溶液中离子浓度大小比较总结归类超全
溶液中离子浓度大小比较

溶液中离子浓度大小比较编写:盛建文审:余佳电解质溶液有关知识是化学反应原理的重要内容之一,也是高考考点分布的重点区域之一,其中溶液中离子(或溶质微粒)浓度大小比较一直是历年高考考查的热点内容。
但很多学生对本部分内容知之不深,甚至面对题目无法下手。
本文就电解质溶液中离子浓度大小比较的有关知识归纳如下。
一、紧抓两个“微弱”比较离子或溶质微粒浓度大小,考查的内容通常既与盐的水解有关,又与弱电解质的电离平衡有关,而这两个平衡变化的共同特征为反应或过程是“微弱”的。
1.弱电解质只有微弱电离,如稀醋酸溶液中,各粒子浓度由大到小的顺序为:c(CHCOOH)>c(H+)>c(CH3COO–)>c(OH–)。
多元弱酸分步电离,以第一步为主,3如HS溶液中各粒子浓度由大到小的顺序为:c(H2S)>c(H+)>c(HS–)>c(S2–)>2c(OH–)。
2.弱酸(碱)离子的水解是微弱的。
如NHCl溶液中,各粒子浓度由大到小的4顺序为:c(Cl–)>c(NH4+)>c(H+)>c(NH3·H2O)>c(OH–)。
多元弱酸根离子分步水解,以第一步为主,如NaS溶液中,c(Na+)>c(S2–)>c(OH–)>c(HS–)>c(H2S)2>c(H+)。
二、牢记三个“守恒”离子间的定量关系,也就是三个守恒关系。
在建立守恒关系前,我们需清楚建立平衡的微粒,以及离子间建立定量关系的前提。
1.电荷守恒:衡量的是平衡时溶液中离子浓度的定量关系,在此定量关系中,只含有离子而不含有分子。
建立电荷守恒关系,需分两步走:第一步,找出溶液中含有的所有离子;第二步,把阳离子写在等式的一侧,阴离子写在等式的另一侧,各离子物质的量或浓度的系数等于离子的带电荷数。
2.物料守恒:利用起始量、起始物质中含有的除H、O元素外的元素原子间的定量关系,建立平衡溶液中各离子(H+、OH-除外)和分子(水除外)物质的量或浓度间的定量关系。
建立等量关系,需分两步走:第一步,找出溶液中存在的离子和分子(H2O、H+、OH-除外);第二步,利用起始物质中原子的定量关系,确定含有该原子的离子或分子间的定量关系。
溶液中离子浓度的大小的判断专题

溶液中离子浓度的大小的判断1、溶液中离子浓度大小比较规律(1)多元弱酸根离子分布水解且第一步水解远大于第二步水解:如Na2CO3溶液中,[Na+]>[CO32-]>[OH-]>[HCO3-]>[H+]>[H2CO3]规律:①盐电离离子>离子第一步水解(电离)>水的电离离子>第二步水解粒子②第一步水解生成的离子浓度在[OH-]和[H+]之间,第二步水解生成的离子浓度最小练习:Na2S溶液中的各离子浓度大小的顺序:_______________________________________(2)多元弱酸的酸式盐中,酸式酸根离子既有电离平衡,又有水解平衡。
电离为主的弱酸酸式盐有NaHSO3、NaH2PO4;以水解为主的有NaHS、NaHCO3、Na2HPO4如:Na2HPO4溶液中:[Na+]>[HPO42-]>[OH-]>[H2PO4-]>[H+]>[PO43-]练习:NaHS溶液中的各离子浓度大小的顺序:_________________________________NaHSO3溶液中的各离子浓度大小的顺序:_________________________________2、电解质溶液中三种守恒关系(1)电荷守恒:电解质溶液中,不论存在多少种离子,电解质溶液总是呈中性,即阳离子所带正电荷总数等于阴离子所带负电荷总数如:NaHCO3溶液中:[Na+]+[H+]=[HCO3-]+[OH-]+2[CO32-]如:Na2HPO4溶液中:[Na+]+[H+]=[H2PO4-]+2[HPO42-]+3[PO43-]+[OH-]练习:Na2S溶液中的电荷守恒关系式:________________________________________(2)物料守恒:在电解质溶液中,由于某些离子能够水解同时也能够电离,使离子种类增多,但原子不论以何种形式存在,个数总是不变的,即原子守恒如:NaHCO3溶液中:[Na+]=[HCO3-]+[CO32-]+[H2CO3](nNa=nC)如:K2S溶液中:[K+]=2([S2-]+[HS-]+[H2S])(nK=2nS)练习:Na2HPO4溶液中物料守恒的关系式:______________________________________ Na2CO3溶液中物料守恒关系式:_________________________________________(3)质子守恒:指溶液中酸碱反应的结果,得质子后的产物的物质的量与失质子后的产物的物质的量相等如:NaHCO3溶液中:(注意:[H3O+]即是[H+])质子守恒关系式是:[H2CO3]+[H+]=[CO32-]+[OH-]如:Na 2S溶液中:质子守恒关系式是:[HS-]+2[H2S]+[H+]=[OH-]练习:Na2HPO4溶液中质子守恒的关系式:_________________3、电解质溶液的混合混合溶液中各离子浓度的比较,要进行综合分析。
溶液中离子浓度大小的比较精品课件

6.不同物质同种离子浓度比较型
例6:等物质的量的下列溶液中,NH4+的浓度由大到小 的顺序是
①NH4Cl ②NH4HCO3 ③ NH4HSO4 ③ >① =④ >②
④ NH4NO3
规律:
1.水解的盐>相互促进水解的盐
2.当溶液中存在水解的显性离子时,抑制盐的水解,
则该水解的离子浓度大
二、两种溶液混合后不同离子浓度的比较
质子守恒: C(OH-) = C(H+) + 2C(H2CO3) + C(HCO3-)
常见题型和对策
一、单一溶质溶液:根据电离、水解情况分析 (1)弱酸溶液:
【例1】在0.1mol/L的H2S溶液中,下列关系错误的是 A. c(H+)=c(HS-)+c(S2-)+c(OH-) ( A ) B.c(H+)=c(HS-)+2c(S2-)+c(OH-) C.c(H+)>[c(HS-)+c(S2-)+c(OH-)] D.c(H2S)+c(HS-)+c(S2-)=0.1mol/L
⑴两种物质混合不反应:
例:用物质的量都是0.1 mol的CH3COOH与 CH3COONa配成1 L混合溶液,已知其中c(CH3COO-) 大于c(Na+),对该混合溶液下列判断正确的是( A B ) A.c(H+)>c(OH-) B.c(CH3COOH)+c(CH3COO-)=0.2 mol· L-1 C.c(CH3COOH)>c(CH3COO-) D.c(CH3COO-)+c(OH-)=0.1 mol· L-1
3.写出0.1moL/L的Na2CO3溶液中粒子浓度关系 大小关系: C(Na+)>C(CO32-)>C(OH- )>C(HCO3-)>C(H+) 电荷守恒: c(Na+)+c(H+)=c(OH-)+c(HCO3- ) +2c(CO32-)
离子浓度大小比较(总结全面)

⑶混合溶液中离子浓度的大小比较-不反应型
变式训练2:将0.1 mol•L-1HCN溶液与等体积等浓度的NaCN溶液混合,溶液 显碱性,下列关系正确的是( )
A.c(CN-)+c(HCN)=0.2mol/L C.c(CN-)>c(Na+)> c(OH-)> c(H+)
B.c(CN-)>c(HCN) D.c(Na+)+ c(H+)= c(CN-)+ c(OH-)
⑶混合溶液中离子浓度的大小比较-不反应型
⑶混合溶液中离子浓度大小比较-相互反应型
恰好中和型
• 例1:等体积等浓度的MOH强碱溶液和HA弱 酸溶液混和后,混和液中有关离子的浓度 应满足的关系是( ) A.c(M+)>c(OH-)>c(A-)>c(H+) B.c(M+)>c(A-)>c(H+)>c(OH-) C.c(M+)>c(A-)>c(OH-)>c(H+) D.c(M+)+c(H+) =c(OH-)+c(A-)
⑵单一不同溶液中比较同一离子浓度的大小
• (3)比较相同浓度的①HCOONa、② CH3COONa、③Na2CO3 、④苯酚钠、⑤ NaHCO3 、⑥NaCl、⑦MgCl2、⑧AlCl3 ⑨ NaHSO4⑩Ba(OH)2 11 NaOH八种溶液pH值的 大小
⑶混合溶液中离子浓度的大小比较-不反应型
弱酸酸式盐:
⑵单一不同溶液中比较同一离子浓度的大小
例1:25℃时,在浓度为0.1 mol·L-1的 (NH4)2SO4、(NH4)2 CO3、(NH4)2Fe(SO4)2的溶 液中,测得c(NH4+)分别为a、b、c(单位为 mol·L-1)。下列判断正确的是( )
溶液中离子浓度大小的比较方法与技巧

溶液中离子浓度大小的比较·1.溶液中离子浓度大小比较的规律(1)多元弱酸溶液,根据多步电离分析。
