《组合数学》第二版(姜建国著)-课后习题答案全
组合数学-组合几何答案与讲稿
组合几何例讲 答案及讲稿(陶平生)基本内容与方法:组合计数;组合构造;组合结构;映射与对应;分类与染色;归纳与递推;容斥原理;极端原理;调整法;补集法;算两次;数形结合法,等等.1、矩形玻璃台板碎裂成一些小玻璃片,每块碎片都是凸多边形,将其重新粘合成原矩形后,有交结点30个,其中20个点在原矩形的周界上(包括原矩形的四个顶点),其余10点在矩形内部.在矩形的内部有45条粘缝(两个结点之间的线段算是一条粘缝,如图所示). 试求该矩形台板所碎裂成的各种类型(指三角形、四边形、五边形等等)的碎片块数. (若凸多边形的周界上有n 个点,就将其算作n 边形).解:设全部碎片中,共有三角形3a 个,四边形4a 个, … …,k 边形k a 个(34,,,k a a a 为非负整数),一个多边形,若其周界上有n 个顶点,就将其看成是n 边形,(例如图中的多边形ABCDE 要看成五边形).于是这些多边形的内角和S 角为:S 角()3422k a a a k πππ=⋅+⋅++⋅-.从另一方面看,矩形内部有10个结点,对于每个点,围绕它的多边形顶角和为2,π10个内结点共获得102π⋅弧度;矩形边界线段内共有16个结点,在每个这种结点处,各多边形的顶角在此汇合成一个平角,16个这种结点共获得16π弧度;而原矩形的四个顶点处,共收集到多边形碎片的2π弧度.因此,S 角2016238ππππ=++=,于是,()342238k a a k a +++-= ……○1. 再计算边数和S 边:由于每个n 边形有n 条边,则S 边3434k a a ka =+++.另一方面,在矩形的内部的45条粘缝,每条都是两个多边形的公共边,故都计算了两遍,矩形周界上的20条线段各被计算了一遍,因此,S 边24520110=⋅+=,则3434110k a a ka +++= (2)○2-○1得,()34272k a a a +++=,因此碎片的块数为:3436k a a a +++= (3)○1—○3得,()4562332k a a a k a ++++-= …… ○4. 注意所有i a 为非负整数,故670k a a a ====,4522a a += (5)○5式中,或者452, 0a a ==;或者450, 1a a ==,……○6. 因此由○3、○5、○6得,本题的解共有两种情况:即全部碎片共36块,其中,或含有34个三角形,2个四边形;或含有35个三角形,1个五边形.2、将圆周2011等分于点122011,,,A A A ,在以其中每三点为顶点的三角形中,求含有圆心的三角形的个数.解:一般地讨论圆周21n +等分的情况,任取其中一个分点,记为P ,然后将其余2n 个分点这样标志,自P 点后, 反时针方向的连续n 个点依次记为12,,,n A A A ; 顺时针方向的连续n 个点依次记为12,,,n B B B ;先考虑以P 为顶点且含有圆心的三角形,如图,显然,这种三角形的另两个顶点必须一个属于点集{}12,,,n A A A ,而另一个属于点集{}12,,,n B B B .且这种i j PA B ∆含有圆心当且仅当1i j n +≥+,{},1,2,,i j n ∈,今计算合于条件的三角形个数:当i k =时,j 可取值,1,,1n n n k --+,共计k 个值,因此这种含有圆心的n n3i j PA B ∆个数为()1112nk k n n ==+∑,当点P 取遍21n +个位置,共得 ()()11212n n n +⋅+个三角形,由每个三角形有三个顶点,故每个三角形重复计算了三遍,因此,合于条件的三角形个数为()()1216n n n ++.3、在一个圆周上给定十二个红点;求n 的最小值,使得存在以红点为顶点的n 个三角形,满足:以红点为端点的每条弦,都是其中某个三角形的一条边.解:设红点集为:{}1212,,,A A A A =,过点1A 的弦有11条,而任一个含顶点1A 的三角形,恰含两条过点1A 的弦,故这11条过点1A 的弦,至少要分布于6个含顶点1A 的三角形中;同理知,过点(2,3,,12)i A i =的弦,也各要分布于6个含顶点i A 的三角形中,这样就需要12672⨯=个三角形,而每个三角形有三个顶点,故都被重复计算了三次,因此至少需要72243=个三角形. 再说明,下界24可以被取到.不失一般性,考虑周长为12的圆周,其十二等分点为红点,以红点为端点的弦共有21266C =条.若某弦所对的劣弧长为k ,就称该弦的刻度为k ;于是红端点的弦只有6种刻度,其中,刻度为1,2,,5的弦各12条,刻度为6的弦共6条;如果刻度为,,a b c (a b c ≤≤)的弦构成三角形,则必满足以下两条件之一:或者a b c +=;或者12a b c ++=;于是红点三角形边长的刻度组(),,a b c 只有如下12种可能:()()()1,1,2,2,2,4,3,3,6,()()()()()()()()()2,5,5,1,2,3,1,3,4,1,4,5,1,5,6,2,3,5,2,4,6,3,4,5,4,4,4;下面是刻度组的一种搭配:取()()()1,2,3,1,5,6,2,3,5型各六个,()4,4,4型四个;这时恰好得到66条弦,且其中含刻度为1,2,,5的弦各12条,刻度为6的弦共6条;今构造如下:先作()()()1,2,3,1,5,6,2,3,5型三角形各六个,再用()4,4,4等型来补充. ()1,2,3型六个:其顶点标号为:{}{}{}{}{}{}2,3,5,4,5,7,6,7,9,8,9,11,10,11,1,12,1,3; ()1,5,6型六个:其顶点标号为:{}{}{}{}{}{}1,2,7,3,4,9,5,6,11,7,8,1,9,10,3,11,12,5;3()2,3,5型六个:其顶点标号为:{}{}{}{}{}{}2,4,11,4,6,1,6,8,3,8,10,5,10,12,7,12,2,9;()4,4,4型三个:其顶点标号为:{}{}{}1,5,9,2,6,10,3,7,11;()2,4,6型三个:其顶点标号为:{}{}{}2,8,12,6,12,4,4,10,8.(每种情况下的其余三角形可由其中一个三角形绕圆心适当旋转而得). 这样共得到24个三角形,因此,n 的最小值为24.4、在一个圆周上给定8个点128,,,A A A .求最小的正整数n ,使得以这8个点为顶点的任意n 个三角形中,必存在两个有公共边的三角形.解:先考虑两两无公共边的三角形个数的最大值r .八个点,每两点连一条弦,共得2828C =条弦,若每条弦只属于一个三角形,则这些弦至多能构成两两无公共边的三角形个数2893r ⎡⎤≤=⎢⎥⎣⎦个,但若有9个这样的三角形,共得27个顶点,则八边形必有一顶点,至少属于4个三角形,设为8A ,共顶点8A 的4个三角形,8A 的对边都是127,,,A A A 之中的两点连线,其中必有一点,设为k A ,出现了两次,那么相应的两个三角形将有一条公共边8k A A ,这不可能;故8r ≤.另一方面,当8r =时,我们确实可以作出这样的8个三角形,使得其中任两个三角形都无公共边;注意这样的8个三角形,共产生24个顶点,若使每点所参与的三角形个数都小于4,那么每点恰好属于3个三角形,也就是说,每个点,恰与其余七点中的6点有边相连,而与另一点不连边;考虑每点度数皆为6的八阶图G :为简明起见,取圆周的八等分点作为图G 的八个顶点,作8阶完全图,然后去掉其中4条直径,这样共得24条边,且每点均属于6条边;在由这些边所构成的三角形中,选取八个等腰三角形: (1,2,3),(3,4,5),(5,6,7),(7,8,1)以及 (1,4,6),(3,6,8),(5,8,2),(7,2,4),它们两两无公共边;(每一组的四个三角形,皆可由其中一个三角形绕圆心适当旋转而得到).