山东省2017年普通高中学业水平考试数学试题

合集下载

山东省2018年冬季2017级普通高中学业水平合格考试数学试卷含答案

山东省2018年冬季2017级普通高中学业水平合格考试数学试卷含答案

好记星书签整理 数学试卷·第1页(共4页) 机密★启用前山东省2018年冬季2017级普通高中学业水平合格考试数 学 试 题本试卷共4页.满分100分.考试用时90分钟.考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必用05毫米黑色签字笔将自己的姓名、考籍号和座号填写在答题卡和试卷规定的位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效。

3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:锥体的体积公式:Sh V 31=,其中S 为锥体的底面积,h 为锥体的高; 球的表面积公式:S=4πR 2,其中R 为球的半径。

一、选择题:本大题共20小题,每小题3分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M={1,3,5),N=(2,3,5),则MUN=A .{3,5}B .{1,2,3}C .{2,3,5}D .{1,2,3,5}2.函数y=cos2x 的最小正周期为A .2π B .π C .2π D .4π 3.下列函数中,定义城为R 的函数是 A .x y 1= B .x y lg = C .x y = D .xy 2= 4.已知正方体的棱长为2,则该正方体内切球的表面积为A .πB .34πC .4πD .16π。

(精编精校)2017年普通高等学校招生全国统一考试 理科数学(山东卷)【word精析版】

(精编精校)2017年普通高等学校招生全国统一考试 理科数学(山东卷)【word精析版】

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)·P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设函数的定义域为,函数的定义域为,则(A)(1,2)(B)(C)(-2,1)(D)[-2,1)【答案】D【解析】试题分析:由得,由得,故,选D.【考点】1.集合的运算;2.函数的定义域;3.简单不等式的解法【名师点睛】集合的交、并、补运算问题,应把集合先化简再计算,常借助数轴或韦恩图进行求解.(2)已知,i是虚数单位.若,则a=(A)1或-1 (B)(C)-(D)【答案】A【解析】试题分析:由得,所以,故选A.【考点】1.复数的概念;2.复数的运算【名师点睛】复数的共轭复数是,据此结合已知条件,求得的值.(3)已知命题p:;命题q:若a>b,则,下列命题为真命题的是(A)(B)(C)(D)【答案】B【考点】常用逻辑用语【名师点睛】解答有关逻辑联结词的相关问题,首先要明确各命题的真假,利用或、且、非真值表,进一步作出判断.(4)已知x,y满足约束条件,则z=x+2y的最大值是(A)0 (B)2 (C)5 (D)6【答案】C【解析】试题分析:约束条件表示的可行域如图中阴影部分所示,目标函数z=x+2y,即,平移直线,可知当直线经过直线与的交点时,取得最大值,为,选C.【考点】简单的线性规划【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值.(5)为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为24,据此估计其身高为(A)(B)(C)(D)【答案】C【解析】试题分析:由已知得则当时,,选C.【考点】线性相关与线性回归方程的求解与应用【名师点睛】判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数的公式求出,然后根据的大小进行判断.求线性回归方程时,在严格按照公式求解时,一定要注意计算的准确性.(6)执行两次下图所示的程序框图,若第一次输入的的值为,第二次输入的的值为,则第一次、第二次输出的的值分别为(A)0,0 (B)1,1 (C)0,1 (D)1,0【答案】D【考点】程序框图【名师点睛】识别程序框图和完善程序框图是高考的重点和热点.解决这类问题:首先,要明确程序框图中的顺序结构、条件结构和循环结构;第二,要理解程序框图解决的实际问题;第三,按照题目的要求完成解答.对程序框图的考查常与函数和数列等相结合,进一步强化框图问题的实际背景.(7)若,且,则下列不等式成立的是(A)(B)(C)(D)【答案】B【解析】试题分析:因为,且,所以,所以选B.【考点】1.指数函数与对数函数的性质;2.基本不等式【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.本题虽小,但考查的知识点较多,需灵活利用指数函数、对数函数的性质及基本不等式作出判断.(8)从分别标有,,,的张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A)(B)(C)(D)【答案】C【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.(9)在中,角A,B,C的对边分别为,,.若为锐角三角形,且满足,则下列等式成立的是(A)(B)(C)(D)【答案】A【解析】试题分析:由题意知,所以,选A.【考点】1.三角函数的和差角公式;2.正弦定理【名师点睛】本题较为容易,关键是要利用两角和与差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A,B,C的式子,再用正弦定理将角转化为边,得到.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.(10)已知当时,函数的图象与的图象有且只有一个交点,则正实数的取值范围是(A)(B)(C)(D)【答案】B【考点】函数的图象、函数与方程及函数性质的综合应用【名师点睛】已知函数有零点求参数的取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围;(2)分离参数法:将参数分离,转化成求函数值域的问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)已知的展开式中含有项的系数是,则.【答案】【解析】试题分析:的展开式的通项公式为,令,得,解得.【考点】二项式定理【名师点睛】根据二项展开式的通项,确定二项式系数或确定二项展开式中的指定项,是二项式定理问题中的基本问题,往往要综合运用二项展开式的系数的性质、二项展开式的通项求解. 本题能较好地考查考生的思维能力、基本计算能力等.(12)已知是互相垂直的单位向量,若与的夹角为,则实数的值是.【答案】【考点】1.平面向量的数量积;2.平面向量的夹角;3.单位向量【名师点睛】1.平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:.2.由向量的数量积的性质有,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.3.本题主要利用向量的模与向量运算的灵活转换,应用平面向量的夹角公式,建立关于的方程求解.(13)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.【答案】【解析】试题分析:由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以.【考点】1.三视图;2.几何体的体积【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.(14)在平面直角坐标系中,双曲线的右支与焦点为的抛物线交于两点,若,则该双曲线的渐近线方程为.【答案】【考点】1.双曲线的几何性质;2.抛物线的定义及其几何性质【名师点睛】1.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都与椭圆的有关问题相类似.因此,双曲线与椭圆的标准方程可统一为的形式,当,,时为椭圆,当时为双曲线.2.凡涉及抛物线上的点到焦点的距离,一般运用定义转化为到准线的距离处理.(15)若函数(是自然对数的底数)在的定义域上单调递增,则称函数具有M性质.下列函数中所有具有M性质的函数的序号为.①②③④【答案】①④【解析】试题分析:①在R上单调递增,故具有性质;②在R上单调递减,故不具有性质;③,令,则,当时,,当时,,在上单调递减,在上单调递增,故不具有性质;④,令,则,在R上单调递增,故具有性质.【考点】1.新定义问题;2.利用导数研究函数的单调性【名师点睛】1.本题考查新定义问题,属于创新题,符合新高考的动向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.2.求可导函数单调区间的一般步骤:(1)确定函数f(x)的定义域(定义域优先);(2)求导函数f′(x);(3)在函数f(x)的定义域内求不等式f′(x)>0或f′(x)<0的解集.(4)由f′(x)>0(f′(x)<0)的解集确定函数f(x)的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.3.由函数f(x)在(a,b)上的单调性,求参数范围的问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,要注意“=”是否可以取到.三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)设函数,其中.已知.(Ⅰ)求;(Ⅱ)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.【答案】(Ⅰ).(Ⅱ)最小值为.【解析】试题分析:(Ⅰ)利用两角和与差的三角函数化简得到.由题设知及可得.(Ⅱ)由(Ⅰ)得,从而.根据得到,进一步求的最小值.(Ⅱ)由(Ⅰ)得.所以.因为,所以,当,即时,取得最小值.【考点】1.两角和与差的三角函数;2.三角函数图象的变换与性质【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽略设定角的范围.难度不大,能较好地考查考生的基本运算求解能力及复杂式子的变形能力等.(17)(本小题满分12分)如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的,是的中点.(Ⅰ)设是上的一点,且,求的大小;(Ⅱ)当,时,求二面角的大小.【答案】(Ⅰ).(Ⅱ).【解析】试题分析:(Ⅰ)利用,,证得平面,利用平面,得到,结合可得.(Ⅱ)两种思路,一是几何法,二是空间向量方法,其中思路一:取的中点,连接,,.得四边形为菱形,得到.取中点,连接,,.得到,,从而为所求二面角的平面角.根据相关数据即得所求的角.思路二:以为坐标原点,分别以,,所在的直线为,,轴,建立如图所示的空间直角坐标系.写出相关点的坐标,求平面的一个法向量,平面的一个法向量,计算即得二面角的大小.试题解析:(Ⅰ)因为,,,平面,,所以平面,又平面,所以,又,因此(Ⅱ)解法一:取的中点,连接,,.因为,所以四边形为菱形,所以.取中点,连接,,.则,,所以为所求二面角的平面角.又,所以.在中,由于,由余弦定理得,所以,因此为等边三角形,故所求的角为.解法二:以为坐标原点,分别以,,所在的直线为,,轴,建立如图所示的空间直角坐标系.由题意得,,,故,,,所以.因此所求的角为.【考点】1.垂直关系;2. 空间角的计算【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.立体几何中角的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好地考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等.(18)(本小题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I)求接受甲种心理暗示的志愿者中包含A1但不包含的概率;(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.【答案】(I)(II)X的分布列为X 0 1 2 3 4PX的数学期望是.【解析】试题分析:(I)记接受甲种心理暗示的志愿者中包含但不包含的事件为M,计算即得;(II)由题意知X可取的值为:.利用超几何分布的概率计算公式得X的分布列,进一步计算X的数学期望.试题解析:(I)记接受甲种心理暗示的志愿者中包含但不包含的事件为M,则(II)由题意知X可取的值为:.则因此X的分布列为X 0 1 2 3 4PX的数学期望是=【考点】1.古典概型;2.随机变量的分布列与数学期望;3.超几何分布【名师点睛】本题主要考查古典概型的概率公式和超几何分布概率的计算公式、随机变量的分布列和数学期望.解答本题,首先要准确确定所研究对象的基本事件空间、基本事件个数.本题属中等难度的题目,计算量不是很大,能很好地考查考生数学的应用意识、基本运算求解能力等.(19)(本小题满分12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1, 1),P2(x2, 2),…,P n+1(x n+1, n+1)得到折线P1 P2…P n+1,求由该折线与直线y=0,所围成的区域的面积.【答案】(I)(II)【解析】试题分析:(I)依题意布列关于和公比的方程组求解.(II)利用梯形的面积公式,记梯形的面积为,求得,应用错位相减法计算得到试题解析:(I)设数列的公比为,由已知.由题意得,所以,因为,所以,因此数列的通项公式为①-②得=所以【考点】1.等比数列的通项公式;2.等比数列的求和;3.错位相减法求和【名师点睛】本题主要考查等比数列的通项公式及求和公式、数列求和的错位相减法.此类题目是数列问题中的常见题型.本题覆盖面广,对考生的计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好地考查考生的数形结合思想、逻辑思维能力及基本计算能力等. (20)(本小题满分13分)已知函数,,其中是自然对数的底数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)令,讨论的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ).(Ⅱ)见解析试题解析:(Ⅰ)由题意,又,所以,因此曲线在点处的切线方程为,即.(Ⅱ)由题意得,因为,令,则,所以在上单调递增. 因为所以当时,当时,,(1)当时,,当时,,单调递减,当时,,单调递增,所以当时取到极小值,极小值是;(2)当时,,由得,.①当时,,当时,,单调递增;当时,,单调递减;当时,,单调递增.所以当时取得极大值.极大值为,当时取到极小值,极小值是;②当时,,所以当时,,函数在上单调递增,无极值;③当时,,所以当时,,单调递增;当时,,单调递减;当时,,单调递增.所以当时取到极大值,极大值是;当时取到极小值.极小值是.综上所述:当时,在上单调递减,在上单调递增,函数有极小值,极小值是;当时,函数在和上单调递增,在上单调递减,函数有极大值,也有极小值,极大值是,极小值是;当时,函数在上单调递增,无极值;当时,函数在和上单调递增,在上单调递减,函数有极大值,也有极小值,极大值是,极小值是.【考点】1.导数的几何意义;2.应用导数研究函数的单调性、极值;3.分类讨论思想【名师点睛】1.函数f (x)在点x0处的导数f ′(x0)的几何意义是曲线y=f (x)在点P(x0,y0)处的切线的斜率.相应地,切线方程为y−y0=f ′(x0)(x−x0).注意:求曲线切线时,要分清在点P处的切线与过点P 的切线的不同.2. 本题主要考查导数的几何意义、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或复杂式子变形能力差.本题能较好地考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.(21)(本小题满分14分)在平面直角坐标系中,椭圆:的离心率为,焦距为.(Ⅰ)求椭圆的方程;(Ⅱ)如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.【答案】(I).(Ⅱ)的最大值为,取得最大值时直线的斜率为.试题解析:(I)由题意知,,所以,因此椭圆的方程为.(Ⅱ)设,联立方程得,由题意知,且,所以.由题意可知圆的半径为由题设知,所以,因此直线的方程为.联立方程得,因此.由题意可知,而,令,则,因此,当且仅当,即时等号成立,此时,所以,因此,所以最大值为.综上所述:的最大值为,取得最大值时直线的斜率为.【考点】1.椭圆的标准方程及其几何性质;2.直线与圆锥曲线的位置关系;3. 二次函数的图象和性质【名师点睛】本题对考生的计算能力要求较高,是一道难题.解答此类题目,利用的关系,确定椭圆(圆锥曲线)的方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程得到的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,应用确定函数最值的方法---如二次函数的性质、基本不等式、导数等求解.本题易错点是复杂式子的变形能力不足,导致错漏百出.本题能较好地考查考生的逻辑思维能力、运算求解能力、分析问题及解决问题的能力等.。