如H3PO4的溶液中,H3PO4H2PO4- +H+,H2PO4-HPO4(2-)+H,HPO4(2-)PO4(3-)+H+,得出c(H+)>c(H2PO4-)>c(HPO42-) > c(PO43-)。
(2)多元弱酸的正盐溶液根据弱酸根的分步水解分析:如Na2CO3溶液中,Na2CO3=2Na++CO32-;CO32-+H2O HCO3-+OH-;HCO3-+H2O H2CO3+OH-由此得出c(Na+)>c(CO32-)>c(OH -)> c(HCO3-)。
(3)不同溶液中同一离子浓度的比较,则要注意分析溶液中其他离子对其的影响。
如在①NH4Cl ②CH3COONH4③NH4HSO4溶液中,c(NH4+)浓度的大小为③>①>②。
(4)如果题目中指明溶质只有一种物质(该溶质经常是可水解的盐),要首先考虑原有阳离子和阴离子的个数,水解程度如何,水解后溶液显酸性还是显碱性。
(5)如果题目中指明是两种物质,则要考虑两种物质能否发生化学反应,有无剩余,剩余物质是强电解质还是弱电解质;若恰好反应,则按照“溶质是一种物质”进行处理;若是混合溶液,应注意分析其电离、水解的相对强弱,进行综合分析。
(6)若题中全部使用的是“>”或“<”,应主要考虑电解质的强弱、水解的难易、各粒子个数的原有情况和变化情况(增多了还是减少了)。
(7)对于HA 和NaA的混合溶液(多元弱酸的酸式盐:NaHA),在比较盐或酸的水解、电离对溶液酸、碱性的影响时,由于溶液中的Na+保持不变,若水解大于电离,则有c(HA) > c(Na+)>c(A-) ,显碱性;若电离大于水解,则有c(A-) > c(Na+)> c(HA),显酸性。
若电离、水解完全相同(或不水解、不电离),则c(HA) =c(Na+)=c(A-),但无论是水解部分还是电离部分,都只能占c(HA)或c(A-)的百分之几到百分之零点几,因此,由它们的酸或盐电离和水解所产生的c(H+) 或c(OH-)都很小。
溶液中离子浓度大小比较

溶液中离子浓度大小比较电荷守恒c(H+)+c(Na+)=2c(CO32-)+c(HCO3-)+c(OH-) 正负电荷相等相等关系:物料守恒c(Na+)=2c(CO32-)+2c(HCO3-)+2c(H2CO3) C原子守恒(以Na2CO3)质子守恒c(OH-)=c(H+)+c(HCO3-)+2c(H2CO3) H+离子守恒离子浓度比较:①多元弱酸H3PO4c(H+)>c(H2PO4-)>c(HPO42-)>c(PO43-)②多元弱酸形成的正盐Na2CO3c(Na+)>c(CO32-)>c(OH-)>c(HCO3-)>c(H+)大小关系:③不同溶液中同一离子浓度浓度0.1mol/L的①、NH4Cl ②、CH3COONH4③、NH4HSO4则c(NH4+) ③>①>②④混合溶液中各离子浓度0.1mol/LNH4Cl与0.1mol/L NH3·H2O混合则:c(NH4+)>c(Cl-)>c(OH-)>c(H+)1、掌握解此类题的三个思维基点:电离、水解和守恒电荷守恒:溶液中阴、阳离子所带的正、负电荷总数相等,即电解质溶液呈电中性。
物料守恒:电解质溶液中某一组分的原始浓度应等于它在溶液中各种存在形式的浓度之和。
质子守恒:电解质溶液中无论是水的电离、弱酸的电离还是盐类的水解,都可以看成是质子的传递过程。
2、水解规律:有弱才水解,无弱不水解;越弱越水解,都弱都水解;谁强显谁性,等强显中性正盐溶液:①强酸弱碱盐呈酸性②强碱弱酸盐呈碱性③强酸强碱盐呈中性④弱酸碱盐不一定题型一:单一溶质溶液中离子浓度大小的比较:[例1]在氯化铵溶液中,下列关系式正确的是( )A.C(Cl-)>C(NH4+)>C(H+)>C(OH-) B.C(NH4+)>C(Cl-)>C(H+)>C(OH-)C.C(Cl-)=C(NH4+)>C(H+)=C(OH-) D.C(NH4+)=C(Cl-)>C(H+)>C(OH-)[例2]在0.1 mol/l的氨水溶液中,下列关系正确的是( )A.C(NH3·H2O)>C(OH-)>C(NH4+)>C(H+) B.C(NH4+)>C(NH3·H2O)>C(OH-)>C(H+)C.C(NH3·H2O)>C(NH4+)=C(OH-)>C(H+) D.C(NH3·H2O)>C(NH4+)>C(H+)>C(OH-)练习:⑴Na2S溶液中各离子浓度由小到大的顺序是。
