自然对流换热
自然对流
t t t w t
u0——任意选择的参考速度
U U gtl 1 2U U V 2 X Y u0 Re Y 2 hx x U V Nu x ( ) w, x 0 Y X Y
1 2 U V X Y Re0 Pr Y 2
u u 2u u v g (t t ) 2 y y x
பைடு நூலகம்
u u 2u u v g (t t ) 2 y y x
无量纲温度:
其他无量纲:
x y u v X ;Y ; U ; V l l u0 u0
2 gtl Gr 2 u0l 2 u 02 Re 0 ( ) gtl 3 Gr 格拉晓夫数(Grashof number) 2 Gr:浮升力与粘性力的相对大小。Gr越大,浮升力的相对作 用越大,自然对流越强 U U Gr 1 2U U V 2 X Y Re Re Y 2
6.3 自然对流
Natural Convection Heat Transfer
一、概述
静止的流体,与不同温度的 固体壁面相接触,热边界层 内、外的密度差形成浮升力 (或沉降力)
f B ( f ) g gt
导致流动
固体壁面与流体的温差是 自然对流的根本原因
层流:GrPr<108 湍流:GrPr>1010 过渡区: 108<GrPr<1010 自模化现象: 在常壁温或常热流边 界条件下,达到旺盛 紊流时,hx将保持不 变,与壁面高度无关
3 2 Pr Nu x 4 5(1 2 Pr1/ 2 2 Pr) hx x
1/ 4
(Grx Pr)1/ 4
自然对流换热系数公式
自然对流换热系数公式
自然对流是一种重要的热传递方式,广泛应用于工程领域中。
在自然对流过程中,流体的热量通过差异温度驱动而传递,换热系数是描述这种传热方式的关键参数之一。
自然对流换热系数公式可表示为:
h = (k / L) * (Gr * Pr)^n
其中,h表示换热系数,k表示流体的热导率,L表示特征长度,Gr表示重力数,Pr表示普朗特数,n表示经验系数。
在该公式中,重力数和普朗特数是自然对流换热中的两个重要无量纲参数,Gr数代表了重力的作用,Pr数则代表了流体的性质。
经验系数n的大小取决于具体的流体和几何形状等因素。
需要注意的是,自然对流换热系数公式是基于实验数据和经验公式推导而来的。
因此,在具体应用中,需要根据实际情况进行修正和校准,以获得更精确的结果。
- 1 -。
自然对流换热实验
L2=1200mm
L3=1600mm
C0=5.67 W/(m2×K4 )
黑度 ε 1=ε 1=ε 3=0.15
ε 4=0.11
2.测试数据:室内空气温度tf=
管壁温度和电流强度:
℃
电压V=
V
编号 I(A) T1(℃) T2(℃) T3(℃) T4(℃) T5(℃) T6(℃) T7(℃) T8(℃) 各管 测温 1 2 3 4 点数 量不 同
Qr V Tw ---辐射换热量; Qc ---电压 ε ---对流换热量 I---电流强度 C0 ---黑体的辐射系数 ---实验管表面黑度 Tf
------管壁平均温度 K
-----室内空气温度 K
对于自然对流换热:
Nu=f(Gr,Pr)
其中 Nu=α d/λ Gr=gβ (tw-tf)d3/ν
截距为c。
三、实验方法与步骤
1.按电路图接好线路,经指导老师检查后接通电源;
2.调节调压器,对实验管进行加热;(以上由实验室人员进行) 3.稳定六小时后开始测管壁温度,记录数据; 4.间隔半小时后再记录一次; 5.把两组数据取算术平均值,作为计算依据; 6.记录温度计指示的空气温度。
四、实验数据记录 1.已知数据: 管径和允许电功率d1=20mm d3=60mm 管长 L1=1000mm P3=800W P1=300W d4=80mm d2= 40mm P4=1200W L4=2000mm P2=600W
自然对流换热实验 一、实验装置