因此,8r =,从而所求的最小值19n r =+=.5、试确定,是否能将1,2,,10这十个数分别标于五角星的十个结点上,使得每一条边上的四个数之和都相等?证明你的结论.解:不能.反证法,假若有一种填法,使得五角星每条边上的四数之和都相等,记此和值为S ,则由于五角星的任两条边都相交,每一点恰有两条边经过,则52(1210)110S =+++=,所以,22S =.即每条边上的四数之和皆为22.先证明,10与1必共线,事实上,假若10与1不共线,考虑经过10的两根线,设10所在的一条线上的四数为12310,,,x x x ,另一条线上的四数为12310,,,y y y ,则123123442(10)(10)S x x x y y y ==+++++++12312320()x x x y y y =++++++20(234567)47≥++++++=,矛盾!故10与1必共线.下面用两种方法证明本题结论:方法一:记10与1所共的线为l ,l 上所填的另两数设为12,a a ,则1211a a +=,它有四种情况:{}{}{}{}{}12,2,9,3,8,4,7,5,6a a =;数10所在的另一根线记为10l ,10l 上的另三数设为123,,b b b ,则12312b b b ++=,它有三种情况:{}{}{}{}123,,2,3,7,2,4,6,3,4,5b b b =;数1所在的另一根线记为1l ,1l 上的另三数设为123,,c c c ,则12321c c c ++=,它有三种情况:{}{}{}{}123,,5,7,9,6,7,8,4,8,9c c c =;由于110,,l l l 两两之间恰有一个公共点,假若{}1,10,2,9l =,则{}{}1101,6,7,8,10,3,4,5l l ==,而110l l =∅,矛盾! 假若{}1,10,3,8l =,则{}{}1101,5,7,9,10,2,4,6l l ==,而110l l =∅,矛盾! 假若{}1,10,5,6l =,则{}{}1101,4,8,9,10,2,4,6l l ==,而110l l =∅,矛盾!假若{}1,10,4,7l =,则1l 与10l 各有两个点在l 上,这时110,,l l l 三线重合,矛盾! 因此所述结论成立.方法二:删去10所在的两根线(1所在的点也被删去),五角星上剩下不共线的三个点,它们构成ABC ∆,这三顶点的填数和为:55222121a b c ++=-⨯+=.ABC ∆恰有一条边在1l (1所在的另一线)上,即1l 上有异于1的两点是ABC ∆的两个顶点,设为,B C ,1l 上的另一点记为D ,由于1l 上除1之外的另三数的和也是21,设点D 上的填数为d ,那么21a b c b c d ++==++,所以a d =,矛盾!(因D 在边BC 上而,,A B C 不共线),因此所述结论成立.6、两个正三角形交叠成一个六角星(如图),现将前12个正整数1,2,,12分别填于图中的12个结点处,使得每条直线上所填的四数之和相等.()01、试求六角星的六个顶点126,,,a a a 处填数之和的最小值;()02、证明适合条件的不同填数方案有偶数个.(对于填数方案π与T ,若方案π经旋转、翻转后能与方案T 重合,则认为是相同的填数方案)()01、解:对于满足条件的任一填法,将点ia 处所填的数仍记为ia ,1,2,,12i =,若每条直线上的四数之和为s ,则由()621212s =+++,得到26s =;在135a a a ∆的三条边上,有()()()1893310115512713a a a a a a a a a a a a s +++++++++++= ……○1 在246a a a ∆的三条边上,有()()()2910441112667823a a a a a a a a a a a a s +++++++++++= ……○2 两式相减得 135246a a a a a a ++=++ ……○3,由此知,两个三角形顶点处填数之和相等,若记 ()()135246m a a a a a a =+++++,则m 为偶数. 因为在1,2,,12中,最小的六数之和12621+++=为奇数,则22m ≥.若22m =,由于在1,2,,12中,和为22的六数只有1,2,3,4,5,7,将其分为和相等的两组,每组三个数,只有唯一的分法: {1,3,7}与{2,4,5}.今忽略外圈的具体数字,而将{1,3,7}与{2,4,5}分别改记为{奇,奇,奇}与{偶,偶,奇},那么在旋转意义下,六个顶点处的填字方式唯一.现在再来考虑内圈六数的填法,用记号a b 表示整数,a b 同奇偶,由于每线上四数之和s 为偶数,则987121011 , a a a a a a ,而在内圈六数6,8,9,10,11,12之中,恰有四个偶数,两个奇数,因此{}{}1011, 9, 11a a =,由于1011, a a 落在奇顶三角形的一条边上,该边两顶点的填数之和应是()9116s -+=,但是在{}1,3,7中不存在和为6的两个数,矛盾。
组合数学课后习题答案
第一章答案1.(a) 45 ( {1,6},{2,7},{3,8},…,{45,50} )(b) 45⨯5+(4+3+2+1) = 235( 1→2~6, 2→3~7, 3→4~8, …,45→46~50, 46→47~50, 47→48~50, 49→50 ) 2.(a) 5!8!(b) 7! P(8,5) (c) 2 P(5,3) 8! 3. (a) n!P(n+1, m) (b) n!(m+1)!(c) 2!((m+n-2)+1)! 4. 2 P(24,5) 20!5. 2⨯5⨯P(8,2)+3⨯4⨯P(8,2)6. (n+1)!-17. 用数学归纳法易证。
8. 41⨯319. 设 n=p 1n 1p 2n 2…p kn k , 则n 2的除数个数为 ( 2p 1+1) (2p 2+1) …(2p k+1).10.1)用数学归纳法可证n 能表示成题中表达式的形式;2)如果某n 可以表示成题中表达式的形式,则等式两端除以2取余数,可以确定a 1;再对等式两端的商除以3取余数,又可得a 2;对等式两端的商除以4取余数,又可得a 3;…;这说明表达式是唯一的。
11.易用C(m,n)=m!/(n!(m-n)!)验证等式成立。
组合意义:右:从n 个不同元素中任取r+1个出来,再从这r+1个中取一个的全体组合的个数;左:上述组合中,先从n 个不同元素中任取1个出来,每一个相同的组合要生复 C(n-1,r) 次。
12.考虑,)1(,)1(101-=-=+=+=∑∑n nk k k n nnk kknx n x kC x x C 求导数后有令x=1, 即知.210-==∑n nk kn n kC13. 设此n 个不同的数由小到大排列后为a 1, a 2, …, a n 。
当第二组最大数为a k 时,第二组共有2k-1种不同的可能,第一组有2n-k -1种不同的可能。
故符合要求的不同分组共有12)2()12(21111+-=-----=∑n k n k n k n 种。
组合数学基础-答案及讲稿