溶液中离子浓度大小比较

溶液中离子浓度大小比较一、溶液中微粒浓度大小比较的理论依据1.电离理论(1)弱电解质的电离是微弱的,电离产生的微粒都非常少,同时还要考虑水的电离,如氨水溶液中:NH3·H2O、NH4+、OH-浓度的大小关系是c(NH3·H2O)>c(OH-)>c(NH4+)。
(2)多元弱酸的电离是分步进行的,其主要是第一级电离(第一步电离程度远大于第二步电离)。
如在H2S溶液中:H2S、HS-、S2-、H+的浓度大小关系是c(H2S)>c(H+)>c(HS-)>c(S2-)。
2.水解理论(1)弱电解质离子的水解是微弱的(水解相互促进的情况除外),水解生成的微粒浓度很小,本身浓度减小的也很小,但由于水的电离,故水解后酸性溶液中c(H+)或碱性溶液中c(OH-)总是大于水解产生的弱电解质的浓度。
如NH4Cl溶液中:NH4+、Cl-、NH3·H2O、H+的浓度大小关系是c(Cl-)>c(NH4+)>c(H+)>c(NH3·H2O)。
(2)多元弱酸酸根离子的水解是分步进行的,其主要是第一步水解,如在Na2CO3溶液中:CO32-、HCO3-、H2CO3的浓度大小关系应是c(CO32-)>c(HCO3-)>c(H2CO3)。
(3)多元弱酸的酸式盐溶液:取决于弱酸根离子水解和电离的程度比较。
如NaHCO3溶液中c(Na+)>c(HCO3-)>c(OH-)>c(H+)>c(CO32-)3.在正盐溶液中,与其性质相反的离子浓度最小,如Na2CO3溶液中,c(H+)最小;Cu(NO3)2溶液中,c(OH-)最小。
二、溶液中微粒浓度大小比较的定量关系1.电荷守恒规律电解质溶液中,无论存在多少种离子,溶液都是呈电中性,即阴离子所带负电荷总数一定等于阳离子所带正电荷总数,其表达式的特点是:全部是离子,无中性物质,阳离子与阴离子各在等式的一边,且离子前面的数值与该离子所带电荷数值一致,在解题时,只要题中的式子全部是离子,无论是判断还是填空,一般就按电荷守恒处理。
3.3.3溶液中离子浓度大小比较

HSO3
H
H2SO3+OH ,
溶液呈酸性,溶液中各离子间的关系是:
c(Na+)>c(HSO3-)>c(H+)>c(SO32-)>c(OH-)。
2、混合溶液 要进行综合分析, 比较电离程度和水解程度的大小, 最 后决定酸碱性,常见的混合溶液有: ①0.1 mol· -1NH4Cl 与 0.1 mol· -1 氨水的混合液中: L L
②25 ℃,CH3COOH 与 CH3COONa 的混合溶液中存 在的电离和反应: CH3COOH CH3COO +H H2O H++OH- CH3COONa===CH3COO-+Na+ CH3COO +H2O
电荷守恒关系:
- - +
CH3COOH+OH
-
c(H+)+c(Na+)=c(CH3COO-)+c (OH-)
当溶液的 pH=7 时,则有:
c(H+)=c(OH-),c(Na+)=c(CH3COO-) n(H+)=n(OH-),n(Na+)=n(CH3COO-)
2.物料守恒 物料守恒,就电解质溶液而言,即电解质发生变化(反 应或电离)前某元素的原子(或离子)的物质的量等于电解质 变化后溶液中所有含该元素的微粒中该元素的原子(或离子) 的物质的量之和。实质上,物料守恒属于质量守恒。
+
②0.1 mol· CH3COOH 与 0.1 mol· CH3COONa 的 L L 混合液: CH3COOH H2 O CH3COO
- -
-1
-1
+H
+
, CH3COO
-
+
CH3COOH+OH ,在该溶液中 CH3COOH 的电
离大于 CH3COO-的水解且二者相互抑制,该溶液呈酸性, 溶液中各微粒间的关系是:
比较溶液中离子浓度的大小专题

