2020年高中数学教案选修2-2《1.1.2 瞬时变化率——导数(1)》
高中数学人教B版选修2—2第一章1.1.2《瞬时速度与导数》优秀教案
1.1.2 《瞬时速度》教案教学目的:理解函瞬时速度及导数的概念. 重点难点:导数的极限数学符号语言的理解.学科素养:用所学探索未知,通过数学定义的教学,体会数学研究的手段方法. 一、引入与新课: 提出问题】在物理学中,我们知道物体作匀速直线运动,速度是路程与时间之比:sv t=。
而自由落体、竖直向上发射火箭、一段平直轨道上行驶的高铁列车、一段平直高速路上行驶的汽车都是变速直线运动,这类运动路程随时间变化,速度也随时间变化。
问题1:物体作变速直线运动时,速度与路程、时间有什么样的关系呢? 【抽象概括】设物体运动路程与时间的关系是()s f t =(图一),问题2:在区间00[,]t t t +∆,物体运动的速度与路程、时间有什么样的关系呢? 由上节课知识可知,从0t 到0t t +∆这段时间内,物体运动的平均速度是000()()f t t f t sv t t+∆-∆==∆∆ 所以,平均速度0v 就是函数()s f t =在区间00[,]t t t +∆的平均变化率 问题3:在某一时刻0t ,物体运动的速度与路程、时间有什么样的关系呢?图一联想二分法,计算值的逼近法,上节课的分割法,时刻0t 我们也采用分割逼近的方法。
看一个实例,我们来研究怎样实现逼近。
跳台跳水运动员在时刻t 距离水面的高度函数2()10 6.5 4.9h t t t =+-求运动员在2t s =时竖直向上的速度?我们先求运动员在[2,2.1]这段时间内的平均速度为:22(2.1)(2)(10 6.5 2.1 4.9 2.1)(10 6.52 4.92)13.59(/)2.120.1h h m s -+⨯-⨯-+⨯-⨯==--用同样的方法,我们运用计算器得到下列平均速度表:由此表可以看出,当时间间隔越来越小时,平均速度趋于常数13.1-,这个常数就是该运动员在2t s =时的速度,我们称为在2t s =时的瞬时速度。
【解决问题】一般地,对任一时刻0t ,也可以计算出瞬时速度:002200000()()(10 6.5() 4.9())(10 6.5 4.9)9.8 6.5 4.9h t t h t tt t t t t t tt t+∆-∆+⨯+∆-⨯+∆-+⨯-⨯=∆=-+-∆ 当t ∆趋近于0时,上式趋近于09.8 6.5t -+。
《1.1.2 瞬时变化率——导数》课件1-优质公开课-苏教选修2-2精品
导
作
学
业
的变化快慢,瞬时加速度为 0,并不是速度为 0.
课
堂
教
互
师
动
备
探
课
究
资
源
菜单
SJ·数学 选修 2-2
教
学
易
教
错
法
易
分
误
析
辨
析
教
1.曲线上一点处的切线
学
当
方 案
设 Q 为曲线 C 上不同于 P 的一点,这时,直线 PQ 称
堂 双
设 计
为曲线的__割__线__,随着点 Q 沿曲线 C 向点 P 运动,割线 PQ
化率——曲线在某一点处的切线——瞬时速度(加速度)——
双 基
计
瞬时变化率——导数的概念”这样的顺序来安排,用“逼
达 标
课 前
近”的方法来定义导数,这种概念建立的方式直观、形象、
自
课
主 生动,又易于理解,突出导数概念的形成过程.
时
导
作
学
因此,在教学中采用教师启发诱导与学生动手操作、自 业
课 主探究、合作交流相结合的教学方式,引导学生动手操作、
教 师 备 课 资 源
教 学 教 法 分 析
教 学 方 案 设 计
课 前 自 主 导 学
课 堂 互 动 探 究
菜单
SJ·数学 选修 2-2
易 错 易 误 辨 析
当 堂 双 基 达 标
课 时 作 业
教 师 备 课 资 源
教 学 教 法 分 析
教 学 方 案 设 计
课 前 自 主 导 学
课 堂 互 动 探 究
切线与曲线不一定只有一个公共点,如图,
苏教版高二数学选修2-2 1.1.2瞬时变化率——导数 学案
1.1.2 瞬时变化率——导数学习目标 1.理解切线的含义.2.理解瞬时速度与瞬时加速度.3.掌握瞬时变化率——导数的概念,会根据定义求一些简单函数在某点处的导数.知识点一 曲线上某一点处的切线如图,P n 的坐标为(x n ,f (x n ))(n =1,2,3,4,…),点P 的坐标为(x 0,y 0).思考1 当点P n →点P 时,试想割线PP n 如何变化?答案 当点P n 趋近于点P 时,割线PP n 趋近于确定的位置,即曲线上点P 处的切线位置. 思考2 割线PP n 的斜率是什么?它与切线PT 的斜率有何关系. 答案 割线PP n 的斜率k n =f (x n )-f (x 0)x n -x 0;当P n 无限趋近于P 时,k n 无限趋近于点P 处切线的斜率k .梳理 (1)设Q 为曲线C 上的不同于P 的一点,这时,直线PQ 称为曲线的割线.随着点Q 沿曲线C 向点P 运动,割线PQ 在点P 附近越来越逼近曲线C .当点Q 无限逼近点P 时,直线PQ 最终就成为在点P 处最逼近曲线的直线l ,这条直线l 称为曲线在点P 处的切线. (2)若P (x ,f (x )),过点P 的一条割线交曲线C 于另一点Q (x +Δx ,f (x +Δx )),则割线PQ 的斜率为k PQ =f (x +Δx )-f (x )Δx ,当Δx →0时,f (x +Δx )-f (x )Δx 无限趋近于点P (x ,f (x ))处的切线的斜率.知识点二 瞬时速度与瞬时加速度——瞬时变化率 1.平均速度在物理学中,运动物体的位移与所用时间的比称为平均速度. 2.瞬时速度一般地,如果当Δt 无限趋近于0时,运动物体位移S (t )的平均变化率S (t 0+Δt )-S (t 0)Δt无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时速度,也就是位移对于时间的瞬时变化率. 3.瞬时加速度一般地,如果当Δt 无限趋近于0时,运动物体速度v (t )的平均变化率v (t 0+Δt )-v (t 0)Δt 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时加速度,也就是速度对于时间的瞬时变化率. 知识点三 导数 1.导数设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx=f (x 0+Δx )-f (x 0)Δx 无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0). 2.导数的几何意义导数f ′(x 0)的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率. 3.导函数(1)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ).在不引起混淆时,导函数f ′(x )也简称为f (x )的导数.(2)f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.类型一 求曲线上某一点处的切线例1 已知曲线y =x +1x 上的一点A (2,52),用切线斜率定义求:(1)点A 处的切线的斜率; (2)点A 处的切线方程. 解 (1)∵Δy =f (2+Δx )-f (2)=2+Δx +12+Δx -(2+12)=-Δx 2(2+Δx )+Δx ,∴Δy Δx =-Δx 2Δx (2+Δx )+ΔxΔx =-12(2+Δx )+1. 当Δx 无限趋近于零时,Δy Δx 无限趋近于34,即点A 处的切线的斜率是34.(2)切线方程为y -52=34(x -2),即3x -4y +4=0.反思与感悟 根据曲线上一点处的切线的定义,要求曲线过某点的切线方程,只需求出切线的斜率,即在该点处,Δx 无限趋近于0时,ΔyΔx无限趋近的常数.跟踪训练1 (1)已知曲线y =2x 2+4x 在点P 处的切线的斜率为16,则点P 坐标为________. 答案 (3,30)解析 设点P 坐标为(x 0,y 0), 则f (x 0+Δx )-f (x 0)(x 0+Δx )-x 0=2(Δx )2+4x 0Δx +4Δx Δx=4x 0+4+2Δx .