30°,故①错误;如图,连接B'D,∵B、B′关于AD对称,∴AD垂直平分BB',∴∠AFB=90°,BD=B'D=CD,∴∠DBB'=∠BB'D,∠DCB'=∠DB'C,∴∠BB'C=∠BB'D+∠DB'C=90°,∴∠AFB=∠BB'C,又∵∠BAF+∠ABF=90°=∠CBB'+∠ABF ,∴∠BAF=∠CBB',∴△ABF ≌△BCB',∴BF=CB'=B'F ,∴△FCB'是等腰直角三角形,∴∠CFB'=45°,即∠BFC=135°,故②正确;由△ABF ≌△BCB',可得AF=BB'=2BF=2B'C ,故③正确;∵AF >BF=B'C ,∴△AEF 与△CEB'不全等,∴AE≠CE ,∴S △AFE ≠S △FCE ,故④错误;故选B .【点睛】本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.23.如图, AB=AC ,AD=AE , BE 、CD 交于点O ,则图中全等三角形共有( )A .五对B .四对C .三对D .二对【答案】A【解析】 如图,由已知条件可证:①△ABE ≌△ACD ;②△DBC ≌△ECB ;③△BDO ≌△ECO ;④△ABO ≌△ACO ;⑤△ADO ≌△AEO ;∴图中共有5对全等三角形.故选A.24.已知111122,A B C A B C △△的周长相等,现有两个判断:①若21212112,A A B C B A A C ==,则111222A B C A B C △≌△;②若12=A A ∠∠,1122=A C A C ,则111222A B C A B C △≌△,对于上述的两个判断,下列说法正确的是( )A .①,②都正确B .①,②都错误C .①错误,②正确D .①正确,②错误 【答案】A【解析】【分析】根据SSS 即可推出△111A B C ≅△222A B C ,判断①正确;根据相似三角形的性质和判定和全等三角形的判定推出即可.【详解】解:①△111A B C,△222A B C的周长相等,1122A B A B=,1122AC A C=,1122B C B C∴=,∴△111A B C≅△222()A B C SSS,∴①正确;②如图,延长11A B到1D,使1111B D B C=,,延长22A B到2D,使2222B D B C=,∴111111A D AB B C=+,222222A D AB B C=+,∵111122,A B C A B C△△的周长相等,1122=A C A C∴1122A D A D=,在△111A B D和△222A B D中1122121122==A D A DA AA C A C=⎧⎪∠∠⎨⎪⎩,∴△111A B D≅△222A B D(SAS)∴12=D D∠∠,∵1111B D B C=,2222B D B C=∴1111=D D C B∠∠,2222=D D C B∠∠,又∵1111111=A B C D D C B∠∠+∠,2222222=A B C D D C B∠∠+∠,∴1112221==2A B C A B C D∠∠∠,在△111A B C和△222A B C中111222121122===A B C A B CA AA C A C∠∠⎧⎪∠∠⎨⎪⎩,∴△111A B C≅△222A B C(AAS),∴②正确;综上所述:①,②都正确.故选:A.【点睛】本题考查了全等三角形的判定、等腰三角形的性质,能构造全等三角形、综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,而AAA和SSA不能判断两三角形全等.五、八年级数学轴对称三角形填空题(难)25.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.【答案】AD的中点【解析】【分析】【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AB的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.26.在平面直角坐标系中,点A在x轴的正半轴上,点B在y轴的正半轴上,36ABO ∠=︒,在x 轴或y 轴上取点C ,使得ABC ∆为等腰三角形,符合条件的C 点有__________个.【答案】8【解析】【分析】观察数轴,按照等腰三角形成立的条件分析可得答案.【详解】解:如下图所示,若以点A 为圆心,以AB 为半径画弧,与x 轴和y 轴各有两个交点, 但其中一个会与点B 重合,故此时符合条件的点有3个;若以点B 为圆心,以AB 为半径画弧,同样与x 轴和y 轴各有两个交点,但其中一个与点A 重合,故此时符合条件的点有3个; 线段AB 的垂直平分线与x 轴和y 轴各有一个交点,此时符合条件的点有2个.∴符合条件的点总共有:3+3+2=8个.故答案为:8.【点睛】本题考查了等腰三角形的判定,可以观察图形,得出答案.27.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【解析】【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.28.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;②点O 到ABC ∆各边的距离相等;③1902BOC A ∠=+∠;④设OD m =,AE AF n +=,则AEF S mn ∆=;⑤1()2AD AB AC BC =+-.其中正确的结论是.__________.【答案】①②③⑤【解析】【分析】由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC =90°+12∠A 正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF =BE +CF 故①正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD =m ,AE +AF =n ,则S △AEF =12mn ,故④错误,根据HL 证明△AMO ≌△ADO 得到AM =AD ,同理可证BM =BN ,CD =CN ,变形即可得到⑤正确.【详解】 ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∠A +∠ABC +∠ACB =180°,∴∠OBC +∠OCB =90°﹣12∠A ,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12∠A ;故③正确; ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =∠OBE ,∠OCB =∠OCF . ∵EF ∥BC ,∴∠OBC =∠EOB ,∠OCB =∠FOC ,∴∠EOB =∠OBE ,∠FOC =∠OCF ,∴BE =OE ,CF =OF ,∴EF =OE +OF =BE +CF ,故①正确;过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA .∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴ON =OD =OM =m ,∴S △AEF =S △AOE +S △AOF =12AE •OM +12AF •OD =12OD •(AE +AF )=12mn ;故④错误; ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴点O 到△ABC 各边的距离相等,故②正确;∵AO =AO ,MO =DO ,∴△AMO ≌△ADO (HL ),∴AM =AD ;同理可证:BM =BN ,CD =CN .∵AM +BM =AB ,AD +CD =AC ,BN +CN =BC ,∴AD =12(AB +AC ﹣BC )故⑤正确. 故答案为:①②③⑤.【点睛】本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.29.如图,在ABC ∆和DBC ∆中,40A ∠=,2AB AC ==,140BDC ∠=,BD CD =,以点D 为顶点作70MDN ∠=,两边分别交,AB AC 于点,M N ,连接MN ,则AMN ∆的周长为_______.【答案】4【解析】【分析】延长AB 至F ,使BF =CN ,连接DF ,通过证明△BDF ≌△CDN ,及△DMN ≌△DMF ,从而得出MN =MF ,△AMN 的周长等于AB +AC 的长.【详解】延长AB 至F ,使BF =CN ,连接DF .∵BD =CD ,且∠BDC =140°,∴∠BCD =∠DBC =20°.∵∠A =40°,AB =AC =2,∴∠ABC =∠ACB =70°,∴∠DBA =∠DCA =90°.在Rt △BDF 和Rt △CND 中,∵BF =CN ,∠DBA =∠DCA ,DB =DC ,∴△BDF ≌△CDN ,∴∠BDF =∠CDN ,DF =DN .∵∠MDN =70°,∴∠BDM +∠CDN =70°,∴∠BDM +∠BDF =70°,∴∠FDM =70°=∠MDN .∵DF =DN ,∠FDM =∠MDN ,DM =DM ,∴△DMN ≌△DMF ,∴MN =MF ,∴△AMN 的周长是:AM +AN +MN =AM +MB +BF +AN =AB +AC =4.故答案为:4.【点睛】本题主要利用等腰三角形的性质来证明三角形全等,构造全等三角形是解答本题的关键.30.已知如图,每个小正方形的边长都是1231,,, ....A A A 都在格点上,123345567,, ....A A A A A A A A A 都是斜边在x 轴上,且斜边长分别为2,4,6,.的等腰直角三角形.若123A A A △的三个顶点坐标为()()()1232,0,1,1,0,0A A A -,则依图中规律,则19A 的坐标为 ___________【答案】()8,0-【解析】【分析】根据相邻的两个三角形有一个公共点,列出与三角形的个数与顶点的个数的关系式,再求出A 19所在的三角形,并求出斜边长.然后根据第奇数个三角形,关于直线x=1对称,第偶数个三角形关于直线x=2对称,求出OA 19,写出坐标即可.【详解】解:设到第n 个三角形顶点的个数为y则y=2n+1,当2n+1=19时,n=9,∴A 19是第9个三角形的最后一个顶点,∵等腰直角三角形的斜边长分别为2,4,6....∴第9个等腰直角三角形的斜边长为2×9=18,由图可知,第奇数个三角形在x 轴下方,关于直线x=1对称,∴OA 19=9-1=8,∴19A 的坐标为()8,0-故答案是()8,0-【点睛】本题考查点的坐标变化规律,根据顶点个数与三角形的关系,判断出点A 19所在的三角形是解题关键六、八年级数学轴对称三角形选择题(难)31.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A 3B .332C .32D .不能确定【答案】B【解析】已知,如图,P 为等边三角形内任意一点,PD 、PE 、PF 分别是点P 到边AB 、BC 、AC 的距离,连接AP 、BP 、CP ,过点A 作AH ⊥BC 于点H ,已知等边三角形的边长为3,可求得高线AH =332,因S △ABC =12BC •AH =12AB •PD+12BC•PE +12AC •PF ,所以12×3×AH =12×3×PD +12×3×PE +12×3×PF ,即可得PD +PE +PF =AH =332,即点P 到三角形三边距离之和为332.故选B.点睛:本题考查了等边三角形的性质,根据三角形的面积求点P 到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.32.