1—电源引出线,2—电源引出孔,3—聚苯乙稀泡沫, 4—实验管段,5—电加热器
二、实验原理 对铜管进行电加热,热量是以对流换热和辐射换热两 种方式传递给空气的,所以对流换热量应是总热量与辐射 换热量之差,即:Q=Qr+Qc=IV Qc=α F(tw-tf)
自然对流换热
1.002 104<2 105
可按式(5-33)计算。
N um 0.197(Gr P ) ( )1/ 9 h
1/ 4 r m
0.197 (1.002 10 ) 1.335
4 1/ 4 m
0.015 1/ 9 ( ) 0.5
N um
1.335 0.0296 2.63 W/(m2 K) 0.015
2
或者 Gr Pr 当 Gr 极小时,换热依靠纯导热。 随着 Gr 提高,会依次出现向层流特性过渡的 流动(环流)、层流特性的流动、紊流特性的 流动。与之相对应,则有几种不同的换热关联 式。在夹层自然对流换热中,相对尺寸 / h对 竖直夹层的自然对流换热也有一定的影响。 一般实验关联式的形式为
表5-4适用于常壁温自然对流换热
g tL3
对于竖圆柱,只有在下列条件满足时,才能按垂直平壁处理, 误差在5%以内 d 35
H
≥
GrH H 1/ 4
2有限空间自然对流换热
竖直空气夹层有限空间自然对流换热计算的处理方法 夹层内流体的流动,主要取决于以夹层厚度δ 为定型尺寸的Gr数
Gr
g 3 (tw1 tw2 )
温度分布 : y 处, t=t 局部换热系数的变化:
图5-18 流体沿竖壁大空间自然对流示意图
y 0处, t=t w
大空间自然对流换热的准则实验关联式 :
Num C(Gr P )
n r m
Gr Gr-格拉晓夫准则 2 β 为容积膨胀系数(1/K) ν 为运动粘度(m2/s) L为定型尺寸(m) C、n:实验确定的常数。 下脚标m表示定性温度为 tm (tw tf ) / 2 tw 壁面温度,tf 远离壁面处的流体温度 Gr 数中的t取tw 和tf 之差。
6.5自 然 对 流 换 热解析
2 u0l a U V 2 X Y Y
1 U V 2 X Y Re Pr Y
2
u u u u v g v t t 2 x y y
2 g tl U U 1 U v U V 2 2 X Y Re u0 Y
u0 gv tl
2
Gr称为格拉晓夫数,在物理上,Gr数
是浮升力/粘滞力比值的一种量度。
g v tl Re 2
3
3
动量守恒方程
u u dp 2u u x v y Fx dx y 2
Fx g
薄层外,u=v=0,
dp g dx
2
u u g u u v 2 x y y
2
2 u u u U U U 0 0 0 u0 U u0 V g v t 2 2 l X l Y l Y
u0 l
2
2 U u U U 0 U X V Y g v t l 2 2 Y
自然对流边界层内速度剖 面呈单驼峰形状。
波尔豪森分析解与施密特-贝克曼实测结果
竖板层流自然对流边界层理论分析与实测结果的对比
自然对流换热问题描述
1 质量守恒方程
u v 0 x y
2
能量守恒方程
t t t u v a 2 x y y
2
2 u u dp u u x v y Fx dx y 2
(大空间的相对性)
换热系数大自然对流课件
换热系数的计算方法
经验公式法
根据实验数据和经验,总结出换热系 数的计算公式,适用于特定条件下的 传热过程。
数值模拟法
通过建立数学模型和数值求解方法, 计算出物体间的换热系数,适用于复 杂结构和非线性传热过程。
换热系数的影响因素
流体性质
流体的物理性质如粘度、导热 系数和比热容等,对换热系数
有显著影响。
总结词
应对气候变化的自然对流措施
总结词
自然对流在气候预测中的作用
详细描述
针对气候变化对自然对流的影响,可以采取相应的措施来 减缓其不利影响,如加强环境保护、推广可再生能源等。
生态系统案例
总结词
湿地生态系统中的自然对流特征