组合数学基础答案及讲稿(陶平生)基本内容与方法:组合计数;组合构造;组合结构;映射与对应;分类与染色;归纳与递推;容斥原理;极端原理;调整法;补集法;数形结合法,等等.1、设M 为n 元集,若M 有k 个不同的子集12,,,k A A A ,满足:对于每个{},1,2,,i j k ∈ ,i j A A ≠∅ ,求正整数k 的最大值.解:正整数k 的最大值为12n -.()01、先证明,存在M的12n -个子集,两两之交不空;设{}12,,,n M a a a = ,而1122,,,n A A A - 为集合{}121,,,n a a a - 的全部12n -个子集,令{}1,1,2,,2n i i n B A a i -== ,则M 的12n -个子集1122,,,n B B B - ,两两之交不空;()02、再证,对于M的任何121n -+个子集,其中必有两个子集不相交.设1122,,,n B B B - 是M 的12n -个不同子集,其中每个皆含n a ;用i B 表示子集i B 在M 中的补集,1(\),1,2,,2n i i B M B i -== ,则对于任意i j ≠,,i j i j B B B B ≠≠,并且j i B B ≠, (因前者含n a 而后者不含),故1122,,,n B B B - ,1122,,,n B B B - 为M 的全部2n个不同子集,现将上述集合搭配成为12n -对:()()()11122122,,,,,,n n B B B B B B -- ;任取M 的121n -+个子集,必有两个子集属于同一对,则这两个子集不相交.2、将前九个正整数1,2,,9 分成三组,每组三个数,使得每组中的三数之和皆为质数;求出所有不同分法的种数.证:()01、由于在1,2,,9 中,三个不同的数之和介于6和24之间,其中的质数有7,11,13,17,19,23这六个数,今将这六数按被3除的余数情况分为两类:{}7,13,19A =,其中每个数被3除余1;{}11,17,23B =,其中每个数被3除余2;假若所分成的,,A B C 三组数对应的和,,a b c p p p 为互异质数,则因12945a b c p p p ++=+++= 被3整除,故三个和数,,a b c p p p 必为同一类数,因为A 类三数和713193945++=<,B 类三数和1117235145++=>,矛盾! 故三个和数中必有两个相等.()02、据()01知,将45表成7,11,13,17,19,23中的三数和(其中有两数相等),只有四种情况:()119197++;()2171711++;()3131319++;()4111123++.由于在1,2,,9 中有5个奇数,故分成的三组中必有一组,三数全为奇数,另两组各有一个奇数.对于情形()1,和为7的组只有{}1,2,4,剩下六数3,5,6,7,8,9,分为和为19的两组,且其中一组全为奇数,只有唯一的分法:{}3,7,9与{}5,6,8;对于情形()2,若三奇数的组为{}1,7,9,则另两组为 {}{}4,5,8,2,3,6;或{}{}3,6,8,2,4,5;若三奇数的组为{}3,5,9,则另两组为 {}{}2,8,7,1,4,6,或{}{}4,6,7,1,2,8; 若三奇数的组为{}1,3,7,则另两组为 {}{}2,6,9,4,5,8;共得分法5种;对于情形()3,若三奇数的组为{}3,7,9,则另两组为 {}{}1,4,8,2,5,6; 若三奇数的组为{}1,3,9,则另两组为 {}{}2,4,7,5,6,8或{}{}2,5,6,4,7,8; 若三奇数的组为{}1,5,7,则另两组为 {}{}3,4,6,2,8,9或{}{}2,3,8,4,6,9; 共得分法5种;对于情形()4,和为23的组只有{}6,8,9,则另两组为 {}{}1,3,7,2,4,5; 据以上,共计得到155112+++=种分法.3、设正整数a 的各位数字全由1和2组成,由其中任意() 2k k ≥个连续数位上的数字所组成的k 位数,称为数a 的一个“k 段”;若数a 的任两个“k 段”都不相同.证明:对于具有这种性质的最大正整数a ,其开初的一个“1k -段”和最后的一个“1k -段”必定相同.证:设12n a x x x = 是一个具有这种性质的最大正整数,由a 的最大性,在其后面无论添加1或2,所得到的1n +位数1121n a x x x = 以及2122n a x x x = 中,都有两个相同的“k 段”. 设在1a 中有 1121i i i k n k n x x x x x ++--+= ;在2a 中有1122j j j k n k n x x x x x ++--+= . 显然i j ≠,(因为11i k j k x x +-+-≠),且11i n k ≤≤-+,11j n k ≤≤-+,如果1i =或1j =,则直接去掉相应“k 段”中的末位数,可知结论成立;如果2i ≥且2j ≥,因 12212i i i k n k n j j j k x x x x x x x x ++--+++-== ,考虑各自的前一位数字111, , i j n k x x x ---+,它们只取1和2两个值,其中必有两数相同,于是数a 中有两个相同的“k 段”,矛盾. 因此,i j 中必有一个为1,故结论得证.4、将数集},...,,{21n a a a A =中所有元素的算术平均值记为)(A P ,(na a a A P n+++=...)(21). 若B 是A 的非空子集,且)()(A P B P =,则称B 是A的一个“均衡子集”.试求数集}9,8,7,6,5,4,3,2,1{=M 的所有“均衡子集”的个数. 解:由于()5P M=,令{}{}54,3,2,1,0,1,2,3,4M x x M '=-∈=----,则()0P M '=, 依照此平移关系,M 和M '的均衡子集可一一对应.用()f k 表示M '的k 元均衡子集的个数,显然有(9)(1)1f f ==(M '的9元均衡子集只有M ',一元均衡子集只有{}0).M '的二元均衡子集共四个,为{,},1,2,3,4i B i i i =-=, 因此(2)4f =. M '的三元均衡子集有两种情况:(1)含有元素0的为{0}{,0,},1,2,3,4i B i i i =-= , 共四个;(2)不含元素0的,由于等式312,413=+=+可表示为3120,3120-++=--=以及4130,4130-++=--=,得到4个均衡子集{3,1,2},{3,1,2},{4,1,3},{4,1,3}------,因此(3)448f =+=.M '的四元均衡子集有三种情况:(1)每两个二元均衡子集之并:,14i j B B i j ≤<≤ , 共6个集; (2)不含元素0的三元均衡子集与{}0的并集,共4个集;(3)以上两种情况之外者,由于等式1423+=+可表为14230--++=以及14230+--=得2个均衡子集{1,4,2,3}--与{1,4,2,3}--,因此()464212f =++=. 又注意到,除M '本身外,若B '是M '的均衡子集,当且仅当其补集''M C B 也是M '的均衡子集,二者一一对应. 因此(9)(),1,2,3,4f k f k k -==.从而M '的均衡子集个数为9411()(9)2()12(14812)51k k f k f f k ===+=++++=∑∑.即M 的均衡子集有51个.5、某校有2010名新生,每人至少认识其中n 人,试求n 的最小值,使得其中必存在彼此认识的16个人.解:记这2010个人的集合为{}122010,,,M v v v = ,i v 所认识的人的集合记为, 1,2,2010i A i = ,则i A n ≥,且 1,2,2010i i v A i ∉= ,若12,v v 是M 中相识的两人,则有121222010A A A A A B n =+-≥- , 当220101n -≥,则有312v A A ∈ ,且123,,v v v 两两相识,而()123123123322010A A A A A A A A A n =+-≥-⋅ .