在坐标平面上有一个轴对称图形,其中A (3,﹣52)和B (3,﹣112)是图形上的一对对称点,若此图形上另有一点C (﹣2,﹣9),则C 点对称点的坐标是( )A .(﹣2,1)B .(﹣2,﹣32)C .(﹣32,﹣9) D .(﹣2,﹣1) 【答案】A【解析】【分析】 先利用点A 和点B 的坐标特征可判断图形的对称轴为直线y=-4,然后写出点C 关于直线y=-4的对称点即可.【详解】解:∵A (3,﹣52)和B (3,﹣112)是图形上的一对对称点, ∴点A 与点B 关于直线y =﹣4对称, ∴点C (﹣2,﹣9)关于直线y =﹣4的对称点的坐标为(﹣2,1).故选:A .【点睛】本题考查了坐标与图形的变化,需要注意关于直线对称:关于直线x=m 对称,则两点的纵坐标相同,横坐标和为2m ;关于直线y=n 对称,则两点的横坐标相同,纵坐标和为2n .33.如图,ABC ∆中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分EDF ∠;④2AB AC AE +=,其中正确的是( )A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD,DF=12AD,从而可证明②正确;③若DM平分∠EDF,则∠EDM=90°,从而得到∠ABC为直角三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.∴①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12 AD.同理:DF=12AD . ∴DE+DF=AD .∴②正确. ③由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC 是否等于90°不知道,∴不能判定MD 平分∠EDF ,故③错误.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④正确.综上所述,①②④正确,故选:C .【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.34.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是( )A .AD =BEB .BE ⊥AC C .△CFG 为等边三角形D .FG ∥BC【答案】B【解析】试题解析:A.ABC 和CDE △均为等边三角形,60AC BC EC DC ACB ECD ∴==∠=∠=︒,,,在ACD 与BCE 中,{AC BCACD BCE CD CF =∠=∠=,ACD BCE ∴≌,AD BE ∴=,正确.B .据已知不能推出F 是AC 中点,即AC 和BF 不垂直,所以AC BE ⊥错误,故本选项符合题意.C.CFG 是等边三角形,理由如下:180606060ACG BCA ∠=︒-︒-︒=︒=∠,ACD BCE ≌,CBE CAD ∴∠=∠,在ACG 和BCF 中,{CAG CBFAC BCBCF ACG ∠=∠=∠=∠,ACG BCF ∴≌,CG CH ∴=,又∵∠ACG=60° CFG ∴是等边三角形,正确.D.CFG 是等边三角形,60CFG ACB ∴∠︒=∠﹦,.FG BC ∴ 正确.故选B.35.如图,△ABC 是等边三角形,AQ =PQ ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,PR =PS ,则下列结论:①AP ⊥BC ;②AS =AR ;③QP ∥AR ;④△BRP ≌△QSP .正确的有( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,根据等腰三角形“三线合一”的性质判断出①正确;根据HL证明Rt△APR≌Rt△APS,即可判断②正确;根据等边对等角的性质可得∠APQ=∠PAQ,根据三角形外角的性质得到然后得到∠PQC=2∠PAC=60°=∠BAC,然后根据同位角相等两直线平行可得QP∥AB,从而判断出③正确,④由③易证△QPC是等边三角形,得到PQ=PC,等量代换得到BP=PQ,用HL证明Rt△BRP≌Rt△QSP,即可得到④正确.【详解】∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上.∵AB=AC,∴AP⊥BC,故①正确;∵PA=PA,PR=PS,∴Rt△APR≌Rt△APS,∴AS=AR,故②正确;∵AQ=PQ,∴∠APQ=∠PAQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得:△PQC是等边三角形,∴△PQS≌△PCS,∴PQ=PC.又∵AB=AC,AP⊥BC,∴BP=PC,∴BP=PQ.∵PR=PS,∴Rt△BRP≌Rt△QSP,故④也正确.∵①②③④都正确.故选D.【点睛】本题考查了等腰三角形的性质、全等三角形的判定与性质以及等边三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.36.如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于()A.108°B.114°C.126°D.129°【答案】C【解析】【分析】按照如图所示的方法折叠,剪开,把相关字母标上,易得∠ODC和∠DOC的度数,利用三角形的内角和定理可得∠OCD的度数.【详解】解:展开如图,五角星的每个角的度数是,1805=36°. ∵∠COD =360°÷10=36°,∠ODC=36°÷2=18°,∴∠OCD =180°-36°-18°=126°,故选C .【点睛】本题主要考查轴对称性质,解决本题的关键是能够理解所求的角是五角星的哪个角,解题时可以结合正五边形的性质解决.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.把多项式2425m -分解因式正确的是( )A .(45)(45)m m +-B .(25)(25)m m +-C .(5)(5)m m -+D .(5)(5)m m m -+【答案】B【解析】利用公式法分解因式的要点,根据平方差公式:()()22a b a b a b -=+-,分解因式为:()()()222425252525m m m m -=-=+-.故选B.38.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.39.因式分解x 2-ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)【答案】B【解析】【分析】【详解】。
人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)
人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)一、选择题(每小题3分,共30分)1.下列计算正确的是( )A.x+x²=x³B.x²・x³=x6C.(x³)²=x6D.x9÷x³=x³2.若12x m y2与13x3y n是同类项,则m,n的值为( )A.m=3,n=2B.m=2,n =3C.m=-3.n=2D.m=-2,n=33.下列因式分解不完全的是( )A.a²-2ab+b²=(a-b)²B.a³-a =a (a²-1)C.a²b-ab²=ab(a-b)D.a²-b²=(a+b)(a-b)4.已知(a +b)²=(a-b)²+M,则M为( )A.abB.2abC.-2abD.4ab5.下列多项式乘法中,能运用平方差公式的是()A.(a-b)(a-b)B.(a-b)(-a+b)C.(a+b)(-a+b)D.(a-b)(b-a)6.如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( )A.-3B.3C.0D.17.如图的图形面积由以下哪个公式表示( )A.a²-b²=a(a-b)+b(a-b)B.(a-b)²=a²-2ab+b²C.(a+b)²=a²+2ab+b²D.a²-b²=(a+b)(a-b)8.若△ABC的三边a,b,c满足a²+b²+c²-ab-bc-ca=0,则△ABC是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形9.下列计算:①3a+2b=5ab;②3x³×(-2x²)=-6x5;③4a³b÷(-2a²b)=-2a;④(-a²)³=a6;⑤(-a)³÷(-a)=-a².其中正确的有( )A.1个B.2个C.3个D.4 个10.已知x+y=6,xy=8,下列结论:①(x+y)²=36;②x²+y²=20;③x-y=2;④x²y²=12.其中正确的是( )A.①②③④B.①②④C.①②D.①③④二、填空题(每小题3分,共18分)11.x平方x²+y²+2x-6y+10=0,则x・y=_________12.当x______时,(x-3)0=1.13.若x²+2(m-3)x+16是一个完全平方式,那么m应为_________.14.若x-1x =1,则x²+1x2的值是__________.15.观察下列关于自然数的等式:①3²-4X1²=5;②5²-4X2²=9;③7²-4X3²=13.根据上述规律解决下列问题:(1)完成第四个等式:____________________;(2)写出你猜想的第n个等式_____________________(用含n的式子表示).16.已知a,b满足等式x=a²+b²+5,y=2(2b-a),则x,y的大小关系为______________.三、解答题(72分)17.(10分)计算下列各题.(1)-2a²bx(−12ab2)x(-abc);(2)(5x-3)(-5x-3)-(5x+3)²+(5x-3)².18.(12分)分解因式。
人教版数学八年级下册第十九单元测试试卷(含答案)(1)
人教版数学8年级下册第19单元·时间:90分钟 满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)若一次函数y =2x +b (k ≠0)的图象向下平移3个单位后经过点A (1,4),则b 的值为( )A .3B .4C .5D .62.(3分)若点A(m ,B (n ,2)在一次函数y =2x +b (k ≠0)的图象上,则m 与n 的大小关系是( )A .m >nB .m <nC .m ≥nD .m ≤n3.(3分)如图,直线y =kx +b (k ≠0)与x 轴交于点(﹣5,0),下列说法正确的是( )A .k >0,b <0B .直线上两点(x 1,y 1),(x 2,y 2),若x 1<x 2,则y 1>y 2C .直线经过第四象限D .关于x 的方程kx +b =0的解为x =﹣54.(3分)下列四点中只有一个点不在一次函数y =kx +b (k ≠0)的图象上,则该点是( )A .(1,﹣1)B .(0,0)C .(2,﹣3)D .(3,﹣5)5.(3分)如图,在平面直角坐标系中放置三个长为2,宽为1的长方形,已知一次函数y =kx +b 的图象经过点A 与点B ,则k 与b 的值为( )A .k =32,b =34B .k =―32,b =―34C.k=―34,b=―32D.k=34,b=326.(3分)已知直线y=x+b(b为常数)与两条坐标轴围成的三角形面积为3,则直线y=x+2b 与两条坐标轴围成的三角形面积为( )A.32B.6C.9D.127.(3分)“百日长跑”是一项非常有益身心的体育活动,体育老师一声令下,小雅立即开始慢慢加速,途中一直保持匀速,最后150米时奋力冲刺跑完全程,下列最符合小雅跑步时的速度y(单位:米/分)与时间x(单位:分)之间的大致图象的是( )A.B.C.D.8.