基本不等式-高考历年真题
2025高考数学必刷题 第4讲、基本不等式及其应用(教师版)
![2025高考数学必刷题 第4讲、基本不等式及其应用(教师版)](https://img.taocdn.com/s3/m/2ebfef670640be1e650e52ea551810a6f424c875.png)
第4讲基本不等式及其应用知识梳理1、基本不等式如果00a b >>,,那么2a b +≤,当且仅当a b =时,等号成立.其中,2a b+叫作a b ,a b ,的几何平均数.即正数a b ,的算术平均数不小于它们的几何平均数.基本不等式1:若a b ∈,R ,则222a b ab +≥,当且仅当a b =时取等号;基本不等式2:若a b ∈,R +,则2a b+≥a b +≥),当且仅当a b =时取等号.注意(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)连续使用不等式要注意取得一致.【解题方法总结】1、几个重要的不等式(1)()()()2000,0.a a R a a a R ≥∈≥≥≥∈(2)基本不等式:如果,a b R +∈,则2a b+≥“a b =”时取“”).特例:10,2;2a ba a ab a>+≥+≥(,a b 同号).(3)其他变形:①()2222a b a b++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:)2,112a ba b R a b++≤≤≤∈+即调和平均值≤几何平均值≤算数平均值≤平方平均值(注意等号成立的条件).2、均值定理已知,x y R +∈.(1)如果x y S +=(定值),则2224x y S xy +⎛⎫≤=⎪⎝⎭(当且仅当“x y =”时取“=”).即“和为定值,积有最大值”.(2)如果xy P =(定值),则x y +≥=“x y =”时取“=”).即积为定值,和有最小值”.3、常见求最值模型模型一:0,0)n mx m n x +≥>>,当且仅当x =模型二:()(0,0)n nmx m x a ma ma m n x a x a+=-++≥+>>--,当且仅当x a -=模型三:210,0)x a c c ax bx c ax b x=≤>>++++,当且仅当x =时等号成立;模型四:22()1())(0,0,0)24mx n mx mx n mx n nx n mx m n x m m m m-+--=≤⋅=>><<(,当且仅当2nx m=时等号成立.必考题型全归纳题型一:基本不等式及其应用【解题方法总结】熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.例1.(2024·辽宁·校联考二模)数学命题的证明方式有很多种.利用图形证明就是一种方式.现有如图所示图形,在等腰直角三角形ABC 中,点O 为斜边AB 的中点,点D 为斜边AB 上异于顶点的一个动点,设AD a =,BD b =,用该图形能证明的不等式为().A .)0,02a ba b +≥>>B .)20,0aba b a b≤>>+C .)0,02a b a b +≤>>D .)220,0a b a b +≥>>【答案】C【解析】由图知:1,2222a b a b a b OC AB OD OB BD b ++-===-=-=,在Rt OCD △中,CD =所以OC OD ≤,即)0,02a ba b +>>,故选:C例2.(2024·全国·高三专题练习)已知x ,y 都是正数,且x y ≠,则下列选项不恒成立的是()A .2x y+B .2x y y x+>C .2xyx y<+D .12xy xy +>【答案】D【解析】x ,y 都是正数,由基本不等式,2x y+≥2y xx y+≥,2xy x y =+当x y =时等号成立,而题中x y ≠,因此等号都取不到,所以ABC 三个不等式恒成立;12xy xy +≥中当且仅当1xy =时取等号,如1,22x y ==即可取等号,D 中不等式不恒成立.故选:D .例3.(2024·江苏·高三专题练习)下列运用基本不等式求最值,使用正确的个数是()①已知0ab ≠,求ab ba+的最小值;解答过程:2a b b a +≥=;②求函数2y 2y =≥;③设1x >,求21y x x =+-的最小值;解答过程:21y x x =+≥-当且仅当21x x =-即2x =时等号成立,把2x =代入4.A .0个B .1个C .2个D .3个【答案】A【解析】对①:基本不等式适用于两个正数,当0ab <,a bb a与均为负值,此时2a b a b b a b a ⎡⎤⎛⎫⎛⎫+=--+-≤-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当且仅当a bb a=,即0a b =<时等号成立,故①的用法有误,故①错误;对②:2y ≥,1=时取等号,2≥,则等号取不到,故②的用法有误;对③:1x >,10x ->,2211111y x x x x =+=-++≥--,当且仅当1x -=,即1x =+时取等号,故③的用法有误;故使用正确的个数是0个,故选:A .题型二:直接法求最值【解题方法总结】直接利用基本不等式求解,注意取等条件.例4.(2024·河北·高三学业考试)若x ,y +∈R ,且23x y +=,则xy 的最大值为______.【答案】98【解析】由题知,x ,y +∈R ,且23x y +=因为2x y +≥所以3≥所以98xy ≥,即98xy ≤,当且仅当2x y =,即33,24x y ==时,取等号,故答案为:98例5.(2024·重庆沙坪坝·高三重庆南开中学校考阶段练习)若a ,0b >,且3ab a b =++,则ab 的最小值是____________.【答案】9【解析】因为3a b ab +=-≥a b =时,等号成立),所以230-≥,所以1)0-+≥3≥,所以9ab ≥,所以ab 的最小值为9.故答案为:9例6.(2024·天津南开·统考一模)已知实数0,0,1a b a b >>+=,则22a b +的最小值为___________.【答案】【解析】∵0a >,0b >,1a b +=,∴22a b+≥==22a b =即12a b ==时取等号.故答案为:题型三:常规凑配法求最值【解题方法总结】1、通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式.2、注意验证取得条件.例7.(2024·全国·高三专题练习)若2x >-,则()12f x x x =++的最小值为___________.【答案】0【解析】由2x >-,得12002x x +>>+,,所以11()222022f x x x x x =+=++-≥=++,当且仅当122x x +=+即=1x -时等号成立.故答案为:0例8.(2024·全国·高三专题练习)已知0x >,则4221x x ++的最小值为__________.【答案】3【解析】442211132121x x x x +=++-≥-=++,当且仅当212x +=,即12x =时,等号成立.故答案为:3.例9.(2024·全国·高三专题练习)若1x >,则2221x x x ++-的最小值为______【答案】4+/4+【解析】由1x >,则10x ->.因为()()22221415x x x x ++=-+-+,所以()22251411x x x x x ++=-++--44≥=+,当且仅当511x x -=-,即1x =+时等号成立,故2221x x x ++-的最小值为4.故答案为:4.例10.(2024·上海浦东新·高三华师大二附中校考阶段练习)若关于x 的不等式20(1)x bx c b ++≥>的解集为R ,则1241b cb ++-的最小值为_________.【答案】8【解析】因为不等式20(1)x bx c b ++≥>的解集为R ,则22Δ404b bc c =-≤⇒≥,因为1b >,所以10b ->,∴2212421(1)4(1)4111b c b b b b b b b ++++-+-+≥=---4(1)4481b b =-++≥+=-.当且仅当411b b -=-,即3b =时,取到等号.故答案为:8题型四:消参法求最值【解题方法总结】消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!例11.(2024·全国·高三专题练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是()A .2B .2C .2D .6【答案】B【解析】由220ab a +-=,得22a b =+,所以()a b b b b b +=+=++-=++884222222,当且仅当,a b b b ==+++28222,即,a b ==222取等号.故选:B.例12.(2024·全国·高三专题练习)若,x y R +∈,23()()-=x y xy ,则11x y+的最小值为___________.【答案】2【解析】因为23()()-=x y xy 且,x y R +∈,则两边同除以2()xy ,得211()xy y x-=,又因为224(111111()44xy y y x xy xy x -+=+=+≥=,当且仅当14xy xy =,即22x y ==211x y+≥.故答案为:2例13.(2024·全国·高三专题练习)已知0x >,0y >,满足2220x xy +-=,则2x y +的最小值是______..【解析】由2220x xy +-=,得21222x x y x x -==-,(x ∈所以113222222x x x y x x x +=+-=+≥==当且仅当312x x =即3x =时等号成立,所以2x y +.题型五:双换元求最值【解题方法总结】若题目中含是求两个分式的最值问题,对于这类问题最常用的方法就是双换元,分布运用两个分式的分母为两个参数,转化为这两个参数的不等关系.1、代换变量,统一变量再处理.2、注意验证取得条件.例14.(2024·浙江省江山中学高三期中)设0a >,0b >,若221a b +=,2ab -的最大值为()A.3B.C.1+D.2【答案】D【解析】解:法一:(基本不等式)设c b =-2ab -=)a b ac -=,条件222211a b a c +=⇔+=,2212a c ac +=+≥,即2≤ac 故选:D.法二:(三角换元)由条件221()14a b +=,故可设cos sin 2a b θθ⎧=⎪⎪⎨⎪=⎪⎩,即cos ,2sin a b θθθ⎧=⎪⎨=⎪⎩,由于0a >,0b >,故cos 02sin 0θθθ⎧>⎪⎨>⎪⎩,解得506πθ<<所以,5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,22sin 22ab θ-+≤当且仅当4πθ=时取等号.故选:D.例15.(2024·天津南开·一模)若0a >,0b >,0c >,2a b c ++=,则4a ba b c+++的最小值为______.【答案】2+【解析】由题意,0a >,0b >,0c >,2a b c ++=得:2a b c +=-,设2,,(0,0)c m c n m n -==>>,则2m n +=,故44242421122a b c a b c c c c c m n+-+=+=+-=+-+--422()1312m n n m m n m n +=⨯+-=++-≥,当且仅当222m n =,即42m n c =-==时取得等号,故4a ba b c+++的最小值为2+故答案为:2+例16.(2024·全国·高三专题练习)已知0a >,0b >,21a b +=,则11343a b a b+++取到最小值为________.【答案】35+.【解析】令2(34)(3)(3)(43)a b a b a b a b λμλμλμ+=+++=+++,∴1315{{43225λλμλμμ=+=⇒+==,∴111112312(3)34()[(34)(3)][]3433435555343a b a ba b a b a b a b a b a b a b a b+++=+⋅+++=++++++++3355+≥=,当且仅当21{2(3)34343a b a b a b a b a b+=++⋅++时,等号成立,即11343a b a b +++题型六:“1”的代换求最值【解题方法总结】1的代换就是指凑出1,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值,凑的过程中要特别注意等价变形.1、根据条件,凑出“1”,利用乘“1”法.2、注意验证取得条件.例17.(2024·安徽蚌埠·统考二模)若直线1(0,0)x ya b a b+=>>过点()23,,则2a b +的最小值为______.【答案】7+7【解析】∵直线1(0,0)x ya b a b+=>>过点()23,,231a b∴+=.()232622777b a a b a b a b a b ⎛⎫∴+=++=++≥+=+ ⎪⎝⎭b =,即2a =3b =时取等号.2a b ∴+的最小值为7+故答案为:7+例18.(2024·河北·高三校联考阶段练习)已知0,0,23a b a b >>+=,则4212b a b-+的最小值为__________.【答案】73【解析】0,0,23a b a b >>+= ,()4211111112471212122323233b a b a a b a b a b a b a b -+⎛⎫⎛⎫∴+=+=+++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当322a b ==时取等号,则4212b a b -+的最小值为73.故答案为:73例19.(2024·湖南衡阳·高三校考期中)已知13x >,2y >,且37x y +=,则11312x y +--的最小值为______.【答案】1【解析】因为37x y +=,所以3124x y -+-=,即312144x y --+=,因为13x >,2y >,所以3120,044x y -->>,1111312()(31231244x y x y x y --+=++----13111144(31)4(2)422x y y x -=++++---=,当且仅当314(31)4(22)y x x y ----=,即1,4x y ==时取等号.所以11312x y +--的最小值为1.故答案为:1例20.(2024·山东青岛·高三山东省青岛第五十八中学校考阶段练习)已知正实数,a b 满足4111a b b +=++,则2+a b 的最小值为___________.【答案】8【解析】因为4111a b b +=++,所以()()412111a b a b b a b b ⎛⎫⎡⎤+=++++- ⎪⎣⎦++⎝⎭()41411481b a ba b b ++=+-++≥+=++,当且仅当()411b a ba bb ++=++,即4,2a b ==时,取等号,所以2+a b 的最小值为8.故答案为:8.题型七:齐次化求最值【解题方法总结】齐次化就是含有多元的问题,通过分子、分母同时除以得到一个整体,然后转化为运用基本不等式进行求解.例21.(2024·全国·高三专题练习)已知正实数a ,b ,c ,3a b +=,则331ac c b ab c +++的最小值为_______________.【答案】2/2-+【解析】由正实数a ,b ,3a b +=,可得2()33a b +=,所以22()333333(111a b a ac c a c c b ab c b ab c ab c ++++=⨯++=⨯++++22423423()313331a ab b a bc cab c b a c +++=⨯+=⨯+++++而44333a b b a +≥=,当且仅当4a b b a =即24,33a b ==时取等号,故334233()2(1)213311ac c c c b ab c c c ++≥++=++-+++2≥,当且仅当32(1)1c c +=+时,即1c =时取等号,故答案为:2例22.(2024·全国·高三专题练习)已知a ,b 为正实数,且21a b +=,则22aa b+的最小值为______.【答案】6【解析】由已知条件得,2422446222a a b a b a a b a b a b +⎛⎫+=+=++≥+= ⎪⎝⎭,当且仅当22b a a b =,即25a =,15b =时取等号.故答案为:6.例23.(2024·天津红桥·高三天津市复兴中学校考阶段练习)已知0,0x y >>,则222224xy xyx y x y +++的最大值是____________.【答案】3【解析】222222144xy xy x y x y x y x y y x y x+=+++++,设(0)x t t y=>,所以原式=322422223()2123(2)41441545t t t t t t t t t t t t t t t t+++=+==++++++++,令2(0),u t t u t=+>∴≥所以原式=2333311139u u u u =≤=++.(函数1y u u=+在)+∞上单调递增)故答案为:3题型八:利用基本不等式证明不等式【解题方法总结】类似于基本不等式的结构的不等式的证明可以利用基本不等式去组合、分解、运算获得证明.例24.(2024·全国·高三专题练习)利用基本不等式证明:已知,,a b c 都是正数,求证:()()()8a b b c c a abc+++≥【解析】,,a b c都是正数,0a b ∴+≥>(当且仅当a b =时取等号);0b c +≥>(当且仅当b c =时取等号);0c a +≥>(当且仅当c a =时取等号);()()()8a b b c c a abc ∴+++≥=(当且仅当a b c ==时取等号),即()()()8a b b c c a abc +++≥.例25.(2024·河南·高三校联考阶段练习)已知x ,y ,z 为正数,证明:(1)若2xyz =,则2221112x y z x y z ++++≤;(2)若229x y z ++=,则2229x y z ++≥.【解析】(1)因为2xyz =,所以2222y z yz x +=≤,同理可得2222x z y +≤,2222x y z +≤,所以222222222222y z x z x y x y z +++++≤++,故2221112x y z x y z ++++≤,当且仅当x y z ==时等号成立.(2)()()()2222222222112122299x y z x y z x y z ++=++++≥++,因为229x y z ++=,所以2229x y z ++≥,当且仅当2x y z ==时等号成立.例26.(2024·四川广安·高三校考开学考试)已知函数()21f x x x m =+++,若()3f x ≤的解集为[],1n .(1)求实数m ,n 的值;(2)已知,a b 均为正数,且满足12202m a b++=,求证:22168a b +≥.【解析】(1)因为()3f x ≤的解集为[],1n ,所以(1)3f ≤,即3|1|3m ++≤,所以|1|0m +≤,又|1|0m +≥,所以10m +=,即1m =-.所以()|21||1|f x x x =++-,当12x <-时,()21133f x x x x =---+=-≤,得1x ≥-,则112x -≤<-,当112x -≤≤时,()21123f x x x x =+-+=+≤,得112x -≤≤,当1x >时,()2113f x x x x =++-=3≤,得1x ≤,不成立,综上所述:()3f x ≤的解集为[1,1]-,因为()3f x ≤的解集为[],1n .所以1n =-.(2)由(1)知,1m =-,所以1222a b+=(0,0)a b >>,所以1222a b =+≥=,当且仅当12a =,2b =时,等号成立,所以1≥ab ,所以22168a b ab +≥=8≥,当且仅当12a =,2b =时,等号成立.题型九:利用基本不等式解决实际问题【解题方法总结】1、理解题意,设出变量,建立函数模型,把实际问题抽象为函数的最值问题.2、注意定义域,验证取得条件.3、注意实际问题隐藏的条件,比如整数,单位换算等.例27.(2024·全国·高三专题练习)首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下进行技术攻关,采取了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似的表示为21200800002y x x =-+,且处理每吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?