当3220101n -⋅≥,则有4123v A A A ∈ ,且1234,,,v v v v 两两相识,而()123412341234432010A A A A A A A A A A A A n =+-≥-⋅ ,如此继续,得1215,,,v v v 两两相识,而151414151511115142010i i i i i i A A A A A n ===⎛⎫=+-≥-⋅ ⎪⎝⎭. 当151420101n -⋅≥,则有15161, i i v A =∈ 且1216,,,v v v 两两相识,而由151420101n -⋅≥,得142010115n ⋅+≥,n 为整数,则1877n ≥.再说明1877n =是最小的;若1876n =,我们可构造一种情形,使得M 中不存在相互认识的16个人.为此,将2010个人均分为1215,,,B B B 等15组,每组134个人,令同组的人互不相识,而异组的任两人皆相识,则M 中任一人v 所认识的人的个数皆为()141341876d v =⨯=,从M 中任取16个人,必有两个人属于这15组中的同一个组,于是这两人互不相识,因此M 中不存在相互认识的16个人.从而n 的最小值为1877.6、有()2nn ≥名运动员,其编号分别是1,2,,n ,在一次活动中,他们以任意方式站成了一排. 如果每次允许将其中一些人两两对换位置,但在同一轮操作过程中,任一人至多只能参与一次这种对换.证明:至多只需两轮这样的操作,可使队列变成1,2,,n 的顺序排列. 证明:对n 归纳,2≤n 时显然. 设n k ≤时结论成立;今证1n k =+时情形,设121,,...,k a a a +是1k +名运动员1,2,,1k + 的任一排法, (i ) 如果其中存在一组运动员()12,, (1)i i i a a a m k ≤≤,他们的编号恰好就是其位置序号组k i i i ,...,,21的一个排列,则由归纳假设,这组运动员可经至多两轮操作,分别到位于自然位置(使i 号运动员到位于i 位),而剩下的1k m +-个运动员,显然也是其所处位置号的排列,他们也可经过至多两轮对换到位于自然位置,这样,队列121,,...,k a a a +可经两轮对换化为1,2,,1k +(ii ) 若(i )中的情形不出现,为叙述方便,设1号位置上所站的运动员编号为1b , (11≠b ),1b 号位置上的运动员编号为2b ,({}12,1b b ∉),2b 号位置上的运动员编号为3b ,({}213,,1b b b ∉),...,j b 号位置上的运动员编号为1+j b ,({}j j b b b ,...,,111∉+),...,k b 号位置上的运动员编号为1。
《组合数学》第二版(姜建国著)-课后习题答案全
习题一(排列与组合)1.在1到9999之间,有多少个每位上数字全不相同而且由奇数构成的整数?解:该题相当于从“1,3,5,7,9”五个数字中分别选出1,2,3,4作排列的方案数;(1)选1个,即构成1位数,共有15P 个;(2)选2个,即构成两位数,共有25P 个;(3)选3个,即构成3位数,共有35P 个;(4)选4个,即构成4位数,共有45P 个;由加法法则可知,所求的整数共有:12345555205P P P P +++=个。
2.比5400小并具有下列性质的正整数有多少个?(1)每位的数字全不同;(2)每位数字不同且不出现数字2与7;解:(1)比5400小且每位数字全不同的正整数;按正整数的位数可分为以下几种情况:① 一位数,可从1~9中任取一个,共有9个;② 两位数。
十位上的数可从1~9中选取,个位数上的数可从其余9个数字中选取,根据乘法法则,共有9981⨯=个;③ 三位数。
百位上的数可从1~9中选取,剩下的两位数可从其余9个数中选2个进行排列,根据乘法法则,共有299648P ⨯=个;④ 四位数。
又可分三种情况:⏹ 千位上的数从1~4中选取,剩下的三位数从剩下的9个数字中选3个进行排列,根据乘法法则,共有3942016P ⨯=个;⏹ 千位上的数取5,百位上的数从1~3中选取,剩下的两位数从剩下的8个数字中选2个进行排列,共有283168P ⨯=个;⏹ 千位上的数取5,百位上的数取0,剩下的两位数从剩下的8个数字中选2个进行排列,共有2856P =个;根据加法法则,满足条件的正整数共有:9816482016168562978+++++=个;(2)比5400小且每位数字不同且不出现数字2与7的正整数;按正整数的位数可分为以下几种情况:设{0,1,3,4,5,6,8,9}A =① 一位数,可从{0}A -中任取一个,共有7个;② 两位数。
十位上的数可从{0}A -中选取,个位数上的数可从A 中其余7个数字中选取,根据乘法法则,共有7749⨯=个;③ 三位数。
组合数学(西安电子科技大学(第二版))习题3
习题三(递推关系)1.解下列递推关系:(1)120171000,1n n n a a a a a ---+=⎧⎨==⎩ (2)12016900,1n n n a a a a a --++=⎧⎨==⎩ (3)20100,2n n a a a a -+=⎧⎨==⎩ (4)120121n n n a a a a a --=-⎧⎨==⎩ (5)123012990,1,2n n n n a a a a a a a ---=+-⎧⎨===⎩ 解:(1)对应的特征方程为:27100x x -+=,解得122,5x x ==。
所以齐次递推方程的通解为:25n n n a A B =+,代入初始条件,得:00a A B =+=,1251a A B =+=,解得:11,33A B =-=, 故 112533n n n a =-+。
(2)对应的特征方程为:2690x x ++=,解得:123x x ==-,所以,齐次递推方程的通解为:()(3)n n a A Bn =+-,代入初始条件,00a A ==,1()(3)1a A B =+-=,解得:10,3A B ==-,故1(3)3n n a n =--。
(3)对应的特征方程为:210x +=,解得:12,x i x i ==-,所以,齐次递推方程的通解为:()()n n n a A i B i =+-,代入初始条件,00a A B =+=,12a A i B i =-=,解得:,A i B i =-=,故 11()()n n n a i i --=+-。
(4)对应的特征方程为:2210x x -+=,解得:121x x ==,所以,齐次递推方程的通解为:n a A Bn =+,代入初始条件,01a A ==,11a A B =+=,解得:1,0A B ==,故 1n a =。
(5)对应的特征方程为:32990x x x --+=,解得:1231,3,3x x x ===-,所以,齐次递推方程的通解为:3(3)n n n a A B C =++-,代入初始条件,00a A B C =++=,1331a A B C =+-=,2992a A B C =++=, 解得,111,,4312A B C =-==-,故 1113(3)412n n n a -=-+--2.求由A ,B ,C ,D 组成的允许重复的排列中AB 至少出现一次的排列数。
组合数学第二篇习题解答
n0
k 0
(c)an C(n 3,3), n {0,1,2,...}
n
(b)G 2 an xn , 其中an (k 1)(n 1 k )
n0
k 0
G2 (1 2x 3x2 ... (n 1)xn ...)(1 2x 3x2 ... (n 1)xn ...)
an 1 (n 1) 2 (n) ... (k 1) (n k 1) ...
G(x) 1 23 x 1 ...(n 1)3 xn 1 ...