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A﹣D﹣B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积)(cm2)随时间x(s)变化的关系图象,则a 的值为( )A.5B.4C D.25 69.(3分)把一次函数y=x+1的图象绕点(2,0)顺时针旋转180°所得直线的表达式为( )A.y=﹣x+2B.y=﹣x+3C.y=x﹣4D.y=x﹣510.(3分)小明晚饭后出门散步,从家点O出发,最后回到家里,行走的路线如图所示.则小明离家的距离h与散步时间t之间的函数关系可能是( )A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.(3分)函数y x的取值范围为 .12.(3分)某商场出售一批商品,在销售中发现日销售量y(件)与销售价x(元)的变化关系如下表,写出y与x之间的函数关系式 .售价x(元)200240250400日销售量y(件)3025241513.(3分)如图1,动点P从长方形ABCD的顶点A出发,沿A→C→D以1cm/s的速度运动到点D停止.设点P的运动时间为x(s),△PAB的面积为y(cm2).表示y与x的函数关系的图象如图2所示,则长方形ABCD的面积为 cm2.14.(3分)若一次函数y=2x+b(b是常数)向上平移5个单位后,图象经过第一、二、三象限,则b的取值范围是 .15.(3分)一次函数y=(1﹣k)x+k2﹣1的图象经过原点,则y随x的增大而 .(填“增大”或“减小”)16.(3分)为了积极备战即将到来的运动会,小田、小周相约一起到操场进行100米折返跑训练,小田率先完成热身并开始跑步,5秒钟后小周热身完毕加入了跑步,若掉头所需时间忽略不计,且在整个折返跑过程中,小田、小周均保持匀速,他们各自距起跑点的距离y (单位:米)与小田跑步的时间x(单位:秒)之间的部分图象关系如图所示,则两人在跑步过程中第一次相遇时,相遇点距离起跑点 米.三.解答题(共9小题,满分72分)17.(6分)已知一次函数y=kx+b的图象过点(1,1)和(﹣1,3).(1)求该函数的解析式;(2)若3<y≤4,求x的取值范围.18.(6分)已知一次函数y=(6+3m)x+(m﹣4),(1)m为何值时,y随x的增大而减小?(2)m为何值时,函数图象交y轴于负半轴?(3)m为何值时,函数图象不经过第二象限.19.(6分)2022年北京冬奥会举办期间,需要一批大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)经调查:租用一辆36座和一辆22座车型的价格分别为1800元和1200元.学校计划租用8辆车运送志愿者,既要保证每人有座,又要使得本次租车费用最少,应该如何设计租车方案?20.(6分)甲、乙两人分别从同一公路上的A,B两地同时出发骑车前往C地,两人离A 地的距离y(km)与甲行驶的时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A,B两地相距 km;乙骑车的速度是 km/h;(2)求甲追上乙时用了多长时间.21.(8分)甲、乙两人分别从同一公路上的A,B两地同时出发骑车前往C地,两人离A 地的距离y(km)与行驶的时间x(h)之间的关系如图所示.(1)请分别求出甲、乙两人在0≤x≤6的时间段内y与x之间的函数表达式;(2)求甲追上乙用了多长时间?22.(8分)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=12x的图象向右平移4个单位长度得到.(1)求这个一次函数的解析式;(2)当x<2时,对于x的每一个值,函数y=ax(a≠0)的值大于一次函数y=kx+b的值,直接写出a的取值范围.23.(8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度;(2)求线段AB的函数表达式.24.(12分)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?25.(12分)探究函数y=x|x﹣2|的图象与性质.小明根据学习函数的经验,对函数y=x|x﹣2|的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)如表是x与y的几组对应值.请直接写出:m= ,n= ;(2)如图,小明在平面直角坐标系xOy中,描出了如表中部分各组对应值为坐标的点,请再描出剩下的两个点,并画出该函数的图象;(3)结合画出的函数图象,解决问题:若方程x|x﹣2|=a有三个不同的解,请直接写出满足条件的a的取值范围 ;将此时三个不同的解记为x1,x2,x3,且x1<x2<x3.若t=x1+x2+x3,请直接写出t的取值范围 .参考答案1.C;2.A;3.D;4.B;5.D;6.D;7.B;8.D;9.D;10.C;11.x≥﹣1且x≠3;12.y=6000 x;13.60;14.b>﹣5;15.增大;16.480 7;17.解:(1)根据题意得k+b=1―k+b=3,解得k=―1 b=2,所以一次函数解析式为y=﹣x+2;(2)当y=3时,x=﹣1;当y=4时,﹣x+2=4,解得x=﹣2,所以x的取值范围为﹣2≤x<﹣1.18.解:(1)根据题意,得6+3m<0,解得m<﹣2,∴当m<﹣2时,y随x的增大而减小;(2)根据题意,得m﹣4<0,解得m<4,∵y=(6+3m)x+(m﹣4)是一次函数,∴m≠﹣2,∴m<4且m≠﹣2时,函数图象交y轴于负半轴;(3)根据题意,得6+3m>0 m―4≤0,解不等式组,得﹣2<m≤4,∴当﹣2<m≤4时,函数图象不经过第二象限.19.解:(1)设计划调配36座新能源客车x辆,则该大学共有(36x+2)名志愿者,依题意得:22(x+4)﹣(36x+2)=2,解得:x=6,∴36x+2=36×6+2=218.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设租用m辆36座新能源客车,则租用(8﹣m)辆22座新能源客车,依题意得:36m+22(8﹣m)≥218,解得:m≥3.设本次租车费用为w元,则w=1800m+1200(8﹣m)=600m+9600,∵600>0,∴w随m的增大而增大,又∵m≥3,且m为整数,∴当m=3时,w取得最小值,此时8﹣m=8﹣3=5,∴该学校应该租用3辆36座新能源客车,5辆22座新能源客车.20.解:(1)A,B两地相距20千米;乙的速度为:30202=5(km/h),故答案为:20,5.(2)设函数关系式为y乙=kx+b,把(0,20)、(2,30)两点代入,则b=202k+b=30,解得:k=5b=20,∴y乙=5x+20.设函数关系式为y甲=mx,则函数图象过点(6,60),则有60=6m,即m=10.∴函数关系式为:y甲=10x;∴当0≤x≤6时,y乙=5x+20,y甲=10x.令y乙=y甲,则5x+20=10x,解得x=4.∴甲追上乙时用了4h.21.解:(1)设乙函数关系式为y乙=kx+b,把(0,20)、(2,30)两点代入,则b=202k+b=30,解得:k=5b=20,∴y乙=5x+20.设甲函数关系式为y甲=mx,则函数图象过点(6,60),则有60=6m,即m=10.∴函数关系式为:y甲=10x;∴当0≤x≤6时,y乙=5x+20,y甲=10x;(2)令y乙=y甲,则5x+20=10x,解得x=4.∴甲追上乙时用了4h.22.解:(1)函数y=12x的图象向右平移4个单位长度得到y=12(x﹣4)=12x﹣2,∴这个一次函数的解析式为y=12x﹣2.(2)把x=2代入y=12x﹣2,得y=﹣1,∴函数y=ax(a≠0)与一次函数y=12x﹣2的交点为(2,﹣1),把点(2,﹣1)代入y=ax,求得a=―1 2,∵当x<2时,对于x的每一个值,函数y=ax(a≠0)的值大于一次函数y=kx+b的值,∴―12≤a≤12且a≠0.23.解:(1)小敏去超市途中的速度是3000÷10=300(米/分),∴小敏去超市途中的速度为300米/分;(2)设AB 段y 与x 的函数解析式为y =kx +b ,把(40,3000),(45,2000)代入得:40k +b =300045k +b =2000,解得:k =―200b =11000,∴AB 段函数解析式为y =﹣200x +11000.24.解:(1)由图象,得t =0时,s =880,∴工厂离目的地的路程为880千米,答:工厂离目的地的路程为880千米;(2)设s =kt +b (k ≠0),将(0,880)和(4,560)代入s =kt +b 得,b =8804k +b =560,解得:k =―80b =880,∴s 关于t 的函数表达式:s =﹣80t +880(0≤t ≤11),答:s 关于t 的函数表达式:s =﹣80t +880(0≤t ≤11);(3)当油箱中剩余油量为10升时,s =880﹣(60﹣10)÷0.1=380(千米),∴380=﹣80t +880,解得:t =254(小时),当油箱中剩余油量为0升时,s =880﹣60÷0.1=280(千米),∴280=﹣80t +880,解得:t =152(小时),∵k =﹣80<0,∴s 随t 的增大而减小,∴t 的取值范围是254≤t ≤152.25.解:(1)将x =2,代入到y =x |x ﹣2|中,得:y =2×|2﹣2=0;将x =1+y =x |x ﹣2|中,得:y =(1|1+―2)=1;∴m=0,n=1,故答案为:0,1;(2)描出剩下的两个点,并画出该函数的图象如图:;(3)结合画出的函数图象,若方程x|x﹣2|=a有三个不同的解,a的取值范围0<a<1;将此时三个不同的解记为x1,x2,x3,且x1<x2<x3.若t=x1+x2+x3,t的取值范围t>2.故答案为:0<a<1;t>2.。
人教版八年级上册数学《三角形》单元测试题带答案
人教版数学八年级上学期《三角形》单元测试时间:90分钟总分: 100一、选择题1.能将三角形面积平分的是三角形的..)A.角平分..B...C.中..D.外角平分线2.已知三角形的两边长分别为4cm和9cm, 则下列长度的四条线段中能作为第三边的是.. )A.13c..B.6c..C.5c..D.4cm3.三角形一个外角小于与它相邻的内角, 这个三角形是...)A.直角三角..B.锐角三角..C.钝角三角..D.属于哪一类不能确定4.若一个多边形每一个内角都是135º, 则这个多边形的边数是...)A...B...C.1..D.125.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面, 可供选择的地砖共有( )A.4..B.3..C.2..D.1种6.一个多边形的外角和是内角和的一半, 则它是. )边形A...B...C...D.47.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S △DGF的值为. )学*科*网...学*科*网...A.4cm..B.6cm..C.8cm..D.9cm28.已知△ABC中, ∠A=20°, ∠B=∠C, 那么三角形△ABC是()A.锐角三角..B.直角三角..C.钝角三角..D.正三角形9.试通过画图来判定, 下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形10.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35..B.55..C.60..D.70°二、填空题11.如果点G是△ABC的重心.AG的延长线交BC于点D.GD=12.那么AG=________.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1= ,∠2= ,则∠3=_____________°.13.若一个多边形的内角和比外角和大360°, 则这个多边形的边数为_______________.14.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D.E、F,则线段___是△ABC中AC边上的高.15.一个多边形的内角和是外角和的2倍, 则这个多边形的边数为___.16.十边形的外角和是_____°.17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.18.如图,⊿ABC中,∠..40°,∠..72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CD.=_________度。