比较溶液中离子浓度的大小思考:在Na2CO3溶液中,由于Na2CO3的水解,溶液中含有那些离子?各种离子浓度由大到小的顺序为:c (Na+)﹥c (CO3 2-)﹥c (OH-)﹥c (HCO3 -)﹥c (H+),而且c (Na+)﹥2 c (CO3 2-) 方法和步骤⑴. 先确定溶液中电解质的种类若混合溶液时, 要考虑溶液之间是否反应, 如果反应, 是完全反应还是有过量如: 0.1mol/LNaOH与0.2mol/LCH3COOH溶液等体积混合⑵.根据电解质,电离.水解情况分析溶液中微粒种类及其来源注意:①. 多元弱酸电离: 几元分几步,且逐步减弱. 如H3PO4②. 多元弱酸的正盐水解: 几价分几步, 且逐步减弱如Na2CO3③. 多元弱酸的酸式阴离子:若. 电离>水解.则c (H+) ﹥c (OH-) 如H2PO4-若. 水解>电离.则c (OH-) ﹥c (H+) 如HCO3-.④. 大部分酸和盐的混合溶液中, 或碱和盐的混合液中,酸或碱的电离拟制盐的水解. 即只考虑酸或碱的电离不考虑盐的水解如: CH3COONa 和CH3COOH 如NH4Cl 和HCl但特殊情况相反如: HCN 和NaCN混合溶液中由于HCN电离很弱, 所以NaCN水解> HCN电离⑤. 一般情况下,电解质的电离>>水的电离如: CH3COOH溶液中:c (CH3COO-) 和c (H+) >>水电离的c (H+)和c (OH-)⑥. 多元弱酸的正盐和酸式盐的混合盐溶液中:正盐水解>酸式盐水解. 即正盐拟制酸式盐的水解. 如Na2CO3和NaHCO3混和溶液中⑶. 排列各离子浓度的顺序﹙依据溶液中各电解质浓度及三个守衡关系﹚⑷. 电解质溶液中三个守衡关系及其应用(1)电荷守恒:电解质溶液呈电中性,即所有阳离子所带的正电荷总数与所有阴离子所带的负电荷总数代数和为零。
如: 0.1mol/L Na2CO3溶液中:c(Na+)+c(H+) = c(HCO3-) +c(OH-)+2c(CO32-)(2)物料守恒(原子守恒):电解质溶液中,由于某些离子能够水解或电离,离子种类增多,但某些关键性的原子总是守恒的.即这种关键性的原子在变化过程(水解、电离)中数目不变。
溶液中离子浓度大小比较总结归类(超全)

一、电离平衡理论和水解平衡理论1.电离理论:⑴弱电解质的电离是微弱的,电离消耗的电解质及产生的微粒都是少量的,同时注意考虑水的电离的存在;例如NH3·H2O溶液中微粒浓度大小关系。
【分析】由于在NH 3·H2O溶液中存在下列电离平衡:NH3·H2O NH4++OH-,H2O H++OH-,所以溶液中微粒浓度关系为:c(NH3·H2O)>c(OH-)>c(NH4+)>c(H+)。
⑵多元弱酸的电离是分步的,主要以第一步电离为主;例如H2S溶液中微粒浓度大小关系。
【分析】由于H 2S溶液中存在下列平衡:H2S HS-+H+,HS-S2-+H+,H2O H++OH-,所以溶液中微粒浓度关系为:c(H2S)>c(H+)>c(HS-)>c(OH-)。
2.水解理论:⑴弱酸的阴离子和弱碱的阳离子因水解而损耗;如NaHCO3溶液中有:c(Na+)>c(HCO3-)。
⑵弱酸的阴离子和弱碱的阳离子的水解是微量的(双水解除外),因此水解生成的弱电解质及产生H+的(或OH-)也是微量,但由于水的电离平衡和盐类水解平衡的存在,所以水解后的酸性溶液中c(H+)(或碱性溶液中的c(OH-))总是大于水解产生的弱电解质的浓度;例如(NH4)2SO4溶液中微粒浓度关系。
【分析】因溶液中存在下列关系:(NH4)2SO4=2NH4++SO42-,2H 2O2OH-+2H+,2NH3·H2O,由于水电离产生的c(H+)水=c(OH-)水,而水电离产生的一部分OH-与NH4+结合产生NH3·H2O,另一部分OH-仍存在于溶液中,所以溶液中微粒浓度关系为:c(NH4+)>c(SO42-)>c(H+)>c(NH3·H2O)>c(OH-)。
⑶一般来说“谁弱谁水解,谁强显谁性”,如水解呈酸性的溶液中c(H+)>c(OH-),水解呈碱性的溶液中c(OH-)>c(H+);⑷多元弱酸的酸根离子的水解是分步进行的,主要以第一步水解为主。
溶液中离子浓度大小比较

溶液中离子浓度大小比较
1.多元弱酸强碱盐:Na2A(以Na2CO3为例) 1)三大守恒:
电荷守恒: C(Na+) +C(H+) = C(OH-) +2C(CO32-) +C(HCO3-)
物料守恒:C(Na+)=
2
C
(
C
O
2 3
-
)
+2C(HCO3-)
+2C(H2CO3)
质子守恒:C(OH-) =C(H+) +C(HCO3-) +2C(H2CO3)
质
子
守
恒
:
C
(O
H
-)
+
C
(
C
O
23
)
=
C(H+)
+C(H2CO3)
2)溶液中离子浓度由大到小为:(判断根据电离与水解相对大小来判断
溶液酸碱性)