当Δx 无限趋近于0时,4x 0+4+2Δx 无限趋近于4x 0+4, 因此4x 0+4=16,即x 0=3, 所以y 0=2×32+4×3=18+12=30. 即点P 坐标为(3,30).(2)已知曲线y =3x 2-x ,求曲线上一点A (1,2)处的切线的斜率及切线方程. 解 设A (1,2),B (1+Δx,3(1+Δx )2-(1+Δx )), 则k AB =3(1+Δx )2-(1+Δx )-(3×12-1)Δx =5+3Δx ,当Δx 无限趋近于0时,5+3Δx 无限趋近于5, 所以曲线y =3x 2-x 在点A (1,2)处的切线斜率是5. 切线方程为y -2=5(x -1),即5x -y -3=0. 类型二 求瞬时速度例2 某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 2+t +1表示,求物体在t =1 s 时的瞬时速度.解 在1到1+Δt 的时间内,物体的平均速度v =Δs Δt =s (1+Δt )-s (1)Δt=(1+Δt )2+(1+Δt )+1-(12+1+1)Δt=3+Δt ,∴当Δt 无限趋近于0时,v 无限趋近于3, ∴物体在t =1处的瞬时变化率为3. 即物体在t =1 s 时的瞬时速度为3 m/s. 引申探究1.若本例中的条件不变,试求物体的初速度.解 求物体的初速度,即求物体在t =0时的瞬时速度. ∵Δs Δt =s (0+Δt )-s (0)Δt=(0+Δt )2+(0+Δt )+1-1Δt=1+Δt ,∴当Δt →0时,1+Δt →1,∴物体在t =0时的瞬时变化率为1, 即物体的初速度为1 m/s.2.若本例中的条件不变,试问物体在哪一时刻的瞬时速度为9 m/s. 解 设物体在t 0时刻的速度为9 m/s. 又Δs Δt =s (t 0+Δt )-s (t 0)Δt=(2t 0+1)+Δt .∴当Δt →0时,ΔsΔt →2t 0+1.则2t 0+1=9,∴t 0=4.则物体在4 s 时的瞬时速度为9 m/s.反思与感悟 (1)求瞬时速度的题目的常见错误是不能将物体的瞬时速度转化为函数的瞬时变化率.(2)求运动物体瞬时速度的三个步骤①求时间改变量Δt 和位移改变量Δs =s (t 0+Δt )-s (t 0). ②求平均速度v =Δs Δt. ③求瞬时速度,当Δt 无限趋近于0时,ΔsΔt无限趋近于的常数v 即为瞬时速度.跟踪训练2 一质点M 按运动方程s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s),若质点M 在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值.解 质点M 在t =2 s 时的瞬时速度即为函数在t =2 s 处的瞬时变化率. ∵质点M 在t =2 s 附近的平均变化率为 Δs Δt =s (2+Δt )-s (2)Δt =a (2+Δt )2-4a Δt =4a +a Δt , ∴当Δt →0时,ΔsΔt →4a =8,即a =2.类型三 求函数在某点处的导数 例3 已知f (x )=x 2-3. (1)求f (x )在x =2处的导数;(2)求f (x )在x =a 处的导数. 解 (1)因为Δy Δx =f (2+Δx )-f (2)Δx=(2+Δx )2-3-(22-3)Δx=4+Δx ,当Δx 无限趋近于0时,4+Δx 无限趋近于4, 所以f (x )在x =2处的导数等于4. (2)因为Δy Δx =f (a +Δx )-f (a )Δx=(a +Δx )2-3-(a 2-3)Δx=2a +Δx ,当Δx 无限趋近于0时,2a +Δx 无限趋近于2a , 所以f (x )在x =a 处的导数等于2a .反思与感悟 求一个函数y =f (x )在x =x 0处的导数的步骤 (1)求函数值的改变量Δy =f (x 0+Δx )-f (x 0). (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx .(3)令Δx 无限趋近于0,求得导数.跟踪训练3 (1)设f (x )=ax +4,若f ′(1)=2,则a =________. 答案 2解析 ∵f (1+Δx )-f (1)Δx =a (1+Δx )+4-a -4Δx =a ,∴f ′(1)=a ,即a =2.(2)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第x h ,原油的温度(单位:℃)为f (x )=x 2-7x +15(0≤x ≤8).求函数y =f (x )在x =6处的导数f ′(6),并解释它的实际意义.解 当x 从6变到6+Δx 时,函数值从f (6)变到f (6+Δx ),函数值y 关于x 的平均变化率为 f (6+Δx )-f (6)Δx=(6+Δx )2-7(6+Δx )+15-(62-7×6+15)Δx=5Δx +(Δx )2Δx=5+Δx .当Δx →0时,平均变化率趋近于5,所以f ′(6)=5,导数f ′(6)=5表示当x =6时原油温度的瞬时变化率即原油温度的瞬时变化速度.也就是说,如果保持6 h 时温度的变化速度,每经过1 h 时间,原油温度将升高5 ℃.1.一个做直线运动的物体,其位移S 与时间t 的关系是S =3t -t 2,则此物体在t =2时的瞬时速度为________. 答案 -1解析 由于ΔS =3(2+Δt )-(2+Δt )2-(3×2-22) =3Δt -4Δt -(Δt )2=-Δt -(Δt )2, 所以ΔS Δt =-Δt -(Δt )2Δt=-1-Δt .当Δt 无限趋近于0时,ΔSΔt 无限趋近于常数-1.故物体在t =2时的瞬时速度为-1.2.已知曲线y =f (x )=2x 2上一点A (2,8),则点A 处的切线斜率为________. 答案 8解析 因为Δy Δx =f (2+Δx )-f (2)Δx=2(2+Δx )2-8Δx=8+2Δx ,当Δx →0时,8+2Δx 趋近于8.即k =8. 3.函数y =x +1x 在x =1处的导数是________.答案 0解析 ∵函数y =f (x )=x +1x ,∴Δy =f (1+Δx )-f (1)=1+Δx +11+Δx -1-1=(Δx )21+Δx ,∴Δy Δx =Δx 1+Δx ,当Δx →0时,Δy Δx→0, 即y =x +1x在x =1处的导数为0.4.设函数f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则f ′(x 0)的值为________. 答案 a解析 由导数定义,得f (x 0+Δx )-f (x 0)Δx=a Δx +b (Δx )2Δx=a +b Δx ,故当Δx →0时,其值趋近于a ,故f ′(x 0)=a .5.如果一个物体的运动方程S (t )=⎩⎪⎨⎪⎧t 2+2,0≤t <3,29+3(t -3)2,t ≥3,试求该物体在t =1和t =4时的瞬时速度. 解 当t =1时,S (t )=t 2+2,则ΔS Δt =S (1+Δt )-S (1)Δt =(1+Δt )2+2-3Δt =2+Δt , 当Δt 无限趋近于0时,2+Δt 无限趋近于2, 所以v (1)=2; ∵t =4∈[3,+∞),∴S (t )=29+3(t -3)2=3t 2-18t +56,∴ΔS Δt =3(4+Δt )2-18(4+Δt )+56-3×42+18×4-56Δt =3(Δt )2+6Δt Δt=3Δt +6,∴当Δt 无限趋近于0时,3Δt +6→6,即ΔSΔt →6,所以v (4)=6.1.平均变化率和瞬时变化率的关系平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ,当Δx 无限趋近于0时,它所趋近于的一个常数就是函数在x =x 0处的瞬时变化率.即有:Δx 无限趋近于0是指自变量间隔Δx 越来越小,能达到任意小的间隔,但始终不能为0.即对于瞬时变化率,我们通过减小自变量的改变量以致无限趋近于零的方式,实现用割线斜率“逼近”切线斜率,用平均速度“逼近”瞬时速度.一般地,可以用平均变化率“逼近”瞬时变化率.2.