人教版八年级上册数学试卷(含答案)
人教版八年级上册数学试卷(含答案)一、选择题1. 2/3 + 3/4 =A. 5/6B. 7/12C. 1 1/12D. 1 7/122. 化简 !(a ∨ b)∧c 的否定是:A. (a ∨ b)∨cB. !(a ∨ b)∨cC. !(a ∨ b)∨!cD. !(a ∨ b)∧!c3. 下列等式恒成立的是:A. 4x + 3 = 7x - 9B. 3x - 5 = 2x + 4C. 3x + 5 = 2x - 4D. 4x - 5 = 5x + 44. 5(3x + 1) - 2(2x - 3) 的结果是:A. 5x + 7B. 6x - 7C. 9x + 3D. 14x - 15. 若直线L1垂直于直线L2,直线L2垂直于直线L3,则直线L1与直线L3之间的关系是:A. 平行B. 垂直C. 重合D. 无法确定二、填空题1. x + 3 = -2 的解为_________。
2. (3x + 6) / 2 = 9 的解为_________。
3. 直线方程 y = -2x + 5 的斜率为_________。
4. 等腰直角三角形的两条边分别为3cm,斜边长为_________。
5. 三角形的内角之和是_________度。
三、解答题1. 解方程:2(x - 3) + 5(x + 2) = 20 - 3(x - 4)2. 计算:3/4 + 2/3 - 1/2 =3. 在数轴上,表示下列不等式的图形:-2 < x ≤ 34. 计算:3√27 + 2√12 - √755. 解方程组:3x + 2y = 102x - y = 3四、应用题1. 小明在图书馆借了5本书,其中3本是小说,2本是科普书。
小明随机选一本书开始阅读,那么他先拿到的是小说的概率是多少?2. 甲乙两个角分别是正角和是钝角,且甲角的度数是乙角的3倍减去30°,求甲角的度数。
3. 甲、乙两个班级的男女生人数比是5:4,如果甲班的男生人数比乙班少10人,乙班的男生人数是多少?4. 某品牌的手机市场份额为30%,而在非智能手机市场的份额是10%,在智能手机市场的份额是40%。
人教版八年级数学上册 第十四章 整式的乘法与因式分解 单元测试卷(2024年秋)
人教版八年级数学上册第十四章整式的乘法与因式分解单元测试卷(2024年秋)一、选择题(每小题3分,共30分)1.计算:8xy3·-1432=()A.2x4y5B.-2x4y5C.2x3yh6D.-2x3y5 2.[母题教材P118例5]多项式x2-4x+4因式分解的结果是() A.x(x-4)+4B.(x+2)(x-2)C.(x-2)2D.(x+2)2 3.[2024西安灞桥区模拟]计算(12x3-18x2-6x)÷(-6x)的结果为()A.-2x2+3x B.-2x2-3xC.-2x2-3x-1D.-2x2+3x+14.要使多项式(x+p)(x-q)不含x的一次项,则p与q的关系是() A.相等B.互为相反数C.互为倒数D.乘积为-15.[母题教材P104习题T1]下列各式计算正确的是() A.a2·a3=a6B.a6÷a3=a2C.(-2ab2)3=-8a3b6D.2a2+3a3=5a5 6.[2024泰安期末]当x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为()A.16B.8C.-8D.-16 7.若10a×100b=10000,则a+2b=()A.1B.2C.3D.48.若式子(x+2)(x-1)-(x+2)能因式分解成(x+m)(x+n),则mn的值是()A.2B.-2C.-4D.49.某同学在计算-3x加上一个多项式时错将加法做成了乘法,得到的答案是3x3-3x2+3x,由此可以推断出正确的计算结果是() A.x2+2x-1B.-x2-2x-1C.-x2+4x-1D.x2-4x+110.224-1可以被60和70之间某两个数整除,这两个数是() A.63,64B.63,65C.61,67B.61,65二、填空题(每小题3分,共15分)11.计算:(-1)2=.12.若x2-3mx+36是一个完全平方式,则m的值是.13.一个正方体的棱长是2×103cm,则这个正方体的体积为.14.[2024温州期中]已知(a+3)2=82,则(a+11)(a-5)的值为.15.3(22+1)(24+1)(28+1)…(232+1)+1计算结果的个位数字是.三、解答题(本大题共8个小题,满分75分)16.(8分)[2024盐城期中]因式分解:(1)m2-16n2;(2)xy4-6xy3+9xy2.17.(9分)[母题教材P112习题T4]先化简,再求值:[(2x-y)2-(3x +y)(3x-y)+5x2]÷(-2y),其中x=-12,y=1.18.(9分)若x3-5x2+10x-6=(x-1)(x2+mx+n)恒成立,试确定m,n的值.19.(9分)[2024扬州邗江区期中](1)已知a m=2,a n=5,求a2m+n的值;(2)如果2x+2+2x+1=24,求x的值.20.(9分)[情境题生活应用]某种植基地有一块长方形实验田和一块正方形实验田,长方形实验田每排种植(3a-b)株豌豆幼苗,种植了(3a+b)排,正方形实验田每排种植(a+b)株豌豆幼苗,种植了(a +b)排,其中a>b>0.(1)长方形实验田比正方形实验田多种植多少株豌豆幼苗?(2)当a=4,b=3时,长方形实验田比正方形实验田多种植多少株豌豆幼苗?21.(9分)[新视角新定义题]如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)试说明“神秘数”能被4整除;(2)两个连续奇数的平方差是“神秘数”吗?试说明理由.22.(11分)[新考法阅读类比题]先阅读下面的内容,再解决问题.例题:若m2+2mn+2n2-6n+9=0,求m和n的值.解:∵m2+2mn+2n2-6n+9=0,∴m2+2mn+n2+n2-6n+9=0.∴(m+n)2+(n-3)2=0.∴m+n=0,n-3=0,解得m=-3,n=3.(1)若x2+2y2-2xy-4y+4=0,求x y的值;(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b-41,且c是△ABC中最长的边,求c的取值范围.23.(11分)知识生成:我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如:由图①可以得到(a+b)2=a2+2ab +b2,基于此,请解答下列问题:直接应用:(1)若xy=5,x+y=7,直接写出x2+y2的值为;类比应用:(2)填空:①若x(4-x)=2,则x2+(x-4)2=;②若(x-3)(x-5)=2,则(x-3)2+(x-5)2=;知识迁移:(3)如图②,一农家乐准备在原有长方形用地(即长方形ABCD)上进行装修和扩建,先用长为120m的装饰性篱笆围起该长方形用地,再以AD,CD为边分别向外扩建正方形ADGH、正方形DCEF两块空地,并在这两块正方形空地上建造功能性花园,该功能性花园面积和为2000m2,求原有长方形用地ABCD的面积.答案1.B2.C3.D4.A5.C6.D7.D8.C9.B 10.B【点拨】224-1=(212-1)(212+1)=(26-1)(26+1)(212+1)=63×65×(212+1),则这两个数是63与65.二、11.212.±413.8×109cm314.1815.6三、16.【解】(1)m2-16n2=m2-(4n)2=(m+4n)(m-4n).(2)xy4-6xy3+9xy2=xy2(y2-6y+9)=xy2(y-3)2.17.【解】原式=(4x2-4xy+y2-9x2+y2+5x2)÷(-2y)=(2y2-4xy)÷(-2y)=-y+2x.当x=-12,y=1时,原式=-1+2×1-1=-2.18.【解】(x-1)(x2+mx+n)=x3+mx2+nx-x2-mx-n=x3+(m-1)x2+(n-m)x-n.∵x3-5x2+10x-6=(x-1)(x2+mx+n)恒成立,即x3-5x2+10x -6=x3+(m-1)x2+(n-m)x-n恒成立,∴n=6,m-1=-5,解得m=-4.∴m=-4,n=6.19.【解】(1)∵a m=2,a n=5,∴a2m+n=a2m·a n=(a m)2·a n=22×5=20.(2)∵2x+2+2x+1=2x·22+2x·2=4×2x+2×2x=6×2x,∴6×2x=24.∴2x=4=22.∴x=2.20.【解】(1)由题意,得(3a-b)(3a+b)-(a+b)2=9a2-b2-a2-2ab-b2=(8a2-2ab-2b2)(株).答:长方形实验田比正方形实验田多种植(8a2-2ab-2b2)株豌豆幼苗.(2)当a=4,b=3时,8a2-2ab-2b2=8×42-2×4×3-2×32=128-24-18=86.答:长方形实验田比正方形实验田多种植86株豌豆幼苗.21.【解】(1)设两个连续的偶数分别为2k,2k+2(k为整数),则由题意得(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=2(4k+2)=4(2k+1),∴“神秘数”能被4整除.(2)两个连续奇数的平方差不是“神秘数”.理由如下:设两个连续的奇数分别为2k-1,2k+1(k为整数),则(2k+1)2-(2k-1)2=8k,而由(1)知“神秘数”是4的奇数倍,不是偶数倍,但8k是4的偶数倍,∴两个连续奇数的平方差不是“神秘数”.22.【解】(1)∵x2+2y2-2xy-4y+4=x2-2xy+y2+y2-4y+4=(x-y)2+(y-2)2=0,∴x-y=0,y-2=0,解得x=2,y=2.∴x y =22=4.(2)∵a2+b2=10a+8b-41,∴a2-10a+25+b2-8b+16=0.∴(a-5)2+(b-4)2=0.∴a-5=0,b-4=0,解得a=5,b=4.∵c 是△ABC中最长的边,∴5≤c<9.23.【解】(1)39(2)①12②8(3)设AB=x m,BC=y m,则2(x+y)=120,∴x+y=60.由题意,得x2+y2=2000,∴xy=(+)2−(2+2)2=3600-20002=800.∴原有长方形用地ABCD的面积为800m2.。
人教版八年级上数学试题
人教版八年级上数学试题一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 1,2,3B. 3,4,8C. 5,6,10D. 5,6,11解析:根据三角形三边关系“任意两边之和大于第三边,任意两边之差小于第三边”。
选项A:公式,不满足两边之和大于第三边,不能组成三角形。
选项B:公式,不满足两边之和大于第三边,不能组成三角形。
选项C:公式,公式,公式,满足三边关系,可以组成三角形。
选项D:公式,不满足两边之和大于第三边,不能组成三角形。
所以答案是C。
2. 一个多边形的内角和是外角和的2倍,这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形解析:多边形的外角和是公式,设这个多边形有公式条边。
根据内角和公式公式,由题意得公式公式公式公式所以这个多边形是六边形,答案是C。