已知H2CO3 K1=4.30 * 10-7 K2=5.61 * 10-11 C(Na+)>C(HCO3-)>(OH-)>C(CO32-) >C(H+)
3.一元弱酸HA与其强碱盐NaA 1:1 1)三大守恒: 电荷守恒: C(Na+) +C(H+) = C(OH-)+c(A-) 物料守恒: 2C(Na+) =c(A-) +C(HA) 质子守恒:
(判断根据电离与水解相对大小来判断溶液酸碱性) 2)若混合溶液为酸性,溶液中离子浓度由大到小为:
C(Na+)>c(A-)>C(H+)> C(OH-) 3 ) 若混合溶液为酸性,比较HA与A-浓度:
溶液中离子浓度大小比较总结归类超全

.电离平衡理论和水解平衡理论一、1.电离理论:⑴弱电解质的电离是微弱的,电离消耗的电解质及产生的微粒都是少量的,同时注意考虑水的电离的存在;例如NH·HO溶液中微粒浓度大小关系。
23【分析】由于在NH·HO溶液中存在下列电离平衡:NH·HO2233+-,HO+OHNH24+-,所以溶液中微粒浓度关系为:c(NH·HHO+OH)>23-++)。
c(H c()>NH)c(OH>4⑵多元弱酸的电离是分步的,主要以第一步电离为主;例如HS溶液中微粒浓度大小关系。
2-+-HS+HS溶液中存在下列平衡:HSHS,【分析】由于H22+2-OS+HH,2+-+)>>c(H,所以溶液中微粒浓度关系为:c(HHS+OH)2--)。
OHHS )>c(c(2.水解理论:+-)。
HCONa )>c(⑴弱酸的阴离子和弱碱的阳离子因水解而损耗;如NaHCO溶液中有:c(33+的(或因此水解生成的弱电解质及产生H微量的(双水解除外),⑵弱酸的阴离子和弱碱的阳离子的水解是+-(或碱性溶)水解后的酸性溶液中OH c(H)也是微量,但由于水的电离平衡和盐类水解平衡的存在,所以-SO溶液中微粒浓度关系。
;例如(NH)液中的c(OH))总是大于水解产生的弱电解质的浓度4422-+ +SO,【分析】因溶液中存在下列关系:(NH)SO=2NH42444+- +2H 2HO2OH,2+-),而水电)=c(OHNH·HO,由于水电离产生的c(H 2 23水水-+-仍存在于溶液中,所以溶液中微粒浓度关OHHONH,另一部分结合产生NH离产生的一部分OH·与243+2-+-)。
OHO)>c(H c()>c(NH·H系为:c(NH)>c(SO>)2344+-)c(OHc(H,水解呈碱性的溶液中)>⑶一般来说“谁弱谁水解,谁强显谁性”,如水解呈酸性的溶液中-+);)>c(Hc(OH⑷多元弱酸的酸根离子的水解是分步进行的,主要以第一步水解为主。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶液中离子浓度大小比较总结归类超全Revised by BLUE on the afternoon of December 12,2020.一、电离平衡理论和水解平衡理论1.电离理论:⑴弱电解质的电离是微弱的,电离消耗的电解质及产生的微粒都是少量的,同时注意考虑水的电离的存在;例如NH3·H2O溶液中微粒浓度大小关系。
【分析】由于在NH 3·H2O溶液中存在下列电离平衡:NH3·H2O NH4++OH-,H2O H++OH-,所以溶液中微粒浓度关系为:c(NH3·H2O)>c(OH-)>c(NH4+)>c(H+)。
⑵多元弱酸的电离是分步的,主要以第一步电离为主;例如H2S溶液中微粒浓度大小关系。
【分析】由于H 2S溶液中存在下列平衡:H2S HS-+H+,HS-S2-+H+,H2O H++OH-,所以溶液中微粒浓度关系为:c(H2S)>c(H+)>c(HS-)>c(OH-)。
2.水解理论:⑴弱酸的阴离子和弱碱的阳离子因水解而损耗;如NaHCO3溶液中有:c(Na+)>c(HCO3-)。
⑵弱酸的阴离子和弱碱的阳离子的水解是微量的(双水解除外),因此水解生成的弱电解质及产生H+的(或OH-)也是微量,但由于水的电离平衡和盐类水解平衡的存在,所以水解后的酸性溶液中c(H+)(或碱性溶液中的c(OH-))总是大于水解产生的弱电解质的浓度;例如(NH4)2SO4溶液中微粒浓度关系。
【分析】因溶液中存在下列关系:(NH4)2SO4=2NH4++SO42-,2H 2O2OH-+2H+,2NH3·H2O,由于水电离产生的c(H+)水=c(OH-)水,而水电离产生的一部分OH-与NH4+结合产生NH3·H2O,另一部分OH-仍存在于溶液中,所以溶液中微粒浓度关系为:c(NH4+)>c(SO42-)>c(H+)>c(NH3·H2O)>c(OH-)。