求切线的斜率、瞬时速度和瞬时加速度的解题步骤(1)计算Δy .(2)求Δy Δx .(3)当Δx →0时,ΔyΔx 无限趋近于哪个常数.课时作业一、填空题1.函数f (x )=x 2在x =3处的导数等于________. 答案 6解析 Δy Δx =(3+Δx )2-32Δx =6+Δx ,当Δx →0时,得f ′(3)=6.2.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则a =________,b =________. 答案 1 1解析 Δy Δx =(0+Δx )2+a (0+Δx )+b -b Δx =a +Δx ,当Δx →0时,Δy Δx→a .∵切线x -y +1=0的斜率为1, ∴a =1.∵点(0,b )在直线x -y +1=0上,∴b =1.3.已知曲线y =12x 2-2上一点P ⎝⎛⎭⎫1,-32,则过点P 的切线的倾斜角为________. 答案 45°解析 ∵y =12x 2-2,∴Δy Δx =12(x +Δx )2-2-⎝⎛⎭⎫12x 2-2Δx =12(Δx )2+x ·Δx Δx=x +12Δx .故当Δx →0时,其值无限趋近于x ,∴y ′|x =1=1.∴点P ⎝⎛⎭⎫1,-32处切线的斜率为1,则切线的倾斜角为45°. 4.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________. 答案 1解析 Δy Δx =a (1+Δx )2-aΔx =2a +a Δx ,当Δx →0时,ΔyΔx →2a ,∴可令2a =2,∴a =1.5.已知曲线y =13x 3上一点P (2,83),则该曲线在点P 处切线的斜率为________.答案4解析 由y =13x 3,得Δy Δx =13(x +Δx )3-13x 3Δx=13[3x 2+3x ·Δx +(Δx )2], 当Δx →0时,其值无限趋近于x 2. 故y ′=x 2,y ′|x =2=22=4,结合导数的几何意义知,曲线在点P 处切线的斜率为4. 6.在曲线y =x 2上切线倾斜角为π4的点的坐标为________.答案 (12,14)解析 ∵Δy Δx =(x +Δx )2-x 2Δx =2x +Δx ,当Δx →0时,其值趋近于2x . ∴令2x =tan π4=1,得x =12,∴y =⎝⎛⎭⎫122=14,所求点的坐标为⎝⎛⎭⎫12,14. 7.已知曲线y =f (x )=2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 答案 (3,30)解析 设点P (x 0,2x 20+4x 0), 则Δy Δx =f (x 0+Δx )-f (x 0)Δx=2(Δx )2+4x 0·Δx +4Δx Δx=2Δx +4x 0+4,当Δx →0时,其值无限趋近于4+4x 0. 令4x 0+4=16,得x 0=3,∴P (3,30).8.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=________.答案 2解析 ∵点P 在切线上,∴f (5)=-5+8=3,f ′(5)=k =-1, ∴f (5)+f ′(5)=3-1=2.9.已知函数f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.答案 3解析 由在点M 处的切线方程是y =12x +2,得f (1)=12×1+2=52,f ′(1)=12.∴f (1)+f ′(1)=52+12=3.10.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________. 答案 4解析 设在点P 处切线的斜率为k ,∵Δy Δx =(-2+Δx )2-(-2+Δx )+c -(6+c )Δx =-5+Δx , ∴当Δx →0时,ΔyΔx →-5,∴k =-5,∴切线方程为y =-5x .∴点P 的纵坐标为y =-5×(-2)=10, 将P (-2,10)代入y =x 2-x +c ,得c =4. 二、解答题11.已知质点运动方程是s (t )=12gt 2+2t -1(g 是重力加速度,常量),求质点在t =4 s 时的瞬时速度(其中s 的单位是m ,t 的单位是s). 解Δs Δt =s (4+Δt )-s (4)Δt=[12g (4+Δt )2+2(4+Δt )-1]-(12g ·42+2×4-1)Δt=12g (Δt )2+4g ·Δt +2Δt Δt=12g Δt +4g +2. ∵当Δt →0时,ΔsΔt→4g +2,∴S ′(4)=4g +2,即v (4)=4g +2,∴质点在t =4 s 时的瞬时速度为(4g +2) m/s.12.求曲线y =f (x )=x 3-x +3在点(1,3)处的切线方程.解 因为点(1,3)在曲线上,且f (x )在x =1处可导,Δy Δx =(1+Δx )3-(1+Δx )+3-(1-1+3)Δx=(Δx )3+3(Δx )2+2Δx Δx=(Δx )2+3Δx +2,当Δx →0时,(Δx )2+3Δx +2→2,故f ′(1)=2.故所求切线方程为y -3=2(x -1),即2x -y +1=0.13.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 2的方程;(2)求直线l 1,l 2与x 轴所围成的三角形的面积.解 (1)Δy Δx =(1+Δx )2+(1+Δx )-2-(12+1-2)Δx=Δx +3,当Δx →0时,Δy Δx→3, ∴直线l 1的斜率k 1=3,∴直线l 1的方程为y =3(x -1),即y =3x -3.设直线l 2过曲线y =x 2+x -2上的点P (x 0,x 20+x 0-2),则直线l 2的方程为y -(x 20+x 0-2)=(2x 0+1)(x -x 0).∵l 1⊥l 2,∴3(2x 0+1)=-1,解得x 0=-23. ∴直线l 2的方程为y =-13x -229. (2)解方程组⎩⎪⎨⎪⎧ y =3x -3,y =-13x -229,得⎩⎨⎧ x =16,y =-52.又∵直线l 1,l 2与x 轴的交点坐标分别为(1,0),(-223,0), ∴所求三角形的面积为S =12×|-52|×(1+223)=12512.三、探究与拓展14.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为________.答案 ⎣⎡⎦⎤-1,-12 解析 ∵Δy Δx =(x +Δx )2+2(x +Δx )+3-(x 2+2x +3)Δx=(2x +2)·Δx +(Δx )2Δx=Δx +2x +2. 故当Δx →0时,其值无限趋近于2x +2.∴可设点P 横坐标为x 0,则曲线C 在点P 处的切线斜率为2x 0+2.由已知,得0≤2x 0+2≤1,∴-1≤x 0≤-12,∴点P 横坐标的取值范围为⎣⎡⎦⎤-1,-12. 15.已知抛物线y =2x 2+1分别满足下列条件,求出切点的坐标.(1)切线的倾斜角为45°;(2)切线平行于直线4x -y -2=0.解 设切点坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2,∴Δy Δx=4x 0+2Δx , 当Δx →0时,Δy Δx→4x 0,即f ′(x 0)=4x 0. (1)∵抛物线的切线的倾斜角为45°,∴斜率为tan 45°=1,即f ′(x 0)=4x 0=1,解得x 0=14, ∴切点坐标为(14,98). (2)∵抛物线的切线平行于直线4x -y -2=0,∴k =4,即f ′(x 0)=4x 0=4,解得x 0=1,∴切点坐标为(1,3).。
高中数学人教A版选修2-2 第一章1.1.2导数的概念教案 精品
§1.1.2 导数的概念
教学目标:
1.了解瞬时速度、瞬时变化率的概念;
2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; 3.会求函数在某点的导数。
教学重点:瞬时速度、瞬时变化率的概念、导数的概念; 教学难点:导数的概念.