二、填空题(每题3分,共15分)1. 等腰三角形的一个底角为公式,则它的顶角为______。
解析:等腰三角形两底角相等,三角形内角和为公式。
所以顶角公式。
2. 若点公式与点公式关于公式轴对称,则公式______,公式______。
解析:关于公式轴对称的点纵坐标相等,横坐标互为相反数。
所以公式,公式。
三、解答题(共55分)1. (10分)如图,在公式中,公式,公式,公式是公式的角平分线,求公式的度数。
解析:1. 首先求公式的度数:在公式中,根据三角形内角和为公式,已知公式,公式,则公式。
2. 然后求公式的度数:因为公式是公式的角平分线,所以公式。
2. (12分)已知公式,公式两点在一次函数公式的图象上,且公式,公式,试比较公式与公式的大小。
解析:1. 对于一次函数公式,当公式时,公式随公式的增大而减小。
2. 已知公式,根据公式随公式的增大而减小的性质,可得公式。
八年级上册人教版数学题
八年级上册人教版数学题一、三角形相关(6题)1. 已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是()- A. 4cm.- B. 5cm.- C. 6cm.- D. 13cm.- 解析:根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。
设第三边为x,则8 - 3,即5,所以只有6cm符合条件,答案为C。
2. 一个等腰三角形的两边长分别是4和9,则它的周长是()- A. 17.- B. 22.- C. 17或22。
- D. 无法确定。
- 解析:等腰三角形两腰相等。
当腰长为4时,4+4 = 8<9,不满足三角形三边关系。
当腰长为9时,周长为9+9 + 4=22,答案为B。
3. 在△ABC中,∠A=50°,∠B = 60°,则∠C的外角等于()- A. 110°.- B. 70°.- C. 120°.- D. 130°.- 解析:三角形的一个外角等于与它不相邻的两个内角之和。
∠C的外角=∠A+∠B=50° + 60°=110°,答案为A。
4. 若一个多边形的内角和是1080°,则这个多边形是()- A. 六边形。
- B. 七边形。
- C. 八边形。
- D. 九边形。
- 解析:多边形内角和公式为(n - 2)×180°,设这个多边形为n边形,则(n - 2)×180°=1080°,n-2 = 6,n = 8,所以是八边形,答案为C。
5. 如图,在△ABC中,AD是角平分线,AE是高,若∠B = 50°,∠C = 70°,求∠DAE的度数。
- 解析:根据三角形内角和为180°,可得∠BAC=180°-(∠B + ∠C)=180°-(50°+70°)=60°。
最新人教版初二(八年级)数学上册各单元及期末测试题(含答案)
最新人教版初二(八年级)数学上册各单元及期末测试题(含答案)八年级数学上册第一单元测试一、选择题(24分)1.用尺规作已知角的平分线的理论依据是()A.SASB.AASC.SSSD.ASA2.三角形中到三边距离相等的点是()A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点3.已知△ABC≌△A′B′C′,且△ABC的周长为20,AB=8,BC=5,则A′C′等于()A.5B.6C.7D.84.如图所示,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°AEMCADFENBCBDF4题图5题图6题图5.如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE=CF;④△CAN≌△ABM.其中正确的结论是()A.①③④B.②③④C.①②③D.①②④6.如图,△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,有下面四个结论:①DA平分∠EDF;②AE=AF;③AD上的点到B,C两点的距离相等;④到AE,AF的距离相等的点到DE,DF的距离也相等.其中正确的结论有()A.1个B.2个C.3个D.4个7.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离是()A.2cmB.3cmC.4cmD.6cm8.下列说法:①角的内部任意一点到角的两边的距离相等;②到角的两边距离相等的点在这个角的平分线上;③角的平分线上任意一点到角的两边的距离相等;④△ABC中∠BAC的平分线上任意一点到三角形的三边的距离相等,其中正确的()A.1个B.2个C.3个D.4个二、填空题(30分)29.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28cm,AB=20cm,AC=8cm,则DE的长为_________cm.10.已知△ABC≌△DEF,AB=DE,BC=EF,则AC的对应边是__________,∠ACB的对应角是__________.11.如图所示,把△ABC沿直线BC翻折180°到△DBC,那么△ABC和△DBC______全等图形(填“是”或“不是”);若△ABC的面积为2,那么△BDC的面积为__________.12.如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,则∠CAE=__________°.AEFCBD9题图11题图12题图13.如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是__________,图中相等的线段有__________.13题图14题图15题图14.如图所示,已知△ABC≌△DEF,AB=4cm,BC=6cm,AC=5cm,CF=2cm,∠A=70°,∠B=65°,则∠D=__________,∠F=__________,DE=__________,BE=__________.15.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是__________(只要求写一个条件).16.已知:△ABC中,∠B=90°,∠A、∠C的平分线交于点O,则∠AOC的度数为.17.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________.18.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3cm,BD=5cm,则BC=_____cm.17题图18题图三、解答题19.(6分)已知:如图,∠1=∠2,∠C=∠D,求证:AC=AD.2CA12BD20.(8分)如图,四边形ABCD的对角线AC与BD相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)BO=DO.B31AC2O4D21.(8分)如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AD=BD.(1)求证:AC=BE;(2)求∠B的度数。
【人教版】数学八年级下学期《期末检测题》附答案
2020-2021学年第二学期期末测试人教版数学八年级试题学校________ 班级________ 姓名________ 成绩________本试卷共25题.全卷满分120分.考试用时120分钟.一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若化成最简二次根式后,能与合并,则a的值不可以是()A.B.8 C.18 D.282.下列各组数中,是勾股数的是()A.0.3,0.4,0.5 B.6,8,10C.D.10,15,183.a=2019×2021﹣2019×2020,b=,c=,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图,在正方形ABCD中,以对角线BD为边作菱形BDFE,连接BF,则∠AFB=()A.30°B.25°C.22.5°D.不能确定6.如图,周长为20的菱形ABCD中,点E、F分别在边AB、AD上,AE=2,AF=3,P为BD上一动点,则线段EP+FP长度的最小值为()A.3 B.4 C.5 D.67.如图,直线y=kx+b与x轴,y轴分别相交于点A(﹣3,0),B(0,2),则不等式kx+b>2的解集是()A.x>﹣3 B.x<2 C.x>0 D.x<28.某中学八(1)班8个同学在课间进行一分钟跳绳比赛,成绩(单位:个)如下:115,138,126,143,134,126,157,118.这组数据的众数和中位数分别是()A.126,126 B.126,130 C.130,134 D.118,1349.某班同学从学校出发去秋游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要15分钟才能到达景点入口.A.1个B.2个C.3个D.4个10.如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图②所示,则图②中的a等于()A.3B.4C.14 D.18二、填空题:本题共7小题,每小题3分,共21分.11.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.12.若代数式有意义,则x的取值范围是13.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则两平行线AD与BC间的距离为.14.如图,△ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC.(1)线段PC的最小值是.(2)当PC=5时,AP长是.15.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.17.如图,在直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为.三、解答题:共69分.解答应写出文字说明、证明过程或演算步骤.考生根据要求作答.18.计算:×﹣(+1)2.19.已知:a=+2,b=﹣2.(1)求ab.(2)求a2+b2﹣ab.20.已知函数y=kx+,当x=1时,y=7;当x=2时,y=8.(1)求y与x之间的函数关系式;(2)当x=4时,求y的值.21.如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.22.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?23.在平面直角坐标系xOy中,A(0,4),B(2,0),C(5,1),D(2,5).(1)AD=,AB=;(2)∠BAD是直角吗?请说出理由;(3)求点B到直线CD的距离.24.如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.(1)求证:四边形BDCE是菱形;(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.25.如图,矩形ABCO中,点C在y轴上,点A在x轴上,点B的坐标是(﹣8,﹣6),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、y轴分别交于点D、F.(1)求线段BO的长;(2)求直线BF的解析式;(3)若点N是平面内任一点,在x轴上是否在点M,使得M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.