山东省学业水平考试数学试题(2015-2017会考)附答案

山东省学业水平考试数学试题(2015-2017会考)附答案
y k ( x 1) 2 代入y 2 x 2得2x2 kx k 2 0 k k2 k k2 A( 1, 2k 2), 用 k 换k 得B ( 1, 2k 2) 2 2 2 2 k k k2 A( x1, y1 ), B( x2 , y2 ), 则x1 1 , x1 1, y1 k ( x1 1) 2 2k 2 2 2 2 k AB k k 1 ( 1) 4k 2 2 2 4 (定值) 2 k k k 2k 2 ( 2k 2) 2 2
22.已知 tan 2, 则 tan( ) 的值是___________ 4
23.一个四棱锥的三视图如图所示,其中主(正)视图和左(侧)视图都是边长为 2 的正 三角形,那么该四棱锥的底面积为__________
8
x 2 24.已知实数 x,y 满足约束条件 y 2 , 则目标函数 z x 2 y x y 2 0 的最小值是 ______
9
山东省普通高中学业水平考试数学试题 参考答案
1~5 DABAC 21. 12 22. 6~10 BBDDA 11~15 CAACD 16~20 BCDBC -3 23. 4 24. 2 25.
2

26 f ( x)的定义域是( , 2), 零点是x 2 27. (1) an n, (2) S100 5050 28.解(1) 设直线MA的斜率为k , 则MB的斜率为-k,则直线MA的方程为
1 1 a b
11.设 a, b, c R, 且a b ,则下列不等式正确的是( A. a 2 b 2 B. ac 2 bc 2 C. a c b c D.
13.甲、乙、丙 3 人站成一排,则甲恰好在中间的概率为( A.

(精品word版)2017年普通高等学校招生全国统一考试(山东卷)数学理

(精品word版)2017年普通高等学校招生全国统一考试(山东卷)数学理

2017年普通高等学校招生全国统一考试(山东卷)数学理一、选择题:本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设函数y =的定义域为A ,函数y=ln(1-x)的定义域为B ,则A ∩B=( )A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)解析:由4-x2≥0,解得:-2≤x ≤2,则函数y =的定义域[-2,2],由对数函数的定义域可知:1-x >0,解得:x <1,则函数y=ln(1-x)的定义域(-∞,1), 则A ∩B=[-2,1). 答案:D.2.已知a ∈R ,i 是虚数单位,若z=a+3i ,z z ⋅=4,则a=( ) A.1或-1C.解析:由z a =,则z 的共轭复数z a =,由()()234z z a a a⋅=-=+=,则a 2=1,解得:a=±1,∴a 的值为1或-1. 答案:A.3.已知命题p :∀x >0,ln(x+1)>0;命题q :若a >b ,则a 2>b 2,下列命题为真命题的是( ) A.p ∧q B.p ∧¬q C.¬p ∧q D.¬p ∧¬q解析:命题p :∀x >0,ln(x+1)>0,则命题p 为真命题,则¬p 为假命题;取a=-1,b=-2,a >b ,但a 2<b 2,则命题q 是假命题,则¬q 是真命题.∴p ∧q 是假命题,p ∧¬q 是真命题,¬p ∧q 是假命题,¬p ∧¬q 是假命题. 答案:B.4.已知x ,y 满足约束条件3035030x y x y x -+≤++≤+≥⎧⎪⎨⎪⎩,则z=x+2y 的最大值是( )A.0B.2C.5D.6解析:画出约束条件3035030x y x y x -+≤++≤+≥⎧⎪⎨⎪⎩表示的平面区域,如图所示;由30350x x y ++⎨⎩+⎧==解得A(-3,4),此时直线1122y x z =-+在y 轴上的截距最大, 所以目标函数z=x+2y 的最大值为z max =-3+2×4=5.答案:C.5.为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为y bx a =+,已知10101122516004ii i i xy b ===∑∑==,,,该班某学生的脚长为24,据此估计其身高为( ) A.160 B.163 C.166 D.170解析:由线性回归方程为4y x a =+,则101011112251601010i i i i x x y y ====∑∑==,, 则数据的样本中心点(22.5,160),由回归直线方程样本中心点,则4160422.570a y x =-=-⨯=, ∴回归直线方程为470y x =+, 当x=24时,42470166y =⨯+=,则估计其身高为166. 答案:C.6.执行两次如图所示的程序框图,若第一次输入的x 值为7,第二次输入的x 值为9,则第一次,第二次输出的a 值分别为( )A.0,0B.1,1C.0,1D.1,0解析:当输入的x 值为7时,第一次,不满足b 2>x ,也不满足x 能被b 整数,故b=3;第二次,满足b 2>x ,故输出a=1; 当输入的x 值为9时,第一次,不满足b 2>x ,也不满足x 能被b 整数,故b=3;第二次,不满足b 2>x ,满足x 能被b 整数,故输出a=0. 答案:D7.若a >b >0,且ab=1,则下列不等式成立的是( )A.()21log 2a ba ab b++<< B.()21log 2a b a b a b ++<< C.()21log 2a b a a b b ++<<D.()21log 2a ba b a b ++<<解析:∵a >b >0,且ab=1, ∴可取a=2,12b =. 则()()22221111524log log 2log 1222822a b a a b b +===+=⎛⎫ ⎪⎝⎭+=∈,,,, ∴()21log 2a b a b a b++<<. 答案:B.8.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是( )A.518 B.49 C.59 D.79解析:从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,共有2936C =种不同情况,且这些情况是等可能发生的,抽到在2张卡片上的数奇偶性不同的情况有115420C C =种,故抽到在2张卡片上的数奇偶性不同的概率205369P ==. 答案:C.9.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC ,则下列等式成立的是( ) A.a=2bB.b=2aC.A=2BD.B=2A解析:在ABC中,角A,B,C的对边分别为a,b,c,满足sinB(1+2cosC)=2sinAcosC+cosAsinC=sinAcosC+sin(A+C)=sinAcosC+sinB,可得:2sinBcosC=sinAcosC,因为△ABC为锐角三角形,所以2sinB=sinA,由正弦定理可得:2b=a.答案:A.10.已知当x∈[0,1]时,函数y=(mx-1)2的图象与y m的图象有且只有一个交点,则正实数m的取值范围是( )A.(0,1]∪[+∞)B.(0,1]∪[3,+∞)C.(0∪[+∞)D.(0∪[3,+∞)解析:根据题意,由于m为正数,y=(mx-1)2为二次函数,在区间(0,1m)为减函数,(1m,+∞)为增函数,函数y m为增函数,分2种情况讨论:①、当0<m≤1时,有1m≥1,在区间[0,1]上,y=(mx-1)2为减函数,且其值域为[(m-1)2,1],函数y m为增函数,其值域为[m,1+m],此时两个函数的图象有1个交点,符合题意;②、当m>1时,有1m<1,y=(mx-1)2在区间(0,1m)为减函数,(1m,1)为增函数,函数y m为增函数,其值域为[m,1+m],若两个函数的图象有1个交点,则有(m-1)2≥1+m,解可得m≤0或m≥3,又由m为正数,则m≥3;综合可得:m的取值范围是(0,1]∪[3,+∞).答案:B.二、填空题:本大题共5小题,每小题5分,共25分11.已知(1+3x)n 的展开式中含有x 2的系数是54,则n=____.解析:(1+3x)n的展开式中通项公式:()133rr r r rr n n T C x C x +==.∵含有x 2的系数是54,∴r=2.∴22354n C =,可得26n C =,∴()162n n -=,n ∈N*. 解得n=4. 答案:4.12.已知12e e ,123e e -与12e e λ+的夹角为60°,则实数λ的值是____.解析:12e e ,是互相垂直的单位向量, ∴121e e ==,且120e e ⋅=;12e -与12e e λ+的夹角为60°,∴)()121212123c ||os60e e e e e e e λλ-+=-⨯⨯︒⋅+,即()222222211221122112213132322e e e e e e e e e e e λλλλ+-⋅-=-⋅+⨯+⋅+⨯,12λ=,λ=解得λ=3.答案:3.13.由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为____.解析:由长方体长为2,宽为1,高为1,则长方体的体积V 1=2×1×1=2, 圆柱的底面半径为1,高为1,则圆柱的体积2211144V ππ=⨯⨯⨯=, 则该几何体的体积11222V V V π=+=+.答案:22π+.14.在平面直角坐标系xOy 中,双曲线22221x y a b-=(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py(p >0)交于A ,B 两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为____.解析:把x 2=2py(p >0)代入双曲线22221x y a b-=(a >0,b >0),可得:a 2y 2-2pb 2y+a 2b 2=0,∴222A B pb y y a+=, ∵|AF|+|BF|=4|OF|,∴2422A B p p y y ++⨯=⨯, ∴222pb p a=,∴2b a =.∴该双曲线的渐近线方程为:y x =.答案:y x =.15.若函数e xf(x)(e ≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M 性质.下列函数中所有具有M 性质的函数的序号为____.①f(x)=2-x ②f(x)=3-x ③f(x)=x 3 ④f(x)=x 2+2.解析:对于①,f(x)=2-x,则()()·22xx x x e g x e f x e -⎛⎫ ⎝==⎪⎭=为实数集上的增函数;对于②,f(x)=3-x,则()()·33xx x xe g x ef x e -⎛⎫⎝==⎪⎭=为实数集上的减函数;对于③,f(x)=x 3,则g(x)=e x f(x)=e x ·x 3,g ′(x)=e x ·x 3+3e x ·x 2=e x (x 3+3x 2)=e x ·x 2(x+3),当x <-3时,g ′(x)<0,∴g(x)=e xf(x)在定义域R 上先减后增;对于④,f(x)=x 2+2,则g(x)=e x f(x)=e x (x 2+2),g ′(x)=e x (x 2+2)+2xe x =e x (x 2+2x+2)>0在实数集R 上恒成立,∴g(x)=e xf(x)在定义域R 上是增函数. ∴具有M 性质的函数的序号为①④. 答案:①④.三、解答题16.设函数()sin sin 62f x x x ππωω⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,其中0<ω<3,已知06f π⎛⎫= ⎪⎝⎭. (Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数y=g(x)的图象,求g(x)在[344ππ-,]上的最小值.解析:(Ⅰ)利用三角恒等变换化函数f(x)为正弦型函数,根据06f π⎛⎫=⎪⎝⎭求出ω的值; (Ⅱ)写出f(x)解析式,利用平移法则写出g(x)的解析式,求出x ∈[344ππ-,]时g(x)的最小值.答案:(Ⅰ)函数()sin sin 62f x x x ππωω⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭= sin coscos sinsin 662x x x πππωωω⎛⎫--- ⎪⎝⎭=3cos 22x x ωω-=3x πω⎛⎫-⎪⎝⎭,又0663f πππω⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,∴63k ππωπ-=,k ∈Z ,解得ω=6k+2,又0<ω<3, ∴ω=2;(Ⅱ)由(Ⅰ)知,()23f x x π⎛⎫=-⎪⎝⎭, 将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数3y x π⎛⎫=- ⎪⎝⎭的图象;再将得到的图象向左平移4π个单位,得到43y x ππ⎛⎫=+- ⎪⎝⎭的图象,∴函数()12y g x x π⎛⎫==- ⎪⎝⎭; 当34]4[x ππ∈-,时,[2123]3x πππ-∈-,,∴sin 11[22]x π⎛⎫-∈- ⎪⎝⎭,∴当x=-4π时,g(x)取得最小值是32=-.17.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF 的中点.(Ⅰ)设P 是CE 上的一点,且AP ⊥BE ,求∠CBP 的大小;(Ⅱ)当AB=3,AD=2时,求二面角E-AG-C 的大小.解析:(Ⅰ)由已知利用线面垂直的判定可得BE ⊥平面ABP ,得到BE ⊥BP ,结合∠EBC=120°求得∠CBP=30°;(Ⅱ)法一、取EC的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E-AG-C的大小.法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E-AG-C的大小.答案:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP?平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP?平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取EC的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BECH为菱形,====∴AE GE AC GC取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.=又AM=1,∴EM CM在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22-2×2×2×cos120°=12,∴EC=EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(13),C(-10),故()()()203130203AE AG CG -=,,,=,,,=,,. 设()111m x y z =,,为平面AEG 的一个法向量,由00m AE m AG ⎧⋅⎪⎨⋅⎪⎩==,得11112300x z x -⎧⎪⎨+⎪⎩==,取z 1=2,得()3m=; 设()222n x y z =,,为平面ACG 的一个法向量, 由00n AG n CG ⎧⋅⎪⎨⋅⎪⎩==,可得22220230x x z ⎧⎪⎨+⎪⎩==,取z 2=-2,得()3-3-2n=,,. ∴1cos 2m nm n m n ⋅=<,>=. ∴二面角E-AG-C 的大小为60°.18.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率.(Ⅱ)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX. 解析:(1)利用组合数公式计算概率;(2)使用超几何分布的概率公式计算概率,得出分布列,再计算数学期望. 答案:(I)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M ,则()48510518C P M C ==.(II)X 的可能取值为:0,1,2,3,4,∴()565101042C P X C ===,()41645105121C C P X C ===,()326451010221C C P X C ===,()23645105321C C P X C ===,()14564101442P X C C C ===. ∴XX 的数学期望0123424221212142EX =⨯+⨯+⨯+⨯+⨯=.19.已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n+1(x n+1,n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,x=x 1,x=x n+1所围成的区域的面积T n .解析:(I)列方程组求出首项和公比即可得出通项公式;(II)从各点向x 轴作垂线,求出梯形的面积的通项公式,利用错位相减法求和即可. 【解答】解:(I)设数列{x n }的公比为q ,则q >0, 由题意得1121132x x q x q x q +⎧⎨-⎩==,两式相比得:2132q q q +-=,解得q=2或13q =-(舍),∴x 1=1,∴x n =2n-1.(II)过P 1,P 2,P 3,…,P n 向x 轴作垂线,垂足为Q 1,Q 2,Q 3,…,Q n , 记梯形P n P n+1Q n+1Q n 的面积为b n , 则()12122122n n n n n b n --++=⨯=+⨯, ∴T n =3×2-1+5×20+7×21+…+(2n+1)×2n-2,①∴2T n=3×20+5×21+7×22+…+(2n+1)×2n-1,②①-②得:-T n=32+(2+22+…+2n-1)-(2n+1)×2n-1=()()()111 21231212122 2122nn nn n----+-+⨯=-+-⨯-.∴()21212nnnT-⨯+=.20.已知函数f(x)=x2+2cosx,g(x)=e x(cosx-sinx+2x-2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g(x)-a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值. 解析:(I)f(π)=π2-2.f′(x)=2x-2sinx,可得f′(π)=2π即为切线的斜率,利用点斜式即可得出切线方程.(II)h(x)=g(x)-a f(x)=e x(cosx-sinx+2x-2)-a(x2+2cosx),可得h′(x)=2(x-sinx)(e x-a)=2(x-sinx)(e x-e lna).令u(x)=x-sinx,则u′(x)=1-cosx≥0,可得函数u(x)在R上单调递增.由u(0)=0,可得x>0时,u(x)>0;x<0时,u(x)<0.对a分类讨论:a≤0时,0<a<1时,当a=1时,a>1时,利用导数研究函数的单调性极值即可得出.答案:(I)f(π)=π2-2.f′(x)=2x-2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y-(π2-2)=2π(x-π).化为:2πx-y-π2-2=0.(II)h(x)=g (x)-a f(x)=e x(cosx-sinx+2x-2)-a(x2+2cosx)h′(x)=e x(cosx-sinx+2x-2)+e x(-sinx-cosx+2)-a(2x-2sinx)=2(x-sinx)(e x-a)=2(x-sinx)(e x-e lna).令u(x)=x-sinx,则u′(x)=1-cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,ex-a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(-∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=-1-2a.(2)a>0时,令h′(x)=2(x-sinx)(e x-e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(-∞,lna)时,e x-e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x-e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x-e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=-2a-1.当x=lna时,函数h(x)取得极大值,h(lna)=-a[ln2a-2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(-∞,0)时,e x-e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x-e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x-e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=-2a-1.当x=lna 时,函数h(x)取得极小值,h(lna)=-a[ln 2a-2lna+sin(lna)+cos(lna)+2].综上所述:a ≤0时,函数h(x)在(0,+∞)单调递增;x <0时,函数h(x)在(-∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=-1-2a.0<a <1时,函数h(x)在x ∈(-∞,lna)是单调递增;函数h(x)在x ∈(lna ,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=-2a-1.当x=lna 时,函数h(x)取得极大值,h(lna)=-a[ln 2a-2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R 上单调递增.a >1时,函数h(x)在(-∞,0),(lna ,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=-2a-1.当x=lna 时,函数h(x)取得极小值,h(lna)=-a[ln 2a-2lna+sin(lna)+cos(lna)+2].21.在平面直角坐标系xOy 中,已知椭圆E :22221x y a b +=(a >b >0)的离心率为2,焦距为2.(Ⅰ)求椭圆E 的方程; (Ⅱ)如图,动直线l:12y k x =-交椭圆E 于A ,B 两点,C 是椭圆E 上的一点,直线OC 的斜率为k2,且124k k =M 是线段OC 延长线上一点,且|MC|:|AB|=2:3,⊙M 的半径为|MC|,OS ,OT 是⊙M 的两条切线,切点分别为S ,T ,求∠SOT 的最大值,并求取得最大值时直线l 的斜率.解析:(Ⅰ)由题意得关于a ,b ,c 的方程组,求解方程组得a ,b 的值,则椭圆方程可求; (Ⅱ)设A(x 1,y 1),B(x 2,y 2),联立直线方程与椭圆方程,利用根与系数的关系求得A ,B 的横坐标的和与积,由弦长公式求得|AB|,由题意可知圆M 的半径r ,则123r AB ==.由题意设知214k k =.得到直线OC 的方程,与椭圆方程联立,求得C 点坐标,可得|OC|,由题意可知,1sin21SOT rOC r OCr∠=++=.转化为关于k 1的函数,换元后利用配方法求得∠SOT 的最大值为3π,取得最大值时直线l 的斜率为12k ±=. 答案:(Ⅰ)由题意知,2222222c a c a b c ⎧⎪⎪⎪⎨⎪+⎪⎪⎩===,解得a=2,b=1.∴椭圆E 的方程为2212x y +=; (Ⅱ)设A(x 1,y 1),B(x 2,y 2),联立221122x y y k x ⎧+⎪⎪⎨⎪-⎪⎩==()22114210k x x +--=. 由题意得△=64k 12+8>0.()12122111221x x x x k +-+=. ∴121AB x =-. 由题意可知圆M 的半径r 为123r AB ==.由题意设知,124k k =,∴21k 因此直线OC 的方程为1y . 联立22112x y y x⎧+⎪⎪⎨⎪⎪⎩=,得22212211811414k x y k k ++=,=.因此,OC=由题意可知,1sin21SOT rOCr OCr∠=++=.而21OCr==令t=1+2k12,则t>1,1t∈(0,1),因此,1 OCr=≥.当且仅当112t=,即t=2时等式成立,此时12k±=.∴1sin22SOT∠≤,因此26SOTπ∠≤.∴∠SOT的最大值为3π.综上所述:∠SOT的最大值为3π,取得最大值时直线l的斜率为12k±=.。