【解析】(1)由题意知,平均每吨二氧化碳的处理成本为1800002002002002y x x x =+-≥-=;当且仅当1800002x x=,即400x =时等号成立,故该当每月处理量为400吨时,才能使每吨的平均处理成本最低为200元.(2)不获利,设该单位每个月获利为S 元,则2211100100200800003008000022S x y x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭()21300350002x =---,因为[]400,600x ∈,则[]80000,40000S ∈--,故该当单位每月不获利,需要国家每个月至少补贴40000元才能不亏损.例28.(2024·贵州安顺·高一统考期末)某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为100吨,最多为600吨,月处理成本()f x (元)与月处理量x (吨)之间的函数关系可近似地表示为21()200800002f x x x =-+.(1)该单位每月处理量为多少吨时,才能使月处理成本最低?月处理成本最低是多少元?(2)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?每吨的平均处理成本最低是多少元?【解析】(1)该单位每月的月处理成本:2211()20080000(200)6000022f x x x x =-+=-+,因100600x ≤≤,函数()f x 在区间[100,200]上单调递减,在区间(200,600]上单调递增,从而得当200x =时,函数()f x 取得最小值,即min ()(200)60000f x f ==.所以该单位每月处理量为200吨时,才能使月处理成本最低,月处理成本最低是60000元.(2)由题意可知:21()20080000(100600)2f x x x x =-+≤≤,每吨二氧化碳的平均处理成本为:()800002002002002f x x xx =+-≥=当且仅当800002x x=,即400x =时,等号成立.所以该单位每月处理量为400吨时,每吨的平均处理成本最低,为200元.例29.(2024·湖北孝感·高一统考开学考试)截至2022年12月12日,全国新型冠状病毒的感染人数突破44200000人.疫情严峻,请同学们利用数学模型解决生活中的实际问题.(1)我国某科研机构新研制了一种治疗新冠肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量()c t (单位:mg /L )随着时间t (单位:h ).的变化用指数模型()0ektc c t -=描述,假定某药物的消除速率常数0.1k =(单位:1h -),刚注射这种新药后的初始血药含量02000mg /L c =,且这种新药在病人体内的血药含量不低于1000mg /L 时才会对新冠肺炎起疗效,现给某新冠病人注射了这种新药,求该新药对病人有疗效的时长大约为多少小时?(精确到0.01,参考数据:ln20.693≈,ln3 1.099≈)(2)为了抗击新冠,需要建造隔离房间.如图,每个房间是长方体,且有一面靠墙,底面积为48a 平方米(0)a >,侧面长为x 米,且x 不超过8,房高为4米.房屋正面造价400元/平方米,侧面造价150元/平方米.如果不计房屋背面、屋顶和地面费用,则侧面长为多少时,总价最低?【解析】(1)由题意得,0.10()e 2000e kt t c t c --==,设该药在病人体内的血药含量变为1000mg/L 时需要是时间为1t ,由10.11()2000e 1000t c t -=≥,得10.12e 1t -≥,故0.1ln 2t -≥-,ln 26.93h 0.1t ∴≤≈.∴该新药对病人有疗效的时长大约为6.93h .(2)由题意,正面长为48a x 米,故总造价48400421504ay x x=⨯⨯+⨯⨯,即()768001200,08ay x x x=+<≤.由基本不等式有768001200a y x x =+≥768001200a x x =,即x =.故当8≤,即1a ≤,x =时总价最低;当8>,即1a >时,由对勾函数的性质可得,8x =时总价最低;综上,当01a <≤时,x =1a >时,8x =时总价最低.题型十:与a b +、平方和、ab 有关问题的最值【解题方法总结】利用基本不等式变形求解例30.(多选题)(2024·重庆·统考模拟预测)若实数a ,b 满足221a b ab +=+,则()A .1a b -≥-B .a b -C .13ab ≥-D .13ab ≤【答案】BC【解析】221a b ab +=+ ,当0ab >时,222121a b ab ab ab ab +≥⇒+≥⇒≤,当且仅当1a b ==或1a b ==-时等号成立,得01ab <≤,当0ab <时,2212123a b ab ab ab ab +≥-⇒+≥-⇒≥-,当且仅当a b ==33a b =-=时等号成立,得103ab -≤<,当0ab =时,由221a b ab +=+可得0,1a b ==±或0,1b a ==±综合可得113ab -≤≤,故C 正确,D 错误;222221()11()b ab ab a b b a b b a a a +-=-⇒-=-⇒-=- ,当13ab ≥-时,22141()()33a b a b a b --≥-⇒-≤⇒≤-,故A 错误,B 正确;故选:BC.例31.(多选题)(2024·全国·高三专题练习)已知0,0a b >>,且11a b+=,则()A .1b a+的最小值为4B .221a b +的最小值为14C .ab 的最大值为14D .12b a -1【答案】ACD【解析】11111124b b a ab a a b ab ⎛⎫⎛⎫+=++=+++≥+= ⎪⎪⎝⎭⎝⎭,当且仅当1ab =,即1,22a b ⎧=⎪⎨⎪=⎩时取等号,则A 正确;222211112224a a b b ⎛⎫++ ⎪⎛⎫≥≥= ⎪ ⎪⎝⎭ ⎪⎝⎭,即22112a b +≥,当且仅当1ab =,即1,22a b ⎧=⎪⎨⎪=⎩时取等号,则B 错误;221111124b a b b b b b b --⎛⎫===-+ ⎪⎝⎭,当112b =,即2b =时,max 14a b ⎛⎫= ⎪⎝⎭,则C正确;1111111222b b b a b b b --=-=+-≥-=,当且仅当12a b ⎧=-⎪⎨⎪=⎩时取等号,则D 正确.故选:ACD例32.(多选题)(2024·全国·高三专题练习)已知0x >,0y >,且30x y xy +-+=,则下列说法正确的是()A .312xy <≤B .6x y +≥C .2218x y +≥D .11103x y <+≤【答案】BC【解析】对于A:由3xy x y -=+≥,得3xy -≥x y =时,等号成立230-≥3≥,即9xy ≥,故A 不正确;对于B :由232x y x y xy +⎛⎫++=≤ ⎪⎝⎭,得232x y x y +⎛⎫++ ⎪⎝⎭≤,当且仅当x y =时,等号成立即()()21240y x x y +-+-≥,解得6x y +≥,或2x y +≤-(舍去),故B 正确;对于C :()()()()()2222222326x y x y xy x y x y x y x y +=+-=+-++=+-+-,令6t x y =+≥,()()22222261761718x y t t t +=--=----=≥,即2218x y +≥,故C 正确;对于D ,11331x y xy x y xy xy xy +-+===-,令9t xy =≥,113321193x y t +=--=≥,即1123x y +≥,故D 不正确,故选:BC .例33.(多选题)(2024·全国·高三专题练习)设0a >,0b >,1a b +=,则下列结论正确的是()A .ab 的最大值为14B .22a b +的最小值为12C .41a b+的最小值为9D 【答案】ABC【解析】对于A ,因为0a >,0b >,1a b +=,则21()24a b ab +≤=,当且仅当12a b ==时取等号,故A 正确;对于B ,因为222(22a b a b ++≤,故2212a b +≥,当且仅当12a b ==时取等号,即22a b +的最小值12,故B 正确;对于C ,41414()559b a a b a b a b a b +=++=++≥+=,当且仅当4b aa b =且1a b +=,即13b =,23a =时取等号,所以41a b+的最小值为9,故C 正确;对于D ,2111222+=++⨯=,≤12a b ==D 错误.故选:ABC.。
等式与不等式综合(含基本不等式)(教师卷)十年(2015-2024)高考真题数学分项汇编(全国通用)
![等式与不等式综合(含基本不等式)(教师卷)十年(2015-2024)高考真题数学分项汇编(全国通用)](https://img.taocdn.com/s3/m/70592c6bf011f18583d049649b6648d7c0c7086d.png)
专题04等式与不等式综合(含基本不等式)考点十年考情(2015-2024)命题趋势考点1不等式的性质(10年5考)2019·全国卷、2018·全国卷、2017·山东卷、2016·浙江卷、2016·北京卷、2016·全国卷、2015·浙江卷1.梳理等式的性质,理解不等式的概念,掌握不等式的性质,能够利用不等式的性质比较不等式的大小关系2.理解、掌握基本不等式及其推论,会使用应用条件:“一正,二定,三相等”,能正确处理常数“1”求最值,能用拼凑等思想合理使用基本不等式求最值,能熟练掌握基本不等式的应用,应用于函数和解析几何的求解过程中求最值3.本节内容是新高考卷的常考内容,一般会结合条件等式考查拼凑思想来使用基本不等式求最值,或者和其他版块关联,难度中等偏上。
考点2解不等式(10年10考)2024·全国新Ⅰ卷、2024·上海卷、2023·全国新Ⅰ卷、2020·全国卷、2019·全国卷、2019·天津卷、2018·全国卷、2017·天津卷、2015·江苏卷、2015·广东卷考点3基本不等式(10年4考)2024·北京卷、2021·全国乙卷、2021·全国新Ⅰ卷2020·全国卷、2015·四川卷、2015·陕西卷2015·湖南卷、2015·福建卷考点01不等式的性质1.(2019·全国·高考真题)若a >b ,则A .ln(a −b )>0B .3a <3b C .a 3−b 3>0D .│a │>│b │【答案】C【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3x y =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.2.(2018·全国·高考真题)设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b<<+【答案】B【详解】分析:求出0.2211log0.3,0.3log a b ==,得到11a b+的范围,进而可得结果.详解:.0.30.3log0.2,2a b log == 0.2211log0.3,0.3log a b∴==0.3110.4log a b ∴+=1101a b∴<+<,即01a bab +<<又a 0,b 0>< ab 0∴<即ab a b 0<+<故选B.点睛:本题主要考查对数的运算和不等式,属于中档题.3.(2017·山东·高考真题)若a>b>0,且ab=1,则下列不等式成立的是A .21log ()2a ba ab b +<<+B .21log ()2a b a b a b<+<+C .21log ()2a b a a b b +<+<D .21log ()2aba b a b +<+<【答案】B【详解】因为0a b >>,且1ab =,所以221,01,1,log ()log 1,2aba b a b ><<∴+=设()()2,1x f x x x =->,则()2ln 210x f x '=->,所以()()2,1xf x x x =->单调递增,所以12112log ()a ba ab a a b b b+>+>+⇒+>+,所以选B.【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数单调性进行比较,若底数不同,可考虑利用中间量进行比较.本题虽小,但考查的知识点较多,需灵活利用指数函数、对数函数的性质及基本不等式作出判断.4.(2016·浙江·高考真题)已知a ,b >0,且a≠1,b≠1.若log >1a b ,则A .(1)(1)0a b --<B .(1)()0a a b -->C .D .(1)()0b b a -->【答案】D【详解】试题分析:log log 1a a b a >=,当1a >时,1b a >>,10,010,0a b a b a b ∴->->->-<,,(1)(1)0,(1)()0,(1)()0.a b a a b b b a ∴-->----当01a <<时,01b a ∴<<<,10,010,0,a b a b a b ∴-<-<--,(1)(1)0,(1)()0,(1)()0.a b a a b b b a ∴-->----观察各选项可知选D.【考点】对数函数的性质.【易错点睛】在解不等式log 1a b >时,一定要注意对a 分为1a >和01a <<两种情况进行讨论,否则很容易出现错误.5.(2016·北京·高考真题)已知,x y R ∈,且0x y >>,则A .110x y->B .sin sin 0x y ->C .11()()022x y -<D .ln ln 0x y +>【答案】C【详解】试题分析:A :由,得,即,A 不正确;B :由及正弦函数的单调性,可知不一定成立;C :由,,得,故,C 正确;D :由,得,但xy 的值不一定大于1,故ln ln =ln 0x y xy +>不一定成立,故选C.【考点】函数性质【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法.(2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;(3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.6.(2016·全国·高考真题)若1a b >>,01c <<,则A .c c a b <B .c cab ba <C .log log b a a c b c <D .log log a b c c<【答案】C【详解】试题分析:用特殊值法,令3a =,2b =,12c =得112232>,选项A 错误,11223223⨯>⨯,选项B 错误,3211log log 22>,选项D 错误,因为lg lg log log lg (lg (11lg lg lg lg a bb b ab a a b a b ac b c c c a b b a a b a b a--=⋅-=⋅>>∴<<< lg lg 001lg 0log log lg lg a b b a a b c c a c b c b a-∴><<∴<∴< 选项C 正确,故选C .【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.7.(2015·浙江·高考真题)设a ,b 是实数,则“0a b +>”是“0ab >”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【详解】本题采用特殊值法:当3,1a b ==-时,0a b +>,但0ab <,故是不充分条件;当3,1a b =-=-时,0ab >,但0a b +<,故是不必要条件.所以“0a b +>”是“0ab >”的既不充分也不必要条件.故选D.考点:1.充分条件、必要条件;2.不等式的性质.考点02解不等式1.(2024·全国新Ⅰ卷·高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ()A .{1,0}-B .{2,3}C .{3,1,0}--D .{1,0,2}-【答案】A【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.(2024·上海·高考真题)已知,x ∈R 则不等式2230x x --<的解集为.【答案】{}|13x x -<<【分析】求出方程2230x x --=的解后可求不等式的解集.【详解】方程2230x x --=的解为=1x -或3x =,故不等式2230x x --<的解集为{}|13x x -<<,故答案为:{}|13x x -<<.3.(2023·全国新Ⅰ卷·高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=()A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出.【详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-.故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .4.(2020·全国·高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ()A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = ,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.5.(2019·全国·高考真题)设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)【分析】先求出集合A ,再求出交集.【详解】由题意得,{}{}23,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目.6.(2019·天津·高考真题)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为.【答案】2(1,)3-【分析】通过因式分解,解不等式.【详解】2320x x +-<,即(1)(32)0x x +-<,即213x -<<,故x 的取值范围是2(1,3-.【点睛】解一元二次不等式的步骤:(1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.7.(2018·全国·高考真题)已知集合{}220A x x x =-->,则R A =ðA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥【答案】B【详解】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.详解:解不等式220x x -->得12x x <->或,所以{}|12A x x x =<->或,所以可以求得{}R |12C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.8.(2017·天津·高考真题)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a R ∈,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是A .47[,2]16-B .4739[,1616-C.[-D.39[]16-【详解】不等式()2x f x a ≥+为()()2xf x a f x -≤+≤(*),当1x ≤时,(*)式即为22332x x x a x x -+-≤+≤-+,2233322x x a x x -+-≤≤-+,又22147473()241616xx x -+-=---≤-(14x =时取等号),223339393()241616x x x -+=-+≥(34x =时取等号),所以47391616a -≤≤,当1x >时,(*)式为222x x a x xx--≤+≤+,32222x x a xx--≤≤+,又3232()2322x x xx--=-+≤-(当233x =时取等号),222222x x x x+≥⨯=(当2x =时取等号),所以232a -≤≤,综上47216a -≤≤.