⑶一般来说“谁弱谁水解,谁强显谁性”,如水解呈酸性的溶液中c(H+)>c(OH-),水解呈碱性的溶液中c(OH-)>c(H+);⑷多元弱酸的酸根离子的水解是分步进行的,主要以第一步水解为主。
例如Na2CO3溶液中微粒浓度关系。
【分析】因碳酸钠溶液水解平衡为:CO 32-+H2O HCO3-+OH-,H2O+HCO3-H2CO3+OH-,所以溶液中部分微粒浓度的关系为:c(CO32-)>c(HCO3-)。
二、电荷守恒和物料守恒1.电荷守恒:电解质溶液中所有阳离子所带有的正电荷数与所有的阴离子所带的负电荷数相等。
如NaHCO3溶液中:n(Na+)+n(H+)=n(HCO3-)+2n(CO32-)+n(OH-)推出:c(Na+)+c(H+)=c(HCO3-)+2c(CO32-)+c(OH-)2.物料守恒:电解质溶液中由于电离或水解因素,离子会发生变化变成其它离子或分子等,但离子或分子中某种特定元素的原子的总数是不会改变的。
如NaHCO3溶液中n(Na+):n(c)=1:1,推出:c(Na+)=c(HCO3-)+c(CO32-)+c(H2CO3)【注意】书写电荷守恒式必须①准确的判断溶液中离子的种类;②弄清离子浓度和电荷浓度的关系。
3.导出式——质子守恒:如碳酸钠溶液中由电荷守恒和物料守恒将Na+离子消掉可得:c(OH-)=c(H+)+c(HCO3-)+2c(H2CO3)。
此关系式也可以按下列方法进行分析,由于指定溶液中氢原子的物质的量为定值,所以无论溶液中结合氢离子还是失去氢离子,但氢原子总数始终为定值,也就是说结合的氢离子的量和失去氢离子的量相等。
可以用图示分析如下:,由得失氢离子守恒可得:c(OH-)=c(H+)+c(HCO3-)+2c(H2CO3)。
又如醋酸钠溶液中由电荷守恒和物料守恒将钠离子消掉可得:c(OH-)=c(H+)+c(CH3COOH)。
【规律总结】1、必须有正确的思路:2、掌握解此类题的三个思维基点:电离、水解和守恒3、分清他们的主要地位和次要地位【常见题型】一、溶质单一型关注三个守恒1.弱酸溶液:【例1】在0.1mol/L的H2S溶液中,下列关系错误的是()A.c(H+)=c(HS-)+c(S2-)+c(OH-)B.c(H+)=c(HS-)+2c(S2-)+c(OH-)C.c(H+)>[c(HS-)+c(S2-)+c(OH-)]D.c(H2S)+c(HS-)+c(S2-)=0.1mol/L分析:由于H 2S溶液中存在下列平衡:H2S H++HS-,HS-H++S2-,H2O H++OH-,根据电荷守恒得c(H+)=c(HS-)+2c(S2-)+c(OH-),由物料守恒得c(H2S)+c(HS-)+c(S2-)=0.1mol/L,所以关系式错误的是A 项。
(注意:解答这类题目主要抓住弱酸的电离平衡。
)2.弱碱溶液:【例2】室温下,0.1mol/L的氨水溶液中,下列关系式中不正确的是()A.c(OH-)>c(H+)B.c(NH3·H2O)+c(NH4+)=0.1mol/LC.c(NH4+)>c(NH3·H2O)>c(OH-)>c(H+)D.c(OH-)=c(NH4+)+c(H+)分析:由于氨水溶液中存在一水合氨的电离平衡和水的电离平衡,所以所得溶液呈碱性,根据电荷守恒和物料守恒知BD正确,而一水合氨的电离是微量的,所以C项错误,即答案为C项。
3.强酸弱碱盐溶液:【例3】在氯化铵溶液中,下列关系正确的是()A.c(Cl-)>c(NH4+)>c(H+)>c(OH-)B.c(NH4+)>c(Cl-)>c(H+)>c(OH-)C.c(NH4+)=c(Cl-)>c(H+)=c(OH-)D.c(Cl-)=c(NH4+)>c(H+)>c(OH-)分析:由于氯化铵溶液中存在下列电离过程:NH 4Cl=NH4++Cl-,H2O H++OH-和水解过程:NH 4++H2O H++NH3·H2O,由于铵离子水解被消耗,所以c(Cl-)>c(NH4+),又因水解后溶液显酸性,所以c(H+)>c(OH-),且水解是微量的,所以上述关系式正确的是A项。
(注意:解答这类题目时主要抓住弱碱阳离子的水解,且水解是微量的,水解后溶液呈酸性。