参考答案一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若化成最简二次根式后,能与合并,则a的值不可以是()A.B.8 C.18 D.28【答案】D【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、=,能与合并,a的值可以是,本选项不符合题意;B、==2,能与合并,a的值可以是8,本选项不符合题意;C、==3,能与合并,a的值可以是18,本选项不符合题意;D、==2,不能与合并,a的值不可以是28,本选项符合题意;故选:D.【知识点】最简二次根式、同类二次根式、二次根式有意义的条件2.下列各组数中,是勾股数的是()A.0.3,0.4,0.5 B.6,8,10C.D.10,15,18【答案】B【分析】利用勾股数定义进行分析即可.【解答】解:A、0.3,0.4,0.5不是正整数,不是勾股数,故此选项不合题意;B、62+82=102,都是正整数,是勾股数,故此选项符合题意;C、,,不是正整数,不是勾股数,故此选项不合题意;D、102+152≠182,不是勾股数,故此选项不合题意;故选:B.【知识点】勾股数3.a=2019×2021﹣2019×2020,b=,c=,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【答案】A【分析】利用平方差公式计算a,利用完全平方公式和二次根式的化简求出b,利用二次根式大小的比较办法,比较b、c得结论.【解答】解:a=2019×2021﹣2019×2020=(2020﹣1)(2020+1)﹣(2020﹣1)×2020=20202﹣1﹣20202+2020=2019;∵20222﹣4×2021=(2021+1)2﹣4×2021=20212+2×2021+1﹣4×2021=20212﹣2×2021+1=(2021﹣1)2=20202,∴b=2020;∵>,∴c>b>a.故选:A.【知识点】实数大小比较、二次根式的乘除法、二次根式的性质与化简4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【答案】D【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选:D.【知识点】勾股定理的应用5.如图,在正方形ABCD中,以对角线BD为边作菱形BDFE,连接BF,则∠AFB=()A.30°B.25°C.22.5°D.不能确定【答案】C【分析】根据正方形的对角线平分一组对角可得∠ADB=45°,再根据菱形的四条边都相等可得BD=DF,根据等边对等角可得∠DBF=∠DFB,然后根据三角形的一个外角等于与它不相邻的两个内角的和进行计算即可得解.【解答】解:在正方形ABCD中,∠ADB=∠ADC=×90°=45°,在菱形BDFE中,BD=DF,所以,∠DBF=∠AFB,在△BDF中,∠ADB=∠DBF+∠AFB=2∠AFB=45°,解得∠AFB=22.5°.故选:C.【知识点】正方形的性质、菱形的性质6.如图,周长为20的菱形ABCD中,点E、F分别在边AB、AD上,AE=2,AF=3,P为BD上一动点,则线段EP+FP长度的最小值为()A.3 B.4 C.5 D.6【答案】C【分析】在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG的长就是EP+FP的最小值,据此即可求解.【解答】解:∵四边形ABCD是菱形,周长为20,∴AD=20,在DC上截取DG=FD=AD﹣AF=5﹣3=2,连接EG,EG与BD交于点P′,连接P′F,此时P′E+P′F的值最小,最小值=EG的长,∵AE=DG=2,且AE∥DG,∴四边形ADGE是平行四边形,∴EG=AD=5.故选:C.【知识点】菱形的性质、轴对称-最短路线问题7.如图,直线y=kx+b与x轴,y轴分别相交于点A(﹣3,0),B(0,2),则不等式kx+b>2的解集是()A.x>﹣3 B.x<2 C.x>0 D.x<2【答案】C【分析】根据图象和B的坐标得出即可.【解答】解:∵直线y=kx+b和y轴的交点是B(0,2),∴不等式kx+b>2的解集是x>0,故选:C.【知识点】一次函数的性质、一次函数与一元一次不等式8.某中学八(1)班8个同学在课间进行一分钟跳绳比赛,成绩(单位:个)如下:115,138,126,143,134,126,157,118.这组数据的众数和中位数分别是()A.126,126 B.126,130 C.130,134 D.118,134【答案】B【分析】先将这组数据重新排列,再根据众数和中位数的概念求解即可.【解答】解:将这组数据重新排列为115,118,126,126,134,138,143,157,所以这组数据的众数为126,中位数为=130,故选:B.【知识点】中位数、众数9.某班同学从学校出发去秋游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要15分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】C【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【解答】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车原来的速度为:15÷30=0.5km/min,后来的速度为:0.5×=(km/min),当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷﹣(40﹣15)÷1=10分钟才能达到景点入口,故④错误,故选:C.【知识点】一次函数的应用10.如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图②所示,则图②中的a等于()A.3B.4C.14 D.18【答案】A【分析】由图②知,BC=6,CD=14﹣6=8,BD=18﹣14=4,再通过解直角三角形,求出△CBD高,进而求解.【解答】解:由图②知,BC=6,CD=14﹣6=8,BD=18﹣14=4,过点B作BH⊥DC于点H,设CH=x,则DH=8﹣x,则BH2=BC2﹣CH2=BD2﹣DH2,即:BH2=42﹣(8﹣x)2=62﹣x2,解得:BH=,则a=y=S△ABP=DC×HB=×8×=3,故选:A.【知识点】动点问题的函数图象二、填空题:本题共7小题,每小题3分,共21分.11.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.【答案】39【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40,其中第四个数据为39,所以这组数据的中位数为39.故答案为39.【知识点】中位数12.若代数式有意义,则x的取值范围是【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0.【解答】解:若代数式有意义,必有解得﹣3≤x<且x≠﹣2.【知识点】二次根式有意义的条件13.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则两平行线AD与BC间的距离为.【答案】6【分析】作PF⊥AD于F,PG⊥BC于G,根据角平分线的性质得到PF=PE=3,PG=PE=3,根据平行线间的距离的求法计算即可.【解答】解:作PF⊥AD于F,PG⊥BC于G,∵AP是∠BAD的角平分线,PF⊥AD,PE⊥AB,∴PF=PE=3,∵BP是∠ABC的角平分线,PE⊥AB,PG⊥BC,∴PG=PE=3,∵AD∥BC,∴两平行线AD与BC间的距离为PF+PG=6,故答案为:6.【知识点】平行线之间的距离、角平分线的性质14.如图,△ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC.(1)线段PC的最小值是.(2)当PC=5时,AP长是.【答案】【第1空】4.8【第2空】5或2.2【分析】(1)当PC⊥AB时,PC的值最小,利用面积法求解即可;(2)过C作CQ⊥BC于Q,同(1)得CQ=4.8,由勾股定理求出AQ=3.6,PQ=1.4,当P在线段BQ上时,AP=AQ+PQ=5;当P在线段AQ上时,AP=AQ﹣PQ=2.2.【解答】解:(1)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB===10,由垂线段最短得:当PC⊥AB时,PC的值最小,此时,△ABC的面积=•AB•PC=•AC•BC,∴AB•PC=AC•BC,∴PC===4.8,故答案为:4.8;(2)过C作CQ⊥BC于Q,如图所示:同(1)得:CQ=4.8,由勾股定理得:AQ===3.6,PQ===1.4,当P在线段BQ上时,AP=AQ+PQ=3.6+1.4=5;当P在线段AQ上时,AP=AQ﹣PQ=3.6﹣1.4=2.2;综上所述,AP的长为5或2.2,故答案为:5或2.2.【知识点】勾股定理、垂线段最短15.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.【分析】根据一次函数图象过定点A(2,3),即可得到OA=为最大距离.【解答】解:一次函数y=(x﹣2)k+3中,令x=2,则y=3,∴一次函数图象过定点A(2,3),∴OA=为最大距离.故答案为:.【知识点】一次函数的性质、一次函数的图象16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.【答案】(4,160)【分析】根据点C与点D的坐标即可得出乙货车的速度,进而得出乙货车从B地到A地所用时间,据此即可得出点E的坐标.【解答】解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).【知识点】一次函数的应用17.如图,在直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为.【分析】根据直线y=x+4先确定OA和OB的长,证明四边形PHOC是矩形,得PH=OC=BC=2,再证明四边形PBCH是平行四边形,则BP=CH,在BP+PH+HQ中,PH=2是定值,所以只要CH+HQ 的值最小就可以,当C、H、Q在同一直线上时,CH+HQ的值最小,利用平行四边形的性质求出即可.【解答】解:如图,连接CH,∵直线y=x+4分别交x轴,y轴于A,B两点,∴OB=4,OA=3,∵C是OB的中点,∴BC=OC=2,∵∠PHO=∠COH=∠DCO=90°,∴四边形PHOC是矩形,∴PH=OC=BC=2,∵PH∥BC,∴四边形PBCH是平行四边形,∴BP=CH,∴BP+PH+HQ=CH+HQ+2,要使CH+HQ的值最小,只须C、H、Q三点共线即可,∵点Q是点B关于点A的对称点,∴Q(﹣6,﹣4),又∵点C(0,2),根据勾股定理可得CQ==6,此时,BP+PH+HQ=CH+HQ+PH=CQ+2=6+2,即BP+PH+HQ的最小值为6+2;故答案为:6+2.【知识点】一次函数综合题三、解答题:共69分.解答应写出文字说明、证明过程或演算步骤.考生根据要求作答.18.计算:×﹣(+1)2.【分析】根据根式的乘法和完全平方公式化成最简二次根式,再合并即可.【解答】解:×﹣(+1)2=﹣[()2+2+1]=﹣3﹣2﹣1=2﹣3﹣2﹣1=﹣4.【知识点】二次根式的混合运算19.已知:a=+2,b=﹣2.(1)求ab.(2)求a2+b2﹣ab.【分析】(1)根据平方差公式、二次根式的乘法法则计算;(2)根据二次根式的加法法则求出a+b,根据完全平方公式把原式变形,把a+b、ab的值代入计算即可.【解答】解:(1)ab=(+2)(﹣2)=()2﹣22=5﹣4=1;(2)∵a=+2,b=﹣2,∴a+b=(+2)+(﹣2)=2,∴a2+b2﹣ab=a2+2ab+b2﹣3ab=(a+b)2﹣3ab=(2)2﹣3×1=17.【知识点】二次根式的化简求值、分母有理化20.已知函数y=kx+,当x=1时,y=7;当x=2时,y=8.