故选A .【考点】不等式、恒成立问题【名师点睛】首先满足()2x f x a ≥+转化为()()22x xf x a f x --≤≤-去解决,由于涉及分段函数问题要遵循分段处理原则,分别对x 的两种不同情况进行讨论,针对每种情况根据x 的范围,利用极端原理,求出对应的a 的范围.9.(2015·江苏·高考真题)不等式224x x-<的解集为.【答案】(1,2).-【详解】试题分析:本题是一个指数型函数式的大小比较,这种题目需要先把底数化为相同的形式,即底数化为2,根据函数是一个递增函数,写出指数之间的关系得到未知数的范围.,2222,xx-∴<是一个递增函数;故答案为.考点:指数函数的单调性和特殊性10.(2015·广东·高考真题)不等式2340x x --+>的解集为.(用区间表示)【答案】()4,1-【详解】由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-.考点:一元二次不等式.考点03基本不等式1.(2024·北京·高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则()A .12122log 22y y x x ++<B .12122log 22y y x x ++>C .12212log 2y y x x +<+D .12212log 2y y x x +>+【答案】B【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得121222222x x x x ++>=,即12122202x x y y ++>>,根据函数2log y x =是增函数,所以121212222log log 222x x y y x x +++>=,故B 正确,A 错误;对于选项D :例如120,1x x ==,则121,2y y ==,可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误;对于选项C :例如121,2x x =-=-,则1211,24y y ==,可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误,故选:B.2.(2021·全国乙卷·高考真题)下列函数中最小值为4的是()A .224y x x =++B .4sin sin y x x=+C .2y 22x x -=+D .4ln ln y x x=+【答案】C【分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【详解】对于A ,()2224133y x x x =++=++≥,当且仅当=1x -时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意;对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞ ,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意.故选:C .【点睛】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.3.(2021·全国新Ⅰ卷·高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .6【答案】C【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .【点睛】4.(2020·全国·高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A .4B .8C .16D .32【答案】B【分析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a =±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2c =即可求得答案.【详解】 2222:1(0,0)x y C a b a b-=>>∴双曲线的渐近线方程是by x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩故(,)D a b 联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩故(,)E a b -∴||2ED b=∴ODE 面积为:1282ODE S a b ab =⨯==△ 双曲线2222:1(0,0)x y C a b a b -=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.5.(2015·四川·高考真题)如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,则mn 的最大值为A .16B .18C .25D .812【答案】B【详解】2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当m>2时,822n m --≥-即212m n +≤.26,182m nmn +≤≤∴≤ .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,8122n m --≤-即218m n +≤.2819,22n m mn +≤≤∴≤ .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n .所以(182)(1828)816mn n n =-<-⨯⨯=,所以最大值为18.选B..考点:函数与不等式的综合应用.6.(2015·陕西·高考真题)设()ln ,0f x x a b =<<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是A .q r p=<B .q r p =>C .p r q=<D .p r q=>【答案】C【详解】p f ==()ln 22a b a b q f ++==,11(()())ln 22r f a f b ab =+==()ln f x x =在()0,+∞上单调递增,因为2a b +>()2a b f f +>,所以q p r >=,故选C .【考点定位】1、基本不等式;2、基本初等函数的单调性.7.(2015·湖南·高考真题)若实数,a b 满足12a b +=ab 的最小值为A B .2C .D .4【答案】C【详解】121200a b ab a b a b +=∴=+≥=∴≥ >,>,(当且仅当2b a =时取等号),所以ab 的最小值为 C.考点:基本不等式【名师点睛】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.8.(2015·福建·高考真题)若直线1(0,0)x y a b a b +=>>过点(1,1),则a b +的最小值等于A .2B .3C .4D .5【答案】C 【详解】试题分析:∵直线1x y a b +=(,)过点,∴.则()11a b a b a b ⎛⎫+=++ ⎪⎝⎭224b a a b =++≥+=,当且仅当时取等号.故答案为C .考点:基本不等式.。
不等式(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)
![不等式(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)](https://img.taocdn.com/s3/m/9a34b5ca0342a8956bec0975f46527d3240ca61c.png)
专题14不等式1.【2022年全国乙卷】若x ,y 满足约束条件+O2,+2N4,O0,则=2−的最大值是()A .−2B .4C .8D .122.【2021年乙卷文科】若,x y 满足约束条件4,2,3,x y x y y +≥⎧⎪-≤⎨⎪≤⎩则3z x y =+的最小值为()A .18B .10C .6D .43.【2021年乙卷文科】下列函数中最小值为4的是()A .224y x x =++B .4sin sin y x x=+C .222x xy -=+D .4ln ln y x x=+4.【2020年新课标3卷文科】已知函数f (x )=sin x +1sin x,则()A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称5.【2019年新课标2卷理科】若a >b ,则A .ln(a −b )>0B .3a <3b C .a 3−b 3>0D .│a │>│b │6.【2022年新高考2卷】若x ,y 满足2+2−B =1,则()A .+≤1B .+≥−2C .2+2≤2D .2+2≥17.【2020年新高考1卷(山东卷)】已知a >0,b >0,且a +b =1,则()A .2212a b +≥B .122a b->C .22log log 2a b +≥-D≤8.【2020年新课标1卷理科】若x ,y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则z =x +7y 的最大值为______________.9.【2020年新课标2卷文科】若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,,则2z x y =+的最大值是__________.10.【2020年新课标3卷理科】若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩,,则z =3x +2y 的最大值为_________.11.【2020年新课标3卷理科】关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图象关于y 轴对称.②f (x )的图象关于原点对称.③f (x )的图象关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.12.【2019年新课标2卷文科】若变量x ,y 满足约束条件23603020x y x y y ,,,+-≥⎧⎪+-≤⎨⎪-≤⎩则z =3x –y 的最大值是___________.13.【2018年新课标1卷理科】若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.14.【2018年新课标2卷理科】若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为__________.15.【2018年新课标3卷文科】若变量x y ,满足约束条件23024020.x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,则13z x y =+的最大值是________.。
高中试卷-2.2 基本不等式(含答案)
![高中试卷-2.2 基本不等式(含答案)](https://img.taocdn.com/s3/m/120b284fc4da50e2524de518964bcf84b9d52dff.png)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!2.2 基本不等式1. 利用基本不等式比较大小;2. 变形技巧:“1”的代换;3. 证明不等式;4. 不等式的证明技巧—字母轮换不等式的证法;5. 求参数的取值范围问题;6.求最大(小)值;7.均值不等式在实际问题中的应用一、单选题1.(2021·浙江高一单元测试)若0a <b <,则下列结论中不恒成立的是( )A .a b >B .11a b>C .222a b ab +>D .a b +>-【答案】D 【解析】因为0a <b <,所以0->->a b 所以a b >,11a b -<-即11a b>,故A ,B 正确.因为()20a b -³,所以222a b ab +³,所以222a b ab +>故C 正确.当 2,1a b =-=-时, +<-a b D 错误.故选:D2.(2021·全国高一课时练习)若0a b << ,则下列不等式一定成立的是( )A .2a ba b +>>>B .2a bb a +>>>C .2a bb a +>>>D .2a bb a +>>>【答案】C 【解析】因为0a b <<,所以2b a b >+,又由基本不等式可得:2a b +>,所以2a bb +>>,又2ab a >a >,因此2a bb a +>>>.故选:C.3.(2021·黑龙江南岗·哈师大附中高一期末)已知x ,y >0且x+4y=1,则11x y+的最小值为( )A .8B .9C .10D .11【答案】B 【解析】0x y Q ,> 且41x y += ,∴111144 1459x y x y x y x y y x +=++=+++³+()().当且仅当1136x y ,==时,等号成立.∴11x y+的最小值为9.故选:B .4.(2021·浙江高一单元测试)如图,某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N )为二次函数关系,若使营运的年平均利润最大,则每辆客车应营运A .3年B .4年C .5年D .6年【答案】C 【解析】可设y=a(x -6)2+11,又曲线过(4,7),∴7=a(4-6)2+11 ∴a=-1.即y=-x 2+12x -25,∴=12-(x+)≤12-2=2,当且仅当x=5时取等号. 故选C .5.(2021·浙江鄞州·宁波华茂外国语学校高三一模)已知实数0a >,0b >,11111a b +=++,则2+a b 的最小值是( )A .B .C .3D .2【答案】B 【解析】∵0a >,0b >,11111a b +=++∴112(1)12(1)2(1)3[(1)2(1)](3[12]31111b a a b a b a b a b a b +++=+++-=+++×+-=+++-++++³-当且仅当2(1)111b a a b ++=++,即a =,b =.故选B6.(2021·全国高三课时练习(理))已知关于x 的不等式227x x a+³-在(,)x a Î+¥上恒成立,则实数a 的最小值为 ( )A .1B .52C .2D .32【答案】D 【解析】设2()2f x x x a=+-,,0x a x a >\->Q , 227x x a+³-在(,)x a Î+¥上恒成立,需min ()7f x ³,22()22()222242f x x x a a a a x a x a=+=-++³´+=+--,当且仅当11x a x a -==-,即1x a =+时等号成立,3427,2a a \+³³.故选:D.7.(2021·广西兴宁·南宁三中高一期末)已知0a >,0b >,1ab =,且1m b a =+,1n a b=+,则m n +的最小值是( )A .3B .4C .5D .6【答案】B 【解析】由1ab =知,12m b b a =+=,12n a a b=+=,\()24m n a b +=+³=,当且仅当1a b ==时取等号.故m n +的最小值为4故选:B8.(2021·皇姑·辽宁实验中学高三其他(文))已知实数,x y 满足221x xy y -+=,则x y +的最大值为( )A .1B .2C .3D .4【答案】B 【解析】原式可化为:22()1313(2x y x y xy ++=+£+,解得22x y -£+£,当且仅当1x y ==时成立.所以选B.9.(2021·河南高二期末(理))设,,a b c 为任意正数.则111,,a b c b c a+++这三个数( )A .都大于2B .都小于2C .至少有一个不小于2D .至少有一个不大于2【答案】C 【解析】假设三个数均小于2,即1112,2,2a b c b c a +<+<+<,故1116a b c a b c+++++<,而1116a b c a b c +++++³++=,当1a b c ===时等号成立,这与1116a b c a b c+++++<矛盾,故假设不成立,故至少有一个不小于2,C 正确;取2a b c ===,计算排除BD ;取1a b c ===,计算排除A.故选:C.10.(2021·浙江金华·高一期末)已知x ,0y >,则41x y x y+++的最小值为( )A .B .6C .D .【答案】B 【解析】因为x ,0y >,由基本不等式可得,416x y x y +++³=,当且仅当2,1x y ==时等号成立.故选:B .二、多选题11.(2021·浙江高一单元测试)已知函数11(0)y x x x=++<,则该函数的( ).A .最小值为3B .最大值为3C .没有最小值D .最大值为1-【答案】CD 【解析】0x <Q ,\函数111()111()y x x x x éù=++=--++-+=-êú-ëû…,当且仅当1x =-时取等号,\该函数有最大值1-.无最小值.故选:CD .12.(2021·海南高二期末)已知实数a 、b 满足0a b >>,则下列不等式一定成立的有( )A .22a b <B .a b -<-C .2b aa b+>D .a b ab+>【答案】BC 【解析】因为0a b >>,于是22a b >,A 项不成立;由0a b >>得a b -<-,B 项正确;由基本不等式可知2b a a b +³=,因为a b ¹,所以等号取不到,所以C 项正确;当3a =,2b =时,D 项不成立.故选:BC.13.(2021·山东德州·高三二模)若正实数a ,b 满足1a b +=则下列说法正确的是( )A .ab 有最大值14BC .11a b+有最小值2D .22a b +有最大值12【答案】AB 【解析】对A,2211224a b ab +æöæö£==ç÷ç÷èøèø,当且仅当12a b ==时取等号.故A 正确.对B,22a b a b a b =++£+++=,+£,当且仅当12a b ==时取等号.故B 正确.对C,()1111224b a a b a b a b a b æö+=++=++³+è=ç÷ø.当且仅当12a b ==时取等号.所以11a b +有最小值4.故C 错误.对D, ()()2222222121a b a ab b a a bb+=Þ++=£+++,即2212a b +³,故22a b +有最小值12.故D 错误.故选:AB14.(2021·山东泰山·泰安一中高一期中)设0a >,0b >,给出下列不等式恒成立的是( ).A .21a a+>B .296a a+>C .()114a b a b æö++³ç÷èøD .114a b a b æöæö++³ç÷ç÷èøèø【答案】ACD 【解析】设0a >,0b >,22131024a a a æö+-=++>ç÷èø,A 成立,2296(3)0a a a +-=-…,B 不成立()111124b a a b a b a b æö++=+++³+=ç÷èø,当且仅当b a a b =即a b =时取等号,故C 成立,12a a +…,12b b +…,114a b a b æöæö\++³ç÷ç÷èøèø,当且仅当1a a =,1b b =即1a b ==时取等号,故D 成立,故选:ACD .三、填空题15.(2021·浙江高一单元测试)已知04x <<,则414x x+-的最小值为______.【答案】94.【解析】用“1”的代换法配凑出定值,然后用基本不等式得最小值.4144114(4)95444444x x x x x x x x x x +--æöæöæö+=+=++ç÷ç÷ç÷---èøèøèø…,当且仅当4(4)4x x x x -=-,解得1288,3x x ==,又因为04x <<,所以83x =时等号成立.故答案为:94.16.(2021·全国高一)若0, 0a >b >,则“4a b +£”是 “4ab £”的_____条件【答案】充分不必要【解析】当0,0a b >>时,由基本不等式,可得a b +³,当4a b +£时,有4a b £+£,解得4ab £,充分性是成立的;例如:当1,4a b ==时,满足4ab £,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +£”是“4ab £”的充分不必要条件.故答案为充分不必要条件.17.