(一)、情景引入,激发兴趣
【教师引入】:“生活中有一些现象值得我们去研究,比如,子弹离开枪管那一瞬间的速度,奥运会上百米赛跑运动员冲向终点那一时刻的速度。
科学上对瞬时速度的研究也是非常有必要的,比如在天宫一号与神州八号的成功对接,最关键的就是它们每个瞬间的速度都相等。
(二)、探究新知,揭示概念。
人教新课标版-数学-高二(人教B版)选修2-2教学设计 1.1.2 瞬时速度与导数
1.1.2 瞬时速度与导数教学目标:1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数教学重点:瞬时速度、瞬时变化率的概念、导数的概念;教学难点:导数的概念.课型:新授课.学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.预习达标.1.函数)(x f y =在),(00x x x ∆+内的平均变化率为x y ∆∆,如我们常用到年产量的平均变化率2.函数f (x )在区间上的平均变化率为()()2121f x f x x x --. 3.导数的定义: )(x f y =在0x 点附近有定义,对自变量任一改变量x ∆,函数改变量为()()00f x x f x x+∆-∆, 若极限x x f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim0000存在,称)(x f y =在0x 点处的导数. 教学过程例1:设函数)(x f 在点0x 处可导,试求下列各极限的值.(1)x x f x x f x ∆-∆-→∆)()(lim000;(2).2)()(lim 000hh x f h x f h --+→ 解:(1)原式=)()()(lim 000x x f x x f x ∆---∆-→∆)()()(lim0000x f xx f x x f x '-=∆--∆--=→∆ (2)原式=h h x f x f x f h x f h 2)()()()(lim 00000--+-+→ []).()()(21)()(lim )()(lim 21000000000x f x f x f h x f h x f h x f h x f h h '='+'=⎥⎦⎤⎢⎣⎡---+-+=→→ 例2:若2)(0='x f ,则kx f k x f k 2)()(lim000--→等于( ) A .-1 B .-2 C .-1 D .21 【解析】[]2)()(lim )(0000=---+='→kx f k x f x f k (含k x -=∆), ∴kx f k x f k 2)()(lim 000--→ [])(21)()((lim 210000x f k x f k x f k '-=---+-=→ .1221-=⨯-=故选A . 【答案】A课内练习:1. 若k x x f x x f x =∆-∆+→∆)()(lim 000,则xx f x x f x ∆-∆⋅+→∆)()2(lim 000等于( ) A .k 2 B .k C .k 21 D .以上都不是 2.已知函数y =f (x )在区间(a ,b )内可导,且x 0∈(a ,b )则hh x f h x f h )()(000lim--+→ 的值为( ) A.)(0x f ' B.)(20x f ' C.)(20x f '- D.03.若2)(0='x f ,则kx f k x f k 2)()(lim 000--→等于( ) A .-1 B .-2 C .-21 D .21 4.已知曲线y =x 2+1在点M 处的瞬时变化率为-4,则点M 的坐标为( )A .(1,3)B .(-4,33)C .(-1,3)D .不确定5.xx f x x f x ∆-∆-→∆)()(lim000= . 6.000()()lim 2h f x h f x h h →+--= .【答案】1.A2.B3.C4.C5. )(0x f '-6. )(0x f '课堂小结:通过本节课的学习,你收获了哪些知识? 教学反思。
苏教版数学高二-苏教版数学选修2-2 第1课时 瞬时变化率 导数
1.1.2 瞬时变化率——导数第1课时课时目标 1.知道导数的几何意义.2.用导数的定义求曲线的切线方程.1.导数的几何意义:函数y =f (x )在点x 0处的导数f ′(x 0)的几何意义是:__________________________.2.利用导数的几何意义求曲线的切线方程的步骤:(1)求出函数y =f(x)在点x 0处的导数f ′(x 0);(2)根据直线的点斜式方程,得切线方程为________________.一、填空题1.曲线y =1x在点P(1,1)处的切线方程是________. 2.已知曲线y =2x 3上一点A(1,2),则A 处的切线斜率为________.3.曲线y =4x -x 3在点(-1,-3)处的切线方程是____________.4.若曲线y =x 2的一条切线l 与直线x +4y -8=0垂直,则l 的方程为______________.5.曲线y =2x -x 3在点(1,1)处的切线方程为______.6.设函数y =f(x)在点x 0处可导,且f ′(x 0)>0,则曲线y =f(x)在点(x 0,f(x 0))处切线的倾斜角的范围是________.7.曲线f(x)=x 3+x -2在点P 处的切线平行于直线y =4x -1,则P 点的坐标为______________.8.已知直线x -y -1=0与曲线y =ax 2相切,则a =________.二、解答题9.已知曲线y =4x在点P(1,4)处的切线与直线l 平行且距离为17,求直线l 的方程.10.求过点(2,0)且与曲线y =1x相切的直线方程.能力提升11.已知曲线y =2x 2上的点(1,2),求过该点且与过该点的切线垂直的直线方程.12.设函数f(x)=x3+ax2-9x-1 (a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求a的值.1.利用导数可以解决一些与切线方程或切线斜率有关的问题.2.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则切线方程为y-f(x0)=f′(x0) (x-x0);若已知点不在切线上,则设出切点(x0,f(x0)),表示出切线方程,然后求出切点.答案知识梳理1.曲线y=f(x)上过点x0的切线的斜率2.(2)y-y0=f′(x0)·(x-x0)作业设计1.x+y-2=0解析ΔyΔx=11+Δx-1Δx=-Δx1+ΔxΔx=-11+Δx,当Δx无限趋近于0时,ΔyΔx无限趋近于-1,∴k=-1,∴切线方程为y-1=-(x-1),即x+y-2=0.2.6解析∵y=2x3,∴ΔyΔx=2(x+Δx)3-2x3Δx=2(Δx )3+6x (Δx )2+6x 2(Δx )Δx=2(Δx )2+6x (Δx )+6x 2.∴当Δx 无限趋近于0时,Δy Δx无限趋近于6x 2, ∴点A (1,2)处切线的斜率为6.3.x -y -2=0解析 Δy Δx =4(x +Δx )-(x +Δx )3-4x +x 3Δx=4-(Δx )2-3x 2-3x (Δx ),当Δx 无限趋近于0时,Δy Δx无限趋近于4-3x 2, ∴f ′(-1)=1.所以在点(-1,-3)处的切线的斜率为k =1,所以切线方程是y =x -2.4.4x -y -6=0解析 与直线x +4y -8=0垂直的直线l 为4x -y +m =0,即y =x 2在某一点的导数为4,而y ′=2x ,所以y =x 2在(2,2)处导数为4,此点的切线方程为4x -y -6=0.5.x +y -2=0解析 Δy Δx=2-(Δx )2-3x 2-3x (Δx ), 当Δx 无限趋近于0时,Δy Δx无限趋近于2-3x 2, ∴y ′=2-3x 2,∴k =2-3=-1.∴切线方程为y -1=-(x -1),即x +y -2=0.6.⎝⎛⎭⎫0,π2 解析 k =f ′(x 0)>0,∴tan θ>0,∴θ∈⎝⎛⎭⎫0,π2. 7.(1,0)或(-1,-4)解析 设P (x 0,y 0),由f (x )=x 3+x -2,Δy Δx=(Δx )2+3x 2+3x (Δx )+1, 当Δx 无限趋近于0时,Δy Δx无限趋近于3x 2+1. ∴f ′(x )=3x 2+1,令f ′(x 0)=4,即3x 20+1=4,得x 0=1或x 0=-1,∴P (1,0)或P (-1,-4).8.14解析 Δy Δx =a (x +Δx )2-ax 2Δx=2ax +a (Δx ), 当Δx 无限趋近于0时,2ax +a (Δx )无限趋近于2ax ,∴f ′(x )=2ax . 