[配套K12]2017年普通高等学校招生全国统一考试数学试题 文(山东卷,含答案)

[配套K12]2017年普通高等学校招生全国统一考试数学试题 文(山东卷,含答案)

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4、填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。

参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设集合{}11M x x =-<,{}2N x x =<,则M N =(A )()1,1- (B )()1,2- (C )()0,2(D )()1,2(2)已知i 是虚数单位,若复数z 满足i 1i z =+,则2z = (A)-2i ( B)2i (C)-2 (D)2(3)已知x ,y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则z =x +2y 的最大值是(A)-3 (B)-1 (C)1 (D)3 (4)已知3cos 4x =,则cos2x =(A)14-(B)14 (C)18- (D)18(5)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是 (A)p q ∧ (B)p q ∧⌝ (C)p q ⌝∧ (D)p q ⌝∧⌝(6)执行右侧的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为(A )3x > (B )4x > (C )4x ≤ (D )5x ≤(7)函数2cos 2y x x =+最小正周期为(A )π2 (B )2π3(C )π (D ) 2π(8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为(A ) 3,5 (B ) 5,5 (C ) 3,7 (D ) 5,7(9)设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭(A )2 (B ) 4 (C ) 6 (D ) 8(10)若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 (A )()2xf x -= (B )()2f x x = (C )()-3xf x =(D )()cos f x x = 第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分(11)已知向量a =(2,6),b =(1,)λ-,若a ∥b ,则λ= .(12)若直线1(00)x ya b a b+=>,>过点(1,2),则2a +b 的最小值为 . (13)由一个长方体和两个14圆柱构成的几何体的三视图如右图,则该几何体的体积为 .(14)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6xf x -=,则f (919)= .(15)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b -=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.(17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .(18)(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD , (Ⅰ)证明:1A O ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.19.(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==. (I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.(本小题满分13分)已知函数()3211,32f x x ax a =-∈R . (I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,z.x.x.k 讨论()g x 的单调性并判断有无极值,有极值时求出极值.21.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为2,椭圆C 截直线y =1所得线段的长度为(Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |. 设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学试题参考答案一、选择题(1) C (2) A (3) D (4) D (5) B (6) B (7) C (8) A (9) C (10) A 二、填空题 (11)3- (12)8 (13)π22+ (14)6(15)2y x =± 三、解答题 (16)解:(Ⅰ)由题意知,从6个国家里任选两个国家,其一切可能的结果组成的基本事件有:()()1213,,,,A A A A ()23,,A A ()11,,A B ()()1213,,,,A B A B ()()()212223,,,,,,A B A B A B ()()()313233,,,,,,A B A B A B ()()()121323,,,,,,B B B B B B 共15个,所选两个国家都是亚洲国家的事件所包含的基本事件有:()()()121323,,,,,,A A A A A A 共3个,则所求事件的概率为:()31155P A ==. (Ⅱ) 从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:()11,,A B ()()1213,,,,A B A B ()()()212223,,,,,,A B A B A B ()()()313233,,,,,,A B A B A B 共9个,包括1A 但不包括1B 的事件所包含的基本事件有:()()1213,,,,A B A B 共2个. 则所求事件的概率为:29P =. (17)解:因为6AB AC ⋅=-,所以cos 6bc A =-,又 3ABC S ∆=,所以sin 6bc A =, 因此tan 1A =-, 又0A π<<所以34A π=,又3b =,所以c =由余弦定理2222cos a b c bc A =+-得29823(292a =+-⨯⨯-=,所以a =(18) 证明:(Ⅰ)取11B D 中点1O ,连接111,CO AO ,由于1111ABCD A B C D -为四棱柱, 所以1111//,=AO CO AO CO , 因此四边形11A OCO 为平行四边形, 所以11//A O O C ,又1O C ⊂平面11B CD ,1AO ⊄平面11B CD , 所以1//AO 平面11B CD , (Ⅱ)因为 AC BD ⊥,E,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又 1A E ⊥面ABCD ,BD ABCD ⊂平面 所以1,A E BD ⊥ 因为 11//B D BD所以11111EM B D A E B D ⊥⊥,又 A 1E, EM 11,A EM A E EM E ⊂⋂=平面 所以11B D ⊥平面111,A EM B D ⊂又平面11B CD , 所以 平面1A EM ⊥平面11B CD 。

2017年山东省学业水平考试数学试题(两次汇编)夏季冬季(含夏季答案)

2017年山东省学业水平考试数学试题(两次汇编)夏季冬季(含夏季答案)