(2021·全国高一)若实数x ,y 满足xy=1,则x 2+4y 2的最小值为______.【答案】4【解析】若实数,x y 满足1xy=,则2242244x y x y xy +³××==,当且仅当2x y ==,上式取得最小值4故答案为:4四、双空题18.(2021·全国高一课时练习)若1x >,则1141x x ++-的最小值是______,此时x =______.【答案】9 32【解析】因为1x >,即10x ->所以1114=4(1)545911x x x x ++-++³+=--当且仅当14(1)1x x -=-即32x =时取等号.故第一空填9,第二空填3219.(2021·浙江鄞州·宁波诺丁汉附中高一期中)用一根长为12m 的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的宽为________m ;高为________m .【答案】323 【解析】设窗户的宽为x ,则其高为62x -,要使阳光充足,只要面积最大,()()()23962232[]22x x S x x x x +-=-=-£´=,当且仅当32x =时等号成立,这时高为3m .故答案为:(1).32(2). 3用基本不等式求最值问题:已知0,0x y >>,则:(1)如果积xy 是定值p ,那么当且仅当x y =时,x y +有最小值是 .(简记:积定和最小)(2)如果和x y +是定值p ,那么当且仅当x y =时,xy 有最大值是24p.(简记:和定积最大)20.(2021·浙江金华·高一期中)已知正数a ,b 满足a+b=1,则1b a b+的最小值等于__________ ,此时a=____________.【答案】3 12【解析】根据题意,正数a 、b 满足1a b +=,则1113b b a b b a a b a b a b ++=+=++³=,当且仅当12a b ==时,等号成立,故1b a b+的最小值为3,此时12a =.故答案为:3;12.21.(2017·北京人大附中高一期中)已知正数x 、y 满足1x y +=,则:(1)22xy +的最小值为________.(2)若14a x y+>恒成立,则实数a 的取值范围是______.【答案】12(),9-¥ 【解析】(1)因为正数x 、y 满足1x y +=,所以21()24x y xy +£=,当且仅当12x y ==时取等号,所以2221()2122x y x y xy xy =+-=-³+;(2)因为正数x 、y 满足1x y +=,14144()1459x y x y x y x y y x\+=++=+++³+=,当且仅当4x y y x =,即12,33x y ==时取等号,所以9a <;故答案为:()1;,92-¥五、解答题22.(2021·全国高一课时练习)已知a ,b ,c 为任意实数,求证:222a b c ab bc ca ++++….【答案】见解析【解析】∵222a b ab +…,22222,2b c bc c a ca ++……,∴()22222()a b c ab bc ca ++++….即222a b c ab bc ca ++++….当且仅当a b c ==时,等号成立.23.(2021·全国)设a ,b ,c 都是正数,求证:bc ca ab a b c a b c++++….【答案】详见解析【解析】证明:∵a ,b ,c 都是正数,∴由重要不等式可得:2bc ca c a b +³①,当且仅当bc ac a b =时等号成立,即a b =;2bc ab b a c +³②,当且仅当bc ab a c =时等号成立,即a c =;2ac ab a b c +³=③,当且仅当ac ab b c =时等号成立,即b c =;∴①+②+③得:22()bc ca ab a b c a b c æö++³++ç÷èø∴bc ca ab a b c a b c++++…;当且仅当a b c ==时等号成立.24.(2021·全国高一课时练习)已知a>0,b>0,a +b =1,求证:11119a b æöæö++³ç÷ç÷èøèø.【答案】证明见解析【解析】证明:法一:因为a>0,b>0,a +b =1,所以1+1a =1+a b a +=2+b a ,同理1+1b =2+a b,故11112252549b a b a a b a b a b æöæöæöæöæö++=++=++³+=ç÷ç÷ç÷ç÷ç÷èøèøèøèøèø.所以11119a b æöæö++³ç÷ç÷èøèø(当且仅当12a b ==时取等号).法二:111111211111a b a b a b ab ab ab ab +æöæö++=+++=++=+ç÷ç÷èøèø,因为a ,b 为正数,a +b =1,所以ab≤2124a b +æö=ç÷èø,于是14ab ³,28ab ³,因此1111189a b æöæö++³+=ç÷ç÷èøèø(当且仅当12a b ==时取等号).25.(2021·全国高一课时练习)用篱笆围一个面积为2100m 的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?【答案】矩形的长、宽都为10m 时,所用篱笆最短,最短篱笆为40m .【解析】设矩形菜园的长为m x ,宽为m y ,则100xy =,篱笆的长为()2x y m +.由基本不等式可得()2240x y +³´=,当且仅当10x y ==时,等号成立,因此,这个矩形的长、宽都为10m 时,所用篱笆最短,最短篱笆为40m .26.(2021·浙江高一单元测试)(1)已知x >3,求y =x +4x 3的最小值,并求取到最小值时x 的值;(2)已知x >0,y >0,x 2+y 3=2,求xy 的最大值,并求取到最大值时x 、y 的值.【答案】(1)当x =5时,y 的最小值为7.(2) x =2,y =3时,xy 的最大值为6.【解析】(1)已知x >3,则:x ―3>0,故:y =x +4x 3=x ―3+4x 3+3≥3=7,当且仅当:x ―3=4x3,解得:x =5,即:当x =5时,y 的最小值为7.(2)已知x >0,y >0,x 2+y 3=2,则:x 2+y 3≥解得:xy ≤6,即:x 2=y 3=1,解得:x =2,y =3时,xy 的最大值为6.27.(2021·浙江高一单元测试)已知0,0x y >>且191x y +=,求使不等式x y m +³恒成立的实数m 的取值范围.【答案】16m ….【解析】由191x y +=,则19()x y x y x y æö+=++ç÷èø910x y y x =++1016+=….当且仅当169x y x y y x +=ìïí=ïî即412x y =ìí=î时取到最小值16.若x y m +…恒成立,则16m ….。
历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)
![历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)](https://img.taocdn.com/s3/m/299505546d85ec3a87c24028915f804d2b1687af.png)
历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 .3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}24.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5}D .{1,3}基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+D .4ln ln y x x=+3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .64.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .32参考答案解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3}C .{3,1,0}--D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-. 故选:A.2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 . 【答案】{}|13x x -<<【详细分析】求出方程2230x x --=的解后可求不等式的解集. 【答案详解】方程2230x x --=的解为=1x -或3x =, 故不等式2230x x --<的解集为{}|13x x -<<, 故答案为:{}|13x x -<<.3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出. 方法二:将集合M 中的元素逐个代入不等式验证,即可解出.【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-. 故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .4.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5} D .{1,3}【答案】D【详细分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果. 【答案详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = , 故选:D.【名师点评】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 【答案】B【详细分析】根据指数函数和对数函数的单调性结合基本不等式详细分析判断AB ;举例判断CD 即可. 【答案详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得121222222x xx x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故B 正确,A 错误;对于选项D :例如120,1x x ==,则121,2y y ==, 可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误; 对于选项C :例如121,2x x =-=-,则1211,24y y ==, 可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误, 故选:B.2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+ D .4ln ln y x x=+【答案】C【详细分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【答案详解】对于A ,()2224133y x x x =++=++≥,当且仅当=1x -时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞ ,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .【名师点评】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C【详细分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【答案详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【名师点评】4.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32【答案】B【详细分析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =等式,即可求得答案. 【答案详解】 2222:1(0,0)x y C a b a b -=>> ∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限 联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B.【名师点评】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了详细分析能力和计算能力,属于中档题.。
不等式考试题及答案
![不等式考试题及答案](https://img.taocdn.com/s3/m/ddc000377f21af45b307e87101f69e314332fab7.png)
不等式考试题及答案一、选择题(每题5分,共20分)1. 若不等式 \( ax^2 + bx + c > 0 \) 的解集为 \( (-1, 2) \),则下列哪个不等式有相同解集?A. \( ax^2 + bx + c < 0 \)B. \( -ax^2 - bx - c > 0 \)C. \( ax^2 + bx + c \leq 0 \)D. \( -ax^2 - bx - c < 0 \)答案:B2. 对于不等式 \( |x - 3| < 2 \),下列哪个区间是其解集?A. \( (1, 5) \)B. \( (-1, 7) \)C. \( (-2, 4) \)D. \( (3, 5) \)答案:A3. 若不等式 \( x^2 - 5x + 6 < 0 \) 的解集为 \( A \),则 \( A \) 与 \( (2, 3) \) 的交集是什么?A. \( \emptyset \)B. \( (2, 3) \)C. \( (2, 3) \cap A \)D. \( (3, 4) \)答案:C4. 已知不等式 \( x^3 - 3x^2 + 2x > 0 \) 的解集包含 \( (1, 2) \),那么下列哪个不等式也包含 \( (1, 2) \) 作为其解集的一部分?A. \( x^3 - 3x^2 + 2x < 0 \)B. \( -x^3 + 3x^2 - 2x < 0 \)C. \( x^3 - 3x^2 + 2x \leq 0 \)D. \( -x^3 + 3x^2 - 2x \geq 0 \)答案:B二、填空题(每题5分,共20分)1. 若不等式 \( 2x - 3 < 5 \) 的解为 \( x < 4 \),则 \( 2x -3 > 5 \) 的解为 \( x > \_\_\_\_\_ \)。
答案:42. 不等式 \( |x + 1| \geq 3 \) 的解集为 \( x \leq -4 \) 或\( x \geq 2 \),那么 \( |x + 1| < 3 \) 的解集为 \( x \in\_\_\_\_\_ \)。
高中不等式的试题及答案
![高中不等式的试题及答案](https://img.taocdn.com/s3/m/e59e29e7e43a580216fc700abb68a98271feacbb.png)
高中不等式的试题及答案一、选择题1. 若不等式 \( ax^2 + bx + c > 0 \) 的解集是 \( (-1, 2) \),则下列不等式中解集为 \( (-∞, -2) ∪ (1, +∞) \) 的是()。
A. \( 2ax^2 + 2bx + c < 0 \)B. \( 2ax^2 - bx + c < 0 \)C. \( ax^2 - bx + c < 0 \)D. \( 2ax^2 + bx + 2c < 0 \)答案:B解析:已知不等式 \( ax^2 + bx + c > 0 \) 的解集是 \( (-1, 2) \),说明 \( a < 0 \) 且 \( -1 \) 和 \( 2 \) 是方程 \( ax^2 + bx + c = 0 \) 的根。
因此,\( -b/a = -1 + 2 = 1 \) 和 \( c/a = -1 \times 2 = -2 \)。
将这些值代入选项中,只有选项 B 满足条件。
2. 若 \( x^2 - 4x + m < 0 \) 的解集非空,则实数 \( m \) 的取值范围是()。
A. \( m < 4 \)B. \( m > 4 \)C. \( m < 16 \)D. \( m > 16 \)答案:C解析:要使不等式 \( x^2 - 4x + m < 0 \) 的解集非空,需要判别式 \( \Delta = b^2 - 4ac > 0 \),即 \( 16 - 4m > 0 \),解得 \( m < 4 \)。
但因为 \( m \) 必须使得不等式有实数解,所以 \( m \) 必须小于\( x^2 - 4x \) 的最小值,即 \( m < 4 \)。
因此,\( m \) 的取值范围是\( m < 16 \)。
二、填空题3. 若 \( a > 0 \),\( b > 0 \),且 \( a + b = 2 \),则 \( \frac{1}{a} + \frac{1}{b} \) 的最小值为 ______。
不等式高考试题及答案
![不等式高考试题及答案](https://img.taocdn.com/s3/m/7b88a6b3f80f76c66137ee06eff9aef8941e48cc.png)
不等式高考试题及答案一、选择题1. 若不等式3x+2>7成立,则x的取值范围是:A. x < -1B. x > -1C. x < 1D. x > 1答案:D2. 已知不等式2(x-1) > 3(x+2),则x的取值范围是:A. x < -7/5B. x > -7/5C. x < -1D. x > -1答案:C3. 若x<y,则对x+y,下列不等式成立的是:A. x + y < 2xB. x + y < 2yC. x + y > 2xD. x + y > 2y答案:C4. 若不等式5x+3y > 6成立,下列不等式中一定成立的是:A. 10x + 6y > 12B. 5x + 6y > 12C. 5x + 3y > 6D. 10x + 3y > 6答案:D5. 下列不等式组中,解集与其他三个不同的是:A. {x | -2 < x < 3}B. {x | 0 < x < 5}C. {x | 1 < x < 4}D. {x | -3 < x < 2}答案:B二、填空题1. 若不等式2x - 1 > 5成立,则x的取值范围为________。
答案:x > 32. 若不等式-3(x - 1) < 2(x + 3)成立,则x的取值范围为________。
答案:x < 13/53. 已知不等式2x - 3 < 5x + 4,则x的取值范围为________。
答案:x > -7/34. 若不等式x + 5 > 2x - 3成立,则x的取值范围为________。
答案:x < 85. 若不等式3x - 2 > 5成立,则x的取值范围为________。
答案:x > 7/3三、解答题1. 解不等式组{x | 2x + 3 > 5, x - 1 < 4},并将解表示在数轴上。
2025届新高考数学一轮复习精讲精练:基本不等式(含新定义解答题) (分层精练)
![2025届新高考数学一轮复习精讲精练:基本不等式(含新定义解答题) (分层精练)](https://img.taocdn.com/s3/m/c35c554abdd126fff705cc1755270722182e596a.png)
【详解】(1)法一:当 0 x 72 时, y 148 6720 260 ,
x
x
x 60,60 x 72 ,
当 72 x 160 时, 3 x 9600 260 , 2x
3x2 520x 19200 0 ,
解得 160 x 120 72 x 120 , 3
综上:当 60 x 120 时,该企业不亏损;
,
所以
m
10
2ab2a
a 2b 5
b
=
2a
4b
ab
2a
b
2 b
4 a
2a
b
,
因为
2 b
4 a
2a
b
4a b
2
8
4b a
10
2
4 a 4 b 18 , ba
当且仅当
4a b
4b a
,即
a
b
3
2
29
时取等号,
所以
2 b
4 a
2a
b
18
,
所以不等式
m 2a
b
10 2ab a 2b 5
x
1, 3
恒成立,则
x
1, 3
,
a
x
4 x
成立,
而 x 4 2 x 4 4 ,当且仅当 x 4 ,即 x 2 时取等号,因此 a 4 ,
x
x
x
所以实数 a 的取值范围是 , 4.