设切点为(x 0,y 0),则f ′(x 0)=2ax 0,2ax 0=1,且y 0=x 0-1=ax 20,解得x 0=2,a =14.9.解 Δy Δx =f (x +Δx )-f (x )Δx=4x +Δx -4x Δx =-4Δx x (Δx )(x +Δx )=-4x (x +Δx ), 当Δx 无限趋近于0时,-4x (x +Δx )无限趋近于-4x 2,即f ′(x )=-4x 2.k =f ′(1)=-4,切线方程是y -4=-4(x -1), 即为4x +y -8=0,设l :4x +y +c =0,则17=|c +8|42+12,∴|c +8|=17,∴c =9,或c =-25,∴直线l 的方程为4x +y +9=0或4x +y -25=0.10.解 (2,0)不在曲线y =1x 上,令切点为(x 0,y 0),则有y 0=1x 0.① 又Δy Δx =1x +Δx -1x Δx =-1x (x +Δx ),当Δx 无限趋近于0时,-1x (x +Δx )无限趋近于-1x 2.∴k =f ′(x 0)=-1x 20.∴切线方程为y =-1x 20(x -2).而y 0x 0-2=-1x 20.② 由①②可得x 0=1,故切线方程为x +y -2=0.11.解 ΔyΔx =2(1+Δx )2-2Δx =4Δx +2(Δx )2Δx =4+2Δx ,当Δx 无限趋近于0时,ΔyΔx 无限趋近于4,∴f ′(1)=4.∴所求直线的斜率为k =-14.∴y -2=-14(x -1),即x +4y -9=0.12.解 ∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3,∴Δy Δx=3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2. 当Δx 无限趋近于零时,Δy Δx无限趋近于3x 20+2ax 0-9. 即f ′(x 0)=3x 20+2ax 0-9.∴f ′(x 0)=3⎝⎛⎭⎫x 0+a 32-9-a 23. 当x 0=-a 3时,f ′(x 0)取最小值-9-a 23. ∵斜率最小的切线与12x +y =6平行, ∴该切线斜率为-12.∴-9-a 23=-12.解得a =±3. 又a <0,∴a =-3.。
高二数学选修2 瞬时变化率——导数 教案
高二数学选修2 瞬时变化率−−导数教学目标:(1)什么是曲线上一点处的切线,如何作曲线上一点处的切线?如何求曲线上一点处的曲线?注意曲线未必只与曲线有一个交点。
(2)了解以曲代直、无限逼近的思想和方法 (3)瞬时速度与瞬时加速度的定义及求解方法。
(4)导数的概念,其产生的背景,如何求函数在某点处的导数。
重点难点:求曲线的切线,瞬时速度、瞬时加速度及函数在某点处的导数是本节的重点及难点。
教学内容: 一.回顾:平均变化率二.新授:1.曲线上一点处的切线:(以曲代直)割线逼近切线问题:曲线上是否所有点处都有切线?切线与曲线是否仅有一个交点?切线的斜率:设曲线C 上一点(,())P x f x ,过点P 的一条割线交曲线C 于另一点(,())Q x x f x x +∆+∆ ,则割线PQ 的斜率为 ()()()PQ f x x f x k x x x +∆-=+∆-=()()f x x f x x+∆-∆当点Q 沿曲线C 向点P 运动,并无限靠近P 点时,割线PQ 逼近点P 的切线l ,从而割线的斜率逼近切线l 的斜率,即当x ∆无限趋近于0时,()()f x x f x x+∆-∆无限趋近于点P (,x ())f x 处的切线的斜率例1. 已知2()f x x =,用割线逼近曲线的方法求曲线()y f x =在2x =处的切线的斜率。
例2. 求抛物线24y x =在(0,0)P 处的切线方程例3. 曲线3y x =在00x =处的切线是否存在,若存在,求出切线的斜率和切线方程;若不存在,请说明理由。
小结:曲线上那些点处有切线?曲线上一点处切线的求法?如何作曲线的切线?2.瞬时速度与瞬时加速度问题:跳水运动员从10米高跳台腾空到入水的过程中,不同时刻的速度是不同的。
假设t 秒后运动员相对于水面的高度为2() 4.9 6.510H t t t =-++,试确定2t s =时运动员的速度。
瞬时速度的定义:一般地,我们计算运动物体位移()S t 的平均变化率00()()S t t S t t +∆-∆,如果当t ∆无限趋近于0时,00()()S t t S t t+∆-∆无限趋近于一个常数,那么这个常数称为物体在0t t =时的瞬时速度。
人教课标版高中数学选修2-2《变化率与导数(第1课时)》教案-新版
第一章 导数及其应用 1.1 变化率与导数第1课时教学目标 1. 核心素养通过变化率与导数的学习,体验数学发现和创造的过程,提高抽象概括能力. 2. 学习目标(1)1.1.1通过实例,经历平均变化率过渡到瞬时变化率的过程,(2)1.1.2了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵. 3. 学习重点平均变化率与导数的概念;体会导数思想及内涵. 4. 学习难点理解导数的概念,掌握导数的记号. (一) 课前设计 1.预习任务 任务1阅读教材P 2-P 6,思考:平均变化率和瞬时变化率是什么?平均变化率和瞬时变化率的区别是什么?你能否举出一个实例,求平均变化率和瞬时变化率. 任务2导数是什么?导数的记号是什么?2.预习自测1.一球沿一斜面自由滚下,其运动方程是2()s s t t == (位移单位:m ,时间单位:s ),则小球在2到3秒间的平均速度为_____________. 答案:5/m s2.一做直线运动的物体,从1t =到1t t =+∆这段时间里,物体的位移为s ∆,那么0lim t st∆→∆∆为( )A .从1到1t +∆这段时间内物体的平均速度B .从0到1这段时间内物体的平均速度C .物体在1t =这一时刻的瞬时速度D .物体在1t +∆这个时刻的瞬时速度 答案:C3.下列各式正确的是( ) A .f ′(x 0)=lim Δx →0f (x 0-Δx )-f (x 0)x B .f ′(x 0)=lim Δx →0f (x 0-Δx )+f (x 0)Δx C .f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)x D .f ′(x 0)=lim Δx →0f (x 0+Δx )+f (x 0)x答案:C (二) 课堂设计 1.知识回顾(1)物理中平均速度xv t=,其中x 是位移,t 是时间. (2)物理中平均速率sv t=,其中s 是路程,t 是时间.(3)指数函数(1)x y a a =>的增长速度如何变化?指数增长越来越快. (4)对数函数log (1)a y x a =>的增长速度又如何变化?对数增长越来越慢. 2.问题探究问题探究一●活动一 阅读思考,体验平均变化率请大家阅读教材问题1:气球的膨胀率,然后思考:若气球的体积由1V 增长到2V 时,气球的平均膨胀率是多少?设气球的半径为r ,所以气球的平均膨胀率为()()1212r V r V r V V -=-. ●活动二 类比巧思,解决同类问题对比气球的膨胀率与平均速度如何证明指数函数(1)x y a a =>的增长速度越来越快?当x 从1增加到2时,函数值的平均增长率为2(1)a a a a -=-; 当x 从2增加到3时,函数值的平均增长率为322(1)a a a a -=-; 当x 从3增加到4时,函数值的平均增长率为433(1)a a a a -=-; 当a >1时,所以指数函数(1)x y a a =>的增长速度越来越快. ●活动三 归纳总结,收获新的认识请大家结合气球膨胀率、平均速度、函数增长速度等实例归纳什么是平均变化率?设函数()y f x =,12,x x 是其定义域内的两点,称式子2121()()f x f x x x --称为函数()y f x =从1x 到2x 的平均变化率.习惯上用x ∆表示21x x -,即21x x x ∆=-,可把x ∆看作是相对于1x 的一个“增量”.可用1x x +∆代替2x ;类似地,21()()y f x f x ∆=-.于是平均变化率也可表示为yx∆∆.且易知11()()f x x f x y x x +∆-∆=∆∆. 注意:x ∆是一个整体符号,不是∆与x 相乘,它可正、可负、不可为零.例 1 已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 【知识点:平均变化率】解:)1()1(22x x y ∆+-+∆+--=∆+-,∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2点拨:理解函数的平均变化率.例2 求2x y =在0x x =附近的平均变化率。