详细描述
湿地生态系统中的自然对流具有独特的特征和规律,如湿 地中的水体流动、气体交换等。了解这些特征有助于深入 探究湿地生态系统的功能和机制。
温度差
物体间的温度差是换热过程的 驱动力,温度差越大,换热系 数越大。
表面状况
物体的表面状况如粗糙度、清 洁度和润湿程度等,能够影响 换热系数的大小。
流动状态
流体的流动状态如层流或湍流 ,对换热系数有较大影响,湍 流状态下的换热系数通常较大
。
02
大自然对流现象
对流现象的定义与分类
定义
对流是指流体内部由于温度、密度等物理性质的不均匀分布引起的宏观运动。
换热系数大自然对 流课件
目 录
• 换热系数概述 • 大自然对流现象 • 换热系数与大自然对流的关系 • 换热系数在大自然对流中的应用 • 案例分析
01
换热系数概述
定义与意义
定义
换热系数是指在单位时间内,单 位面积上所传递的热量与对应的 温度差之间的比值,用于描述物 体间的热量传递速率。
自然对流换热试验
自然对流换热实验报告一、实验目的(1)了解空气沿水平圆柱体表面自然流动是的换热过程,掌握实验测试技术。
(2)测定单管(水平放置)的自然对流换热系数h 。
(3)根据实验测得的有关数据,计算各实验管的Nu 数、Gr 数和Pr 数,然后用作图法或最小二乘法确定经验方程式n Gr c Nr Pr)(=中的c 值和n 值,并给出Pr Gr 的范围。
二、实验原理对铜管进行加热,热量是以对流和辐射两种方式来散发,所以对流换热量为总流量与辐射热量之差。
即r h c Φ-Φ=Φ (W )式中:)(f w c t t hA -=Φ;UI h =Φ;⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=Φ4f 4w 0100T 100T A c r ε,所以⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛---=4f 4w 0100T 100T )()(f w f w t t c t t A UIh ε[])(K /W ∙m 式中:c Φ为对流换热量,W ;h Φ为加热器产生的热量,W ;r Φ为辐射换热量,W;U 加热器电压,V ;I 为加热器电流,A ;ε为圆柱体表面黑度,ε=0.064;0c 为黑体辐射系数,)(420K m /W 67.5∙=c ;w t 为管壁平均温度,℃;f t 为玻璃室内空气温度,℃;A 为圆柱体的表面积,m 2;h 为自然对流换热系数,)(K /W 2∙m 。
当实验管表面温度稳定时,测定每根管的加热电压U 、电流I 、管壁温度w t 、玻璃室内温度f t ,从表中查出圆管的直径和长度,计算出圆管表面积A ,计算出其对流换热系数h 。
根据相似理论,自然对流换热的准则为Pr),(Gr f Nr =在工业中广泛使用的是比式更为简单的经验方程式,即n Gr c Nr Pr)(=式中:c 、n 是通过实验所确定的常数(在一定的Pr Gr 数值范围内)。
为了确定上述关系式的具体形式,根据测量数据计算结果求得努塞尔准则Nu 、格拉晓夫准则Gr 和普朗特准则Pr ,即λhDNu =; 23υβtD g Gr ∆=; a υ=Pr式中:Pr 、β(空气的体胀系数,1/K )、υ(空气的运动黏度,m 2/s )等、λ(空气的导热系数,℃)(∙m /W )等物性参数由定性温度)(2fw t t +从气体的热物理性质表查取;2/8.9s m g =;D 为圆管壁面定型尺寸,m ;f w t t t -=∆,℃。
§6-4 自然对流换热解析
Logo
夹层内流体的流动,主要取决于以夹层厚度
为特征长度的 Gr 数:
Gr
对于竖直夹层,当 对于水平夹层,当
gt
3
2
当 Gr 极低时换热依靠纯导热:
Gr 2860 Gr 2430。
注意:与教材数据的不同!这里的数据仅供参考!