)4.强碱弱酸盐溶液:【例4】在Na2S溶液中下列关系不正确的是A.c(Na+)=2c(HS-)+2c(S2-)+c(H2S)B.c(Na+)+c(H+)=c(OH-)+c(HS-)+2c(S2-)C.c(Na+)>c(S2-)>c(OH-)>c(HS-)D.c(OH-)=c(HS-)+c(H+)+c(H2S)解析:电荷守恒:c(Na+)+c(H+)=c(OH-)+c(HS-)+2c(S2-);物料守恒:c(Na+)=2c(HS-)+2c(S2-)+2c(H2S);质子守恒:c(OH-)=c(HS-)+c(H+)+2c(H2S),选AD5.强碱弱酸的酸式盐溶液:【例5】(2004年江苏卷)草酸是二元弱酸,草酸氢钾溶液呈酸性,在0.1mol/LKHC2O4溶液中,下列关系正确的是(CD)A.c(K+)+c(H+)=c(HC2O4-)+c(OH-)+c(C2O42-)B.c(HC2O4-)+c(C2O42-)=0.1mol/L C.c(C2O42-)>c(H2C2O4)D.c(K+)=c(H2C2O4)+c(HC2O4-)+c(C2O42-)[解析]因为草酸氢钾呈酸性,所以HC2O4-电离程度大于水解程度,故c(C2O42-)>c(H2C2O4)。
又依据物料平衡,所以D.c(K+)=c(H2C2O4)+c(HC2O4-)+c(C2O42-)正确,又根据电荷守恒,c(K+)+c(H+)=c(HC2O4-)+c(OH-)+2c(C2O42-),所以。
综合上述,C、D正确。
练习:1、(2001年全国春招题)在0.1mol·L-1Na2CO3溶液中,下列关系正确的是(c)。
A.c(Na+)=2c(CO32-B.c(OH-)=2c(H+)C.c(HCO3-)>c(H2CO3)D.c(Na+)<c(CO32-)+c(HCO3-) 2、在0.1mol/L的NaHCO3溶液中,下列关系式正确的是(CD)A.c(Na+)>c(HCO3-)>c(H+)>c(OH-)B.c(Na+)=c(HCO3-)>c(OH-)>c(H+)C.c(Na+)+c(H+)=c(HCO3-)+c(OH-)+2c(CO32-)D.c(Na+)=c(HCO3-)+c(CO32-)+c(H2CO3)3、(2006江苏)1、下列叙述正确的是(BC)A.0.1mol·L-1氨水中,c(OH-)=c(NH4+)B.10mL0.02mol·L-1HCl溶液与10mL0.02mol·L-1Ba(OH)2溶液充分混合,若混合后溶液的体积为20mL,则溶液的pH=12C.在0.1mol·L-1CH3COONa溶液中,c(OH-)=c(CH3COOH)+c(H+)D.0.1mol·L-1某二元弱酸强碱盐NaHA溶液中,c(Na+)=2c(A2-)+c(HA-)+c(H2A)二、两种电解质溶液混合后离子浓度大小的比较关注混合后溶液的酸碱性:混合后溶液的酸碱性取决于溶质的电离和水解的情况,一般判断原则是:若溶液中有酸或碱存在,要考虑酸和碱的电离,即溶液相应地显酸性或碱性;若溶液中的溶质仅为盐,则考虑盐水解情况;对于特殊情景要按所给的知识情景进行判断。
1、两种物质混合不反应:【例】:用物质的量都是0.1mol的CH3COOH和CH3COONa配制成1L混合溶液,已知其中C(CH3COO-)>C(Na+),对该混合溶液的下列判断正确的是()A.C(H+)>C(OH-)B.C(CH3COOH)+C(CH3COO-)=0.2mol/LC.C(CH3COOH)>C(CH3COO-)D.C(CH3COO-)+C(OH-)=0.2mol/L[点拨]CH3COOH和CH3COONa的混合溶液中,CH3COOH的电离和CH3COONa的水解因素同时存在。
已知C(CH3COO-)>C(Na+),根据电荷守恒C(CH3COO-)+C(OH-)=C(Na+)+C(H+),可得出C(OH-)<C(H+)。
说明混合溶液呈酸性,进一步推测出0.1mol/L的CH3COOH和0.1mol/L的CH3COONa溶液中,电离和水解这一对矛盾中起主要作用是电离,即CH3COOH的电离趋势大于CH3COO-的水解趋势。
根据物料守恒,可推出(B)是正确的。
2、两种物质恰好完全反应【例】(2003年上海高考题)在10ml0.1mol·L-1NaOH溶液中加入同体积、同浓度HAc溶液,反应后溶液中各微粒的浓度关系错误的是()。