山东省2017年夏季普通高中学业水平考试 学生姓名: 考试成绩 : 满分:100分 考试时间:90分钟一、选择题(本大题共20个小题,每小题3分,共60分)1.已知集合{}4,2,1=A ,{}84,2,=B ,则=B A ( ) A .{4} B .{2} C .{2,4} D .{1,2,4,8}2.周期为π的函数是( )A .y =sinxB .y =cosxC .y =tan 2xD .y =sin 2x3.在区间()∞+,0上为减函数的是( ) A .2x y =B .21x y =C .xy ⎪⎭⎫ ⎝⎛=21D .x y ln = 4.若角α的终边经过点()2,1-,则=αcos ( )A .55-B .55C .552-D .552 5.把红、黄两张纸牌随机分给甲、乙两个人,每人分得一张,设事件P 为“甲分得黄牌”,设事 件Q 为“乙分得黄牌”,则( )A .P 是必然事件B .Q 是不可能事件C .P 与Q 是互斥但是不对立事件D .P 与Q 是互斥且对立事件6.在数列{}n a 中,若n n a a 31=+,21=a ,则=4a ( )A .108B .54C .36D .187.采用系统抽样的方法,从编号为1~50的50件产品中随机抽取5件进行检验,则所选取的5件 产品的编号可以是( )A .1,2,3,4,5B .2,4,8,16,32C .3,13,23,33,43D .5,10,15,20,258.已知()+∞∈,0,y x ,1=+y x ,则xy 的最大值为( )A .1B .21C .31D .41 9.在等差数列{}n a 中,若95=a ,则=+64a a ( )A .9B .10C .18D .2010.在A B C ∆中,角A ,B ,C 的对边分别是a ,b ,c ,若︒=60A ,︒=30B ,3=a ,则=b ( )A .3B .233C .32D .33 11.已知向量()3,2-=,()6,4-=,则与( )A .垂直B .平行且同向C .平行且反向D .不垂直也不平行12.直线012=+-y ax 与直线012=-+y x 垂直,则=a ( )A .1B .-1C .2D .-213.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若222c bc b a +-=,则角A 为( )A .6πB .3πC .32πD .3π或32π 14.在学校组织的一次知识竞赛中,某班学生考试成绩的频率分布直方图如图所示,若低于60分 的有12人,则该班学生人数是( )A .35B .40C .45D .5015.已知△ABC 的面积为1,在边AB 上任取一点P ,则△PBC 的面积大于的概率是( )A .41B .21C .43D .32 16.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+1142y x y x ,则y x z -=的最小值是( )A .-1B .21-C .0D .1 17.下列结论正确的是( )A .平行于同一个平面的两条直线平行B .一条直线与一个平面平行,它就和这个平面内的任意一条直线平行C .与两个相交平面的交线平行的直线,必平行于这两个平面D .平面外两条平行直线中的一条与这个平面平行,则另一条也与这个平面平行18.若圆柱的底面半径是1,其侧面展开是一个正方形,则这个圆柱的侧面积是( )A .24πB .23πC .22πD .2π19.方程x x -=33的根所在区间是( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)20.运行如图所示的程序框图,如果输入的x 值是-5,那么输出的结果是( )A .-5B .0C .1D .2二、填空题(本大题共5个小题,每题3分,共15分)21.函数)1lg()(-=x x f 的定义域为.22.已知向量,2=,与的夹角θ为32π,若1-=⋅,=.23.从集合{}3,2=A ,{}3,21,=B 中各任取一个数,则这两个数之和等于4的概率是. 24.已知数列{n a }的前n 项和为n n S n 22+=,则该数列的通项公式=n a .25.已知三棱锥P -ABC 的底面是直角三角形,侧棱⊥PA 底面ABC ,P A =AB =AC =1,D 是BC 的中点, PD 的长度为.三、解答题(本大题共3个小题,共25分)26.(本小题满分8分)已知函数1cos sin )(+=x x x f .求:(1))4(πf 的值;(2)函数)(x f 的最大值.27.(本小题满分8分)已知n mx x x f ++=22)((m ,n 为常数)是偶函数,且f (1)=4.(1)求)(x f 的解析式;(2)若关于x 的方程kx x f =)(有两个不相等的实数根,求实数k 的取值范围.28.(本小题满分9分)已知直线l :y =kx +b ,(0<b <1)和圆O :122=+y x 相交于A ,B 两点.(1)当k =0时,过点A ,B 分别作圆O 的两条切线,求两条切线的交点坐标;(2)对于任意的实数k ,在y 轴上是否存在一点N ,满足ONB ONA ∠=∠?若存在,请求出此 点坐标;若不存在,说明理由.山东省2017年夏季普通高中学业水平考试 参考答案:1-20BDCADBCDCACABBCBDABC21、()∞+,122、123、3124、2n+125、26 26、(1)23;(2)最大值为23. 27、(1)22)(2+=x x f ;(2)22>k 或22-<k .28、(1)⎪⎭⎫ ⎝⎛b 10,;(2)存在;⎪⎭⎫ ⎝⎛b 10,.山东省2017年冬季普通高中学业水平考试数学试题第I卷(共60分)一、选择题:本大题共20个小题,每小题3分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.l. 已知集合{}U=-,则U C A=1,11,0,1A=-,全集{}A. 0B. {}0C. {}-1,0,1- D. {}1,12. 六位同学参加知识竞赛,将每位同学答对题目的个数制成如图所示的茎叶图,则这组数据的众数是A. 19B. 20 1 8 9 9C. 21D. 22 2 0 1 23. 函数ln(1)=-的定义域是y xA. {|1}x x> D. {|1}x x≥x x≠ C. {|1}x x< B. {|1}4. 过点(1,0)且与直线y x=平行的直线方程为A. 1y x=-+ C. 1=-- B. 1y x=+y x=- D. 1y x5. 某班有42名同学,其中女生30人,在该班中用分层抽样的方法抽取141名同学,应该取男生的人数为A. 4B. 6C. 8D. 106. 与向量(3,2)=-a垂直的向量是A. (3,2)- B. (23)-, C. (2,3) D. (3,2)7. 0000+sin72cos48cos72sin48=1A.B. C. 12- D. 128. 为得到函数3sin()12=-y x π的图象,只需将函数3sin =y x 的图象上所有的点 A. 向左平移4π个单位 B. 向右平移4π个单位C. 向左平移12π个单位D. 向右平移12π个单位 9. 已知向量a 与b 满足||3a =,||4b =,a 与b 的夹角为23π,则a b = A. 6- B. 6C. -D. 10. 函数2cos 1([0,2])=+∈y x x π的单调递减区间为A. [0,2]πB. [0,]πC. [,2]ππD. 3[,]22ππ11. 已知,(0,)16∈+∞=,x y xy ,若+x y 的最小值为A. 4B. 8C. 16D. 3212. 已知()f x 为R 上的奇函数,当0>x 时,()1=+f x x ,则(1)-=fA. 2B. 1C. 0D. 2-13. 某人连续投篮两次,事件“至少投中一次”的互斥事件是A. 恰有一次投中B. 至多投中一次C. 两次都中D. 两次都不中14. 已知tan 2=θ,则tan 2θ的值是 A.43 B.45C. 23-D. 43- 15. 在长度为4米的笔直竹竿上,随机选取一点挂一盏灯笼,该点与竹竿两端的距离都大于1米的概率A. 12B. 132C. 14D. 1616. 在∆ABC 中,角,,A B C 的对边分别为,,a b c ,面积为5,4==c A π,则b 的值为A.2B. C. 4D. 17. 设,x y 满足约束条件1,0,10,≤⎧⎪≥⎨⎪-+≥⎩x y x y 则2=+z x y 的最大值为A. 4B.2C. 1-D. 2-18. 在ABC ∆中,角,,A B C的对边分别是,,,1,cos 7===-a b c b c A .则a 的值为A. 6B. C. 10D.19. 执行右图所示的程序框图,则输出S 的值是值为A. 4B. 7C. 9D. 1620. 在等差数列{}n a 中,37=20=4-,a a ,则前11项和为A. 22B. 44C. 66D. 88第II 卷(共40分)二、填空题:本大题共5个小题,每小题3分,共1 5分.21. 函数sin 3=x y 的最小正周期为_______.22. 底面半径为1,母线长为4的圆柱的体积等于_______.23. 随机抛掷一枚骰子,则掷出的点数大于4的概率是_______.24. 等比数列1,2,4,,-从第3项到第9项的和为_______.25. 设函数2,0,()3,0,⎧<=⎨+≥⎩x x f x x x 若(())4=f f a ,则实数=a _______.三、解答题:本大题共3个小题,共25分.26.(本小题满分8分)如图,在三棱锥-A BCD 中,,==AE EB AF FD .求证://BD 平面EFC .27.(本小题满分8分)已知圆心为(2,1)C 的圆经过原点,且与直线10-+=x y 相交于,A B 两点,求AB 的长.28.(本小题满分9分)已知定义在R 上的二次函数2()3=++f x x ax ,且()f x 在[1,2]上的最小值是8.(1)求实数a 的值;(2)设函数()=x g x a ,若方程()()=g x f x 在(,0)-∞上的两个不等实根为12,x x ,证明:12()162+>x x g。

2017年普通高等学校招生全国统一考试数学试题 文(山东卷,含解析)

2017年普通高等学校招生全国统一考试数学试题 文(山东卷,含解析)