Heat Transfer
建筑工程系
The Department
of Construction Engineering
Logo
二、有限空间自然对流换热 这里仅讨论 如图所示 的竖的和水平的两种 封闭夹层的 自然对流换热 ,而且仅局限于气体 夹层。
封闭夹层示意图 (tw1 tw2 )
Heat Transfer
建筑工程系
The Department
of Construction Engineering
of Construction Engineering
Logo
3、自然对流换热的准则方程式 从对流换热微分方程组出发,可得到自然对流换 热的准则方程式:
Nu C ( Gr Pr ) C Ra
n
n
6-16
式中:格拉晓夫数是浮升力/粘滞力比值的一种量度。其值 的增大表明浮升力作用的相对增大。
6-17
注:竖圆柱按下表与竖壁用同一个关联式只限于以下情况:
d 35 1/ 4 H GrH
Heat Transfer
建筑工程系
The Department
of Construction Engineering
Logo
Heat Transfer
建筑工程系
The Department
of Construction Engineering
自然对流换热系数与面积
自然对流换热系数与面积
首先,根据牛顿冷却定律,自然对流换热系数h与表面积A之间的关系可以表示为Q = hAΔT,其中Q是通过表面的热量,ΔT是流体和表面的温度差。
从这个方程可以看出,换热系数h与表面积A成正比。
换句话说,表面积的增加会导致更多的热量传递,从而增加换热系数。
其次,自然对流换热系数与表面积之间的关系还受到表面形状和流体性质的影响。
对于相同的表面积,不同形状的表面对流体的影响也不同,因此换热系数也会有所不同。
此外,流体的性质如粘度、密度和导热系数也会影响自然对流换热系数与表面积之间的关系。
最后,需要注意的是,自然对流换热系数与表面积之间的关系并不是线性的,而是受到多种因素的综合影响。
因此,在实际工程中,需要综合考虑流体性质、表面形状和表面积等因素,通过实验或计算得出适合的换热系数值。
综上所述,自然对流换热系数与表面积之间的关系是复杂而多变的,需要综合考虑多种因素才能准确描述。
在工程设计和实际应
用中,需要根据具体情况进行分析和计算,以获得合适的换热系数值。
5-9 自然对流换热及实验关联式
u v 0
,从上式可推得
2
u u 1 dp u u v g 2 x y dx y
dp g dx
将此关系带入上式得
引入体积膨胀系数 :
u u g 2u u v ( ) x y y 2
一般认为,
g tl 3 2 Gr 2 2 2 ul Re2
Gr / Re2 0.1 时,自然对流的影响不能忽略,
而
Gr / Re2 10 时,强制对流的影响相对于自然对流可以
忽略不计。
自然对流对总换热量的影响低于10%的作为纯强制对流; 强制对流对总换热量的影响低于10%的作为纯自然对流; 这两部分都不包括的中区域为混合对流。
按此式整理的平板散热的结果示于下表。
这里流动比较复杂,不能套用层流及湍流的分类。
二. 有限空间自然对流换热 这里仅讨论如图所示的竖的和水平的两种封闭夹层的自然 对流换热,而且推荐的冠军事仅局限于气体夹层。
封闭夹层示意图 ( tw 1
tw 2 )
夹层内流体的流动,主要取决于以夹层厚度 为特征长度的 Gr 数:
当 Gr 极低时换热依靠纯导热: 对于竖直夹层,当 Gr 2860
g t 3 Gr 2
对水平夹层,当
Gr 2430。
另:随着 Gr 的提高,会依次出现向层流特征过渡的 流动(环流)、层流特征的流动、湍流特征的流 动。 对竖夹层,纵横比
H / 对换热有一定影响。
一般关联式为
常数C和n的值见下表。
注:竖圆柱按上表与竖壁用同一个关联式只限于以下 情况: d 35
H
GrH1 / 4
第十章自然对流
2.76 1010
Gr Pr 2.761010 0.696 1.931010 湍流
由表(10-5)
Nu 0.1(Gr Pr)1/3 0.1 (2.761010 0.696)1/3 268.2