苏教版高中数学选修2-2《瞬时变化率—导数:曲线上一点处的切线》教学教案
1.1.2《瞬时变化率-导数》教案(一)曲线上一点处的切线一、教学目标1.理解并掌握曲线在某一点处的切线的概念;2.掌握用割线逼近切线的方法;3.会求曲线在一点处的切线的斜率与切线方程.二、教学重点、难点重点:理解曲线在一点处的切线和切线的斜率的定义,掌握曲线在一点处切线斜率的求法难点:理解曲线在一点处的切线的定义,特别是对“无限逼近”、“局部以直代曲”的理解三、教学过程【问题情景】导数是解决函数的最大值、最小值问题的有力工具.导数的知识形成一门学科,就是我们通常所说的微积分.微积分除了解决最大值、最小值问题,还能解决一些复杂曲线的切线问题.导数的思想最初是法国数学家费马(Fermat)为解决极大、极小问题而引入的.但导数作为微分学中最主要概念,却是英国科学家牛顿(Newton)和德国数学家莱布尼兹(Leibniz)分别在研究力学与几何学过程中建立的.微积分能成为独立的科学并给整个自然科学带来革命性的影响,主要是靠了牛顿和莱布尼兹的工作.但遗憾的是他们之间发生了优先权问题的争执.其实,他们差不多是在相同的时间相互独立地发明了微积分.方法类似但在用语、符号、算式和量的产生方式稍有差异.牛顿在1687年以前没有公开发表,莱布尼兹在1684年和1686年分别发表了微分学和积分学. 所以,就发明时间而言,牛顿最于莱布尼兹,就发表时间而言,莱布尼兹则早于牛顿.关于谁是微积分的第一发明人,引起了争论.而我们现在所用的符号大多数都是莱布尼兹发明的.而英国认为牛顿为第一发明人,拒绝使用莱布尼兹发明的符号,因此,使自己远离了分析【学生活动,建构数学】(一)点P 附近的曲线1.平均变化率:函数()f x 在区间[]12x x ,上的平均变化率为 . 即曲线上两点的连线(割线)的斜率。
显然平均变化率近似地刻画了曲线在某个区间上的变化趋势。
2.如何精确地刻画曲线上某一点处的变化趋势呢?(点P 附近的曲线的研究)(从直线上某点的变化趋势的研究谈起,结合“天圆地方”的故事带来“宏观上曲,微观上直”,“曲绝对,直相对”的初步感受,后提出“放大图形”的朴素方法.)C1C2(1)观察“点P 附近的曲线”,随着图形放大,你看到了怎样的现象?曲线有点像直线(2)这种现象下,这么一条特殊位置的曲线从其趋势看几乎成了直线 这种思维方式就叫做“逼近思想”。
高中数学瞬时变化率—导数苏教版选修2-2 教案
瞬时变化率—导数教学目的:知识与技能:掌握用极限给瞬时速度下的精确的定义.过程与方法:会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 情感、态度与价值观:理解足够小、足够短的含义教学重点:知道了物体的运动规律,用极限来定义物体的瞬时速度,学会求物体的瞬时速度.教学难点:理解物体的瞬时速度的意义教具准备:与教材内容相关的资料。
教学设想:提供一个舞台, 让学生展示自己的才华,这将极大地调动学生的积极性,增强学生的荣誉感,培养学生独立分析问题和解决问题的能力,体现了“自主探究”,同时,也锻炼了学生敢想、敢说、敢做的能力。
教学过程:学生探究过程: 我们物理中学习直线运动的速度时,已经学习了物体的瞬时速度的有关知识,现在我们从数学的角度重新来认识一下瞬时速度一、复习引入:1.曲线的切线如图,设曲线c 是函数()y f x 的图象,点00(,)P x y 是曲线 c 上一点作割线PQ 当点Q 沿着曲线c 无限地趋近于点P ,割线PQ 无限地趋近于某一极限位置PT 们就把极限位置上的直线PT ,叫做曲线c 在点P 处的切线y=f(x)β∆x ∆yQM Px O y00(,)P x y 处的切线斜率的方法:因为曲线c 是给定的,根据解析几何中直线的点斜是方程的知识,只要求出切设割线PQ 的倾斜角为β,切线PT 的倾斜角为α,既然割线PQ 的极限位置上的直线PT 是切线,所以割线PQ 斜率的极限就是切线PQ 的斜率tan α,即tan α=0lim →∆x =∆∆x y 0lim →∆x 0x∆ 二、讲解新课:1.瞬时速度定义:运动物体经过某一时刻(某一位置)的速度,叫做瞬时速度.2. 确定物体在某一点A 处的瞬时速度的方法:要确定物体在某一点A 处的瞬时速度,从A 点起取一小段位移AA 1,求出物体在这段位移上的平均速度,这个平均速度可以近似地表示物体经过A 点的瞬时速度.当位移足够小时,物体在这段时间内运动可认为是匀速的,所得的平均速度就等于物体经过A 点的瞬时速度了.我们现在已经了解了一些关于瞬时速度的知识,现在已经知道物体做直线运动时,它的运动规律用函数表示为s =s (t ),也叫做物体的运动方程或位移公式,现在有两个时刻t 0,t 0+Δt ,现在问从t 0到t 0+Δt 这段时间内,物体的位移、平均速度各是:位移为Δs =s (t 0+Δt )-s (t 0)(Δt 称时间增量) 平均速度tt s t t s t s v ∆-∆+=∆∆=)()(00 根据对瞬时速度的直观描述,当位移足够小,现在位移由时间t 来表示,也就是说时间足够短时,平均速度就等于瞬时速度.现在是从t 0到t 0+Δt ,这段时间是Δt . 时间Δt 足够短,就是Δt 无限趋近于0. 当Δt →0时,平均速度就越接近于瞬时速度,用极限表示瞬时速度 瞬时速度tt s t t s v v t t ∆-∆+==→∆→∆)()(lim lim 0000 所以当Δt →0时,平均速度的极限就是瞬时速度三、讲解X 例:例1物体自由落体的运动方程s =s (t )=21gt 2,其中位移单位m ,时间单位s ,g =9.8 m/s 2. 求t =3这一时段的速度. 解:取一小段时间[3,3+Δt ],位置改变量Δs =21g (3+Δt )2-21g ·32=2g (6+Δt )Δt ,平均速度21=∆∆=t s v g (6+Δt )瞬时速度m/s 4.293)(21lim lim 00==∆+==→∆→∆g t t g v v t t 由匀变速直线运动的速度公式得v =v 0+at =gt =g ·3=3g =29.4 m/s例2已知质点M 按规律s =2t 2+3做直线运动(位移单位:cm ,时间单位:s),(1)当t =2,Δt =0.01时,求ts ∆∆.(2)当t =2,Δt =0.001时,求ts ∆∆. (3)求质点M 在t =2时的瞬时速度.分析:Δs 即位移的改变量,Δt 即时间的改变量,ts ∆∆即平均速度,当Δt 越小,求出的ts ∆∆越接近某时刻的速度. 解:∵tt t t t t s t t s t s ∆+-+∆+=∆-∆+=∆∆)32(3)(2)()(22=4t +2Δt ∴(1)当t =2,Δt =0.01时,ts ∆∆=4×2+2×0.01=8.02 cm/s (2)当t =2,Δt =0.001时,ts ∆∆=4×2+2×0.001=8.002 cm/s (3)v =00lim lim →∆→∆=∆∆t t t s (4t +2Δt )=4t =4×2=8 cm/s 四、巩固练习:1.一直线运动的物体,从时间t 到t t +∆时,物体的位移为s ∆,那么0lim t s t∆→∆∆为( )A.从时间t 到t t +∆时,物体的平均速度; B.在t 时刻时该物体的瞬时速度; C.当时间为t ∆时物体的速度; D.从时间t 到t t +∆时物体的平均2.一球沿一斜面自由滚下,其运动方程是s =s (t )=t 2(位移单位:m ,时间单位:s),求小球在t =5时的瞬时速度解:瞬时速度v =2200(5)(5)(5)5lim lim t t s t s t t t∆→∆→+∆-+∆-=∆∆lim t ∆→=(10+Δt )=10 m/s. ∴瞬时速度v =2t =2×5=10 m/s.M 按规律s =2t 2+3做直线运动(位移单位:cm ,时间单位:s),求质点M 在t =2时的瞬时速度.解:瞬时速度v =tt t s t s t t ∆+⋅-+∆+=∆-∆+→∆→∆)322(3)2(2lim )2()2(lim 2200 =0lim →∆t (8+2Δt )=8 cm/s. 点评:求瞬时速度,也就转化为求极限,瞬时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容五、教学反思 :这节课主要学习了物体运动的瞬时速度的概念,它是用平均速度的极限来定义的,主要记住公式瞬时速度v =tt ∆→∆lim。
高中数学 1.1.2瞬时变化率1导学案 苏教版选修22
1.通过割线逼近切线的过程,以割线的斜率逼近切线的斜率.