1 x 1 x
1 x
1 (1 23 x ...(n 1)3 xn ...) 1 x
G(x)
1 1 x
1 4x x2 (1 x)4
1 4x x2 (1 x)5
2.16 用数学归纳法证明 C(m,m),C(m+1,m),C(m+2,m),...,C(m+n,m),...的母函数为 (1-x)-m-1
按叠加原理 an 4an1 3 4n 的特解为hn4n , 代入替推关系 hn4n 4h(n 1)4n1 3 4n , h 3 一般解为: r4n 3n4n 10 5n
2.28
an
a a 3
10
n 1
n2
两边求对数
ln an 3 ln an1 10 ln an2 令bn ln an bn 3bn1 10bn2 0, 特征根为 : r1 5, r 2 2,
1 ln 4
a [3n 3( 1)n ] 0
ln a a 1[3n (1)n ]
1[3n 3( 1)n ]
14
04
a a a 1[3n ( 1)n ]
1[3n 3( 1)n ]
n
14
04
组合数学1章课后习题答案
当|a-b|=0时有50对
所以总的序列数=90+98+96+94+92+50=520
1.2题(王星)
解:
(a)可将5个女生看作一个单位,共八个单位进行全排列得到排列数为:
对于第一个分界线,它有n-1种选择,对于第二个分界线只有n-2个选择,(因为分界线不能相临,如果相临它们之间就没有了球,这不合要求),依次第r-1个分界线只有n-(r-1)种选择。但是这样的分法中存在重复,重复度为(r-1)!,所以总得放法为:(n-1)*(n-2)*…*(n-r+1)/(r-1)!=C(n-1,r-1)。
而不同标志的球的排列有
所以共有8*5!种排列。
8种排列如下两类
因为要求空盒不相邻,途中1代表球
a)1111
b)1111
在a)中剩下的一个球有四种位置
b)中剩下的一个球也有四种位置
两者合起来一共有8种
1.19题(李拂晓)
n+m位由m个0,n个1组成的符号串,其中n≤m+1,试问不存在两个1相邻的符号串的数目。
③y<x<z,等价于从1,2,…,n+1中取3个进行组合,然后比较大小可得x,y,z,其组合数为 。
所以满足题意的x,y,z的组合数为 + + = 。
由于这两种方法是等价的,故可得 。证毕。
1.24题(王卓)
A={(a,b)|a,b∈Z,0≤a≤9,0≤b≤5},
(a)求x-y平面上以A作顶点的长方形的数目。
P
C
A
组合数学习题答案
第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。
满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。
满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。
1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。
(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。
将女生插入,有5!种方案。
故按乘法原理,有:7!×58C ×5!=33868800(种)方案。
(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≢n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。
组合数学答案合集
=
8 9
−
2 3
n
+
1 9
(−2)n
18.确定长为n,不包含两个相连的0或相连的1的三进制串(即由一些0、1、2组成
的串)的个数an的递推关系,然后求出an的公式 解:根据题意可知h2 = 5,h3 =12,h4 = 29
当n ≥ 5时,对于三进制串,第一个位置不为0,
当第一个位置为1时,第二个位置为0或2,对应的三进制串分别为an−2种和an−2 + an−3种 当第一个位置为2时,第二个位置为0,1或2,此时三进制串有an−1 + an−2种 于是an满足递推关系an = an−1 +3an−2 + an−3 (n ≥ 5) 它的特征方程为x3 − x2 −3x3 −1= 0
rn +
s
=
6(r(n −1) +
s) − 9(r(n − 2) +
s) + 2n ,求得 r
=
1 2
,s
=
3 2
,则 hn
=
c1 3n
+ c2n3n
+
n 2
+
3 2
。
由初始条件 h0
= 1 , h1
=
0
,得出 c1
=
−
1 2
, c2
=
−1 6
。故 hn
=
−
3n 2
−
n3n 2
+
n 2
+
3 2
为原问题的解。
=1 (1− x3 )4
元素e1不出现,而e2出现至多一次。 对每个ei引入一个因子,我们发现
g ( x) = (1)(1+ x)(1+ x + x2 +")(1+ x + x2 +")
组合数学(西安电子科技大学(第二版))习题2
习题二(母函数及其应用)1.求下列数列的母函数(0,1,2,)n =(1)(1)n a n ⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭;(2){5}n +; (3){(1)}n n -; (4){(2)}n n +;解:(1)母函数为:00()(1)()(1)nn n a n n a a G x x x x n n ∞∞==⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭∑∑;(2)母函数为:22554()(5)5(1)1(1)nnn n n n x xG x n x nx x x x x ∞∞∞===-=+=+=+=---∑∑∑; ♦ 方法二:()()()001022()(5)14414111114541(1)1nnnn n n n n G x n x n x x x x x x x x x x ∞∞∞===∞+==+=++''⎛⎫=+=-+⎪---⎝⎭-=+=---∑∑∑∑ (3)母函数为:2323000222()(1)(1)2(1)(1)(1)nnnn n n x x x G x n n x n n x nx x x x ∞∞∞====-=+-=-=---∑∑∑; ♦ 方法二:()()()()()2202222002222023()(1)00121121nn n n nn n n n n G x n n x xn n xxn n x xx x x x x x x x ∞∞-==∞∞+==∞+==-=++-"=++=""⎛⎫⎛⎫== ⎪⎪-⎝⎭⎝⎭=-∑∑∑∑∑(4)母函数为:232300023()(2)(1)(1)(1)(1)nnnn n n x x x x G x n n x n n x nx x x x ∞∞∞===-=+=++=+=---∑∑∑。
♦ 方法二:()()()()()()()()00212100023223()(2)1211111121111111131nnnnn n n n n n n n n n n n G x n n x n n x n x x x x x x x xx x x x x x x x x x x ∞∞∞∞====∞∞∞∞++++=====+=++-+-"'"'⎛⎫⎛⎫=--=-- ⎪ ⎪--⎝⎭⎝⎭"'⎛⎫⎛⎫=--=-- ⎪ ⎪----⎝⎭--⎝⎭-=-∑∑∑∑∑∑∑∑2.证明序列(,),(1,),(2,),C n n C n n C n n ++ 的母函数为 11(1)n x +- 。
组合数学习题解答ex2
8.证明 C(n,n)+C(n+1,n)+ … + C(n+m,n)=C(n+m+1,n+1). 证法一 对 m 做归纳,m=0 时,等式成立。 假设对 m-1,等式成立。 C(n,n)+C(n+1,n)+ … + C(n+m-1,n)+C(n+m,n)=C(n+m,n+1)+C(n+m,n) =C(n+m,m-1)+C(n+m,m)=C(n+m+1,n+1). 证毕。 证法二:利用第 7 题结论。设有 n+2 中颜色的球,前 n+1 种球为各色彩球,第 n+2 种为黑 球。右式为,从这 n+2 个球中取出 m 个球的方案数。左式分别为从 n+1 种球中取出 0 个、1 个……m 个彩球的方案数,即黑球分别占总数 m 个,m-1 个,m-2 个……0 个大方案数,根 据加法法则,其和等于右式。
解法二:设 a 出现了 k 次,那么所有的 a 不能相邻。在 1…n 中去 k 个不相邻的 数有 C(n-k+1,k)中取法(参见第一章-习题 27)
n − k + 1 n − k 那么我们最后的答案就是 ∑ 2 。 k k =0
注: 比较解法一、二中的答案我们知道:
n 2
...