h Nu 268.2 0.029 5.2W / m2.K
l
1.5
1 dlhtw t 3.14 0.151.5 5.2 (110 10) 367.4W
• 底部开口时,只要 b / H 0.01,壁面换热就可按大空间
自然对流处理。(大空间旳相对性)
Heat Transfer
竖直平壁上旳自然对流换热,常壁温
tw t
u(x,y)
tw
T
• y : u = 0, t= t • y 0 : u = 0, t = tw
Nu C(Gr Pr)n
竖直圆柱:
Heat TransferΒιβλιοθήκη (2)水平部分Gr
gtl 3 2
9.8 0.153 (110 10) (18.97 106 )2 (273 60)
2.76 107
Gr Pr 2.76107 0.696 1.92107 层流
由表(10-5)
Nu 0.125(Gr Pr)1/3 0.125 (2.76107 0.696)1/3 33.5
自然对流换热要点 • 相同温差条件下,自然对流换热系数一般不大于逼迫对流
•
Gr数类比于Re数
Gr
g tw t l3
2
Buoyancy forces Viscous forces
• Ra数:同步考虑浮力和粘性力在自然对流中旳作用
Ra Gr Pr g tw t l3
a
• 常用旳经验关联式旳形式:
对流换热系数的确定
对流换热系数的确定核心提示:1.自然对流时的对流换热系数炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。
2.强制对流时的对流换热系数(1)气流沿1.自然对流时的对流换热系数炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。
2.强制对流时的对流换热系数(1)气流沿平面强制流动时气流沿平面流动时,烧结炉其对流换热系数可按表1-1的近似公式计算。
表1-1对流换热系数计算vo=C4.65(m/s) x;o>4.65(m/s)光滑表面a=5.58+4.25z'o a^V.Slvg78轧制表面a-=5.81+4.25vo a=7.53vin.粗糙表面o=6.16+4.49vo a=T.94vi78气流沿长形工件强制流动时当加热长形工件时,循环空气对工件表面的对流换热系数可用下述近似公式计算气流在通道内层流流动时气流呈层流流动时,对流换热系数主要决定于炉气的热导率,而与炉气的流速无关。
绝对黑体的概念当物体受热后一部分热能转变为辐射能并以电磁波的形式向外放射,其波长从lfmi到若干m。
各种不同波长的射线具有不同性质,可见光和红外线能被物体吸收转化为热能,称它们为热射线。
各种物体由于原子结构和表面状态的不同,其辐射和吸收热射线的能力有明显差别。
当能量为Q的一束热射线投射到物体表面时,也和可见光一样,一部分能量Qa将被吸收,一部分能量Qr被反射,还有一部分能量Qu透射过物体(如图1-5)。
按能量守恒定律则有图1-5辐射能的吸收、反射和透过如果A=l,则R=D=0,即辐射能全部被吸收,这种物体称绝对黑体,简称黑体。
如果R=l,则A=D=0,即辐射能全部被反射,这种物体称绝对白体,简称白体。
如果D= 1,则A=K=0,即辐射能全部被透过,这种物体称绝对透过体,简称透过体。
自然界中,黑体、白体和透过体是不存在的,它们都是假定的理想物体。
对于一种实际物体来说数值,不仅取决于物体的特性,还与表面状态、温度以及投射射线的波长等有关。
fluent 自然对流换热设置
在Fluent中设置自然对流换热,您可以按照以下步骤进行操作:
1.启动Fluent并读取计算网格,网格类型可以是3D或双精度。
例如,如果
你的网格文件名为"heatsink-natl-conv-poly.msh.gz",则可以通过Fluent读取该网格。
2.在Models设置中激活能量方程,并采用层流模型。
根据具体案例,可能
需要设置瑞利数,本案例的瑞利数为2.7e4。
3.在Materials设置中添加材料,例如Copper和grease,并设置相应的材