2.初步掌握曲线上某点处切线斜率的方法.
重难点:求切线的斜率及某点处的切线方程.
(预习教材P8 ~ P9,完成以下内容并找出疑惑之处)
一、知识梳理、双基再现
1.割线的概念:
2.曲线某点P处切线的概念:
3. 切线斜率:
二、小试身手、轻松过关
1. P10----练习1
2. P11----练习2
3. P11----练习3
三、基础训练、锋芒初显
1.在曲线y= x2上哪一点的切线斜率为4.
2. P11----练习4
四、举一反三、能力拓展
1.在曲线y= x2上哪一点的切线平行于直线y=4x-5.
2.在曲线y= x2上哪一点的切线垂直于直线y=4x-5.。
2019-2020学年人教A版选修2-2 1.1.2导数的概念 教案
§1.1.2导数的概念教学目标1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数教学重点:瞬时速度、瞬时变化率的概念、导数的概念;教学难点:导数的概念.教学过程:一.创设情景(一)平均变化率(二)探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题: ⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知, )0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. 二.新课讲授1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度。
运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t =时的瞬时速度是多少?考察2t =附近的情况:思考:当t ∆趋近于0时,平均速度v 有什么样的变化趋势?结论:当t ∆趋近于0时,即无论t 从小于2的一边,还是从大于2的一边趋近于2时,平均速度v 都趋近于一个确定的值13.1-. 从物理的角度看,时间t ∆间隔无限变小时,平均速度v 就无限趋近于史的瞬时速度,因此,运动员在2t =时的瞬时速度是13.1/m s - 为了表述方便,我们用0(2)(2)lim 13.1t h t h t∆→+∆-=-∆ 表示“当2t =,t ∆趋近于0时,平均速度v 趋近于定值13.1-”小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。
2 导数的概念从函数y =f (x )在x =x 0处的瞬时变化率是:0000()()lim lim x x f x x f x f x x∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即 0000()()()lim x f x x f x f x x∆→+∆-'=∆ 说明:(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率 (2)0x x x ∆=-,当0x ∆→时,0x x →,所以0000()()()limx f x f x f x x x ∆→-'=- 三.典例分析例1.(1)求函数y =3x 2在x =1处的导数.分析:先求Δf =Δy =f (1+Δx )-f (1) =6Δx +(Δx )2再求6f x x ∆=+∆∆再求0lim 6x f x∆→∆=∆ 解:法一(略)法二:222211113313(1)|lim lim lim3(1)611x x x x x x y x x x =→→→-⋅-'===+=-- (2)求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数. 解:x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 200(1)(1)2(1)lim lim (3)3x x y x x f x x x∆→∆→∆--+∆+-+∆-'-===-∆=∆∆例2.(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C )为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.解:在第2h 时和第6h 时,原油温度的瞬时变化率就是'(2)f 和'(6)f 根据导数定义,0(2)()f x f x f x x+∆-∆=∆∆ 22(2)7(2)15(27215)3x x x x+∆-+∆+--⨯+==∆-∆ 所以00(2)lim lim(3)3x x f f x x ∆→∆→∆'==∆-=-∆ 同理可得:(6)5f '=在第2h 时和第6h 时,原油温度的瞬时变化率分别为3-和5,说明在2h 附近,原油温度大约以3/C h 的速率下降,在第6h 附近,原油温度大约以5/C h 的速率上升.注:一般地,'0()f x 反映了原油温度在时刻0x 附近的变化情况.四.课堂练习1.质点运动规律为32+=t s ,求质点在3t =的瞬时速度为.2.求曲线y =f (x )=x 3在1x =时的导数.3.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义.五.回顾总结1.瞬时速度、瞬时变化率的概念2.导数的概念六.布置作业。
数学:1.1.2《瞬时变化率-导数》教案(苏教版选修2-2)
1。
1。
2瞬时变化率-导数(三)导数的概念一、教学目标1.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵.2. 会求函数在某点的导数。
二、例题讲解例 1(1)以初速度为)0(00>v v做竖直上抛运动的物体,t 秒时的高度为2021)(gt t v t s -=,求物体在时刻0t 处的瞬时速度。
(2)求122+=xy 在0x 到x x ∆+0之间的平均变化率. (3)设2)(x x f =+1,求)('x f,)1('-f ,)2('f例2、函数)(x f 满足2)1('=f ,则当x 无限趋近于0时,(1)=-+x f x f 2)1()1( (2)=-+xf x f )1()21( 变式:设f (x)在x=x 0处可导,(3)x x f x xf ∆-∆+)()4(00无限趋近于1,则)(0x f '=___________ (4)xx f x x f ∆-∆-)()4(00无限趋近于1,则)(0x f '=________________ (5)当△x 无限趋近于0,xx x f x xf ∆∆--∆+)2()2(00所对应的常数与)(0x f '的关系. 例3.(1)求函数y =3x 2在x =1处的导数.(2)求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数.例4:已知函数x x f =)(,求)(x f 在2=x 处的切线.例 5.某工厂每日产品的总成本C 是日产量x 的函数,即2571000)(x x x C ++=,试求:(1)当日产量为100时的平均成本;(2)当日产量由100增加到125时,增加部分的平均成本;(3)当日产量为100时的边际成本.三、课堂练习1.函数xx y 1+=, 在1=x 处的导数是 2.将半径为R 的球加热,若球的半径增加R ∆,则球的表面积增加S ∆等于( )AR R ∆π8 B ()248R R R ∆+∆ππ C ()244R R R ∆+∆ππ D ()24R ∆π 3. 在曲线12+=xy 的图象上取一点(1,2)及附近一点()y x ∆+∆+2,1,则x y ∆∆为( ) A 21+∆+∆x x B 21-∆-∆x x C 2+∆x D xx ∆-∆+12 四、课后作业1.函数)(x f y =在0x x =处的导数)(0/x f 的几何意义是( ) A 在点0x x =处的函数值 B 在点))(,(00x f x 处的切线与x 轴所夹锐角的正切值C 曲线)(x f y =在点))(,(00x f x 处的切线的斜率D 点))(,(00x f x 与点(0,0)连线的斜率2.已知曲线3x y =上过点(2,8)的切线方程为01612=--ax x ,则实数a 的值为( )3.设4)(+=ax x f ,若2)1('=f ,则a 的值( )4.任一做直线运动的物体,其位移s 与时间t 的关系是23t t s -=,则物体的初速度是( )5、求下列函数在相应位置的导数(1)1)(2+=xx f ,2=x (2)12)(-=x x f ,2=x (3)3)(=x f ,2=x6.已知曲线331x y =上的一点)38,2(P ,求(1)点P 处切线的斜率;(2)点P 处的切线方程.变式:已知曲线331x y =,求与直线084=++y x 垂直,并与该曲线相切的直线方程。
高中数学教案选修22《1.1.2瞬时变化率——导数》