故选:B
6.(2024
上·河北沧州·高一统考期末)已知正数
x,y
满足 3x
2y
2
,则
3 2x
1 y
的最小值
工程 2:将直角三角形 AA0P 地块全部修建为面积至少1km2 的文化主题公园,且每平方千米
基本不等式高考真题汇总
![基本不等式高考真题汇总](https://img.taocdn.com/s3/m/3f0c7d13a22d7375a417866fb84ae45c3b35c202.png)
基本不等式高考真题汇总1.(2022·福建,5)下列不等式一定成立的是( ) A .lg(x 2+14)>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 解析 取x =12,则lg ⎝ ⎛⎭⎪⎫x 2+14=lg x ,故排除A ;取x =32π,则sin x =-1,故排除B ;取x =0,则1x 2+1=1,故排除D.应选C. 答案 C2.(2022·湖南,10)设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值为________.解析 ∵x ,y ∈R 且xy ≠0, ∴(x 2+1y 2)·(1x2+4y 2)=5+1x 2y2+4x 2y 2≥5+2×2=9,当且仅当1x 2y2=4x 2y 2,即xy =±22时,取得最小值9. 答案 93.(2022·重庆,3)(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9B.92C .3D.322解析 ∵-6≤a ≤3,∴3-a ≥0,a +6≥0. 而(3-a )+(a +6)=9, 由基本不等式得:(3-a )+(a +6)≥2(3-a )(a +6), 即9≥2(3-a )(a +6),∴(3-a )(a +6)≤92,并且仅当3-a =a +6,即a =-32时取等号.答案 B4.(2022·重庆,7)已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72B .4C.92D .5解析 ∵2y =2⎝ ⎛⎭⎪⎫1a +4b =(a +b )⎝ ⎛⎭⎪⎫1a +4b=5+4a b +b a,又∵a >0,b >0, ∴2y ≥5+24a b ·ba=9,∴y min =92,当且仅当b =2a 时“=”成立.答案 C5.(2022·上海,15)若a ,b ∈R ,且ab >0.则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b>2abD.b a +ab≥2解析 由ab >0,可知a 、b 同号.当a <0,b <0时,B 、C 不成立;当a =b 时,由不等式的性质可知,A 不成立,D 成立. 答案 D6.(2022·上海,5)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解析 ∵x 2+2y 2≥2x 2·2y 2=22xy =22,当且仅当x =2y 时取“=”,∴x 2+2y 2的最小值为2 2. 答案 2 27.(2022·天津,14)设a +b =2,b >0,则当a =________时,12|a |+|a |b取得最小值.解析 因为a +b =2,所以a +b2·12|a |+|a |b =a +b22|a |+|a |b =a 4|a |+b 4|a |+|a |b ≥a4|a |+2b 4|a |·|a |b =a4|a |+1, 当a >0时,a 4|a |+1=54,12|a |+|a |b ≥54;当a <0时,a 4|a |+1=34,12|a |+|a |b ≥34,当且仅当b =2|a |时,等号成立.因为b >0,所以原式取最小值时b =-2a .又a +b =2,所以a =-2时,原式取得最小值. 答案 -28.(2022·浙江,16)设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________. 解析 依题意有(2x +y )2=1+3xy =1+32×2x ×y ≤1+32·⎝ ⎛⎭⎪⎫2x +y 22,得58(2x +y )2≤1,即|2x +y |≤2105. 当且仅当2x =y =105时,2x +y 达到最大值2105. 答案21059.(2022·山东,12)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z取得最大值时,2x+1y -2z的最大值为( )A .0B .1C.94D .3解析 由x 2-3xy +4y 2-z =0得x 2-3xy +4y 2z =1≥2x 2·4y 2-3xy z,即xy z≤1,当且仅当x 2=4y 2时成立, 又x ,y 为正实数,故x =2y .此时将x =2y 代入x 2-3xy +4y 2-z =0得z =2y 2, 所以2x +1y -2z =-1y 2+2y=-⎝ ⎛⎭⎪⎫1y -12+1,当1y =1,即y =1时,2x +1y -2x取得最大值为1,故选B.答案 B。
高考数学《基本不等式》真题练习含答案
![高考数学《基本不等式》真题练习含答案](https://img.taocdn.com/s3/m/28cd526c5b8102d276a20029bd64783e08127d5b.png)
高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。
不等式--历届高考真题解析版
![不等式--历届高考真题解析版](https://img.taocdn.com/s3/m/b47afe4dd5bbfd0a7856734f.png)
不等式--历届高考真题一、单选题1.(2019·全国高考真题(文))记不等式组620x y x y +⎧⎨-≥⎩…表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+…;命题:(,),212q x y D x y ∀∈+„.给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③ D .③④【答案】A2.(2012·全国高考真题(理))已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7 B .5 C .5- D .7-【答案】D3.(2017·全国高考真题(文))设x,y 满足约束条件{2x+3y −3≤02x −3y +3≥0y +3≥0 ,则z =2x +y 的最小值是( ) A .−15 B .−9 C .1 D .9【答案】A4.(2018·天津高考真题(文))(2018年天津卷文)设变量x ,y 满足约束条件{x +y ≤5,2x −y ≤4,−x +y ≤1,y ≥0, 则目标函数z =3x +5y 的最大值为 A .6 B .19 C .21 D .45 【答案】C5.(2018·全国高考真题(理))已知集合A ={x |x 2−x −2>0 },则∁R A = A .{x |−1<x <2 } B .{x |−1≤x ≤2 }C .{x|x <−1}∪ {x|x >2}D .{x|x ≤−1}∪ {x|x ≥2} 【答案】B6.(2018·全国高考真题(理))设a =log 0.20.3,b =log 20.3,则 A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b【答案】B7.(2016·北京高考真题(理))袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )A .乙盒中黑球不多于丙盒中黑球B .乙盒中红球与丙盒中黑球一样多C .乙盒中红球不多于丙盒中红球D .乙盒中黑球与丙盒中红球一样多 【答案】C8.(2017·浙江高考真题)若x,y 满足约束条件x 0{x+y-30 z 2x-2y 0x y ≥≥=+≤,则的取值范围是A .[0,6]B .[0,4]C .[6, +∞)D .[4, +∞) 【答案】D9.(2017·山东高考真题(理))若a>b>0,且ab=1,则下列不等式成立的是A .()21log 2a b a a b b +<<+B . ()21log 2a b a b a b <+<+ C . ()21log 2a b a a b b +<+< D . ()21log 2a ba b a b +<+<【答案】B10.(2017·山东高考真题(文))已知x ,y 满足约束条件250{302x y x y -+≤+≥≤,则z =x +2y 的最大值是A .-3B .-1C .1D .3 【答案】D11.(2017·天津高考真题(理))已知函数()23,1,{ 2, 1.x x x f x x x x-+≤=+>设a R ∈,若关于x 的不等式()2xf x a ≥+在R 上恒成立,则a 的取值范围是 A .47,216⎡⎤-⎢⎥⎣⎦ B .4739,1616⎡⎤-⎢⎥⎣⎦ C.2⎡⎤-⎣⎦ D.3916⎡⎤-⎢⎥⎣⎦【答案】A12.(2017·全国高考真题(文))设x ,y 满足约束条件{x +3y ≤3,x −y ≥1,y ≥0, 则z =x +y 的最大值为( )A .0B .1C .2D .3 【答案】D13.(2015·上海高考真题(文))下列不等式中,与不等式解集相同的是( ). A .B .C .D .【答案】B14.(2015·广东高考真题(文))若变量x ,y 满足约束条件22{04x y x y x +≤+≥≤,则23z x y=+的最大值为( ) A .10 B .8C .5D .2【答案】C15.(2015·浙江高考真题(文))有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( ) A .ax by cz ++ B .az by cx ++C .ay bz cx ++D .ay bx cz ++【答案】B16.(2015·湖南高考真题(文))某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)A.8π9B.827πC.24(√2−1)2πD.8(√2−1)2π【答案】A17.(2015·安徽高考真题(文))已知x,y满足约束条件0 {401x yx yy-≥+-≤≥,则的最大值是()A.-1 B.-2 C.-5 D.1【答案】A18.(2015·湖南高考真题(文))若变量x,y满足约束条件{x+y≥1y−x≤1x≤1,则z=2x−y的最小值为()A.−1B.0 C.1 D.2【答案】A19.(2015·湖南高考真题(理))某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(=新工件的体积材料利用率原工件的体积)()A .89πB .169πC .31)πD .31)π【答案】A20.(2015·四川高考真题(文)) 设实数x ,y 满足{2x +y ≤10x +2y ≤14x +y ≥6 ,则xy 的最大值为( ) A .252B .492C .12D .14【答案】A21.(2015·重庆高考真题(文))若不等式组{x +y −2≤0x +2y −2≥0x −y +2m ≥0 ,表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3B .1C .43D .3【答案】B22.(2015·天津高考真题(文))设变量x,y 满足约束条件,则目标函数的最大值为( )A .7B .8C .9D .14【答案】C23.(2015·天津高考真题(理))(2015天津,文2)设变量x,y 满足约束条件{x +2≥0x −y +3≥02x +y −3≤0 ,则目标函数z =x +6y 的最大值为( ) A .3 B .4C .18D .40【答案】C24.(2015·山东高考真题(理))已知x ,y 满足约束条件0,2,0,x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z =ax +y 的最大值为4,则a = ( ) A .3 B .2 C .-2 D .-3【答案】B25.(2015·福建高考真题(理))若变量x,y 满足约束条件{x +2y ≥0,x −y ≤0,x −2y +2≥0, 则z =2x −y的最小值等于 ( ) A .−52B .−2C .−32D .2【答案】A26.(2014·四川高考真题(理))已知F 是抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =2(其中O 为坐标原点),则ΔABO 与ΔAFO 面积之和的最小值是( )A .2B .3C .17√28D .√10【答案】B27.(2014·全国高考真题(文))设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( ) A .5- B .3C .5-或3D .5或3-【答案】B28.(2014·山东高考真题(理))已知 x y ,满足约束条件10{230x y x y --≤--≥,当目标函数()0? 0z ax by a b =+>>,在约束条件下取到最小值22a b +的最小值为( ) A .5 B .4 CD .2【答案】B29.(2014·北京高考真题(理))若x,y满足2020x ykx yy+-≥⎧⎪-+≥⎨⎪≥⎩,且z y x=-的最小值为4-,则k的值为()A.2B.2-C.12D.12-【答案】D30.(2014·重庆高考真题(文))若的最小值是A.B.C.D.【答案】D31.(2011·广东高考真题(文))已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为,则z=•的最大值为()A.3 B.4 C.3D.4【答案】B32.(2011·湖北高考真题(文))(5分)(2011•湖北)直线2x+y﹣10=0与不等式组表示的平面区域的公共点有()A.0个B.1个C.2个D.无数个【答案】B33.(2011·重庆高考真题(理))已知a>0,b>0,a+b=2,则的最小值是()A.B.4 C.D.5【答案】C34.(2011·重庆高考真题(文))(5分)(2011•重庆)若函数f(x)=x+(x>2),在x=a处取最小值,则a=()A.1+B.1+C.3 D.4【答案】C35.(2013·重庆高考真题(文))关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.【答案】A36.(2011·湖北高考真题(理))已知向量=(x+z,3),=(2,y﹣z),且⊥,若x,y满足不等式|x|+|y|≤1,则z的取值范围为()A.[﹣2,2] B.[﹣2,3] C.[﹣3,2] D.[﹣3,3]【答案】D37.(2011·浙江高考真题(理))设实数x、y满足不等式组,若x、y为整数,则3x+4y的最小值是()A.14 B.16 C.17 D.19【答案】B38.(2011·山东高考真题(文))设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为()A.11 B.10 C.9 D.8.5【答案】B39.(2012·广东高考真题(理))已知变量满足约束条件,则的最大值为()A.12 B.11 C.3 D.-1【答案】B40.(2013·浙江高考真题(文))(2013•浙江)设a,b∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2D.a∨b≥2,c∨d≥2【答案】C41.(2013·湖北高考真题(文))(2013•湖北)某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为()A.31200元B.36000元C.36800元D.38400元【答案】C42.(2010·安徽高考真题(文))设x,y满足约束条件{2x+y−6≥0,x+2y−6≤0,y≥0,则目标函数z=x+y的最大值是A.3 B.4 C.6 D.8【答案】C43.(2013·山东高考真题(文))设正实数满足,则当zxy 取得最大值时,x+2y −z的最大值为( )A.0B.98C.2D.94【答案】C44.(2013·山东高考真题(理))设正实数x,y,z满足x2−3xy+4y2−z=0,则当取得最大值时,的最大值为( )A.0B.1C.D.3【答案】B45.(2013·全国高考真题(理))已知a>0,x,y满足约束条件1{3(3)xx yy a x≥+≤≥-,若z=2x+y的最小值为1,则a=A.B.C.1 D.2【答案】B46.(2013·安徽高考真题(理))已知一元二次不等式的解集为,则的解集为()A.B.C .{x|lg 2x >-}D .{x|lg 2x <-}【答案】D47.(2010·陕西高考真题(理))“a =18”是“对任意的正数x ,2x +ax≥1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A48.(2010·天津高考真题(文))设变量x ,y 满足约束条件{x +y ≤3,x −y ≥−1,y ≥1, 则目标函数z=4x+2y 的最大值为A .12B .10C .8D .2 【答案】B49.(2012·江西高考真题(理))某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为 A .50,0 B .30.0C .20,30D .0,50【答案】B50.(2011·浙江高考真题(文))若实数x y 、满足不等式组250{2700,0x y x y x y +-≥+-≥≥≥,则34x y+的最小值是 A .13B .15C .20D .2851.(2010·重庆高考真题(理))已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是A.3 B.4 C.92D.112【答案】B52.(2010·重庆高考真题(文))设变量满足约束条件则的最大值为A.0 B.2C.4 D.6【答案】C53.(2010·全国高考真题(文))已知Y ABCD的三个顶点为A(-1,2),B(3,4),C(4,-2),点(x,y)在Y ABCD的内部,则z=2x-5y的取值范围是A.(-14,16)B.(-14,20)C.(-12,18)D.(-12,20)【答案】B54.(2010·浙江高考真题(理))若实数,x y满足不等式330{23010x yx yx my+-≥--≥-+≥,且x y+的最大值为9,则实数m=()A.2-B.1-C.1D.2【答案】C55.(2010·福建高考真题(文))若1,,{230xx y R x yy x≥∈-+≥≥,则2z x y=+的最小值56.(2008·江西高考真题(文))若01x y <<<,则 A .33y x < B .log 3log 3x y <C .44log log x y <D .1144x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】C57.(2008·福建高考真题(理))若实数x 、y 满足10,{0,x y x -+≤>则yx的取值范围是( ) A .(0,1) B .(]0,1C .(1,+∞)D .[)1,+∞【答案】C58.