料参数。
4.在Domain设置中,为不同区域设置不同的介质材料,例如将区域copper
的介质材料设置为copper,将区域heater的材料介质设置为grease。
同时,可以激活Source Terms选项来指定区域热源,例如本案例中设定热源为2325000 w/m3。
5.进行计算求解。
需要注意的是,以上步骤是Fluent中自然对流换热设置的一般流程,具体操作可能会因实际情况而有所不同。
如果您在操作过程中遇到任何问题,建议参考Fluent的官方文档或寻求专业人士的帮助。
换热系数大自然对流课件
掌握对流换热的基本原理和方 法;
理解换热系数在大自然对流中 的作用和影响;
能够运用所学知识解决实际问 题;
培养学生对自然界运动规律的 探究精神和科学素养。
课程安排
01
02
第一部分
对流换热基本原理和方法;
第二部分
换热系数与大自然对流的关系 ;
03
第三部分
案例分析和讨论;
04
第四部分
课程总结和展望。
02
实验装置与设计
为研究大自然对流现象,需要设计相应的实验装置,包括加热器 、测温装置、流动显示装置等。
实验参数与控制
为保证实验结果的准确性和可重复性,需要对实验参数进行精确控 制,如加热功率、气流速度等。
数据采集与分析
通过采集实验数据,如温度场分布、速度场分布等,进行数据分析 ,提取对流现象的内在规律。
工程应用案例介绍
建筑节能
在建筑设计过程中,通过优化窗户、外墙等部位的传热系数,可以有效提高建 筑的保温性能,降低能源消耗。
工业生产
在工业生产过程中,对于热交换器、反应釜等设备,通过优化传热表面的结构 和材料,可以提高设备的换热效率,降低能源消耗。
06
总结与展望
主要内容回顾
大自然对流的定义和分类 换热系数的概念和测量方法
THANKS
感谢观看
实验结果分析与讨论
数据处理与可视化
对采集到的实验数据进行处理和可视化,将原始 数据转化为直观的图表和图像形式。
结果分析与解释
根据数据处理结果,进行深入分析,揭示大自然 对流现象的内在机制和影响因素。
对比与讨论
将实验结果与理论预测进行对比,讨论存在的差 异和原因,为完善理论模型提供依据。
第5章对流换热
相同原理研究支配相同系统旳性质以及怎样用模型 试验处理实际问题旳一门科学,是进行模型试验旳 根据。但不是一种独立旳科学措施,只是试验和分 析研究旳辅助措施。
相同原理应用举例:汽车、飞机风洞试验
风洞试验旳基本原理是相对性原理和相同性原理。 根据相对性原理,汽车、飞机在静止空气中飞行所
8)量纲分析法——π定理
π定理旳内容:任一物理过程涉及有n个有量纲旳 物理量,如果选择其中旳r个作为基本物理量 ,则这一物理过程可由n个物理量构成旳n-r个 无量纲量所构成旳关系式描述。因这些无量纲 数是用π表示旳,故称为π定理。以数学形式可 表示如下。
设个物理量为x1、x2…… xn,则这一物理 过程可表达为一般函数关系式
0.034 0.0276
64.19W (m2 K )
准数 准数旳形式 准数旳物理涵义
Nu 努 赛 尔 特Nusselt
Nu=h·lc/λf
反应对流传热旳强弱 程度
Re 雷 诺 Reynolds
Re
lu
lu
流体流动形态和湍动 程度
Pr 普 兰 德 Prandtl
Pr cp
流体旳物理性质对对 流传热旳影响
热边界层厚度δt由流体中垂直于壁面上 旳温度 分布决定旳,与热扩散率α有关。
如果tW t 则热边界层不存在
5.1.2 相同原理
1、基本概念 1)同一类物理现象:用相同形式和相同内容旳微分
方程所描述旳物理量。 2)物理相同现象:同一类物理现象中,但凡相同旳
现象,在空间相应旳点上和时间相应旳瞬间,其 各相应旳物理量分别成一定旳百分比。
式中 h —平均对流传热系数,W/(m2K); u —流体旳特征流速,m/s; d —管道直径,m; λ—导热系数 ρ —流体密度 cp —定压比热容 η — 动力粘度系数
自然条件下空气的对流换热系数
自然条件下空气的对流换热系数
1. 你知道吗,自然条件下空气的对流换热系数可神奇啦!就像夏天吹风扇,那凉爽的感觉不就是空气对流换热在起作用嘛!