绝密★启用前2017年普通高等学校招生全国统一考试数学试题文山东卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).【试卷点评】【命题特点】2017年山东高考数学试卷,试卷结构总体保持了传统的命题风格,以能力立意,注重考查考生的基础知识、基本技能和基本数学素养,符合考试说明的各项要求,贴近中学教学实际,是一份知识与能力完美融合、传统与创新和谐统一的优秀试卷.试题的顺序编排,遵循由易到难,基本符合学生由易到难的答题习惯.从命题内容来看,既突出热点内容的年年考查,又注意了非热点内容的考查,对教学工作有较好的导向性.同以往相比,今年对直线与圆没有独立的考题,而在压轴题的圆锥曲线问题中有所涉及直线与圆的位置关系,对基本不等式有独立的考查,与往年突出考查等差数列不同,今年对此考查有所淡化.具体看还有以下特点:1.体现新课标理念,保持稳定,适度创新.试卷紧扣山东高考《考试说明》,重点内容重点考查,试题注重考查高中数学的基础知识,并以重点知识为主线组织全卷,在知识网络交汇处设计试题内容,且有适度难度.而对新增内容则重点考查基本概念、基础知识,难度不大.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求. 数学思想方法是数学的灵魂,是对数学知识最高层次的概括与提炼,也是试卷考查的核心.通过命题精心设计,较好地考查了数形结合的思想、函数与方程的思想、转化与化归的数学思想.利用函数导数讨论函数的单调性、极值的过程,将分类与整合的思想挖掘得淋漓尽致.3.体现数学应用,关注社会生活.通过概率问题考查考生应用数学的能力,以学生都熟悉的内容为背景,体现试卷设计问题背景的公平性,对推动数学教学中关注身边的数学起到良好的导向.【命题趋势】2018年起,山东将不再自主命题,综合全国卷特点,结合山东教学实际,预测2018年应特别关注:1.函数与导数知识:以导数知识为背景的函数问题,多与单调性相关;对具体函数的基本性质(奇偶性、周期性、函数图象、函数与方程)、分段函数及抽象函数的考查依然是重点. 导数的几何意义与利用导数研究函数的性质的命题变换空间较大,直接求解问题、定值问题、存在性问题、求参数问题等,因此,其难度应会保持在中档以上.2.三角函数与向量知识:三角函数将从三角函数的图象和性质、三角变换、解三角形等三个方面进行考查,预计在未来考卷中,三方面内容依然会轮流出现在小题、大题中,大题综合化的趋势不容忽视.向量具有数与形的双重性,并具有较强的工具性,从近几年命题看,高考中向量试题的命题趋向依然是考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题,其难度不会增大.3.不等式知识:突出工具性,淡化独立性,突出解不等式及不等式的应用是不等式命题的重要趋向之一.不等式的性质与指数函数、对数函数、三角函数、二次函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多与导数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性往往较强,能力要求较高;解不等式的试题,往往与集合、函数图象等相结合.4.数列知识:等差数列、等比数列的通项公式及求和公式,依然会是考查的重点.由于数列求和问题的求解策略较为模式化,因此,这方面的创新往往会在融入“和”与“通项”的关系方面,让考生从此探究数列特征,确定应对方法.少有可能会象浙江卷,将数列与不等式综合,作为压轴难题出现.5.立体几何知识:近几年的命题说明,通过垂直、平行位置关系的证明题,二面角等角的计算问题,综合考查考生的逻辑思维能力、推理论证能力以及计算能力,在这方面文科倾向于证明.6.解析几何知识:预计小题中考查直线与圆、双曲线及抛物线的标准方程和几何性质为主旋律,解答题考查椭圆及椭圆与直线的位置关系等综合性问题为主,考查抛物线及抛物线与直线的位置关系等综合性问题为辅,和导数一样,命题变换空间较大,面积问题、定点问题、定值问题、存在性问题、求参数问题等,因此,导数问题或圆锥曲线问题作为压轴题的地位难以变化.7.概率与统计知识:概率与统计知识较为繁杂,命题的难度伸缩性也较大,其中较多地考查基础知识、基本应用,内容包括:古典概型、几何概型、茎叶图、平均数、中位数、变量的相关性、频率分布直方图(表)、假设性检验、回归分析等.试卷解析第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}11M x x =-<,{}2N x x =<,则M N =(A )()1,1- (B )()1,2- (C )()0,2 (D )()1,2【答案】C【解析】试题分析:由|1|1x -<得02x <<,故={|02}{|2}{|02}MN x x x x x x <<<=<<,故选C. 【考点】 不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.(2)已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =(A )-2i (B )2i (C )-2 (D )2【答案】A【解析】【考点】复数的运算【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2=±2i;(2)1+i 1-i =i,1-i 1+i=-i. (3)已知x ,y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则z =x +2y 的最大值是(A)-3 (B)-1 (C)1 (D)3【答案】D【解析】【考点】线性规划【名师点睛】(1)确定二元一次不等式(组)表示的平面区域的方法是:“直线定界,特殊点定域”,即先作直线,再取特殊点,并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.当不等式中带等号时,边界为实线;不带等号时,边界应画为虚线,特殊点常取原点.(2)利用线性规划求目标函数最值的步骤:①画出约束条件对应的可行域;②将目标函数视为动直线,并将其平移经过可行域,找到最优解;③将最优解代入目标函数,求出最大值或最小值.(4)已知3cos4x=,则cos2x=(A)14-(B)14(C)18-(D)18【解析】 试题分析:由3cos 4x =得2231cos22cos 12148x x ⎛⎫=-=⨯-= ⎪⎝⎭,故选D. 【考点】二倍角公式【名师点睛】(1)三角函数式的化简与求值要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)三角函数式化简与求值要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.(5)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是(A )p q ∧ (B )p q ∧⌝ (C )p q ⌝∧ (D )p q ⌝∧⌝【答案】B【解析】【考点】命题真假的判断【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(6)执行下面的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为(A )3x > (B )4x > (C )4x ≤ (D )5x ≤【解析】【考点】程序框图【名师点睛】程序框图试题主要有求程序框图执行的结果和完善程序框图两种形式,求程序框图执行的结果,要先找出控制循环的变量的初值(计数变量与累加变量的初始值)、步长、终值(或控制循环的条件),然后看循环体,循环体是反复执行的步骤,循环次数比较少时,可依次列出;循环次数较多时,可先循环几次,找出规律,最后要特别注意循环结束的条件,不要出现多一次或少一次循环的错误.完善程序框图的试题多为判断框内内容的填写,这类问题常涉及,,,≥>≤<的选择,解答时要根据循环结构的类型,正确地进行选择,注意直到型循环是“先循环,后判断,条件满足时终止循环”,而当型循环则是“先判断,后循环,条件满足时执行循环”,两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.另外,还要注意判断框内的条件不是唯一的,如5i >也可写成6i ≥.(7)函数2cos 2y x x =+的最小正周期为 (A )π2 (B )2π3(C )π (D )2π 【答案】C【解析】试题分析:因为π2cos 22sin 23y x x x ⎛⎫=+=+⎪⎝⎭,所以其最小正周期2ππ2T ==,故选C. 【考点】三角变换及三角函数的性质【名师点睛】求三角函数周期的方法:①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.③对于形如sin cos y a x b x ωω=+的函数,一般先把其化为()y x ωϕ=+的形式再求周期.(8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为(A )3,5 (B )5,5 (C )3,7 (D )5,7【答案】A【解析】【考点】茎叶图、样本的数字特征【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失;第二点是茎叶图便于记录和表示.缺点是当样本容量较大时,作图较烦琐. 利用茎叶图对样本进行估计时,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.(9)设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭(A )2 (B )4 (C )6 (D )8【答案】C【解析】试题分析:由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【考点】分段函数求值 【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式,代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.(10)若函数()e x f x (e=2.71828是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中具有M 性质的是(A )()2x f x -= (B )()2f x x = (C )()3xf x -= (D )()cos f x x = 【答案】A【考点】导数的应用【名师点睛】(1)确定函数单调区间的步骤:① 确定函数f (x )的定义域;②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.(2)根据函数单调性确定参数范围的方法:①利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.②转化为不等式的恒成立问题,即转化为“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)已知向量a =(2,6),b =(1,)λ- ,若∥a b ,则λ= .【答案】3-【解析】试题分析:由∥a b 可得162 3.λλ-⨯=⇒=-【考点】向量共线与向量的坐标运算【名师点睛】平面向量共线的坐标表示问题的常见类型及解题策略:(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则∥a b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.(12)若直线1(00)x y a b a b+=>,> 过点(1,2),则2a +b 的最小值为 . 【答案】8【解析】【考点】基本不等式【名师点睛】应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(13)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为 .【答案】π22+ 【解析】试题分析:由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以2π1π21121242V ⨯=⨯⨯+⨯⨯=+. 【考点】三视图及几何体体积的计算.【名师点睛】(1)由实物图画三视图或判断、选择三视图,此时需要注意“长对正、高平齐、宽相等”的原则.(2)由三视图还原实物图,解题时首先对柱、锥、台、球的三视图要熟悉,复杂的几何体也是由这些简单的几何体组合而成的;其次,要遵循以下三步:①看视图,明关系;②分部分,想整体;③综合起来,定整体.(14)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6xf x -=,则f (919)= .【答案】6【解析】【考点】函数奇偶性与周期性【名师点睛】与函数奇偶性有关问题的解决方法:①已知函数的奇偶性,求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.②已知函数的奇偶性求解析式:将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.③已知函数的奇偶性,求函数解析式中参数的值:常利用待定系数法,利用f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解.④应用奇偶性画图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.(15)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .【答案】y x = 【解析】 试题分析:由抛物线定义可得:||||=4222A B A B p p p AF BF y y y y p ++++=⨯⇒+=, 因为22222222221202x y a y pb y a b a b x py ⎧-=⎪⇒-+=⎨⎪=⎩,所以222A B pb y y p a a +==⇒=⇒渐近线方程为2y x =±. 【考点】抛物线的定义与性质、双曲线的几何性质【名师点睛】若AB 是抛物线()220y px p =>的焦点弦,设A (x 1,y 1),B (x 2,y 2).则 (1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2p sin 2θ(θ为AB 的倾斜角).(3)1|AF |+1|BF |为定值2p . (4)以AB 为直径的圆与准线相切.(5)以AF 或BF 为直径的圆与y 轴相切.三、解答题:本大题共6小题,共75分. (16)(本小题满分12分)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游. (Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率. 【答案】(Ⅰ)15;(Ⅱ)2.9【解析】包含1A 但不包括1B 的事件所包含的基本事件有:{}{}1213,,,A B A B ,共2个, 所以所求事件的概率为:29P =.【考点】古典概型【名师点睛】(1)对于事件A 的概率的计算,关键是要分清基本事件总数n 与事件A 包含的基本事件数m.因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A 是什么,它包含的基本事件有多少个.(2)如果基本事件的个数比较少,可用列举法把古典概型试验所包含的基本事件一一列举出来,然后再求出事件A 中的基本事件数,利用公式P (A )=mn求出事件A 的概率,这是一个形象、直观的好方法,但列举时必须按照某一顺序做到不重不漏. (17)(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,3ABC S =△,求A 和a .【答案】3=π,4A a 【解析】又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823(2a =+-⨯⨯-,所以a =【考点】解三角形【名师点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想. (18)(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD . (Ⅰ)证明:1A O ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】(Ⅰ)证明见解析.(Ⅱ)证明见解析. 【解析】所以1A O ∥平面11B CD .(Ⅱ)因为AC BD ⊥,E ,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又1A E ⊥平面ABCD ,BD ⊂平面ABCD , 所以1,A E BD ⊥【考点】空间中的线面位置关系【名师点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行. (19)(本小题满分12分)已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ){}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(Ⅰ)2nn a =;(Ⅱ)2552n nn T +=-【解析】试题分析:(Ⅰ)列出关于1,a q 的方程组,解方程组求基本量;(Ⅱ)用错位相减法求和.试题解析:(Ⅰ)设{}n a 的公比为q ,由题意知:22111(1)6,a q a q a q +==.又0n a >,解得:12,2a q ==,所以2n n a =.(Ⅱ)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠【考点】等比数列的通项,错位相减法求和.【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. (20)(本小题满分13分)已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)390x y --=,(Ⅱ)见解析. 【解析】试题分析:(Ⅰ)根据导数的几何意义,求出切线的斜率,再用点斜式写出切线方程;(Ⅱ)由()()(sin )g x x a x x '=--,通过讨论确定()g x 的单调性,再由单调性确定极值.试题解析:(Ⅰ)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x '=-,因为(0)0h =,所以,当0x >时,()0h x >;当0x <时,()0h x <. (1)当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--, 当0x =时()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,()(sin )g x x x x '=-, 当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增;有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-; 当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--. 【考点】导数的几何意义及导数的应用【名师点睛】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值. (21)(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为2,椭圆C 截直线y =1所得线段的长度为(Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |. 设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.【答案】(Ⅰ)22142x y +=;(Ⅱ)EDF ∠的最小值为π3. 【解析】又当1y =时,2222a x a b =-,得2222a a b-=,所以224,2a b ==,因此椭圆方程为22142x y +=. (Ⅱ)设1122(,),(,)A x y B x y ,联立方程2224y kx mx y =+⎧⎨+=⎩, 得222(21)4240k x kmx m +++-=, 由0∆>得2242m k <+.(*) 且122421kmx x k +=+,令283,3t k t =+≥, 故21214t k ++=, 所以2221616111(1)2ND t t NFt t=+=++++ . 令1y t t=+,所以211y t'=-. 当3t ≥时,0y '>,从而1y t t =+在[3,)+∞上单调递增,因此1103t t +≥,等号当且仅当3t =时成立,此时0k =,所以22134 NDNF≤+=,【考点】圆与椭圆的方程、直线与圆锥曲线的位置关系【名师点睛】圆锥曲线中的两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.常见解法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.。

2017年普通高等学校招生全国统一考试数学试题 文山东卷含答案 精品

2017年普通高等学校招生全国统一考试数学试题 文山东卷含答案 精品

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4、填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。

参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设集合{}11M x x =-<,{}2N x x =<,则MN =(A )()1,1- (B )()1,2- (C )()0,2(D )()1,2(2)已知i 是虚数单位,若复数z 满足i 1i z =+,则2z = (A)-2i ( B)2i (C)-2 (D)2(3)已知x ,y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则z =x +2y 的最大值是(A)-3 (B)-1 (C)1 (D)3 (4)已知3cos 4x =,则cos2x =(A)14-(B)14 (C)18- (D)18(5)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是 (A)p q ∧ (B)p q ∧⌝ (C)p q ⌝∧ (D)p q ⌝∧⌝(6)执行右侧的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为(A )3x > (B )4x > (C )4x ≤ (D )5x ≤(7)函数2cos2y x x =+最小正周期为 (A )π2 (B )2π3(C )π (D ) 2π(8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为(A ) 3,5 (B ) 5,5 (C ) 3,7 (D ) 5,7(9)设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭(A )2 (B ) 4 (C ) 6 (D ) 8(10)若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 (A )()2xf x -= (B )()2f x x = (C )()-3xf x =(D )()cos f x x = 第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分(11)已知向量a =(2,6),b =(1,)λ-,若a ∥b ,则λ= .(12)若直线1(00)x ya b a b+=>,>过点(1,2),则2a +b 的最小值为 . (13)由一个长方体和两个14圆柱构成的几何体的三视图如右图,则该几何体的体积为 .(14)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6xf x -=,则f (919)= .(15)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.(17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .(18)(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD , (Ⅰ)证明:1AO ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.19.(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==. (I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.(本小题满分13分)已知函数()3211,32f x x ax a =-∈R . (I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,z.x.x.k 讨论()g x 的单调性并判断有无极值,有极值时求出极值.21.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=(a >b >0)的离心率为2,椭圆C 截直线y =1所得线段的长度为(Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |. 设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学试题参考答案一、选择题(1) C (2) A (3) D (4) D (5) B (6) B (7) C (8) A (9) C (10) A 二、填空题 (11)3- (12)8 (13)π22+ (14)6(15)2y x =± 三、解答题 (16)解:(Ⅰ)由题意知,从6个国家里任选两个国家,其一切可能的结果组成的基本事件有:()()1213,,,,A A A A ()23,,A A ()11,,A B ()()1213,,,,A B A B ()()()212223,,,,,,A B A B A B ()()()313233,,,,,,A B A B A B ()()()121323,,,,,,B B B B B B 共15个,所选两个国家都是亚洲国家的事件所包含的基本事件有:()()()121323,,,,,,A A A A A A 共3个,则所求事件的概率为:()31155P A ==. (Ⅱ) 从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:()11,,A B ()()1213,,,,A B A B ()()()212223,,,,,,A B A B A B ()()()313233,,,,,,A B A B A B 共9个,包括1A 但不包括1B 的事件所包含的基本事件有:()()1213,,,,A B A B 共2个. 则所求事件的概率为:29P =. (17)解:因为6AB AC ⋅=-,所以cos 6bc A =-,又 3ABC S ∆=,所以sin 6bc A =, 因此tan 1A =-, 又0A π<<所以34A π=,又3b =,所以c =由余弦定理2222cos a b c bc A =+-得29823(29a =+-⨯⨯=,所以a =(18) 证明:(Ⅰ)取11B D 中点1O ,连接111,CO AO ,由于1111ABCD A BC D -为四棱柱, 所以1111//,=AO CO AO CO , 因此四边形11AOCO 为平行四边形, 所以11//AO O C , 又1O C ⊂平面11B CD ,1AO ⊄平面11B CD , 所以1//AO 平面11B CD , (Ⅱ)因为 AC BD ⊥,E,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又 1A E ⊥面ABCD ,BD ABCD ⊂平面 所以1,A E BD ⊥ 因为 11//B D BD所以11111EM B D A E B D ⊥⊥,又 A 1E, EM 11,A EM A E EM E ⊂⋂=平面 所以11B D ⊥平面111,A EM B D ⊂又平面11B CD , 所以 平面1A EM ⊥平面11B CD 。