(2008·湖北高考真题(理))函数f (x )=的定义域为A .(- ∞,-4)[∪2,+ ∞]B .(-4,0) ∪(0,1)C .[-4,0]∪(0,1)]D .[-4,0∪(0,1)【答案】D59.(2008·广东高考真题(理))若变量,x y 满足则32z x y =+的最大值是 A .90 B .80 C .70 D .40【答案】C60.(2015·四川高考真题(理))如果函数f(x)=12(m −2)x 2+(n −8)x +1(m ≥0 ,n ≥0)在区间[12,2]上单调递减,则mn 的最大值为( )A .16B .18C .25D .812【答案】B61.(2014·湖北高考真题(理))由不等式组确定的平面区域记为,内的概率为( ) A .B .C .D .【答案】D62.(2011·重庆高考真题(理))设m ,k 为整数,方程mx 2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k 的最小值为( ) A .﹣8 B .8C .12D .13【答案】D63.(2010·北京高考真题(理))设不等式组{x +y −11≥03x −y +3≥05x −3y +9≤0 表示的平面区域为D ,若指数函数y=a x 的图像上存在区域D 上的点,则a 的取值范围是 A .(1,3] B .[2,3] C .(1,2] D .[ 3,+∞] 【答案】A64.(2011·全国高考真题(理))下面四个条件中,使a >b 成立的充分而不必要的条件是A .a >b +1B .a >b −1C .a 2>b 2D .a 3>b 3 【答案】A65.(2007·辽宁高考真题(理))已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( )A .965⎛⎫ ⎪⎝⎭,B .[)965⎛⎤-∞+∞ ⎥⎝⎦U ,,C .(][)36-∞+∞U ,,D .[36],【答案】A66.(2009·天津高考真题(理))已知0<b<1+a ,若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则( ) A .-1<a<0 B .0<a<1C .1<a<3D .3<a<6【答案】C二、填空题67.(2019·天津高考真题(文)) 设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________. 【答案】92. 68.(2019·天津高考真题(理))设0,0,25x y x y >>+=最小值为______.【答案】69.(2018·浙江高考真题)若x,y 满足约束条件{x −y ≥0,2x +y ≤6,x +y ≥2, 则z =x +3y 的最小值是___________,最大值是___________. 【答案】 -2 870.(2018·天津高考真题(文))已知,R a b ∈,且360a b -+=,则128ab+的最小值为_____________. 【答案】1471.(2018·全国高考真题(理))若x ,y 满足约束条件{x −2y −2≤0x −y +1≥0y ≤0 ,则z =3x +2y的最大值为_____________. 【答案】672.(2017·全国高考真题(理))已知实数,x y 满足0{20 0x y x y y -≥+-≤≥,则34z x y =-最小值为________. 【答案】1-73.(2017·山东高考真题(理))已知,x y 满足30{350 30x y x y x -+≤++≤+≥,则2z x y =+的最大值是__________. 【答案】574.(2017·全国高考真题(文))设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________. 【答案】1(,)4-+∞75.(2017·天津高考真题(理))若,a b R ∈,0ab >,则4441a b ab++的最小值为___________. 【答案】476.(2017·江苏高考真题)76.(2017·江苏高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________. 【答案】3077.(2017·山东高考真题(文))若直线xa+yb =1(a >0,b >0)过点(1,2),则2a+b 的最小值为______. 【答案】878.(2016·全国高考真题(文))若x,y 满足约束条件{2x −y +1≥0,x −2y −1≤0,x ≤1, 则z =2x +3y −5的最小值为_________. 【答案】−1079.(2016·全国高考真题(文))若x ,y 满足约束条件{x −y +1≥0,x +y −3≥0,x −3≤0, 则z=x−2y 的最小值为__________. 【答案】−580.(2016·上海高考真题(文))设a >0,b >0. 若关于x,y 的方程组{ax +y =1,x +by =1无解,则a +b 的取值范围是 . 【答案】(2,+∞)81.(2016·江苏高考真题)已知实数x,y 满足{x −2y +4≥0,2x +y −2≥0,3x −y −3≤0,则x 2+y 2的取值范围是 .82.(2016·上海高考真题(理))设若关于x,y 的方程组{ax +y =1,x +by =1无解,则的取值范围是____________.【答案】(2,+∞)83.(2015·浙江高考真题(文))已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 .【答案】1584.(2015·山东高考真题(文))定义运算“⊗”:x ⊗y =x 2−y 2xy(x ,y ∈R,xy ≠0).当x >0,y >0时,x ⊗y +(2y)⊗x 的最小值是 . 【答案】√285.(2015·湖北高考真题(文))若变量x, y 满足约束条件{x +y ≤4,x −y ≤2,3x −y ≥0, 则3x +y 的最大值是_________. 【答案】10.86.(2015·山东高考真题(文))若x,y 满足约束条件{y −x ≤1x +y ≤3y ≥1 ,则z =x +3y 的最大值为 . 【答案】787.(2015·上海高考真题(文))若满足,则目标函数的最大值为 . 【答案】388.(2015·全国高考真题(理))若x ,y 满足约束条件{x −1≥0,x −y ≤0,x +y −4≤0, 则yx 的最大值 . 【答案】389.(2015·天津高考真题(文))已知a >0,b >0,ab =8,则当a 的值为 时log 2a ⋅log 2(2b)取得最大值. 【答案】490.(2015·浙江高考真题(理))已知函数223,1(){lg(1),1x x f x x x x +-≥=+<,则((3))f f -= ,()f x 的最小值是 .【答案】,.91.(2014·四川高考真题(理))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是 . 【答案】592.(2014·陕西高考真题(文))设,且,则的最小值为______.93.(2014·全国高考真题(文))设函数113,1(){,1x e x f x x x -<=≥,则使得()2f x ≤成立的x的取值范围是_______________. 【答案】(,8]-∞94.(2014·湖北高考真题(文))某项研究表明,在考虑行车安全的情况下,某路段车流量(单位时间内测量点的车辆数,单位:辆/小时)与车流速度(假设车辆以相同速度行驶,单位:米/秒)平均车长(单位:米)的值有关,其公式为(1)如果不限定车型,,则最大车流量为_______辆/小时;(2)如果限定车型,,则最大车流量比(1)中的最大车流量增加 辆/小时.【答案】(1)1900;(2)10095.(2014·全国高考真题(理))设x,y 满足约束条件{x −y ≥0x +2y ≤3x −2y ≤1 ,则z =x +4y 的最大值为 . 【答案】5.96.(2014·浙江高考真题(理))当实数,x y 满足240{101x y x y x +-≤--≤≥时,14ax y ≤+≤恒成立,则实数a 的取值范围是 .【答案】31,2⎡⎤⎢⎥⎣⎦97.(2014·浙江高考真题(文))若、满足和240{101x y x y x +-≤--≤≥,则的取值范围是________. 【答案】98.(2014·辽宁高考真题(文))对于0c >,当非零实数,a b 满足22420a ab b c -+-=且使2a b +最大时,124a b c++的最小值为________. 【答案】1-99.(2014·湖南高考真题(理))若变量满足约束条件,且的最小值为,则【答案】−2100.(2011·重庆高考真题(文))(5分)(2011•重庆)若实数a ,b ,c 满足2a +2b =2a+b ,2a +2b +2c =2a+b+c ,则c 的最大值是 . 【答案】2﹣log 23101.(2013·全国高考真题(文))若x y 、满足约束条件0,{34,34,x x y x y ≥+≥+≤则z x y =-+的最小值为 . 【答案】0.102.(2013·广东高考真题(文))已知变量,x y 满足约束条件30{111x y x y -+≥-≤≤≥,则z x y=+的最大值是 . 【答案】5103.(2008·山东高考真题(理))若不等式的解集中的整数有且仅有1,2,3,则的取值范围是104.(2008·广东高考真题(理))(不等式选讲选做题)已知,a ∈R 若关于x 的方程2104x x a a ++-+=有实根,则a 的取值范围是 。
基本不等式--历年高考题汇编-含详细解析
![基本不等式--历年高考题汇编-含详细解析](https://img.taocdn.com/s3/m/a8e19f3bb9d528ea80c7796c.png)
基本不等式--历年高考题汇编一、选择题(本大题共3小题,共15.0分)1.已知过点(1,3)的直线l的倾斜角为135°,设点(x,y)是直线l在第一象限内的部分上的一点,则1x +4y的最小值是()A. 92B. 2 C. 94D. 42.已知正数x,y满足x+4y=2,则x+40y+43xy的最小值为()A. 852B. 24C. 20D. 183.设x>0、y>0、z>0,则三个数1x +4y、1y+4z、1z+4x()A. 都大于4B. 至少有一个大于4C. 至少有一个不小于4D. 至少有一个不大于4二、填空题(本大题共13小题,共65.0分)4.设x,y∈R+且1x +4y=2,则x+y的最小值为______.5.若2a+b=2(a>0,b>0),则1a +1b的最小值是______.6.函数y=x2+6x2+1的最小值是______.7.已知x>0,y>0,x+2y=1,则2x +1y的最小值为______.8.已知a>3,则4a−3+a−316的最小值为______.9.已知m+n=2,其中mn>0,则1m +1n的最小值为______.10.若正数a,b满足ab−2a−b=0,则ab的最小值为______.11.已知a+b=4,则2a+2b的最小值为______.12.设a+b=2,b>0,则14|a|+2|a|b的最小值为______.13.已知x>0,y>0,x+2y+2xy=3,则x+2y的最小值为______.14.已知x,y∈R+,求z=(x+2y)(2x +4y)的最值.甲、乙两位同学分别给出了两种不同的解法:甲:z=(x+2y)(2x+4y)=2+4x y+4y x+8≥18乙:z=(x+2y)(2x +4y)≥2√2xy⋅2√8xy=16①你认为甲、乙两人解法正确的是______.②请你给出一个类似的利用基本不等式求最值的问题,使甲、乙的解法都正确.15.已知a,b∈R,且a−2b+8=0,则2a+14b的最小值为______.16.若a,b均为正实数,则ab+ba2+b2+1的最大值为______.三、解答题(本大题共4小题,共48.0分)17.已知a,b为正整数,且a+b=1,求证:1a +1b≥4.18.已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律是:θ=m⋅2t+21−t(t≥0,并且m>0).(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m的取值范围.19.已知函数f(x)=m−|2−x|,且f(x+2)>0的解集为(−1,1).(1)求m的值;(2)若正实数a、b,满足a+2b=m.求1a +12b的最小值.20.已知函数f(x)=|x−1|−|x+a|(a∈N∗),f(x)≤2恒成立.(1)求a的值;(2)若正数x,y满足1x +2y=a.证明:1xy+x+12y≥√2答案和解析1.【答案】C【解析】解:过点(1,3)的直线l 的倾斜角为135°,可得直线方程:y −3=−(x −1),化为:x +y =4. 设点(x,y)是直线l 在第一象限内的部分上的一点,∴x +y =4,且x ,y >0.则1x +4y =14(x +y)(1x +4y )=14(5+y x +4x y )≥14(5+2√y x ⋅4x y )=94,当且仅当y =2x =83时取等号. 故选:C .过点(1,3)的直线l 的倾斜角为135°,可得直线方程:x +y =4.再利用“乘1法”与基本不等式的性质即可得出. 本题考查了直线方程、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于基础题.2.【答案】D【解析】解:∵正数x ,y 满足x +4y =2,12x +2y =1,∴x+40y+43xy=x+40y+2x+8y 3xy =3x+48y 3xy =x+16y xy =1y +16x , ∴1y +16x =(1y +16x )(12x +2y)=10+x 2y +32y x ≥10+2√x 2y ⋅32y x =10+8=18, 当且仅当x 2y =32y x 时,x =43,y =16 故x+40y+43xy 的最小值为18,故选:D .由题意可得x+40y+43xy =1y +16x ,再利用乘“1”法,根据基本不等式即可求出本题主要考查了基本不等式的应用,考查了转化思想和计算能力,属于中档题.3.【答案】C【解析】解:假设三个数1x +4y <4且1y +4z <4且1z +4x <4,相加得:1x+4x +1y +4y +1z +4z <12,由基本不等式得: 1x+4x ≥4;1y +4y ≥4;1z +4z ≥4; 相加得:1x +4x +1y +4y +1z +4z ≥12,与假设矛盾;所以假设不成立,三个数1x +4y 、1y +4z 、1z +4x 至少有一个不小于4.故选:C .由题意知利用反证法推出矛盾,即可得正确答案.本题考查反证法和基本不等式的应用,属于简单题.4.【答案】92【解析】解:∵x ,y ∈R +且1x +4y =2,∴x +y =12(x +y)(1x +4y) =52+2x y +y 2x ≥52+2√2x y ⋅y 2x =92 当且仅当2x y =y 2x 即x =32且y =3时取等号,∴x +y 的最小值为92故答案为:92由题意可得x +y =12(x +y)(1x +4y )=52+2x y +y 2x ,下面由基本不等式可得. 本题考查基本不等式,变形为基本不等式的情形是解决问题的关键,属基础题.5.【答案】32+√2【解析】解:2a +b =2(a >0,b >0),则1a +1b =(1a +1b )(a +b 2)=1+12+b 2a +a b ≥32+2√b 2a ⋅a b =32+√2, 当且仅当b 2a =a b 时,即a =2−√2,b =2√2−2时取等号,故1a +1b 的最小值是32+√2,故答案为:32+√2利用乘“1”法,可得1a +1b =(1a +1b )(a +b 2)=1+12+b 2a +a b ,再根据基本不等式即可求出.本题考查了基本不等式的应用,考查了转化与划归思想,属于基础题 6.【答案】2√6−1【解析】解:y =x 2+6x 2+1=x 2+1+6x 2+1−1≥2√(x 2+1)⋅6x 2+1−1=2√6−1,当且仅当x 2=√6+1时取等号, 故答案为:2√6−1.由y =x 2+6x 2+1=x 2+1+6x 2+1−1,根据基本不等式即可求出.本题考查了基本不等式的应用,属于基础题.7.【答案】8【解析】解:∵2x +1y=(x+2y)(2x+1y)=4+4yx+xy≥4+2√4yx⋅xy=8(当且仅当x=12,y=14时取等)故答案为:8先变形:2x +1y=(x+2y)(2x+1y)=4+4yx+xy,然后根据基本不等式可求得最小值.本题考查了基本不等式及其应用,属基础题.8.【答案】1【解析】解:∵a>3,∴a−3>0,∴4a−3+a−316≥2√4a−3⋅a−316=1,当且仅当4a−3=a−316,即a=11时取等号,故答案为:1根据基本不等式即可求出最小值.本题考查了基本不等式的应用,属于基础题.9.【答案】2【解析】解:∵m+n=2,其中mn>0,则1m +1n=12(m+n)(1m+1n)=12(2+nm+mn)≥12(2+2)=2当且仅当m=n=1时取得最小值2.故答案为:2.由已知可得,1m +1n=12(m+n)(1m+1n),利用基本不等式即可求解本题主要考查了利用基本不等式求解最值,解题关键是对应用条件的配凑,1的代换是求解条件配凑的关键10.【答案】8【解析】解:∵正数a,b满足ab−2a−b=0,∴ab=2a+b≥2√2ab,∴a2b2≥8ab,∴ab≥8.∴ab的最小值为8.故答案为:8.推导出ab=2a+b≥2√2ab,从而a2b2≥8ab,由此能求出ab的最小值.本题考查两数积的最小值的求法,考查不等式的性质等基础知识,考查运算求解能力,是基础题.11.【答案】8【解析】解:∵a+b=4,∴2a+2b≥2√2a+b=2√24=8,当且仅当a=b=2时取等号,∴2a+2b的最小值为8.故答案为:8.利用基本不等式直接求解.本题考查了基本不等式及其应用,属基础题.12.【答案】78【解析】解:a+b=2,b>0,则14|a|+2|a|b=a+b8a|+2|a|b=a8|a|+b8|a|+2|a|b≥a8|a|+2√b8|a|⋅2|a|b=a8|a|+1≥−18+1=78.当且仅当b8|a|=2|a|b,a<0且a+b=2即a=−23,b=83时取等号.故答案为:78.由已知可得,14|a|+2|a|b=a+b8a|+2|a|b=a8|a|+b8|a|+2|a|b,利用基本不等式即可求解本题主要考查了基本不等式在求解最值的应用,基本不等式条件的配凑是求解本题的难点.13.【答案】2【解析】解:考察基本不等式:x+2y=3−x⋅(2y)≥3−(x+2y2)2(当且仅当x=2y时取等号),整理得:(x+2y)2+4(x+2y)−12≥0,即:(x+2y−2)(x+2y+6)≥0,又:x+2y>0,所以:x+2y≥2(当且仅当x=2y时取等号),则:x+2y的最小值是2.故答案为:2.首先分析题目由已知x >0,y >0,x +2y +2xy =3,求x +2y 的最小值,猜想到基本不等式的用法,利用a +b ≥2√ab 代入已知条件,化简为函数求最值.此题主要考查基本不等式的用法,对于不等式a +b ≥2√ab 在求最大值最小值的问题中应用非常广泛,需要同学们多加注意.14.