2. 嘿,自然条件下空气的对流换热系数真的很重要哦!想想看,冬天室内外温差大,不就是靠它来调节温度平衡的吗!
3. 哇塞,自然条件下空气的对流换热系数好有趣呀!好比我们在山林里,感受到的微风和温度变化,不就是它在“搞鬼”嘛!
4. 哎呀呀,自然条件下空气的对流换热系数可不容忽视呢!你想想,在海边吹海风时那种舒适,不就是它带来的嘛!
5. 哟呵,自然条件下空气的对流换热系数其实就在我们身边呀!像大热天从空调房出来那一瞬间的热感,不就是它的“杰作”嘛!
6. 嘿呀,自然条件下空气的对流换热系数真的超有意思的!就如同在山谷里,风的流动和温度变化,不就是它在发挥作用嘛!
7. 哇哦,自然条件下空气的对流换热系数很关键呢!想想冬天我们哈气时那团白气,不就是它和温度在“互动”嘛!
8. 哈哈,自然条件下空气的对流换热系数可太奇妙啦!好比我们爬山时,越往上走越觉得冷,不就是它的影响嘛!
9. 哎呀,自然条件下空气的对流换热系数真的值得研究呢!你看,在野外篝火旁感受到的温度变化,不就是它在起作用嘛!
10. 哇,自然条件下空气的对流换热系数真的好特别呀!就像春天的微风轻轻拂过脸庞,那就是它带来的美妙感觉呀!
我的观点结论:自然条件下空气的对流换热系数在我们的生活中无处不在,对我们的环境和感受有着重要的影响,真的是非常神奇又有趣呢!。
6.6 自然对流换热
第六章 6.6节 (35)
19
• 处于自由流动散热状态的电热器件,边界条 件基本上是恒热流,这时壁面温度是未知数. 计算关联式的形式稍作修正
Nux C(Grx Pr)n
• 针对局部值, Grx* 称为修正格拉晓夫数
Grx
Grx Nux
g t x3 2
hx g qw x 4
2
• 由于物性未定,仍需要一次壁温迭代
1 1 T p T T
引入密度差与温度的关系:
第六章 6.6节 (35)
11
dp dx
g
(
)g
(
t
t )g
u
u x
v
u y
g t t
2u y 2
• 右侧第一项即浮升力项
• 连同连续性方程和能量方程(形式不
变)可以求解 u、 v、 t 三个未知量
• 不同的是必须联立求解
第六章 6.6节 (35)
13
仍采用无量纲化处理方法:
X x, L
Y y, L
t t tw t
U u , uR
V v uR
uR gV (tw t )x
代入式(6-6-2)中
U U V U
X Y
1 2U Grx Y 2
对能量微分方程作同样的无量纲化处理:
U
X
V
Y
Pr
1 Grx
2
• 竖壁恒壁温自然对流换热的中点计算方法
第六章 6.6节 (35)
20
2.倾斜表面
在60°内,以 gcos 代替 g 。
(a) 冷表面
(b) 热表面
第六章 6.6节 (35)
21
3. 水平表面
第六章 6.6节 (35)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大空间自然对流换热:周围没有其它物体阻碍换热面上边界层 形成和发展的自然对流换热。
有限空间自然对流换热:否则称为有限空间自然对流换热 。
1大空间自然对流换热
边界层:层流→紊流。
转变点取决于温差和流体 的性质 Gr Pr>109 流态为紊流 边界层内速度分布:
y 0和y 处,均为零
y= 1 处具有最大流速
形成厚 15 mm 的竖直空气夹层。试计算通过空气夹层的自然
对流换热量。
解 定性温度 tm (tw1 tw2 ) / 2 (100 40) / 2 70℃,据此查附录得,空气物性
1.029 kg/m3 , 20.02106 m2/s , 0.0296 W/(m 1m/
4
(
h
)1/
9
Gr Pr 2 105 ~ 1.1107 时,
Num
0.073(Gr
Pr
)1m/
3
(
h
)1/
9
(5-32)
(5-33) (5-34)
以上各式的适用范围为: Pr 0.5 ~ 2 h / 11 ~ 42
准则的定,性温度 : tm (tw1 tw2 ) / 2
例 5-8 温度分别为 100℃和 40℃,面积均为0.50.5 m2 的两竖壁,
)1/
9
0.197
(1.002
104
)1m/
4
(
0.015 0.5
)1/
9
1.335
Num 1.335 0.0296 2.63 W/(m2 K)
0.015
自然对流换热量为
Q Ft 2.63(0.50.5)(100 40) 39.5 W
作业
1. 4.
17
下脚标m表示定性温度为 tm (tw tf ) / 2
tw 壁面温度,tf 远离壁面处的流体温度
Gr数中的t取tw和tf 之差。
表5-4适用于常壁温自然对流换热
对于竖圆柱,只有在下列条件满足时,才能按垂直平壁处理,
误差在5%以内
d ≥ 35 H GrH H 1/ 4
2有限空间自然对流换热 竖直空气夹层有限空间自然对流换热计算的处理方法
, 1 1 2.915103 1/K 。 Tm 273 70
g th3 Gr Pr 2 Pr
9.8 2.915103 (100 40) 0.0153
(20.01106 )2
0.694
1.002104<2105
可按式(5-33)计算。
Num
0.197(Gr
Pr
)1m/
4
(
h
竖直夹层的自然对流换热也有一定的影响。 图5-19 竖直空气夹层中的自然
一般实验关联式的形式为
对流换热
Num
C(Gr
Pr
)
n m
(
h
)
k
对于竖直空气夹层,相关文献中介绍的准则实验关联式如下:
Gr Pr<2000 时,
Num 1
Gr Pr 6000 ~ 2 105 时,
Num
0.197(Gr
夹层内流体的流动,主要取决于以夹层厚度δ 为定型尺寸的Gr数
Gr
g 3(tw1 tw2 ) 2
或者 Gr Pr 当 Gr 极小时,换热依靠纯导热。
随着Gr 提高,会依次出现向层流特性过渡的 流动(环流)、层流特性的流动、紊流特性的
流动。与之相对应,则有几种不同的换热关联
式。在夹层自然对流换热中,相对尺寸 / h对
3
温度分布
:y
0处,
t=t w
y 处, t=t
局部换热系数的变化: 图5-18 流体沿竖壁大空间自然对流示意图
大空间自然对流换热的准则实验关联式 :
Num C(Gr Pr )mn
Gr-格拉晓夫准则 β 为容积膨胀系数(1/K)
Gr
gtL3 2
ν 为运动粘度(m2/s)
L为定型尺寸(m)
C、n:实验确定的常数。