山东省2017年冬季普通高中学业水平考试数学试题及详细答案精校版

山东省2017年冬季普通高中学业水平考试数学试题及详细答案精校版
且与直线 y x 平行的直线方程为
A. y x 1
B. y x 1
C. y x 1
D. y x 1
5. 某班有 42 名同学,其中女生 30 人,在该班中用分层抽样的方法抽取 14 名同学,应该取男生的人数为
A. 4
B. 6
C. 8D. 10更多资源请搜泰西购一切成功均源自积累
山东省 2017 年冬季普通高中学业水平考试数学试题
一、选择题:本大题共 20 个小题,每小题 3 分,共 60 分. 在每小题给出的四个选项中,只有一项是符合题目要 求的 .
l. 已知集合 A 1,1 ,全集U 1, 0,1 ,则 CU A
6. 与向量 a (3, 2) 垂直的向量是
A. (3, 2)
B. (2, 3)
C. (2,3)
D. (3, 2)
7. sin 720 cos 480 cos 720 sin 480 =
A. 3 2
3
B.
2
C. 1 2
1
D.
2
8. 为得到函数 y 3sin(x ) 的图象,只需将函数 y 3sin x 的图象上所有的点 12
A. 0
B. 0
C. 1,1
D. 1, 0,1
2. 六位同学参加知识竞赛,将每位同学答对题目的个数制成如图所示的茎叶图,则这组数据的众数是
A. 19
B. 20
1899
C. 21
D. 22
2012
3. 函数 y ln(x 1) 的定义域是
A. {x | x 1} B. {x | x 1} C. {x | x 1} D. {x | x 1}
A. [0, 2 ]

山东省2018年冬季2017级普通高中学业水平合格考试数学试题

山东省2018年冬季2017级普通高中学业水平合格考试数学试题

山东省2018年冬季2017级普通高中学业水平合格考试数学试题参考公式:锥体的体积公式:13V Sh =,其中S 为锥体的底面积,h 为锥体的高, 球的表面积公式:24S R π=,其中R 为球的半径.一、选择题:本大题共20个小题,每小题3分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,3,5,2,3,5M N ==,则MN =( )A . {}3,5B .{}1,2,3C .{}2,3,5D .{}1,2,3,5 2.函数cos 2y x =的最小正周期为 ( ) A .2π B .π C .2π D .4π3. 下列函数中,定义域为R 的函数是( )A . 1y x=B . lg y x =C .y =D . 2x y = 4. 已知一正方体的棱长为2,则该正方体内切球的表面积为( ) A . π B .43πC . 4πD .16π 5. 抛掷一颗骰子,观察向上的点数,下列每对事件相互对立的是( )A .“点数为2”与“点数为3”B .“点数小于4”与“点数大于4”C .“点数为奇数”与“点数为偶数”D .“点数小于4”与“点数大于2” 6.如图所示,在正方体1111ABCD A B C D −中,下列直线与11B D 垂直的是 ( )A . 1BCB .1A DC . ACD .BC 7. 0cos 210=( )A .BC . 12−D .128. 在ABC ∆中,D 是BC 的中点,则AB AC +=( ) A . CB B . 2CB C . AD D .2AD 9. 下列数值大于1的是( )A . 0.21.7B . 1.30.7C . lg 2D .ln 0.510.袋中装有质地、形状和大小完全相同的五个小球,其中黑球、红球、黄球各一个,白球两个.从中任取一个球,则“取出的球是白球或黑球”的概率为 ( ) A .15 B . 25 C . 35 D .4511. 函数sin 6y x π⎛⎫=+ ⎪⎝⎭的图象的一条对称轴为( ) A . 6x π=B .3x π=C . 2x π=D .56x π=12.已知向量()()1,,2,1a m b =−=,若向量a b +与b 垂直,则实数m 的值为 ( ) A . -3 B . 3 C . 12−D .1213.某学校随机抽取100名学生,调查其平均一周使用互联网的时间(单位:小时),根据调查结果制成了如图所示的频率分布直方图,其中使用时间的范围是[]0,16,样本数据分组区间为[)[)[)[]0,4,4,8,8,12,12,16.根据直方图,这100名学生中平均一周使用互联网的时间不少于12小时的人数为 ( ) A . 5 B . 10 C . 20 D .80 14.函数()ln 2f x x x =+−的零点所在区间为 ( )A .()1,0−B .()0,1C . ()1,2D .()2,315. 在ABC ∆中,角,,A B C 的对边分别为,,a b c .若0sin cos a bA B+=,则B =( ) A . 4π B . 3πC . 23πD .34π16. 若样本数据12345,,,,x x x x x 的平均数为2,则数据1234523,23,23,23,23x x x x x +++++的平均数为( )A .25 B . 75C . 2D .7 17. 函数x y a b =+(0a >且1a ≠)的图象如图所示,其中,a b 为常数.下列结论正确的是( )A . 1,10a b >−<<B .1,01a b ><<C . 01,10a b <<−<<D .01,01a b <<<<18. 在空间中,设l 是一条直线,,αβ是两个不同的平面,下列结论正确的是( ) A .若//,//l l αβ,则//αβ B .若,l l αβ⊥⊥,则//αβ C .若//,//l ααβ,则//l β D .若//,l ααβ⊥,则l β⊥ 19.下列函数中,使得函数()()sin f x x g x =+在区间3,44ππ⎡⎤−⎢⎥⎣⎦上单调递增的是 ( ) A .()cos g x x =− B .()cos g x x = C . ()sin g x x = D .()1g x =20.已知函数()f x 是定义在R 上的奇函数,且在()0,+∞上单调递减.若()20f =,则使12log 0f x ⎛⎫< ⎪⎝⎭成立的x 的取值范围是 ( ) A .()1,1,44⎛⎫−∞ ⎪⎝⎭B .()10,1,44⎛⎫⎪⎝⎭ C . ()1,4,4⎛⎫−∞+∞ ⎪⎝⎭D .()10,4,4⎛⎫+∞ ⎪⎝⎭二、填空题:本大题共5小题,每小题3分,满分15分,将答案填在答题纸上 21.已知向量a 和b 满足2a b ==,a 与b 的夹角为3π,则a b 的值为 .22.若α为钝角,且3sin 5α=,则sin 2α的值为 . 23.已知函数()2,01,0x x f x x x ⎧≥=⎨+<⎩,则()()12f f +−的值为 .24.《九章算术》中有文:今有鳖臑,下广五尺,无袤,上袤四尺,无广,高七尺,问积几何?文中所述鳖臑是指四个面皆为直角三角形的三棱锥.在如图所示的鳖臑A BCD −中,若1AB BD CD ===,则该鳖臑的体积为 .25.在ABC ∆中,角,,A B C 的对边分别为,,a b c .若()2224,3c a b C π=+−=,则ABC ∆的面积为___________.三、解答题:本大题共3小题,共25分.解答应写出文字说明、证明过程或演算步骤. 26. 如图,在四棱柱1111ABCD A B C D −中,底面ABCD 为平行四边形,E 为棱1DD 的中点. 求证:1//BD 平面ACE .27.某班有男生27名,女生18名,用分层抽样的方法从该班中抽取5名学生去敬老院参加献爱心活动. (1)求从该班男生、女生中分别抽取的人数;(2)为协助敬老院做好卫生清扫工作,从参加活动的5名学生中随机抽取2名,求这2名学生均为女生的概率.28.已知函数()22,f x x x a a R =+−∈.(1)若()f x 为偶函数,求a 的值;(2)若函数()()2g x af x =+的最小值为8,求a 的值.试卷答案一、选择题1-5: DBDCC 6-10:CADAC 11-15:BACCD 16-20:DABAB 二、填空题21. 2 22. 2425− 23. 1 24. 16三、解答题26.证明:连接BD 交AC 于点O ,连接EO , 因为四边形ABCD 为平行四边形, 所以O 为BD 的中点, 又因为E 为1DD 的中点, 所以EO 为1BD D ∆的中位线, 所以1//EO BD ,又因为1BD ⊄平面ACE ,EO ⊂平面ACE , 所以1//BD 平面ACE .27.解:(1)设从该班男生、女生中抽取的人数分别为,x y , 则55273,1824545x y =⨯==⨯=, 所以从该班男生、女生中抽取的人数分别为3,2.(2)记参加活动的3 名男生分别为123,,,2a a a 名女生分别为12,b b . 则随机抽取2名学生的所有基本事件共10个:()()()()()()()12131112232122,,,,,,,,,,,,,a a a a a b a b a a a b a b ,()()()313212,,,,,a b a b b b根据题意,这些基本事件的出现是等可能的,记“2名学生均为女生”为事件A , 事件A 包含的基本事件只有1个:()12,b b , 所以()110P A =. 20.解:(1)因为()f x 是偶函数,公众号:潍坊高中数学所以()()f x f x −=,故2222x x a x x a +−−=+−, 所以x a x a +=−,即222222x ax a x ax a ++=−+, 化简得:40ax =,因为x R ∈, 所以0a =.(2)()()2222g x af x ax a x a =+=+−+()()2222122,122,a x a a x a a x a a x a⎧+−−+≥⎪=⎨−+−+<⎪⎩ ①若0a =,则()2g x =,不合题意; ②若0a <,则()g x 无最小值,不合题意; ③若01a <≤,当x a ≥时,()g x 在[),a +∞上单调递增,()()g x g a ≥; 当x a <时,()g x 在(),a −∞上单调递减,()()g x g a >. 所以,()g x 的最小值为()328g a a =+=,所以1a =>,舍去; ④若1a >,当x a ≥时,()g x 在[),a +∞上单调递增,()()g x g a ≥; 当x a <时,()g x 在(],1−∞上单调递减,在()1,a 内单调递增, 所以()()1g x g ≥, 因为()()1g g a <,所以()g x 的最小值为()21228g a a =−+=,所以32a =−(舍去)或2a =, 综上所述,2a =.公众号:潍坊高中数学。

2017年普通高等学校招生全国统一考试(山东卷)数学试题(理科)

2017年普通高等学校招生全国统一考试(山东卷)数学试题(理科)

1.设函数y =A ,函数ln(1)y x =-的定义域为B ,则AB =A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)2.已知a ∈R ,i是虚数单位.若4z a z z =+⋅=,则a = A .1或-1BC .D3.已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是 A .∧p qB .⌝∧p qC .⌝∧p qD .⌝⌝∧p q4.已知x,y 满足约束条件x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x ,则y x z 2+=的最大值是A .0B .2C .5D .65.为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为 A .160B .163C .166D .1706.执行两次下图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为A .0,0B .1,1C .0,1D .1,07.若0a b >>,且1ab =,则下列不等式成立的是A .()21log 2a ba ab b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2aba ab b +<+<D .()21log 2a ba b a b +<+<8.从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 A .185 B .94 C .95 D .97 9.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 A .b a 2=B .a b 2=C .B A 2=D .2A =B10.已知当[]0,1x ∈时,函数()21y mx =-的图象与y x m =的图象有且只有一个交点,则正实数m 的取值范围是 A .(])0,123,⎡+∞⎣B .(][)0,13,+∞C .()223,⎡+∞⎣D .([)23,+∞11.已知()13nx +的展开式中含有2x 项的系数是54,则n = .12.已知12,e e 是互相垂直的单位向量,若123-e e 与12λ+e e 的夹角为60︒,则实数λ的值是 . 13.由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为 .14.在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .15.若函数e ()xf x (e 2.71828=是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x =④()22f x x =+16.设函数ππ()sin()sin()62f x x x ωω=-+-,其中03ω<<.已知π()06f =. (Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数()y g x =的图象,求()g x 在π3π[,]44-上的最小值.17.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是⋂DF 的中点. (Ⅰ)设P 是⋂CE 上的一点,且AP BE ⊥,求CBP ∠的大小;(Ⅱ)当3AB =,2AD =时,求二面角E AG C --的大小.18.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A 1但不包含1B 的概率;(Ⅱ)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX . 19.已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n+1(x n+1,n +1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积n T .20.已知函数()22cos f x x x =+,()e (cos sin 22)xg x x x x =-+-,其中e 2.71828=是自然对数的底数。

2017年山东省普通高中学业水平考试数学试题(带答案)

2017年山东省普通高中学业水平考试数学试题(带答案)