(1 − x )n+1
1
。
假设对于 n-1,命题成立。即
∑ n −1
n −1+ k k 1 。 x = (1 − x )n
n + k k n −1+ k k n −1+ k k 1 + = 。 Gn (x ) = ∑ x x ∑ ∑ n n n n −1 x = xGn ( x ) + ( ) 1 − x n + k k 1 1 。 Gn (x ) = ∑ n x = 1 − x ⋅ (1 − x )n
组合数学_第2章
xi
1i n
ln xi e exp( ln xi ) 1i n
第二章 基本计数原理 即积式可转化为和式来处理。条件xi>0并无实质性的限制,因 若 某 个 xi=0 , 则 整 个 积 式 为 0 , 又 恰 有 k 项 取 负 时 , 可 先 对 (2.1.8)式两边乘(-1)k,以确保xi>0, 最后再将其恢复过来。
第二章 基本计数原理 2.2.2 乘法原理(Multiplication Principle) 设 A, B为二不同类事件,若事件A有m种产生方式,事件B 有n种产生方式,则“事件A与事件B”有mn种产生方式 用集合论的术语,乘法原理也可描述如下: 设S,T为二集,若S为m元集,T为n元集,则S与T的叉积之 集合S×T为mn元集。 推广的乘法原理是:如果Ti为ni元集(i=1, 2, …, r),则
0i k
a a
2i j 0
k
2j
第二章 基本计数原理 3. 双下标
( a11 a12 a1n ) ( a21 a22 a2 n ) ( am1 am 2 amn )
1 j n
a
1j
a2 j
iN n
a
i
第二章 基本计数原理 命题 1 用和号∑表示的和式中,通项下标的改变不影响和 式。 例如
0i n
a , a 及 a
i 0 j n j 0 k n
k
都表示同一和式。 当通项下标不取连续整数时,也希望能寻找一些规律,以 便于用和式写出简单的表示式,下面给出一些特殊和式的例子。
第二章 基本计数原理 · 对(2.1.9)式的算法 №1 输入N №2 M 1;(累乘器M置1) №3 对k=2, N, 做
组合数学第一章答案.
1.1 从{}5021,,,⋅⋅⋅中找两个数{}b a ,,使其满足(1) 5||=-b a ;(2)5||≤-b a解:(1)根据5||=-b a 可得 55-=-=-b a b a 或 则有种种4545 共有90种。
(2)根据5||≤-b a 得 )50,,2,1(,55{⋅⋅⋅∈+≤≤-b a b a b则:当5≤b 时,有1=b , 61≤≤a , 则有 6种2=b , 71≤≤a , 则有7种3=b , 81≤≤a , 则有8种4=b , 91≤≤a , 则有 9种5=b , 101≤≤a , 则有10种 当455≤<b 时,有6=b , 111≤≤a , 则有 11种7=b , 122≤≤a , 则有 11种 . . . . . . . . .45=b , 5040≤≤a , 则有11种 当5045≤<b 时,有46=b , 5041≤≤a , 则有 10种47=b , 5042≤≤a , 则有 9种48=b , 5043≤≤a , 则有 8种49=b , 5044≤≤a , 则有 7种 50=b , 5045≤≤a , 则有 6种故:共 种520)678910(21140=+++++⨯1.2 (1)先把女生进行排列,方案为5!,然后把女生看成1个人和7个男生进行排列,总方案数为5!×8!(2)女生不相邻,则先把男生进行排列,方案为7!再把女生插入男生之间的8个空位种的任意5个,总方案数为7!×58P(3)应该是A 女生x 女生y 女生z B,或是B 女生x 女生y 女生z A 的形式,从5个女生中选出3人进行排列,方案为35P ,考虑A,B 可以换位,方案为2×35P ,然后把这个看成一个整体,和剩下的2个女生,5个男生,一共7个人进行排列,总方案数2×35P ×8!1.3 m 个男生,n 个女生,排成一行,其中m,n 都是正整数,若 (a )男生不相邻(m ≤n+1);(b )n 个女生形成一个整体; (c )男生A 和女生B 排在一起; 分别讨论有多少种方案。
组合数学(西安电子科技大学(第二版))习题4答案
习题四(容斥原理)1.试求不超过200的正整数中素数的个数。
解:因为2215225,13169==,所以不超过200的合数必是2,3,5,7,11,13的倍数,而且其因子又不可能都超过13。
设i A 为数i 不超过200的倍数集,2,3,5,7,11,13i =,则22001002A ⎢⎥==⎢⎥⎣⎦,3200663A ⎢⎥==⎢⎥⎣⎦,5200405A ⎢⎥==⎢⎥⎣⎦,7200287A ⎢⎥==⎢⎥⎣⎦, 112001811A ⎢⎥==⎢⎥⎣⎦,132001513A ⎢⎥==⎢⎥⎣⎦,232003323A A ⎢⎥==⎢⎥⨯⎣⎦, 252002025A A ⎢⎥==⎢⎥⨯⎣⎦,272001427A A ⎢⎥==⎢⎥⨯⎣⎦,2112009211A A ⎢⎥==⎢⎥⨯⎣⎦, 2132007213A A ⎢⎥==⎢⎥⨯⎣⎦,352001335A A ⎢⎥==⎢⎥⨯⎣⎦,37200937A A ⎢⎥==⎢⎥⨯⎣⎦, 3112006311A A ⎢⎥==⎢⎥⨯⎣⎦,3132005313A A ⎢⎥==⎢⎥⨯⎣⎦,57200557A A ⎢⎥==⎢⎥⨯⎣⎦, 5112003511A A ⎢⎥==⎢⎥⨯⎣⎦,5132003513A A ⎢⎥==⎢⎥⨯⎣⎦,7112002711A A ⎢⎥==⎢⎥⨯⎣⎦, 7132002713A A ⎢⎥==⎢⎥⨯⎣⎦,111320011113A A ⎢⎥==⎢⎥⨯⎣⎦,2352006235A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, 2372004237A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,231120032311A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,231320022313A A A ⎢⎥==⎢⎥⨯⨯⎣⎦ 2572002257A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,251120012511A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,251320012513A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, 271120012711A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,271320012713A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, 21113200021113A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,3572001357A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,351120013511A A A ⎢⎥==⎢⎥⨯⨯⎣⎦351320013513A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,371120003711A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,…, 235720002357A A A A ⎢⎥==⎢⎥⨯⨯⨯⎣⎦,…,23571113200023571113A A A A A A ⎢⎥==⎢⎥⨯⨯⨯⨯⨯⎣⎦, 所以 23571113200(1006640281815)(3320149713965533221)(6432211110111i i j i j k i j k lii ji j ki j k li j k l m i j k l m ni j k l mi j k l m nA A A A A A S A A A A A A A A A A A A A A A A A A A A A <<<<<<<<<<<<<<<=-+-+-+=-++++++++++++++++++++-+++++++++++++∑∑∑∑∑∑0)00041+-+=但这41个数未包括2,3,5,7,11,13本身,却将非素数1包含其中, 故所求的素数个数为:416146+-=2.问由1到2000的整数中:(1)至少能被2,3,5之一整除的数有多少个? (2)至少能被2,3,5中2个数同时整除的数有多少个? (3)能且只能被2,3,5中1个数整除的数有多少个? 