【答案】甲【解析】解:①甲正确,乙解法中两次不等式中取等的条件不相同;②已知x ,y ∈R +,求z =(a +b)(1a +1b )的最小值.甲:z =(a +b)(1a +1b )=1+b a +a b +1≥4,乙:z =(a +b)(1a +1b )≥2√ab ⋅2√1a ⋅1b=4. 故填甲.乙解法中两次不等式取等条件不同,故乙错误.本题考查了基本不等式及其应用,属中档题. 15.【答案】18【解析】解:∵a −2b +8=0,则2a +14b ≥2√2a ⋅14b =2√2a−2b =2√2−8=18 当且仅当a =−2b 即b =2,a =−4时取等号,故答案为:18.由基本不等式可得,2a +14b ≥2√2a ⋅14b ,结合已知即可求解. 本题主要考查了指数的运算性质及基本不等式在求解最值中的应用,属于基础试题.16.【答案】√22【解析】解:∵a 2+12b 2≥2√a 2⋅b 22=√2ab ,当且仅当a =√22b 时取等号, 12b 2+1≥2√12b 2=√2b ,当且当且仅当b =√2时取等号, ∴ab+b a 2+b 2+1=ab+b a 2+b 22+b 22+12≤√2ab+√2b =√2=√22,当且仅当a =1,b =√2时取等号, 故ab+b a 2+b 2+1的最大值为√22, 故答案为:√22由:a2+12b2≥2√a2⋅b22=√2ab,当且仅当a=√22b时取等号,12b2+1≥2√12b2=√2b,当且当且仅当b=√2时取等号,即可求出答案.本题考查了基本不等式的应用,考查了转化思想,属于中档题.17.【答案】证明:∵a,b为正整数,且a+b=1,∴1a+1b=(1a+1b)(a+b)=2+ba +ab≥2+2√ba⋅ab=4,当且仅当ba =ab即a=b=12时取等号.【解析】由题意可得1a +1b=(1a+1b)(a+b)=2+ba+ab,由基本不等式可得.本题考查不等式的证明,涉及基本不等式求最值问题,属基础题.18.【答案】解:(1)依题意可得5=2⋅2t+21−t,即2⋅(2t)2−5⋅2t+2=0.亦即(2⋅2t−1)(2t−2)=0,又∵t≥0,得2t=2,∴t=1.故经过1分钟该物体的温度为5摄氏度.(2)问题等价于m⋅2t+21−t≥2(t≥0)恒成立.∵m⋅2t+21−t=m⋅2t+2⋅2−t≥2√2m,①∴只需2√2m≥2,即m≥12.当且仅当12⋅2t=2⋅2−t,即t=1时,①式等号成立,∴m的取值范围是[12,+∞).【解析】(1)将m=2,θ=5代入θ=m⋅2t+21−t(t≥0)解指数方程即可求出t的值;(2)问题等价于m⋅2t+21−t≥2(t≥0)恒成立,求出m⋅2t+21−t的最小值,只需最小值恒大于等于2建立关系,解之即可求出m的范围.本题主要考查了不等式的实际应用,以及恒成立问题,同时考查了转化与划归的思想,属于中档题.19.【答案】解:(1)∵f(x+2)=m−|x|∴由f(x+2)>0得|x|<m.由|x|<m有解,得m>0,且其解集为(−m,m)又不等式f(x+2)>0解集为(−1,1),故m=1;(2)由(1)知a+2b=1,又a,b是正实数,由基本不等式得1a +12b=(1a+12b)(a+2b)=1+1+2ba+a2b≥4当且仅当a=12,b=14时取等号,故1a +12b的最小值为4.【解析】(1)由f(x+2)>0得|x|<m.由|x|<m有解,得m>0,且其解集为(−m,m),根据解集为(−1,1)可得m;(2)由(1)知a+2b=1,则1a +12b=(1a+12b)(a+2b)然后利用基本不等式求解即可.本题考查了绝对值不等式的解法和基本不等式,属基础题.20.【答案】解:(1)由f(x)=|x−1|−|x+a|≤|x−1−x−a|=|a+1|,又f(x)≤2恒成立,∴|a+1|≤2,∴−3≤a≤1,∵a∈N∗,∴a=1;(2)由(1)知1x +2y=1,∴2x+y=xy,∴1xy +x+12y=1xy+12xy≥2√1xy⋅12xy=√2.【解析】(1)由f(x)=|x−1|−|x+a|≤|x−1−x−a|=|a+1|,结合已知可求a,(2)由(1)知1x +2y=1,从而有2x+y=xy,然后利用基本不等式可证.本题主要看考查了绝对值不等式的性质及基本不等式的应用,属于基础试题。
2025高考数学一轮复习-第4讲-不等式的性质、基本不等式-专项训练【含解析】
![2025高考数学一轮复习-第4讲-不等式的性质、基本不等式-专项训练【含解析】](https://img.taocdn.com/s3/m/a9b53cd4a1116c175f0e7cd184254b35eefd1a99.png)
2025高考数学一轮复习-第4讲-不等式的性质、基本不等式-专项训练(原卷版)一、单项选择题1.设a,b均为非零实数且a<b,则下列结论中正确的是()A.1a>1bB.a2<b2C.1a2<1b2D.a3<b32.已知实数a>b>0>c,则下列结论一定正确的是()A.ab>acBC.1a<1cD.a2>c23.已知a>0,b>0,若直线l1:ax+by-2=0与直线l2:2x+(1-a)y+1=0垂直,则a+2b的最小值为()A.1B.3C.8D.94.已知x>0,y>0,且1x+2+1y=23,若x+y>m2+3m恒成立,则实数m的取值范围是()A.(-4,6)B.(-3,0)C.(-4,1)D.(1,3)5.(2023·深圳罗湖期末)某科技企业开发生产一种智能产品,该产品每年的固定成本是25万元,每生产x万件该产品,需另投入成本ω(x)万元.其中ω(x)2+10x,0<x≤40,x+10000x-945,x>40,若该公司一年内生产的该产品全部售完,每件的售价为70元,则该企业每年利润的最大值为()A.720万元B.800万元C.875万元D.900万元二、多项选择题6.下列结论中,正确的有()A.若a>b,则ac2>b c2B.若ab=4,则a2+b2≥8C.若a>b,则ab<a2D.若a>b,c>d,则a-d>b-c7.(2023·曲靖一模)已知a>0,b>0,且a+b=4,则下列结论一定正确的有()A.(a+2b)2≥8ab B.1a+1b≥2abC.ab有最大值4D.1a+4b有最小值98.设a>0,b>0,且a+2b=2,则() A.ab的最大值为12B.a+b的最小值为1C.a2+b2的最小值为45D.a-b+2ab的最小值为9 2三、填空题9.已知实数a,b满足-3≤a+b≤-2,1≤a-b≤4,则3a-5b的取值范围是___.10.已知a>0,b>0,且ab=a+b+3,则a+b的最小值为___.11.若a>0,b>0,a+b=9,则36a+ab的最小值为____.四、解答题12.已知a,b为正实数,且4a2+b2=2.(1)求ab的最大值,并求此时a,b的值;(2)求a1+b2的最大值,并求此时a,b的值.13.已知a>1,b>2.(1)若(a-1)(b-2)=4,求1a-1+1b-2的最小值及此时a,b的值;(2)若2a+b=6,求1a-1+1b-2的最小值及此时a,b的值;(3)若1a+1b=1,求1a-1+1b-2的最小值及此时a,b的值.14.某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积x(单位:平方米)成正比,比例系数为0.2.预计安装后该企业每年需缴纳的水费C(单位:万元)与设备占地面积x之间的函数关系为C(x)=20x+5(x>0).将该企业的净水设备购置费与安装后4年需缴水费之和合计为y(单位:万元).(1)要使y不超过7.2万元,求设备占地面积x的取值范围;(2)设备占地面积x为多少时,y的值最小?2025高考数学一轮复习-第4讲-不等式的性质、基本不等式-专项训练(解析版)一、单项选择题1.设a ,b 均为非零实数且a <b ,则下列结论中正确的是(D )A .1a >1b B .a 2<b 2C .1a 2<1b2D .a 3<b 3【解析】对于A ,取a =-1,b =1,则1a <1b ,A 错误;对于B ,取a =-1,b =1,则a 2=b 2,B 错误;对于C ,取a =-1,b =1,则1a 2=1b 2,C 错误;对于D ,由a <b ,可得b 3-a 3=(b -a )·(b 2+ab +a 2)=(b -a +12a +34a2>0,所以a 3<b 3,D 正确.2.已知实数a >b >0>c ,则下列结论一定正确的是(A )A .a b >ac B C .1a <1cD .a 2>c 2【解析】对于A ,因为a >b >0>c ,所以a b >0>ac ,故A 正确;对于B ,因为函数y 在R 上单调递减,且a >c ,故B 错误;对于C ,因为a >0>c ,则1a >0>1c ,故C 错误;对于D ,若a =1,c =-2,满足a >0>c ,但a 2<c 2,故D 错误.3.已知a >0,b >0,若直线l 1:ax +by -2=0与直线l 2:2x +(1-a )y +1=0垂直,则a +2b 的最小值为(D )A .1B .3C .8D .9【解析】由题可知两条直线的斜率一定存在,因为两直线垂直,所以斜率乘积为-1,即-a b×1,即2a +b =ab ,整理得2b +1a =1,所以a +2b=(a +2b =2a b +1+4+2ba ≥5+22a b ·2ba=9,当且仅当a =b =3时等号成立.因此a +2b 的最小值为9.4.已知x >0,y >0,且1x +2+1y =23,若x +y >m 2+3m 恒成立,则实数m 的取值范围是(C)A .(-4,6)B .(-3,0)C .(-4,1)D .(1,3)【解析】因为x >0,y >0,且1x +2+1y =23,所以x +2+y =32(x +2+y+y x +2+x +2y ++6,当且仅当y x +2=x +2y,即y=3,x =1时取等号,所以x +y ≥4.因为x +y >m 2+3m 恒成立,所以m 2+3m <4,即(m -1)(m +4)<0,解得-4<m <1.所以实数m 的取值范围是(-4,1).5.(2023·深圳罗湖期末)某科技企业开发生产一种智能产品,该产品每年的固定成本是25万元,每生产x 万件该产品,需另投入成本ω(x )万元.其中ω(x )2+10x ,0<x ≤40,x +10000x-945,x >40,若该公司一年内生产的该产品全部售完,每件的售价为70元,则该企业每年利润的最大值为(C)A .720万元B .800万元C .875万元D .900万元【解析】该企业每年利润为f (x )=x -(x2+10x +25),0<x ≤40,xx +10000x-945+x >40,当0<x ≤40时,f (x )=-x 2+60x -25=-(x -30)2+875,当x =30时,f(x )取得最大值875;当x >40时,f (x )=920920-2x ·10000x=720,当且仅当x =100时等号成立,即在x=100时,f (x )取得最大值720.由875>720,可得该企业每年利润的最大值为875万元.二、多项选择题6.下列结论中,正确的有(BD )A .若a >b ,则a c 2>bc 2B .若ab =4,则a 2+b 2≥8C .若a >b ,则ab <a 2D .若a >b ,c >d ,则a -d >b -c【解析】对于A ,若c =0,则a c 2,bc 2无意义,故A 错误;对于B ,若ab =4,则a 2+b 2≥2ab =8,当且仅当a =b =±2时等号成立,故B 正确;对于C ,由于不确定a 的符号,故无法判断,例如a =0,b =-1,则ab =a 2=0,故C 错误;对于D ,若a >b ,c >d ,则-d >-c ,所以a -d >b -c ,故D 正确.7.(2023·曲靖一模)已知a >0,b >0,且a +b =4,则下列结论一定正确的有(AC)A .(a +2b )2≥8abB .1a +1b ≥2ab C .ab 有最大值4D .1a +4b有最小值9【解析】对于A ,(a +2b )2=a 2+4b 2+4ab ≥2·a ·2b +4ab =8ab ,故A 正确;对于B ,找反例,当a =b =2时,1a +1b =2,2ab =4,1a +1b<2ab ,故B 错误;对于C ,因为a +b =4≥2ab ,所以ab ≤4,当且仅当a =b =2时取等号,故C 正确;对于D ,1a +4b =a +b )+4+b a ++=94,当且仅当a =43,b =83时取等号,故D 错误.8.设a >0,b >0,且a +2b =2,则(ACD )A .ab 的最大值为12B .a +b 的最小值为1C.a2+b2的最小值为45D.a-b+2ab的最小值为9 2【解析】对于A,a>0,b>0,22ab≤a+2b=2⇒ab≤12,当且仅当a=1,b=12时取等号,故A正确;对于B,a+b=2-b,a=2-2b.因为a>0,b>0,所以0<b<1,1<a+b<2,故B错误;对于C,a2+b2=(2-2b)2+b2=5b2-8b+4=+45≥45,当且仅当a=25,b=45时取等号,故C正确;对于D,a-b+2ab=a-b+a+2bab=2a+bab=2b+1a=·(a+2b)·12=+2b a++=92,当且仅当2ba=2ab,即a=b=23时取等号,故D正确.三、填空题9.已知实数a,b满足-3≤a+b≤-2,1≤a-b≤4,则3a-5b的取值范围是__[6,19]__.【解析】因为3a-5b=-(a+b)+4(a-b),由-3≤a+b≤-2,得2≤-(a +b)≤3,由1≤a-b≤4,得4≤4(a-b)≤16,所以6≤3a-5b≤19,即3a-5b 的取值范围是[6,19].10.已知a>0,b>0,且ab=a+b+3,则a+b的最小值为__6__.【解析】因为ab=a+b+3≤14(a+b)2,所以(a+b)2-4(a+b)-12≥0,即(a+b-6)(a+b+2)≥0,解得a+b≥6或a+b≤-2.因为a>0,b>0,所以a+b≥6(当且仅当a=b=3时取等号).11.若a>0,b>0,a+b=9,则36a+ab的最小值为__8__.【解析】36a+ab=4(a+b)a+ab=4+4ba+ab≥4+24ba·ab=8,当且仅当a=6,b=3时取等号,故36a+ab的最小值为8.四、解答题12.已知a,b为正实数,且4a2+b2=2.(1)求ab的最大值,并求此时a,b的值;【解答】由不等式4a2+b2≥4ab,解得ab≤12,当且仅当2a=b=1时取等号,所以ab的最大值为12,此时a=12,b=1.(2)求a1+b2的最大值,并求此时a,b的值.【解答】由4a2+b2=2,得4a2+(1+b2)=3.由4a2+(1+b2)≥24a2·(1+b2)=4a1+b2,得a1+b2≤34,当且仅当4a2=1+b2,即a=64,b=22时取等号,所以a1+b2的最大值为34,此时a=64,b=22.13.已知a>1,b>2.(1)若(a-1)(b-2)=4,求1a-1+1b-2的最小值及此时a,b的值;【解答】因为a>1,b>2,所以a-1>0,b-2>0,所以1a-1+1b-2=a-1)(b-2)=14[(b-2)+(a-1)]≥14×2(b-2)(a-1)=1,当且仅-2=a-1,a-1)(b-2)=4,即a=3,b=4时等号成立,所以1a-1+1b-2的最小值为1,此时a=3,b=4.(2)若2a+b=6,求1a-1+1b-2的最小值及此时a,b的值;【解答】由2a+b=6,得2(a-1)+(b-2)=2,所以(a-1)+b-22=1,所以1a-1+1b-2=(a-1)+b-22=32+a-1b-2+b-22(a-1)≥3+222,当-2=2(a-1),a-1)+(b-2)=2,即a=3-2,b=22时等号成立,所以1a-1+1b-2的最小值为3+222,此时a=3-2,b=2 2.(3)若1a+1b=1,求1a-1+1b-2的最小值及此时a,b的值.【解答】因为b>2,由1a+1b=1,可得a=bb-1,所以a-1=1b-1,所以1a-1+1b-2=b-2+1b-2+1≥3,当且仅当a=32,b=3时等号成立,所以1a-1+1b-2的最小值为3,此时a=32,b=3.14.某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积x(单位:平方米)成正比,比例系数为0.2.预计安装后该企业每年需缴纳的水费C(单位:万元)与设备占地面积x之间的函数关系为C(x)=20x+5(x>0).将该企业的净水设备购置费与安装后4年需缴水费之和合计为y(单位:万元).(1)要使y不超过7.2万元,求设备占地面积x的取值范围;【解答】由题意得y=0.2x+80x+5x>0).由y≤7.2,得0.2x+80x+5≤7.2,整理得x2-31x-220≤0,解得11≤x≤20,即设备占地面积x的取值范围为[11,20].(2)设备占地面积x为多少时,y的值最小?【解答】y=0.2x+80x+5=x+55+80x+5-1≥2x+55×80x+5-1=7,当且仅当x+55=80x+5,即x=15时等号成立.所以设备占地面积为15平方米时,y的值最。
基本不等式--历年高考题汇编-含详细解析
![基本不等式--历年高考题汇编-含详细解析](https://img.taocdn.com/s3/m/21eec7cf80c758f5f61fb7360b4c2e3f57272530.png)