Word 文档仅限参照教课目的:1.理解并掌握刹时速度的定义;2.会运用刹时速度的定义求物体在某一时辰的刹时速度和刹时加快度;3.理解刹时速度的实质背景,培育学生解决实质问题的能力.教课要点:会运用刹时速度的定义求物体在某一时辰的刹时速度和刹时加快度.教课难点:理解刹时速度和刹时加快度的定义.教课过程:一、问题情境1.问题情境.均匀速度:物体的运动位移与所用时间的比称为均匀速度.问题一均匀速度反应物体在某一段时间段内运动的快慢程度.那么怎样刻画物体在某一时辰运动的快慢程度?问题二跳水运动员从10m 高跳台凌空到入水的过程中, 不一样时辰的速度是不一样的.假定 t 秒后运动员相关于水面的高度为h( t) =- 4. 9t2+ 6. 5t+10, 试确立t=2s 时运动员的速度 .2.研究活动:( 1) 计算运动员在2s 到 2. 1s( t∈) 内的均匀速度.( 2) 计算运动员在2s 到( 2+ ?t)s( t∈) 内的均匀速度.( 3) 怎样计算运动员在更短时间内的均匀速度.研究结论:Word 文档仅限参照时间区间?t 均匀速度0.1-13.590. 01- 13. 1490. 001- 13. 10490. 0001- 13. 100490. 00001- 13. 100049 0. 000001- 13. 1000049当 ?t 0 时, v -13.1,该常数可作为运动员在 2s 时的刹时速度.即 t = 2s 时, 高度关于时间的刹时变化率.二、建构数学1.均匀速度.设物体作直线运动所经过的行程为=, 以 t 0 为开端时辰 , 物体在 t 时间内s f (t )的均匀速度为 v = s =f (t+t)-f (t0 ).ttv 可作为物体在 t 0 时辰的速度的近似值 , t 越小 , 近似的程度就越好.因此当t 0 时, v 极限就是物体在 t 0 时辰的刹时速度.三、数学运用例 1 物体作自由落体运动 ,运动方程为= 12 ,此中位移单位是m, 时Sgt2间单位是 s, =2,求:g 10 m/ s( 1) 物体在时间区间 s 上的均匀速度;Word 文档仅限参照( 2) 物体在时间区间上的均匀速度;( 3) 物体在 t =2s 时的刹时速度.剖析s = s(t 0+ t)- s(t 0 )=2g t + 1g ( t )2__2s = s(t 0+ t)- s(t 0 ) =2g + 1v = g ( t )__t t 2解 = s= 1v + t )t2 gg (2__( 1)将 ?t =0. 1 代入上式 , 得: v ==.__( 2)将 ?t =0.0 1 代入上式 , 得: v ==.__( 3)当 t 0,2+ t2,进而均匀速度 v 的极限为:__s= 2g =20m/ s.v = lim v = limt 0t 0t例 2设一辆轿车在公路上作直线运动 ,假定 t (s) 时的速度为2= +v(t ) t 3 ,求当 t = t 0 (s) 时轿车的刹时加快度 a .解+-a = v =f (tt ) f (t 0 )= 2t 0+ xtt∴当 ?t 无穷趋于 0 时, a 无穷趋于 2t 0 ,即 a = 2t 0 . 练习课本 P12— 1, 2.四、回首小结问题 1本节课你学到了什么?① 理解刹时速度和刹时加快度的定义;② 实质应用问题中刹时速度和刹时加快度的求解;问题 2解决刹时速度和刹时加快度问题需要注意什么?注意当 t 0 时, 刹时速度和刹时加快度的极限值.问题 3本节课表现了哪些数学思想方法?② 极限的思想方法.③ 特别到一般、从详细到抽象的推理方法.五、课外作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标:
1.理解并掌握曲线在某一点处的切线的概念;
2.理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;
3.理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化
问题的能力及数形结合思想.
教学重点:
理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法.
教学难点:
用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率.
教学过程:
一、问题情境
1.问题情境.
如何精确地刻画曲线上某一点处的变化趋势呢?
如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线.
如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线.事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线l,该直线l是经过点P的所有直线中最逼近曲线的一条直线.
因此,在点P附近我们可以用这条直线l来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲).
2.探究活动.
如图所示,直线l 1,l 2为经过曲线上一点P 的两条直线,
(1) 试判断哪一条直线在点P 附近更加逼近曲线;
(2) 在点P 附近能作出一条比l 1,l 2更加逼近曲线的直线l 3吗?
(3) 在点P 附近能作出一条比l 1,l 2,l 3更加逼近曲线的直线吗?
二、建构数学
切线定义: 如图,设Q 为曲线C 上不同于P 的一点,直线PQ 称为曲线的割线. 随着点Q 沿曲线C 向点P 运动,割线PQ 在点P 附近逼近曲线C ,当点Q 无限逼近点P 时,直线PQ 最终就成为经过点P 处最逼近曲线的直线l ,这条直线l 也称为曲线在点P 处的切线.这种方法叫割线逼近切线.
思考:如上图,P 为已知曲线C 上的一点,如何求出点P 处的切线方程?
三、数学运用
例1 试求2()f x x =在点(2,4)处的切线斜率.
解法一 分析:设P (2,4),Q (x Q ,f (x
Q )),
则割线PQ 的斜率为:
2()4
4
222Q Q PQ Q Q Q f x x k x x x --===+--
当Q 沿曲线逼近点P 时,割线PQ 逼近点P 处的切线,从而割线斜率逼近切线斜率;
当Q 点横坐标无限趋近于P 点横坐标时,即x Q 无限趋近于2时,k PQ 无限趋近于常数4.
从而曲线f (x )=x 2在点(2,4)处的切线斜率为4.
解法二 设P (2,4),Q (x Q ,x Q 2),则割线PQ 的斜率为:
22
(2)444∆∆∆∆∆∆PQ x k x x x x x
+-=+==+ 当∆x 无限趋近于0时,k PQ 无限趋近于常数4,从而曲线f (x )=x 2,在点(2,4)处的切线斜率为4.
练习 试求2()1f x x =+在x =1处的切线斜率.
解:设P (1,2),Q (1+Δx ,(1+Δx )2+1),则割线PQ 的斜率为:
22
[(1)1]222∆∆∆∆∆∆PQ x k x
x x x
x
++-=+==+ 当∆x 无限趋近于0时,k PQ 无限趋近于常数2,从而曲线f (x )=x 2+1在x =1处的切线斜率为2.
小结 求曲线()y f x =上一点处的切线斜率的一般步骤:
(1)找到定点P 的坐标,设出动点Q 的坐标;
(2)求出割线PQ 的斜率;
(3)当∞→∆x 时,割线逼近切线,那么割线斜率逼近切线斜率.
思考 如上图,P 为已知曲线C 上的一点,如何求出点P 处的切线方程? 解 设0000(())(())∆∆P x f x Q x x f x x ,,+,+
000000()()()()()∆∆∆∆PQ f x x f x f x x f x k x x x x
+-+-∴==+- 所以,当x ∆无限趋近于0时,
00()()∆∆f x x f x x
--无限趋近于点00(())P x f x ,处的切线的斜率.
变式训练 1.已知2()f x x =,求曲线()y f x =在1x =-处的切线斜率和切线方程;
2.已知1()f x x -=,求曲线()y f x =在1x =-处的切线斜率和切线方程;
3
.已知()f x ,求曲线()y f x =在12
x =处的切线斜率和切线方程. 课堂练习
已知()f x 求曲线()y f x =在12
x =处的切线斜率和切线方程. 四、回顾小结
1.曲线上一点P 处的切线是过点P 的所有直线中最接近P 点附近曲线的直线,则P 点处的变化趋势可以由该点处的切线反映(局部以直代曲).
2.根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程.
五、课外作业
.....................................
使用本文档删除后面的即可
致力于打造全网一站式文档服务需求,
为大家节约时间
文档来源网络仅供参考
欢迎您下载可以编辑的word文档
谢谢你的下载
本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,
打造全网一站式精品需求!
欢迎您的下载,资料仅供参考!
(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。