解:设i A 为1到2000的整数中能被i 整除的数的集合,2,3,5i =,则2200010002A ⎢⎥==⎢⎥⎣⎦,320006663A ⎢⎥==⎢⎥⎣⎦,520004005A ⎢⎥==⎢⎥⎣⎦, 23200033323A A ⎢⎥==⎢⎥⨯⎣⎦,25200020025A A ⎢⎥==⎢⎥⨯⎣⎦,35200013335A A ⎢⎥==⎢⎥⨯⎣⎦, 235200066235A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, (1)即求235A A A ++,根据容斥原理有:235235232535235()1000666400(333200133)661466A A A A A A A A A A A A A A A ++=++-+++=++-+++=(2)即求232535A A A A A A ++,根据容斥原理有:232535232535235235235235()333200133266534A A A A A A A A A A A A A A A A A A A A A A A A ++=++-+++=++-⨯=(3)即求[1]N ,根据Jordan 公式有:1112233235232535235[1]2()310006664002(333200133)366932N q C q C q A A A A A A A A A A A A =-+=++-⨯+++⨯=++-⨯+++⨯=3.求从1到500的整数中能被3和5整除但不能被7整除的数的个数。
组合数学(西安电子科技大学(第二版))习题5
习题五(抽屉原理)1.证明:在边长为2的等边三角形中任取5点,至少有两个点相距不超过1。
证明:如图所示,将正三角形分成4个边长为1的小等边三角形,现在取5点,有4个小等边三角形,根据抽屉原理,则至少有两点落在同一个小等边三角形中,其距离不超过1。
2.在一个边长为1的正方形内任取9个点,证明以这些点为顶点的各个三角形中,至少有一个三角形的面积不大于18。
证明:如图所示,将正方形分为4个边长为12的小正方形,现取9个点,则至少有三个点落在同一个小正方形中,以这三点为顶点的三角形的面积不大于1212121218⨯⨯=⨯⨯=长高。
3.把从1到326的326个正整数任意分成5组,试证明其中必有1组,该组中至少有一个数是同组中某两个数之和,或是同组中某个数的两倍。
证明:用反证法。
设任何一组中的每一个数,它既不等于同组中另外两数之和,也不等于同组中另一数的两倍。
即任何一组数中任意两个数之差总不在该组中。
(1)由抽屉原理知,五组中必有一组其中至少有66个数,设为A 组。
从中取66个数,记为1266,,,a a a ,不妨设66a 最大,令 (1)66,1,2,,65i i a a a i =-= ,显然(1)1326i a ≤<,由假设知 (1)i a A ∉,故这65个数必在另外四组B 、C 、D 、E 中。
(2)由抽屉原理知,B 、C 、D 、E 四组中必有一组至少含有17个(1)i a ,设为B 组,从中取17个(1)i a ,记为1217,,,b b b ,同理不妨设17b 最大,令 (1)171,2,,16i i b b b i =-= ,显然(1)1326i b ≤<,且由假设知,(1)i b B ∉, 又 (1)176666()()i i j k k j b b b a a a a a a A =-=---=-∉,所以这16个数(1)i b 必在C 、D 、E 中。
(3)由抽屉原理知,C 、D 、E 三组中必有一组至少含有6个(1)i b ,设为C 组,从中取6个(1)i b ,记为126,,,c c c ,同理不妨设6c 最大,令 (1)6i i c c c =-,1,2,,5i = ,显然(1)1326i c ≤<,且由假设知(1)i c C ∉, 又 (1)61717()()i i jk k j c c c b b b b b b B =-=---=-∉(1)6666()()i k j n m m n c b b a a a a a a A =-=-----∉所以这五个数必在D 、E 组中。
《组合数学》教案 2章(母函数)及课后习题讲解
第二章母函数及其应用问题:对于不尽相异元素的部分排列和组合,用第一章的方法新方法:母函数方法。
基本思想:把离散的数列同多项式或幂级数一一对应起来,算。
2.1 母函数(一)母函数(1)定义【定义2.1.1】对于数列{}n a ,称无穷级数()∑∞=≡0n n n x a x G 为该数列的(普通型)母函数,简称普母函数或母函数。
(2)例【例2.1.1】有限数列rn C (r =0, 1, 2, …, n )的普母函数:()x G =nn n n n nx C x C x C C ++++ 2210=()nx +1【例2.1.2】无限数列{1, 1. …, 1, …}的普母函数:()x G = +++++nx x x 21=x-11(3)说明● n a 可以为有限个或无限个。
● 数列{}n a 与母函数一一对应。
{0, 1, 1, …, 1, …}↔ +++++n x x x 20=xx -1 ● 将母函数视为形式函数,目的是利用其有关运算性质完成计数问题,故不考虑“收敛问题”。
(4)常用母函数(二) 组合问题 (1)组合的母函数【定理2.1.1】组合的母函数:设{}m m e n e n e n S ⋅⋅⋅=,,,2211 ,且n 1+n 2+…+n m =n ,则S 的r 可重组合的母函数为()x G =∏∑==⎪⎪⎭⎫ ⎝⎛mi n j j i x 10=∑=n r r r x a 0其中,r 可重组合数为rx 之系数r a ,r =0, 1, 2, …, n 。
理论依据:多项式的任何一项与组合结果一一对应。
【例2.1.3】设有6个红球,7个黑球,8个白球,问 (1) 共有多少种不同的选取方法,试加以枚举? (2) 若每次从中任取3个,有多少种不同的取法? (解)(1)元素符号化(x ,y ,z ↔红、黑、白球),元素的个数以符号的指数区分。
母函数G (x , y , z ) =(1+x +x 2) (1+y ) (1+z )=1+(x +y +z )+(x 2+xy +xz +yz )+(x 2x +x 2x +xxx )+( x 2yz )5种情况:① 数字1表示一个球也不取的情况,共有1种方案; ② 取1个球的方案有3种,即红、黑、白三种球只取1个; ③ 取2个球的方案有4种,即2红、1红1黑、1红1白、1黑1白; ④ 取3个球的方案有3种,即2红1黑、2红1白、三色球各一; ⑤ 取4个球的方案有1种,即全取。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合数学(第二版)
(4)从 B 中选 6 个前锋,从 C 中选 1 个前锋,从 A 中选 4 个后卫, 根据乘法法则,这种选取方案有: C86 C21 C54 种;
(5)从 B 中选 6 个前锋,从 C 中选 1 个前锋,从 A 中选 3 个后卫,C 中剩 下的一个当后卫,选取方案有: C86 C21 C53 种;
2
8 22
2
8! 2!2!2!2!
7! 2
,即 (x
y
2z
w)8
中,x2 ( y)2 (2z)2
w2
的系数,
因此, x2 y2 z2w2 的系数为: 7! 2 (1)2 (2)2 10 080 。
8.求 (x y z)4 的展开式。 解: n 4,t 3 ,展开式共有 RC(, 4) C(4 3 1, 4) 15 (项), 所以,
只需证明 f 是满射函数即可。又因为 f 是定义在两个有限且基数相等的函
数上,因此如果能证明 f 单射,则 f 必是满射。
假设 f 不是单射,则存在 (am1, am2 ,, a2 , a1), (bm1, bm2 ,, b2 , b1) M , (am1, am2 ,, a2 , a1) (bm1, bm2 ,, b2 , b1) ,且有 K0 N ,使得 K0 f (am1, am2 ,, a2 , a1) f (bm1, bm2 ,, b2 , b1) 由于 (am1, am2 ,, a2 , a1) (bm1, bm2 ,, b2 , b1) ,故必存在 j m 1 ,使得 a j bj 。不妨设这个 j 是第一个使之不相等的,即 ai bi (i m 1,, j 1) , aj bj 且 aj bj ,
(2)因前排至少需坐 6 人,最多坐 8 人,后排也是如此。 可分成三种情况分别讨论: ① 前排恰好坐 6 人,入座方式有 C(14, 6)P(8, 6)P(8,8) ; ② 前排恰好坐 7 人,入座方式有 C(14, 7)P(8, 7)P(8, 7) ; ③ 前排恰好坐 8 人,入座方式有 C(14,8)P(8,8)P(8, 6) ; 各类入座方式互相不同,由加法法则,总的入座方式总数为: C(14, 6)P(8, 6)P(8,8) C(14, 7)P(8, 7)P(8, 7) C(14,8)P(8,8)P(8, 6)
第 2 页(共 93 页)
组合数学(第二版)
4.一位学者要在一周内安排 50 个小时的工作时间,而且每天至少工作 5 小时,
问共有多少种安排方案?