22017年山东省普通高中学业水平考试(真题及答案)已知集合A 1,2,4 , B 2,4,8,则 A B( )A . {4}B . {2}C . {2,4}D. .{1,248}周期为 的函数是(A . y=sinxB . y=cosxC . y=tan2xD . y=sin2x在区间 0, 上为减函数的是()A . y12 2x B . y x 2C . y l x2D . y 若角 的终边经过点 1,2 ,则 cos ( )2. 3.4. In x一、选择题(本大题共 20个小题,每小题3分,共60分)产品的编号 可以疋()A . 1, 2, 3, 4, 5B .2, 4, 8, 16, 32C . 3, 13,23,258. 已知x, y0,,x y 1,则 xy的I 最大值为( )111A . 1B.-CD .2349. 在等差数列 a n 中, 若 a 59,则 a 4 a 6( )A . 9B . 10C.18D .2033, 43 D . 5, 10, 15, 20,5. 事V5A . 一5B .C .把红、黄两张纸牌随机分给甲、乙两个人, 25 5每人分得一张,设事件P 为“甲分得黄牌”,设件Q 为“乙分得黄牌”,则( A. P 是必然事件C. P 与Q 是互斥但是不对立事件B. Q 是不可能事件D . P 与Q 是互斥且对立事件 6. 在数列a n 中,若a n 1 3a n ,a i则a 4 (7. 5件A . 108B . 54采用系统抽样的方C . 从编号为361〜50 D . 18的50件产品中随机抽取5件进行检验,则所选取的260 ,B 30 , a 3,则b (A. B. 33C. 2 311.已知向量2,3 , b 4, 6 ,A.垂直B.平行且同向C.平行且反向 D .不垂直也不平行12 .直线ax 2y 1 0与直线2x y 1 0垂直,则a (A. 1B.—1C. 2的有12人,则该班学生人数是()A . 35B . 40C . 45D . 501A . — 1B .—C . 0D . 12下列结论正确的是()A .平行于同一个平面的两条直线平行B. 一条直线与一个平面平行,它就和这个平面内的任意一条直线平行C. 与两个相交平面的交线平行的直线,必平行于这两个平面D. 平面外两条平行直线中的一条与这个平面平行,则另一条也与这个平面平行21.函数f(x) lg(x 1)的定义域为 _________________ .—•-*■=*—*—FO—F —■22 .已知向量a , b 满足a 2 , a 与b 的夹角 为——,若a b3则 |b| _________ . 23•从集合A2,3 , B 1,2,3中各任取一个数,则这两个数之和等于 4的概率是 _______________ .24.______________________________________________________________________ 已知数列{a n }的前n 项和为S n n 2 2n ,则该数列的通项公式 a n __________________________ 25. 已知三棱锥 P-ABC 的底面是直角三角形,侧棱 PA 底面ABC , FA=AB=AC=1, D 是BC 的 中占 I 八、、’PD 的长度为 __________ .三、解答题(本大题共 3个小题,共25分)26. (本小题满分8分)已知函数f(x) sin xcosx 1 .求: (1) f(—)的值;(2)函数f(x)的最大值.A .舌 B. -C . —D .-或—333 3)14 •在学校组织的一次知识竞赛中,某班学生考试成绩的频率分布直方图如图所示,若低于60分已知△ ABC 的面积为 1,在边AB 上任取一点 戸,则厶FBC 的面积大于的概率是1 132A .B.-C .D . —424 3x 2y 4设x , y 满足约束条件x 1 ,则z x y 的最小值是()15.16.y 12 2 213•在△ ABC 中,角A , B , C 的对边分别是a, b, c ,若a b bc c ,则角A 为(17. 18. 19. 20. 若圆柱的底面半径是1,其侧面展开是一个正方形,则这个圆柱的侧面积是(A . 4 2B . 3 2C . 2 2方程3x 3 x 的根所在区间是( ) A . (— 1, 0) B . (0, 1) C . ( 1,2)5, D . (2, 3 那么输出的结果是( A .— 5)B . 0C . 1D . 2 填空题(本大题共 5个小题,每题3分,共15分)/谕否27. (本小题满分8分)已知f(x) 2x2 mx n (m, n为常数)是偶函数,且f(1)=4.(1)求f (x)的解析式;(2)若关于x的方程f(x) kx有两个不相等的实数根,求实数k的取值范围.28. (本小题满分9分)已知直线l:y=kx+b, (0<b<1)和圆O: x2 y2 1相交于A, B两点.(1)当k=0时,过点A, B分别作圆O的两条切线,求两条切线的交点坐标;(2)对于任意的实数k,在y轴上是否存在一点N,满足ONA ONB ?若存在,请求出此点坐标;若不存在,说明理由.参考答案:1-20 BDCAD BCDCA CABBC BDABC1,6 21、1,22、1 23、一24、2n+125、323 326、( 1) ; (2 )最大值为2227、( 1) f(X) 2x2 2 ; (2) k 2、2或k 2 2 .c 128、( 1) 0,,, c 1;(2)存在;0,,.b b。