(1)求y与x之间的函数关系式;(2)当x=4时,求y的值.【分析】(1)直接把已知x,y的值代入解方程组得出答案;(2)利用(1)中所求把x的值代入求出答案.【解答】解:(1)∵函数y=kx+,当x=1时,y=7;当x=2时,y=8,∴,解得:,故y与x之间的函数关系式为:y=3x+;(2)当x=4时,y=3×4+=13.【知识点】函数值21.如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.【分析】连结BD,取BD的中点H,连结HE,HF,根据三角形的中位线的性质得到FH∥BM,FH=AB,EH∥CN,EH=CD,根据平行线的性质得到∠BME=∠HFE,∠CNE=∠HEF,根据等腰三角形的性质得到∠HFE=∠HEF,等量代换即可得到结论.【解答】证明:连结BD,取BD的中点H,连结HE,HF,∵E、F分别是BC、AD的中点,∴FH∥BM,FH=AB,EH∥CN,EH=CD,∴∠BME=∠HFE,∠CNE=∠HEF,∵AB=CD,∴FH=EH,∴∠HFE=∠HEF,∴∠BME=∠CNE.【知识点】三角形中位线定理22.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?【答案】【第1空】1.5【第2空】1.5【分析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,再用总人数减去学生劳动“0.5小时”、“1小时”、“2小时”的人数,得出学生劳动“1.5小时”的人数,从而补全条形图;(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;(3)总人数乘以样本中参加义务劳动2小时的百分比即可得.【解答】解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,故答案为:1.5,1.5;(3)1200×=216,答:估算该校学生参加义务劳动2小时的有216人.【知识点】中位数、全面调查与抽样调查、众数、条形统计图、用样本估计总体23.在平面直角坐标系xOy中,A(0,4),B(2,0),C(5,1),D(2,5).(1)AD=,AB=;(2)∠BAD是直角吗?请说出理由;(3)求点B到直线CD的距离.【分析】(1)直接根据两点间的距离公式可求出AD及AB的长即可;(2)连接BD,根据勾股定理的逆定理进行判断即可;(3)过点B作BE⊥CD于点E,作CG⊥x轴于点G,根据三角形的面积公式求出BE的长即可.【解答】解:(1)∵A(0,4),B(2,0),C(5,1),D(2,5).∴AD==;AB===2.故答案为:,2;(2)∠BAD是直角.理由:连接BD,∵B(2,0),D(2,5),∴BD=5﹣0=5.∵由(1)知AD=,AB=2,∴AD2=5,AB2=20,BD2=25,∴AD2+AB2=BD2,∴∠BAD是直角;(3)过点B作BE⊥CD于点E,作CG⊥x轴于点G,∵C(5,1),D(2,5),∴CD==5,∵B(2,0),D(2,5).∴BD⊥x轴,BG=5﹣2=3,CG=1,∴S△BCD=S梯形DBGC﹣S△BCG,即×5BE=(1+5)×3﹣×1×3,解得BE=3.答:点B到直线CD的距离为3.【知识点】勾股定理、勾股定理的逆定理、坐标与图形性质24.如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.(1)求证:四边形BDCE是菱形;(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.【分析】(1)先证明四边形BDCE是平行四边形,得出CE=BD,证出BD=CD,由直角三角形斜边上的中线性质得出CD=AB=BD,即可得出四边形BDCE是菱形;(2)连接DE,由菱形的性质得出BC⊥DE,BD=BE,OB=OC,由线段垂直平分线的性质得出BE=DE,证出BE=DE=BD,由等边三角形和菱形的性质得出∠EBC=∠EBD=30°,求出OE=EB=3,由勾股定理求出OB,即可得出结果.【解答】(1)证明:∵CE∥AB,BE∥CD,∴四边形BDCE是平行四边形,∴CE=BD,∵CE=AD,∴BD=AD,又∵∠ACB=90°,∴CD=AB=BD,∴四边形BDCE是菱形;(2)解:连接DE,如图所示:由(1)得:四边形BDCE是菱形,∴BC⊥DE,BD=BE,OB=OC,∵EF⊥BD,点F是BD的中点,∴BE=DE,∴BE=DE=BD,∴∠DBE=60°,∠EBC=∠EBD=30°,∴OE=EB=3,∴OB===3,∴BC=2OB=6.【知识点】菱形的判定25.如图,矩形ABCO中,点C在y轴上,点A在x轴上,点B的坐标是(﹣8,﹣6),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、y轴分别交于点D、F.(1)求线段BO的长;(2)求直线BF的解析式;(3)若点N是平面内任一点,在x轴上是否在点M,使得M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.【分析】(1)由勾股定理求出BO即可;(2)由待定系数法求出直线BF的解析式即可;(3)分情况讨论:①当OM、OE都为菱形的边时,OM=OE=4,得出M的坐标为(4,0)或(﹣4,0);②当OM为菱形的对角线,OE为边时,同②得(﹣,0);③当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,由勾股定理求出OM即可.【解答】解:(1)∵四边形ABCO是矩形,点B的坐标是(﹣8,﹣6),∴∠OAB=∠OCB=90°,OA=BC=8,AB=CO=6,∴BO===10;(2)由折叠的性质得:BE=AB=6,DE=DA,∠DEB=∠DAB=90°,∴∠DEO=90°,OE=BO﹣BE=10﹣6=4.设OD=a,则DA=DE=8﹣a,在Rt△EOD中,DE2+OE2=OD2,即(8﹣a)2+42=a2,解得:a=5,∴D(﹣5,0),设直线BF的解析式为y=kx+b,把B(﹣8,﹣6),D(﹣5,0)代入得:,解得:,∴直线BF的解析式为y=2x+10;(3)存在,理由如下:①当OM、OE都为菱形的边时,OM=OE=4,∴M的坐标为(4,0)或(﹣4,0);②当OE为菱形的边,OM为菱形的对角线时,如图1所示:设直线OB解析式为:y=kx,由点B(﹣8,﹣6)在图象上可知:﹣6=﹣8k,∴k=,则直线OB解析式为y=x,设点E(x,x),在Rt△EOG中,OG2+GE2=OE2,即:x2+(x)2=16,解得:x=±,∵点E在第三象限,∴x=﹣,∴点M(﹣,0);③当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,作EP⊥OA于P,如图2所示:由②得:E(﹣,﹣),则OP=,EP=,在Rt△PEM中,由勾股定理得:(﹣OM)2+()2=EM2,∵OM=EM,∴(﹣OM)2+()2=OM2,解得:OM=,∴点M的坐标为(﹣,0);综上所述,在x轴上存在点M,使得M、N、E、O为顶点的四边形是菱形,点M的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0).【知识点】一次函数综合题。
人教版八年级上册数学期末考试试卷附答案
人教版八年级上册数学期末考试试题一、单选题1.下列运算中,结果正确的是()A .824a a a÷=B .()222a b a b +=+C .()2242a ba b =D .()()2122a a a -+=-2.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑白棋子摆成的图案是轴对称图形的是()A .B .C .D .3.若分式12x +有意义,则x 的取值范围是()A .2x ≥-B .2x >-C .0x ≠D .2x ≠-4.将数字0.0000023用科学记数法表示为()A .52.310-⨯B .62.310-⨯C .50.2310-⨯D .62.310-⨯5.在平面直角坐标系中.点(1,2)P -关于x 轴对称的点的坐标是()A .(1,2)B .(1,2)-C .(1,2)-D .(1,2)--6.如图,已知∠ABC =∠DEF ,AB =DE ,添加以下条件,不能判定△ABC ≌△DEF 的是()A .∠A =∠DB .∠ACB =∠DFEC .AC =DFD .BE =CF7.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长是()A .13B .17C .22D .17或228.如图,在ABC 中,AD 、AE 分别是边BC 上的中线与高,4AE =,CD 的长为5,则ABC 的面积为()A .8B .10C .20D .409.如图,在ABC 中,40B ∠=︒,60C ∠=°,AD 平分BAC ∠交BC 于点D ,在AB 上截取AE AC =,则EDB ∠的度数为()A .30°B .20°C .10°D .15°10.如图,由4个全等的小长方形与一个小正方形密铺成一个大的正方形图案,该图案的面积为100,里面的小正方形的面积为16,若小长方形的长为a ,宽为b ,则下列关系式中:①222100a ab b ++=;②22216a ab b -+=;③2256a b +=;④2240a b -=,正确的有()个A .1B .2C .3D .4二、填空题11.因式分解:2363x x -+=______.12.一个n 边形的内角和为1080°,则n=________.13.方程213x x=+的解为______________.14.已知25,23mn ==,则+2m n =__________.15.如图,点F ,A ,D ,C 在同一条直线上,ABC DEF △≌△,3AD =,CF 10=,则AC 等于_____.16.如图,Rt ABC ∆中,90C ∠=︒,30A ∠=︒,D ,E 分别为AC ,AB 边上的点,将ADE 沿DE 翻折,点A 恰好与点B 重合,若3CD =,则AD =______.17.如图,ABC 中,OD 、OE 分别是AB 、BC 边上的垂直平分线,OD 、OE 交于点O ,连接OA 、OC ,已知40B ∠=︒,则OAC ∠=______.三、解答题18.化简:()()()2212x x x +---19.ABC 在如图所示的平面直角坐标系中,A 点坐标为()3,4.(1)画出ABC 关于y 轴对称的111A B C △;(2)求ABC 的面积.20.如图,在ABC 中,AD 是BC 边上的高,CE 平分ACB ∠,若20CAD ∠=︒,50B ∠=︒,求AEC ∠的度数.21.先化简:532224m m m m -⎛⎫++÷⎪--⎝⎭,然后,m 在1,2,3中选择一个合适的数代入求值.22.如图,在ABC 中,AD BC ⊥,E 是AD 上一点,且DE DC =,连接BE 并延长交AC 于点F ,BE AC =.(1)求证:BED ACD ≌;(2)猜想BF 与AC 的位置关系,并证明.23.某施工队对一段2400米的河堤进行加固,在施工800米后,采用新的施工机器,每天工作的效率比原来提高了25%,共用了26天完成全部工程.(1)求原来每天加固河堤多少米?(2)若承包方原来每天支付施工队工资800元,提高工作效率后,每天支付给施工队的工资也增加了25%,那么整个工程完成后承包方需要支付工资多少元?24.如图,90B ∠=︒,90C ∠=︒,E 为BC 中点,DE 平分ADC ∠.(1)求证:AE 平分DAB ∠;(2)求证:AE DE ⊥;(3)求证:DC AB AD +=.25.如图,在等边ABC 中,D 为BC 边上一点,连接AD ,将ACD △沿AD 翻折得到AED ,连接BE 并延长交AD 的延长线于点F ,连接CF .