解:用 xi 表示第 i 天的工作时间, i 1, 2,, 7 ,则问题转化为求不定方程 x1 x2 x3 x4 x5 x6 x7 50 的整数解的组数,且 xi 5 ,于是又可以转 化为求不定方程 y1 y2 y3 y4 y5 y6 y7 15 的整数解的组数。 该问题等价于:将 15 个没有区别的球,放入 7 个不同的盒子中,每盒球数
因为 am1(m 1)! am2 (m 2)! a2 2! a1 1! bm1(m 1)! bm2 (m 2)! b2 2! b1 1!
设不愿坐在一起的两人为甲和乙,将这两个人相邻而坐,可看为 1 人,则这 样的就坐方式有: CP(11,11) 10!种;由于甲乙相邻而坐,可能是“甲乙” 也可能是“乙甲”;所以 则满足条件的就坐方式有:11! 210! 32 659 200 种。
6.有 15 名选手,其中 5 名只能打后卫,8 名只能打前锋,2 名只能打前锋或后 卫,今欲选出 11 人组成一支球队,而且需要 7 人打前锋,4 人打后卫,试问 有多少种选法?
解: x23x3x46 的系数为:
0
10 316
0
3!
10! 1!
6!
840
10.试证任一整数 n 可唯一表示成如下形式:
n aii! , 0 ai i,i 1, 2, i1
第 4 页(共 93 页)
组合数学(第二版)
证明:(1)可表示性。
令 M {(am1, am2 ,, a2 , a1) | 0 ai i, i 1, 2,, m 1},显然 M m!, N {0,1, 2,, m!1},显然 N m!,
定义函数 f : M N ,
f (am1, am2 ,, a2 , a1) am1(m 1)! am2 (m 2)! a2 2! a1 1!, 0 0 (m 1)! 0 (m 2)! 0 2 ! 0 1!
显然, am1(m 1)! am2 (m 2)! a2 2! a1 1! (m 1)(m 1)! (m 2)(m 2)! 2 2!1 1! m! (m 1)! (m 1)! (m 2)! 3! 2! 2!1! m!1
“+”号数不限,未放“+”号的线段合成一条线段,求放法的总数。从而不定
方程的整数解共有:
RC(,
6)
C(16
6
1,
6)
21 20191817 16 65 43 21
54
264
(组)
即共有 54 264 种安排方案。
5.若某两人拒绝相邻而坐,问 12 个人围圆周就坐有多少种方式? 解:12 个人围圆周就坐的方式有: CP(12,12) 11!种,
不限,即相异元素允许重复的组合问题。
故安排方案共有: RC(,15) C(15 7 1,15) 54 264 (种)
另解:
因为允许 yi 0 ,所以问题转化为长度为 1 的 15 条线段中间有 14 个空,再 加上前后两个空,共 16 个空,在这 16 个空中放入 6 个“+”号,每个空放置的
0
4 3 1
y3z
0பைடு நூலகம்
4 2
2
y
2
z
2
x4 y4 z4 4x3 y 4x3z 4xy3 4xz3 4 yz3 4 y3z
6x2 y2 6x2 z2 6 y2 z2 12x2 yz 12xyz2 12xy2 z
9.求 (x1 x2 x3 x4 x5 )10 展开式中 x23x3x46 的系数。
③ 三位数。百位上的数可从 A {0} 中选取,剩下的两位数可从 A 其余 7 个数中选 2 个进行排列,根据乘法法则,共有 7 P72 294 个;
④ 四位数。又可分三种情况: 千位上的数从 1,3,4 中选取,剩下的三位数从 A 中剩下的 7 个 数字中选 3 个进行排列,根据乘法法则,共有 3 P73 630 个; 千位上的数取 5,百位上的数从 0,1,3 中选取,剩下的两位数从 A 中剩下的 6 个数字中选 2 个进行排列,共有 3 P62 90 个;
10 461 394 944 000
典型错误: 先选 6 人坐前排,再选 4 人坐后排,剩下的 4 人坐入余下的 6 个座
位。故总的入坐方式共有: C(14, 6)P 8, 6C(8, 4)P 8, 4 P 6, 4 种。
但这样计算无疑是有重复的,例如恰好选 6 人坐前排,其余 8 人全
坐后排,那么上式中的 C(8, 4)P 8, 4 就有重复。
(6)从 B 中选 5 个前锋,C 中 2 个当前锋,从 A 中选 4 个后卫, 选取方案有: C85 C54 种;
根据加法法则,总的方案数为: C87 C54 C87 C53 C21 C87 C52 C86 C21 C54 C86 C21 C53 C85 C54 1400
7.求 (x y 2z w)8 展开式中 x2 y2 z2w2 项的系数。 解:令 a x,b y, c 2z, d w ,则 (a b c d )8 中 a2b2c2z2 项的系数为
根据加法法则,满足条件的正整数共有: 7 49 294 630 90 1070 个;
3.一教室有两排,每排 8 个座位,今有 14 名学生,问按下列不同的方式入座, 各有多少种做法? (1)规定某 5 人总坐在前排,某 4 人总坐在后排,但每人具体座位不指定; (2)要求前排至少坐 5 人,后排至少坐 4 人。
(x
y
z)4
4
4 0
0
x4
0
4 4
0
y4
0
4 0
4
z4
4
3
1
0
x3 y
3
4 0 1
x3z
2
4 2
0
x2
y2
2
4 0
2
x2
z2
4 2 11
x2
yz
1
4 30
xy3
1
4
0
3
xz3
4 11 2
xyz 2
1
4 2 1
xy2 z
0
4 1 3
yz3
解:用 A、B、C 分别代表 5 名打后卫、8 名打前锋、2 名可打前锋或后卫的集合, 则可分为以下几种情况: (1)7 个前锋从 B 中选取,有 C87 种选法,4 个后卫从 A 中选取,有 C54 种, 根据乘法法则,这种选取方案有: C87 C54 种; (2)7 个前锋从 B 中选取,从 A 中选取 3 名后卫,从 C 中选 1 名后卫, 根据乘法法则,这种选取方案有: C87 C53 C21 种; (3)7 个前锋从 B 中选取,从 A 中选取 2 名后卫,C 中 2 名当后卫, 根据乘法法则,这种选取方案有: C87 C52 种;
(2)比 5400 小且每位数字不同且不出现数字 2 与 7 的正整数; 按正整数的位数可分为以下几种情况:设 A {0,1,3, 4,5, 6,8,9} ① 一位数,可从 A {0} 中任取一个,共有 7 个;
第 1 页(共 93 页)
组合数学(第二版)
② 两位数。十位上的数可从 A {0} 中选取,个位数上的数可从 A 中其余 7 个数字中选取,根据乘法法则,共有 7 7 49 个;
组合数学(第二版)
习题一(排列与组合)
1.在 1 到 9999 之间,有多少个每位上数字全不相同而且由奇数构成的整数? 解:该题相当于从“1,3,5,7,9”五个数字中分别选出 1,2,3,4 作排列的