山东省普通高中学业水平考试数学试题带答案

山东省普通高中学业水平考试数学试题带答案

2017年山东省普通高中学业水平考试(真题及答案)一、选择题(本大题共20个小题,每小题3分,共60分)1.已知集合{}4,2,1=A ,{}84,2,=B ,则=B A () A .{4}B .{2}C .{2,4}D .{1,2,4,8}2.周期为π的函数是()A .y =sinxB .y =cosxC .y =tan 2xD .y =sin 2x3.在区间()∞+,0上为减函数的是() A .2x y =B .21x y =C .xy ⎪⎭⎫ ⎝⎛=21D .x y ln = 4.若角α的终边经过点()2,1-,则=αcos ()A .55-B .55C .552-D .552 5.把红、黄两张纸牌随机分给甲、乙两个人,每人分得一张,设事件P 为“甲分得黄牌”,设事件Q 为“乙分得黄牌”,则()A .P 是必然事件B .Q 是不可能事件C .P 与Q 是互斥但是不对立事件D .P 与Q 是互斥且对立事件6.在数列{}n a 中,若n n a a 31=+,21=a ,则=4a ()A .108B .54C .36D .187.采用系统抽样的方法,从编号为1~50的50件产品中随机抽取5件进行检验,则所选取的5件产品的编号可以是()A .1,2,3,4,5B .2,4,8,16,32C .3,13,23,33,43D .5,10,15,20,258.已知()+∞∈,0,y x ,1=+y x ,则xy 的最大值为()A .1B .21C .31D .41 9.在等差数列{}n a 中,若95=a ,则=+64a a ()A .9B .10C .18D .2010.在A B C ∆中,角A ,B ,C 的对边分别是a ,b ,c ,若︒=60A ,︒=30B ,3=a ,则=b ()A .3B .233C .32D .3311.已知向量()3,2-=,()6,4-=,则与()A .垂直B .平行且同向C .平行且反向D .不垂直也不平行12.直线012=+-y ax 与直线012=-+y x 垂直,则=a ()A .1B .-1C .2D .-213.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若222c bc b a +-=,则角A 为()A .6πB .3πC .32πD .3π或32π 14.在学校组织的一次知识竞赛中,某班学生考试成绩的频率分布直方图如图所示,若低于60分的有12人,则该班学生人数是()A .35B .40C .45D .5015.已知△ABC 的面积为1,在边AB 上任取一点P ,则△PBC 的面积大于的概率是()A .41B .21C .43D .32 16.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+1142y x y x ,则y x z -=的最小值是()A .-1B .21-C .0D .1 17.下列结论正确的是()A .平行于同一个平面的两条直线平行B .一条直线与一个平面平行,它就和这个平面内的任意一条直线平行C .与两个相交平面的交线平行的直线,必平行于这两个平面D .平面外两条平行直线中的一条与这个平面平行,则另一条也与这个平面平行18.若圆柱的底面半径是1,其侧面展开是一个正方形,则这个圆柱的侧面积是()A .24πB .23πC .22πD .2π19.方程x x -=33的根所在区间是()A .(-1,0)B .(0,1)C .(1,2)D .(2,3)20.运行如图所示的程序框图,如果输入的x 值是-5,那么输出的结果是()A .-5B .0C .1D .2二、填空题(本大题共5个小题,每题3分,共15分)21.函数)1lg()(-=x x f 的定义域为.22.已知向量a ,b2=,a 与b 的夹角θ为32π,若1-=⋅b a ,=.23.从集合{}3,2=A ,{}3,21,=B 中各任取一个数,则这两个数之和等于4的概率是. 24.已知数列{n a }的前n 项和为n n S n 22+=,则该数列的通项公式=n a .25.已知三棱锥P -ABC 的底面是直角三角形,侧棱⊥PA 底面ABC ,PA =AB =AC =1,D 是BC 的中点,PD 的长度为.三、解答题(本大题共3个小题,共25分)26.(本小题满分8分)已知函数1cos sin )(+=x x x f .求:(1))4(πf 的值;(2)函数)(x f 的最大值. 27.(本小题满分8分)已知n mx x x f ++=22)((m ,n 为常数)是偶函数,且f (1)=4.28.(1)求)(x f 的解析式;(2)若关于x 的方程kx x f =)(有两个不相等的实数根,求实数k 的取值范围.28.(本小题满分9分)已知直线l :y =kx +b ,(0<b <1)和圆O :122=+y x 相交于A ,B 两点.(1)当k =0时,过点A ,B 分别作圆O 的两条切线,求两条切线的交点坐标;(2)对于任意的实数k ,在y 轴上是否存在一点N ,满足ONB ONA ∠=∠?若存在,请求出此点坐标;若不存在,说明理由.参考答案:1-20BDCADBCDCACABBCBDABC21、()∞+,122、123、3124、2n+125、26 26、(1)23;(2)最大值为23. 27、(1)22)(2+=x x f ;(2)22>k 或22-<k .28、(1)⎪⎭⎫ ⎝⎛b 10,;(2)存在;⎪⎭⎫ ⎝⎛b 10,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省2021年普通高中学业水平考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}1,2,4A =,{}2,48B =,,则A B =( )A .{4}B .{2}C .{2,4}D .{1,2,4,8}2.周期为π的函数是( ) A .y =sin xB .y =cos xC .y =tan2xD .y =sin2x3.在区间()0+∞,上为减函数的是( ) A .2yxB .12y x =C .12xy ⎛⎫= ⎪⎝⎭D .ln y x =4.若角α的终边经过点()1,2-,则cos α=( )A .BC .D 5.把红、黄两张纸牌随机分给甲、乙两个人,每人分得一张,设事件P 为“甲分得黄牌”,设事件Q 为“乙分得黄牌”,则( ) A .P 是必然事件B .Q 是不可能事件C .P 与Q 是互斥但是不对立事件D .P 与Q 是互斥且对立事件6.在数列{}n a 中,若13n n a a +=,12a =,则4a =( ) A .108B .54C .36D .187.采用系统抽样的方法,从编号为1~50的50件产品中随机抽取5件进行检验,则所选取的5件产品的编号可以是( ) A .1,2,3,4,5 B .2,4,8,16,32 C .3,13,23,33,43D .5,10,15,20,258.已知x ,()0,y ∈+∞,1x y +=,则xy 的最大值为( ) A .1B .12C .13D .149.在等差数列{}n a 中,若59a =,则46a a +=( ) A .9B .10C .18D .2010.在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,若60A =︒,30B =︒,3a =,则b =( )AB.2C.D.11.已知向量()2,3a =-,()4,6b =-,则a 与b ( ) A .垂直 B .平行且同向C .平行且反向D .不垂直也不平行12.直线210ax y -+=与直线210x y +-=垂直,则a =( ) A .1B .-1C .2D .-213.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若222a b c bc =+-,则A =( ) A .3πB .6π C .23π D .3π或23π 14.在学校组织的一次知识竞赛中,某班学生考试成绩的频率分布直方图如图所示,若低于60分的有12人,则该班学生人数是( )A .35B .40C .45D .5015.已知△ABC 的面积为1,在边AB 上任取一点P ,则△PBC 的面积大于14的概率是( ) A .14B .12C .34D .2316.设x ,y 满足约束条件2411x y x y +≤⎧⎪≥⎨⎪≥⎩,则z x y =-的最小值是( )A .1-B .12-C .0D .117.下列命题正确的是( )A .一条直线与一个平面平行,它就和这个平面内的任意一条直线平行B .平行于同一个平面的两条直线平行C .与两个相交平面的交线平行的直线,必平行于这两个平面D .平面外两条平行直线中的一条与这个平面平行,则另一条也与这个平面平行18.若圆柱的底面半径是1,其侧面展开是一个正方形,则这个圆柱的侧面积是( ) A .24πB .23πC .22πD .2π19.方程33x x =-的根所在区间是( ) A .(-1,0)B .(0,1)C .(1,2)D .(2,3)20.运行如图所示的程序框图,如果输入的x 值是-5,那么输出的结果是( )A .-5B .0C .1D .2二、填空题21.函数()lg(1)f x x =-的定义域是 . 22.已知向量a ,b 满足2a =,a 与b 的夹角θ为23π,若1a b ⋅=-,则b =__________.23.集合{2,3}A =,{1,2,3}B =,从A ,B 中各任意取一个数,则这两个数之和等于4的概率是__________.24.已知数列{n a }的前n 项和为22n S n n =+,则该数列的通项公式n a =__________. 25.已知三棱锥P -ABC 的底面是直角三角形,侧棱PA ⊥底面ABC ,P A =AB =AC =1,D 是BC 的中点,PD 的长度为__________.三、解答题26.已知函数()sin cos 1f x x x =+.求: (1)()4f π的值;(2)函数()f x 的最大值.27.已知2()2f x x mx n =++(m ,n 为常数)是偶函数,且f (1)=4. (1)求()f x 的解析式;(2)若关于x 的方程()f x kx =有两个不相等的实数根,求实数k 的取值范围. 28.已知直线l :y =kx +b ,(0<b <1)和圆O :221x y +=相交于A ,B 两点. (1)当k =0时,过点A ,B 分别作圆O 的两条切线,求两条切线的交点坐标; (2)对于任意的实数k ,在y 轴上是否存在一点N ,满足ONA ONB ∠=∠?若存在,请求出此点坐标;若不存在,说明理由.参考答案1.C 【解析】 【分析】根据交集定义求解. 【详解】由题意{2,4}A B ⋂=. 故选:C. 【点睛】本题考查交集的运算,属于简单题. 2.D 【分析】求出各函数的周期后可得. 【详解】sin y x =和cos y x =的周期是2π,tan 2y x =的周期是2π,sin 2y x =的周期是22T ππ==. 故选:D. 【点睛】本题考查三角函数的周期性质,掌握三角函数的周期是解题基础. 3.C 【分析】根据函数单调性逐项进行判断即可得到答案. 【详解】2yx 在()0,∞+上为增函数,12y x =在()0,∞+上为增函数,12xy ⎛⎫= ⎪⎝⎭在()0,∞+上为减函数,ln y x =在()0,∞+上为增函数.【点睛】本题主要考查的是基本初等函数的性质,是基础题, 4.A 【分析】用余弦的定义可以直接求解. 【详解】点()1,2-cosα==,故本题选A. 【点睛】本题考查了余弦的定义,考查了数学运算能力. 5.D 【分析】根据随机事件的定义判断. 【详解】,P Q 两个事件可能性发生也可能不发生,它们是随机事件,这两个事件不可能同时发生,但必有一个发生,因此它们是对立事件. 故选:D . 【点睛】本题考查随机事件的概念,考查互斥事件和对立事件的概念,掌握互斥事件和对立事件的定义是解题关键. 6.B 【分析】通过13n n a a +=,可以知道数列{}n a 是公比为3的等比数列,根据等比数列的通项公式可以求出4a 的值. 【详解】因为13n n a a +=,所以数列{}n a 是公比为3q =的等比数列,因此33412354a a q =⋅=⨯=,故本题选B.本题考查了等比数列的概念、以及求等比数列某项的问题,考查了数学运算能力. 7.C 【分析】根据系统抽样的概念确定. 【详解】系统抽样,方法是50个编号后,按顺序平均分布5组,然后抽取的5个编号成等差数列,第一个在1-10之间,最后一个在41-50之间,因此只有C 符合. 故选:C. 【点睛】本题考查系统抽样,掌握系统抽样的概念即可.属于简单题. 8.D 【分析】直接使用基本不等式,可以求出xy 的最大值. 【详解】因为x ,()0,y ∈+∞,1x y +=,所以有2111()24x y xy =+≥⇒≤=,当且仅当12x y ==时取等号,故本题选D. 【点睛】本题考查了基本不等式的应用,掌握公式的特征是解题的关键. 9.C 【分析】由等差数列的性质计算. 【详解】∵{}n a 是等差数列, ∴46a a +=5218a =. 故选:C. 【点睛】本题考查等差数列的性质,掌握等差数列的性质是解题关键.本题也可用等差数列的基本量10.A 【解析】 【分析】结合特殊角的正弦值,运用正弦定理求解. 【详解】由正弦定理可知:000033sin30sin sin sin 60sin30sin 60a b b b A B =⇒=⇒==,故本题选A. 【点睛】本题考查了正弦定理,考查了数学运算能力. 11.C 【分析】计算a b ⋅验证是否垂直,根据向量共线定理确定共线. 【详解】因为向量()2,3a =-,()4,6b =-,所以818260a b ⋅=--=-≠,a 与b 不垂直, 又因为2b a =-,20-<, ∴,a b 平行且反向. 故选:C. 【点睛】本题考查平面向量共线定理,对于两个向量,(0)a b a ≠,则,a b 共线的充要条件是存在常数λ使得b a λ=.12.A 【分析】由斜率乘积为1-可得. 【详解】 由题意(2)12a⨯-=-,解得1a =. 故选:A.本题考查两直线垂直的条件,两直线斜率分别为12,k k ,则它们垂直的条件是121k k =-. 13.A 【分析】由题意首先求得cosA 的值,然后求解∠A 的值即可. 【详解】由余弦定理得222122b c a cosA bc +-==,又因为0A π<<,所以=3A π.本题选择A 选项. 【点睛】本题主要考查余弦定理解三角形的方法,属于基础题. 14.B 【分析】由频率分布直方图得低于60分的频率,然后可计算总人数. 【详解】由频率分布直方图得低于60分的频率为(0.0050.01)200.3+⨯=, 所以总人数为:12400.3=. 故选:B. 【点睛】本题考查频率分布直方图,考查由频率分布直方图计算频率,样本容量等,属于基础题. 15.C 【分析】利用等高的三角形面积比等于底的比计算. 【详解】把AB 四等分,等分点从A 开始依次123,,P P P ,由于PBC ABC S PAS BA∆∆=,因此只要P 在线段1P B 上时(不含1P 点),则PBC ABC S PA S BA ∆∆=14>,所以所求概率为134PB AB=. 故选:C. 【点睛】本题考查几何概型,解题关键是确定该几何概型是哪种类型的几何概型,长度,面积,体积?本题是长度形几何概型. 16.B 【解析】 【分析】在平面直角坐标系内,画出可行解域,在可行解域内,平行移动直线y x z =-,直至当直线在纵轴上的截距最大时,求出此时所经过点的坐标,代入目标函数中求出z 的最小值. 【详解】在平面直角坐标系内,画出可行解域,如下图:在可行解域内,平行移动直线y x z =-,当直线经过点A 时,直线在纵轴上的截距最大,点A 是直线1x =和直线122y x =-+的交点,解得13(1,)322x A y =⎧⎪∴⎨=⎪⎩,min 31122z ∴=-=-,故本题选B. 【点睛】本题考查了线性规划求目标函数最小值问题,正确画出可行解域是解题的关键.17.D【解析】A 错误;平行于平面的直线,和这个平面内的直线平行或异面;B 错误;平行于同一个平面的两条直线可能平行、相交或异面;C 错误;与两个相交平面的交线平行的直线也可能在其中一个平面内;D 正确;设//,,,//;a b a b a ααα⊄⊄故a 做一平面β,,c βα⋂=则//,//a c a b 又, //.b c ∴又,.//.b c b ααα⊄⊂∍故选D18.A【分析】侧面展开图的面积就是侧面积.【详解】由题意侧面展开图的边长不212ππ⨯=,面积为22(2)4ππ=.故选:A.【点睛】本题考查圆柱的侧面积,考查圆柱的侧面展开图,圆柱侧面展开图是矩形,矩形的一边是圆柱的高,另一边长是圆柱的底面周长.19.B【分析】构造函数,根据零点存在定理判断.【详解】设()33x f x x =-+,111(1)3313f --=--=-,(0)2f =-,(1)1f =,由于(0)(1)0f f <,因此零点在区间(0,1)上.故选:B.【点睛】本题考查零点存在定理,掌握零点存在定理是关键.解题中用了转化思想,方程的根转化为函数零点.20.C模拟程序运行,观察变量值变化可得结论.【详解】程序运行时,5x =-,不满足0x >,满足0x <,因此1y =,输出结论1y =. 故选:C.【点睛】本题考查程序框图,考查条件结构,解题时模拟程序运行即可得.21.()1,+∞【分析】利用真数大于零列不等式求解即可.【详解】要使函数()lg(1)f x x =-有意义,则10x ->,解得1x >,即函数()lg(1)f x x =-的定义域是()1,+∞,故答案为:()1,+∞.【点睛】本题主要考查对数型复合函数的定义域,属于基础题.22.1【分析】由数量积的定义计算.【详解】 由数量积的定义得112cos 2cos 3a bb a πθ⋅-===. 故答案为:1.【点睛】本题考查数量积的定义,属于基础题.23.13集合{}{}23123A B ==,,,, ,从A B , 中各任意取一个数有236⨯= 种,其两数之和为4的情况有两种:2213,++ ,∴这两数之和等于4的概率2163p == .故答案为13. 24.2n +1【分析】由1(2)n n n a S S n -=-≥计算,再计算1a 可得结论.【详解】由题意2n ≥时,2212(1)2(1)21n n n a S S n n n n n --=+----=+=,又113a S ==适合上式,所以21n a n =+.故答案为:21n .【点睛】本题考查由n S 求通项公式,解题根据是1(2)n n n a S S n -=-≥,但要注意此式不含1a ,11a S =.25.2【分析】在直角PAD ∆中计算.【详解】取BC 中点D ,连接AD ,∵PA ⊥底面ABC ,AD ⊆平面ABC ,∴PA AD ⊥,又AB AC =,且ABC ∆是直角三角形,∴90BAC ∠=︒,∴122AD BC ===,2PD ===.【点睛】本题考查线面垂直的性质定理,由线面垂直一般可得线线垂直.在立体几何中由线线垂直证明线面垂直,由线面垂直得线线垂直,这种相互转化是垂直的重要证明方法.26.(1)32;(2)32【分析】(1)应用二倍角公式化函数为一个角的一个三角函数形式,然后计算;(2)由正弦函数性质可得最大值.【详解】 (1)()sin cos 1f x x x =+1sin 212x =+,∴13()sin 14222f ππ=+=; (2)因为sin 2x 的最大值为1,所以()f x 最大值为131122⨯+=. 【点睛】本题考查正弦的二倍角公式,考查正弦函数的最值.解题时利用三角公式化函数为一个角的一个三角函数形式是基本方法,务必掌握住.27.(1)2()22f x x =+;(2)(,4)(4,)-∞-⋃+∞.【分析】(1)由偶函数可求得m ,再由(1)4f =得n ,从而得解析式;(2)由一元二次方程根的判别式判断.【详解】(1)∵()f x 是偶函数,∴22()2()2f x x mx n f x x mx n -=-+==++,20mx =,∴0m =∴2()2f x x n =+,又(1)24f n =+=,2n =, ∴2()22f x x =+;(2)方程()f x kx =为2220x kx -+=,它有两个不等实根,则2160k ∆=->,解得4k <-或4k >.∴k 的范围是(,4)(4,)-∞-⋃+∞【点睛】本题考查求二次函数的解析式,考查函数的奇偶性,掌握奇偶性的定义是解题关键. 28.(1)10,b ⎛⎫ ⎪⎝⎭;(2)存在,10,b ⎛⎫ ⎪⎝⎭.【分析】(1)求出交点,A B 坐标,由过切点的半径与切线垂直得切线斜率从而得切线方程,两切线方程联立方程组可解得交点坐标;(2)假设存在(0,)N t 满足题意,设1122(,),(,)A x y B x y ,由已知得0AN BN k k +=, 由直线方程与圆方程联立 消元后应用韦达定理得1212,x x x x +,代入0AN BN k k +=,由恒等式知识可得t .【详解】(1)把y b =代入圆方程解得x =(),)A b B b , 圆O 上过A 点的切线为1l,由OA k =得11l OA k k b =-=, 1l方程为y b x -=1by -=-, 同理过B 点的切线2l1by +=, 两方程联立可得两直线交点坐标为1(0,)b;(2)假设y 轴上存在点(0,)N t 满足题意,设1122(,),(,)A x y B x y ,12(0)x x ≠,则12120AN BN y t y t k k x x --+=+=, 2112()()0x y t x y t -+-=, 2112()()0x kx b t x kx b t +-++-=,整理得12122()()0kx x b t x x +-+=,①由221y kx b x y =+⎧⎨+=⎩得222(1)210k x kbx b +++-=, 12221kb x x k +=-+,212211b x x k -=+,代入①式并整理得220k kbt -+=,此式对任意实数k 都成立,∴1t b=. 故y 轴点的点1(0,)N b 满足ONA ONB ∠=∠. 【点睛】本题考查直线与圆相交,考查直线与圆相切问题.直线与圆相切要掌握结论:过切线的半径与切线垂直,存在性命题采取设而不求思想求解.即设1122(,),(,)A x y B x y ,直线方程与圆方程联立并消元后应用韦达定理得1212,x x x x +,代入已知条件可求得参数值.。

相关文档
最新文档