(1)若20CAD ∠=︒,求CBF ∠的度数;(2)若a CAD ∠=,求CBF ∠的大小;(3)猜想CF ,BF ,AF 之间的数量关系,并证明.参考答案1.C 2.D 3.D 4.B 5.A 6.C 7.C 8.C 9.B10.C11.23(1)x -12.813.3x =14.1515.6.516.617.50°18.72x +19.【详解】(1)分别作A 、B 、C 三点关于y 轴的对称点A 1、B 1、C 1,△A 1B 1C 1即为所求;(2)S △ABC=3×3111312123222-⨯⨯-⨯⨯-⨯⨯=72.20.85°【分析】由高的定义可得出∠ADB =∠ADC =90,在△ACD 中利用三角形内角和定理可求出∠ACB 的度数,结合CE 平分∠ACB 可求出∠ECB 的度数.由三角形外角的性质可求出∠AEC 的度数,【详解】解:∵AD 是BC 边上的高,∴∠ADB =∠ADC =90.在△ACD 中,∠ACB =180°﹣∠ADC ﹣∠CAD =180°﹣90°﹣20°=70°.∵CE 平分∠ACB ,∴∠ECB =12∠ACB =35°.∵∠AEC 是△BEC 的外角,50B ∠=︒,∴∠AEC =∠B+∠ECB =50°+35°=85°.答:∠AEC 的度数是85°.【点睛】本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB 的度数是解题的关键.21.26--m ,-8【分析】先按照分式的混合计算法则进行化简,然后根据分式有意义的条件求出m 的值,最后代值计算即可.【详解】解:532224m m m m ⎛⎫ ⎪⎝-÷⎭++--()24532222m mm m m ⎛⎫--=-÷ ⎪---⎝⎭()222923m m m m--=⋅--()()()332223m m m m m+--=⋅--()23m =-+26m =--,∵分式要有意义且除数不为0,∴3020m m -≠⎧⎨-≠⎩,∴32m m ≠⎧⎨≠⎩,∴当1m =时,原式2168=-⨯-=-.22.(1)见解析;(2)BF ⊥AC ,理由见解析【分析】(1)利用HL 证明Rt △BED ≌Rt △ACD 即可;(2)根据全等三角形的性质可得∠EBD=∠CAD ,再由∠BED+∠EBD=90°,∠AEF=∠BED ,得到∠EBD+∠AEF=90°,则∠CAD+∠AEF=90°,∠AFE=90°,由此即可证明BF ⊥AC .【详解】:(1)∵AD ⊥BC ,∴∠ADC=∠BDE=90°,在RtBED 和Rt △ACD 中,DE DCBE AC=⎧⎨=⎩,∴Rt △BED ≌Rt △ACD (HL );(2)BF ⊥AC ,理由如下:∵Rt △BED ≌Rt △ACD ,∴∠EBD=∠CAD ,∵∠BED+∠EBD=90°,∠AEF=∠BED ,∴∠EBD+∠AEF=90°,∴∠CAD+∠AEF=90°,∴∠AFE=90°,∴BF ⊥AC .23.(1)原来每天加固河堤80米;(2)整个工程完成后承包方需要支付工资24000元.【分析】(1)设原来每天加固河堤a 米,则采用新的加固模式后每天加固5(125%)4a a +=米,然后根据用26天完成了全部加固任务,列方程求解即可;(2)先算出提高工作效率后每天加固的长度,然后进行求解即可.【详解】解:(1)设原来每天加固河堤a 米,则采用新的加固模式后每天加固5(125%)4a a +=米.根据题意得:80024008002654a a -+=,解这个方程得:80a =经检验可知,80a=是原分式方程的根,并符合题意;答:原来每天加固河堤80米;(2)558010044a=⨯=(米)∴承包商支付给工人的工资为:8002400800800800(125%)24000 80100-⨯+⨯+=(元).答:整个工程完成后承包方需要支付工资24000元.【点睛】本题主要考查了分式方程的应用,解题的关键在于能够准确找到等量关系列出方程求解.24.(1)见解析;(2)见解析;(3)见解析【分析】(1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;(2)由(1)即可用三线合一定理证明;(3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.【详解】解:(1)如图所示,延长DE交AB延长线于F,∵∠B=∠C=90°,∴AB∥CD,∴∠CDE=∠F,∵DE平分∠ADC,∴∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF,∴△ADF是等腰三角形,∵E是BC的中点,∴CE=BE,∴△CDE≌△BFE(AAS),∴DE=FE,∴E是DF的中点,∴AE平分∠BAD;(2)由(1)得△ADF 是等腰三角形,AD=AF ,E 是DF 的中点,∴AE ⊥DE ;(3)∵△CDE ≌△BFE ,∴CD=BF ,∴AD=AF=AB+BF=AB+CD .25.(1)20°;(2)CBF α∠=;(3)AF=CF+BF ,理由见解析【分析】(1)由△ABC 是等边三角形,得到AB=AC ,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE ,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE ,()1180=802ABE AEB BAE ==︒-︒∠∠∠,∠CBF=∠ABE-∠ABC=20°;(2)同(1)求解即可;(3)如图所示,将△ABF 绕点A 逆时针旋转60°得到△ACG ,先证明△AEF ≌△ACF 得到∠AFE=∠AFC ,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F 、C 、G 三点共线,得到△AFG 是等边三角形,则AF=GF=CF+CG=CF+BF .【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC ,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE ,∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE ,∴()1180=802ABE AEB BAE ==︒-︒∠∠∠,∴∠CBF=∠ABE-∠ABC=20°;(2)∵△ABC 是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,EAD CAD α∠=∠=,AC=AE ,∴602BAE BAC EAD CAD α∠=∠-∠-∠=︒-,AB=AE ,11∴()1180=602ABE AEB BAE α==︒-︒+∠∠∠,∴CBF ABE ABC α∠=∠-∠=;(3)AF=CF+BF ,理由如下:如图所示,将△ABF 绕点A 逆时针旋转60°得到△ACG ,∴AF=AG ,∠FAG=60°,∠ACG=∠ABF ,BF=CG在△AEF 和△ACF 中,=AE ACEAF CAF AF AF=⎧⎪∠∠⎨⎪=⎩,∴△AEF ≌△ACF (SAS ),∴∠AFE=∠AFC ,∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,∴∠BFD=∠ACD=60°,∴∠AFE=∠AFC=60°,∴∠BFC=120°,∴∠BAC+∠BFC=180°,∴∠ABF+∠ACF=180°,∴∠ACG+∠ACF=180°,∴F 、C 、G 三点共线,∴△AFG 是等边三角形,∴AF=GF=CF+CG=CF+BF.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学测试题
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 下列命题中,是真命题的是
A.两条对角线互相平分的四边形是平行四边形
B.两条对角线相等的四边形是矩形
C.两条对角线互相垂直的四边形是菱形
D.两条对角线互相垂直且相等的四边形是正方形
2 . 下列二次根式中可以和相加合并的是()
D.
A.B.
C.
3 . 下列各式:①;②;③;④;⑤,其中二次根式有()
A.1个B.2个C.3个D.4个
4 . 如图,在中,是边的中点,交对角线于点,若,则等于()
A.B.C.D.
5 . 下列运算正确的是()
A.(x+y)2=x2+y2B.(x2)3=x5
C.=|x|D.x6÷x2=x3
6 . 已知点D与点A(0,6),B(0,﹣4),C(x,y)是平行四边形的四个顶点,其中x,y满足x﹣y+3=0,则CD长的最小值为()
A.B.4C.2D.2
7 . 已知ABCD中,∠A=4∠B,那么∠C等于()
A.36°B.45°C.135°D.144°
8 . 如图,在矩形ABCD中,AB=9,AD=6,将矩形沿EF翻折,使点A落在BC边上的中点A'处,则折痕EF=()
A.B.C.8D.10
9 . 一个直角三角形的斜边长比一条直角边长多2cm,另一条直角边长6cm,那么这个直角三角形的斜边长为()
A.4cm B.8cm C.10cm D.12cm
10 . 下列根式中是最简二次根式的是()
A.B.
C.
D.
二、填空题
11 . 如图,以直角三角形的三边向外作正方形,三个正方形的面积分别为,,,若,
则______.
12 . 对实数a,b定义运算☆如下:
a☆b=如2☆3=2-3=.计算[2☆(-4)]÷[(-4)☆(-2)]=________.
13 . 如图,△ABC中,∠A=60°,AC>AB>2,点D,E分别在边AB,AC上,且BD=CE=2,连接DE,点M是DE
的中点,点N是BC的中点,线段MN的长为______.
14 . 一棵树因雪灾于A处折断,如图所示,测得树梢触地点B到树根C处的距离为4米,∠ABC约45°,树干AC垂直于地面,那么此树在未折断之前的高度约为________米(答案可保留根号)
15 . 计算:=_____.
16 . 如图,在△ABC中,D是BC上的一点,∠BAD=∠CAE=30°,AC=AE,∠C=∠E,则∠B=_____
度.
三、解答题
17 . 如图,平行四边形中,,过点作于点,现将沿直线翻折至
的位置,与交于点.
(1)求证:;
(2)若,,求的长.
18 . -÷×-(+)23(-)22
一条船上午8点在A处望见西南方向有一座灯塔B(如图),此时测得船和灯塔相距60海里,船以每小时30海里的速度向南偏西24º的方向航行到C处,这时望见灯塔在船的正北方向(参考数据:sin24º≈0.4,cos24º≈0.9)
19 . 求几点钟船到达C处
20 . 求船到达C处时与灯塔之间的距离.
21 . 如图,在正方形中,点是对角线上一个动点(不与点重合),连接过点作
,交直线于点.作交直线于点,连接.
(1)由题意易知,,观察图,请猜想另外两组全等的三角形;
;
(2)求证:四边形是平行四边形;
(3)已知,的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.
22 . 如图,在正方形的边长为1,对角线、相交于点,是延长线上的一点,交
于点,交于点,交于点,且与平行.
(1)求证:.
(2)求证:四边形为平行四边形.
(3)求的长度.
23 . 如图,在中,,,是的中点,点在上,点在上,且
.
()求证:,.
()若,求四边形面积.
24 . 先化简,再求值:,其中.
25 . 已知,,求
(1);
(2)
26 . 已知在中,,,.
判断的形状,并说明理由;
试在下面的方格纸上补全,使它的顶点都在方格的顶点上每个小方格的边长为
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
4、
5、
6、
三、解答题1、
2、
3、
4、
5、
6、
7、
8、
9、。