基本不等式--历年高考题汇编-含详细解析基本不等式--历年高考题汇编一、选择题(本大题共3小题,共15.0分)1.已知过点(1,3)的直线l的倾斜角为135°,设点(x,y)是直线l在第一象限内的部分上的一点,则1x +4y的最小值是()A. 92B. 2 C. 94D. 42.已知正数x,y满足x+4y=2,则x+40y+43xy的最小值为()A. 852B. 24C. 20D. 183.设x>0、y>0、z>0,则三个数1x +4y、1y+4z、1z+4x()A. 都大于4B. 至少有一个大于4C. 至少有一个不小于4D. 至少有一个不大于4二、填空题(本大题共13小题,共65.0分)4.设x,y∈R+且1x +4y=2,则x+y的最小值为______.5.若2a+b=2(a>0,b>0),则1a +1b的最小值是______.6.函数y=x2+6x2+1的最小值是______.7.已知x>0,y>0,x+2y=1,则2x +1y的最小值为______.8.已知a>3,则4a?3+a?316的最小值为______.9.已知m+n=2,其中mn>0,则1m +1n的最小值为______.10.若正数a,b满足ab?2a?b=0,则ab的最小值为______.11.已知a+b=4,则2a+2b的最小值为______.12.设a+b=2,b>0,则14|a|+2|a|b的最小值为______.13.已知x>0,y>0,x+2y+2xy=3,则x+2y的最小值为______.14.已知x,y∈R+,求z=(x+2y)(2x +4y)的最值.甲、乙两位同学分别给出了两种不同的解法:甲:z=(x+2y)(2x+4y)=2+4x y+4y x+8≥18乙:z=(x+2y)(2x +4y)≥2√2xy?2√8xy=16①你认为甲、乙两人解法正确的是______.②请你给出一个类似的利用基本不等式求最值的问题,使甲、乙的解法都正确.15.已知a,b∈R,且a?2b+8=0,则2a+14b的最小值为______.16.若a,b均为正实数,则ab+ba2+b2+1的最大值为______.三、解答题(本大题共4小题,共48.0分)17.已知a,b为正整数,且a+b=1,求证:1a +1b≥4.18.已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律是:θ=m?2t+21?t(t≥0,并且m>0).(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m的取值范围.19.已知函数f(x)=m?|2?x|,且f(x+2)>0的解集为(?1,1).(1)求m的值;(2)若正实数a、b,满足a+2b=m.求1a +12b的最小值.20.已知函数f(x)=|x?1|?|x+a|(a∈N?),f(x)≤2恒成立.(1)求a的值;(2)若正数x,y满足1x +2y=a.证明:1xy+x+12y≥√2答案和解析1.【答案】C【解析】解:过点(1,3)的直线l 的倾斜角为135°,可得直线方程:y ?3=?(x ?1),化为:x +y =4.设点(x,y)是直线l 在第一象限内的部分上的一点,∴x +y =4,且x ,y >0.则1x +4y =14(x +y)(1x +4y )=14(5+y x +4x y )≥14(5+2√y x ?4x y )=94,当且仅当y =2x =83时取等号.故选:C .过点(1,3)的直线l 的倾斜角为135°,可得直线方程:x +y =4.再利用“乘1法”与基本不等式的性质即可得出.本题考查了直线方程、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于基础题.2.【答案】D【解析】解:∵正数x ,y 满足x +4y =2,12x +2y =1,∴x+40y+43xy=x+40y+2x+8y 3xy =3x+48y 3xy =x+16y xy =1y +16x ,∴1y +16x =(1y +16x )(12x +2y)=10+x 2y +32y x ≥10+2√x 2y ?32y x =10+8=18,当且仅当x 2y =32y x 时,x =43,y =16 故x+40y+43xy 的最小值为18,故选:D .由题意可得x+40y+43xy =1y +16x ,再利用乘“1”法,根据基本不等式即可求出本题主要考查了基本不等式的应用,考查了转化思想和计算能力,属于中档题.3.【答案】C【解析】解:假设三个数1x +4y <4且1y +4z <4且1z +4x <4,相加得:1x+4x +1y +4y +1z +4z <12,由基本不等式得: 1x+4x ≥4;1y +4y ≥4;1z +4z ≥4;相加得:1x +4x +1y +4y +1z +4z ≥12,与假设矛盾;所以假设不成立,三个数1x +4y 、1y +4z 、1z +4x 至少有一个不小于4.故选:C .由题意知利用反证法推出矛盾,即可得正确答案.本题考查反证法和基本不等式的应用,属于简单题.4.【答案】92【解析】解:∵x ,y ∈R +且1x +4y =2,∴x +y =12(x +y)(1x +4y) =52+2x y +y 2x ≥52+2√2x y ?y 2x =92 当且仅当2x y =y 2x 即x =32且y =3时取等号,∴x +y 的最小值为92故答案为:92由题意可得x +y =12(x +y)(1x +4y )=52+2x y +y 2x ,下面由基本不等式可得.本题考查基本不等式,变形为基本不等式的情形是解决问题的关键,属基础题.5.【答案】32+√2【解析】解:2a +b =2(a >0,b >0),则1a +1b =(1a +1b )(a +b 2)=1+12+b 2a +a b ≥32+2√b 2a ?a b =32+√2,当且仅当b 2a =a b 时,即a =2?√2,b =2√2?2时取等号,故1a +1b 的最小值是32+√2,故答案为:32+√2利用乘“1”法,可得1a +1b =(1a +1b )(a +b 2)=1+12+b 2a +a b ,再根据基本不等式即可求出.本题考查了基本不等式的应用,考查了转化与划归思想,属于基础题 6.【答案】2√6?1【解析】解:y =x 2+6x 2+1=x 2+1+6x 2+1?1≥2√(x 2+1)?6 x 2+1?1=2√6?1,当且仅当x 2=√6+1时取等号,故答案为:2√6?1.由y =x 2+6x 2+1=x 2+1+6x 2+1?1,根据基本不等式即可求出.本题考查了基本不等式的应用,属于基础题.7.【答案】8【解析】解:∵2x +1y=(x+2y)(2x+1y)=4+4y+xy≥4+2√4yxxy=8(当且仅当x=12,y=14时取等)故答案为:8先变形:2x +1y=(x+2y)(2x+1y)=4+4yx+xy,然后根据基本不等式可求得最小值.本题考查了基本不等式及其应用,属基础题.8.【答案】1 【解析】解:∵a>3,∴a?3>0,∴4a?3+a?3≥2√4a?3a?316=1,当且仅当4a?3=a?316,即a=11时取等号,故答案为:1根据基本不等式即可求出最小值.本题考查了基本不等式的应用,属于基础题.9.【答案】2 【解析】解:∵m+n=2,其中mn>0,则1m +1n=12(m+n)(1m+1n)=12(2+nm+mn)≥1(2+2)=2当且仅当m=n=1时取得最小值2.故答案为:2.由已知可得,1m +1n=12(m+n)(1m+1n),利用基本不等式即可求解本题主要考查了利用基本不等式求解最值,解题关键是对应用条件的配凑,1的代换是求解条件配凑的关键10.【答案】8【解析】解:∵正数a,b满足ab?2a?b=0,∴ab=2a+b≥2√2ab,∴a2b2≥8ab,∴ab≥8.∴ab的最小值为8.故答案为:8.推导出ab=2a+b≥2√2ab,从而a2b2≥8ab,由此能求出ab的最小值.本题考查两数积的最小值的求法,考查不等式的性质等基础知识,考查运算求解能力,是基础题.11.【答案】8【解析】解:∵a+b=4,∴2a+2b≥2√2a+b=2√24=8,当且仅当a=b=2时取等号,∴2a+2b的最小值为8.故答案为:8.利用基本不等式直接求解.本题考查了基本不等式及其应用,属基础题.12.【答案】78【解析】解:a+b=2,b>0,则14|a|+2|a|b=a+b8a|+2|a|b=a8|a|+b8|a|+2|a|b≥a8|a|+2√b8|a|2|a|b=a8|a|+1≥?18+1=78.当且仅当b8|a|=2|a|b,a<0且a+b=2即a=?2 3,b=83时取等号.故答案为:78.由已知可得,14|a|+2|a|b=a+b8a|+2|a|b=a8|a|+b8|a|+2|a|b,利用基本不等式即可求解本题主要考查了基本不等式在求解最值的应用,基本不等式条件的配凑是求解本题的难点.13.【答案】2【解析】解:考察基本不等式:x+2y=3?x?(2y)≥3?(x+2y2)2(当且仅当x=2y时取等号),整理得:(x+2y)2+4(x+2y)?12≥0,即:(x+2y?2)(x+2y+6)≥0,又:x+2y>0,所以:x+2y≥2(当且仅当x=2y时取等号),则:x+2y的最小值是2.故答案为:2.首先分析题目由已知x >0,y >0,x +2y +2xy =3,求x +2y 的最小值,猜想到基本不等式的用法,利用a +b ≥2√ab 代入已知条件,化简为函数求最值.此题主要考查基本不等式的用法,对于不等式a +b ≥2√ab 在求最大值最小值的问题中应用非常广泛,需要同学们多加注意.14.【答案】甲【解析】解:①甲正确,乙解法中两次不等式中取等的条件不相同;②已知x ,y ∈R +,求z =(a +b)(1a +1b )的最小值.甲:z =(a +b)(1a +1b )=1+b a +a b +1≥4,乙:z =(a +b)(1a +1b )≥2√ab ?2√1a ?1b=4.故填甲.乙解法中两次不等式取等条件不同,故乙错误.本题考查了基本不等式及其应用,属中档题. 15.【答案】18【解析】解:∵a ?2b +8=0,则2a +14b ≥2√2a ?14b =2√2a?2b =2√2?8=18 当且仅当a =?2b 即b =2,a =?4时取等号,故答案为:18.由基本不等式可得,2a +14b ≥2√2a ?14b ,结合已知即可求解.本题主要考查了指数的运算性质及基本不等式在求解最值中的应用,属于基础试题.16.【答案】√22【解析】解:∵a 2+12b 2≥2√a 2?b 22=√2ab ,当且仅当a =√22b 时取等号,12b 2+1≥2√12b 2=√2b ,当且当且仅当b =√2时取等号,∴ab+b a 2+b 2+1= ab+b a 2+b 22+b 22+12≤2ab+2b =2=√22,当且仅当a =1,b =√2时取等号,故ab+b a 2+b 2+1的最大值为√22,故答案为:√22由:a2+12b2≥2√a2?b22=√2ab,当且仅当a=√22b时取等号,12b2+1≥2√12b2=√2b,当且当且仅当b=√2时取等号,即可求出答案.本题考查了基本不等式的应用,考查了转化思想,属于中档题.17.【答案】证明:∵a,b为正整数,且a+b=1,∴1a+1b=(a+1b)(a+b)=2+ba +ab≥2+2√baab=4,当且仅当ba =ab即a=b=12时取等号.【解析】由题意可得1 a +1b=(1a+1b)(a+b)=2+ba+a,由基本不等式可得.本题考查不等式的证明,涉及基本不等式求最值问题,属基础题.18.【答案】解:(1)依题意可得5=2?2t+21?t,即2?(2t)2?5?2t+2=0.亦即(2?2t?1)(2t?2)=0,又∵t≥0,得2t=2,∴t=1.故经过1分钟该物体的温度为5摄氏度.(2)问题等价于m?2t+21?t≥2(t≥0)恒成立.∵m?2t+21?t=m?2t+2?2?t≥2√2m,①∴只需2√2m≥2,即m≥12.当且仅当122t=2?2?t,即t=1时,①式等号成立,∴m的取值范围是[12,+∞).【解析】(1)将m=2,θ=5代入θ=m?2t+21?t(t≥0)解指数方程即可求出t的值;(2)问题等价于m?2t+21?t≥2(t≥0)恒成立,求出m?2t+21?t的最小值,只需最小值恒大于等于2建立关系,解之即可求出m的范围.本题主要考查了不等式的实际应用,以及恒成立问题,同时考查了转化与划归的思想,属于中档题.19.【答案】解:(1)∵f(x+2)=m?|x|∴由f(x+2)>0得|x|<m.< p="">由|x|0,且其解集为(?m,m)又不等式f(x+2)>0解集为(?1,1),故m=1;(2)由(1)知a+2b=1,又a,b是正实数,由基本不等式得1a +12b=(1a+12b)(a+2b)=1+1+2ba+a2b≥4当且仅当a=12,b=14时取等号,故1a +12b的最小值为4.【解析】(1)由f(x+2)>0得|x|<m.由|x|0,且其解集为(?m,m),根据解集为(?1,1)可得m;</m.由|x|(2)由(1)知a+2b=1,则1a +12b=(1a2b)(a+2b)然后利用基本不等式求解即可.本题考查了绝对值不等式的解法和基本不等式,属基础题.20.【答案】解:(1)由f(x)=|x?1|?|x+a|≤|x?1?x?a|=|a+1|,又f(x)≤2恒成立,∴|a+1|≤2,∴?3≤a≤1,∵a∈N?,∴a=1;(2)由(1)知1x +2y=1,∴2x+y=xy,∴1xy +x+12y=1xy+12xy≥2√1xy12xy=√2.【解析】(1)由f(x)=|x?1|?|x+a|≤|x?1?x?a|=|a+1|,结合已知可求a,(2)由(1)知1y=1,从而有2x+y=xy,然后利用基本不等式可证.本题主要看考查了绝对值不等式的性质及基本不等式的应用,属于基础试题</m.<>。
2015-2024高考真题 数学 分项汇编 含答案解析(全国通用)-专题04 不等式(12页)
![2015-2024高考真题 数学 分项汇编 含答案解析(全国通用)-专题04 不等式(12页)](https://img.taocdn.com/s3/m/c0ed3f118f9951e79b89680203d8ce2f01666554.png)
专题04 不等式考点01 不等式的性质1.(2019·全国)若a >b ,则( ) A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .│a │>│b │2.(2018·全国)设0.2log 0.3a =,2log 0.3b =,则( ) A .0a b ab +<< B .0ab a b <+< C .0a b ab +<<D .0ab a b <<+3.(2017·山东)若a>b>0,且ab=1,则下列不等式成立的是( ) A .21log ()2aba ab b +<<+ B .21log ()2a b a b a b<+<+ C . 21log ()2a ba ab b +<+< D . 21log ()2aba b a b +<+< 4.(2016·浙江)已知a ,b >0,且a≠1,b≠1.若log >1a b ,则( )A .(1)(1)0a b −−<B .(1)()0a a b −−>C .D .(1)()0b b a −−>5.(2016·北京)已知,x y R ∈,且0x y >>,则( )A .110x y −>B .sin sin 0x y −>C .11()()022x y−< D .ln ln 0x y +>6.(2016·全国)若1a b >>,01c <<,则( ) A .c c a b <B .c c ab ba <C .log log b a a c b c <D .log log a b c c <7.(2015·浙江)设a ,b 是实数,则“0a b +>”是“0ab >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件考点02 解不等式1.(2024·全国新Ⅰ卷)已知集合{}355,{3,1,0,2,3}A xx B =−<<=−−∣,则A B =( ) A .{1,0}− B .{2,3} C .{3,1,0}−− D .{1,0,2}−2.(2024·上海)已知,x ∈R 则不等式2230x x −−<的解集为 .3.(2023·全国新Ⅰ卷)已知集合{}2,1,0,1,2M =−−,{}260N x x x =−−≥,则M N ⋂=( )A .{}2,1,0,1−−B .{}0,1,2C .{}2−D .{}24.(2020·全国)已知集合2{|340},{4,1,3,5}A x x x B =−−<=−,则A B =( ) A .{4,1}− B .{1,5} C .{3,5}D .{1,3}5.(2019·全国)设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =( ) A .(-∞,1) B .(-2,1) C .(-3,-1)D .(3,+∞)6.(2019·天津) 设x R ∈,使不等式2320x x +−<成立的x 的取值范围为 .7.(2018·全国)已知集合{}220A x x x =−−>,则R A =ð( )A .{}12x x −<<B .{}12x x −≤≤C .}{}{|12x x x x <−⋃D .}{}{|1|2x x x x ≤−⋃≥8.(2017·天津)已知函数23,1,()2, 1.x x x f x x x x ⎧−+≤⎪=⎨+>⎪⎩设a R ∈,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是( ) A .47[,2]16−B .4739[,]1616−C.[− D.39[]16− 9.(2015·江苏)不等式224xx−<的解集为 .10.(2015·广东)不等式2340x x −−+>的解集为 .(用区间表示)考点03 基本不等式1.(2024·北京)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 2.(2021·全国乙卷)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x −=+D .4ln ln y x x=+3.(2021·全国新Ⅰ卷)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .64.(2020·全国)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab−=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .325.(2015·四川)如果函数()()()()21281002f x m x n x m n =−+−+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,则mn 的最大值为( ) A .16B .18C .25D .8126.(2015·陕西)设()ln ,0f x x a b =<<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( ) A .q r p =< B .q r p => C .p r q =<D .p r q =>7.(2015·湖南)若实数,a b 满足12a b+=ab 的最小值为( )A B .2C .D .48.(2015·福建)若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( )A .2B .3C .4D .5专题04 等式与不等式综合(含基本不等式)考点01 不等式的性质1.(2019·全国)若a >b ,则( ) A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C【分析】本题也可用直接法,因为a b >,所以0a b −>,当1a b −=时,ln()0a b −=,知A 错,因为3x y =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==−,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b −=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==−,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C . 【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.2.(2018·全国)设0.2log 0.3a =,2log 0.3b =,则( ) A .0a b ab +<< B .0ab a b <+< C .0a b ab +<< D .0ab a b <<+【答案】B【详解】分析:求出0.2211log0.3,0.3log a b ==,得到11a b+的范围,进而可得结果. 详解:.0.30.3log0.2,2a b log ==,0.2211log0.3,0.3log a b∴==,0.3110.4log a b ∴+=1101a b∴<+<,即01a bab +<<,又a 0,b 0><ab 0∴<即ab a b 0<+< 故选B.点睛:本题主要考查对数的运算和不等式,属于中档题. 3.(2017·山东)若a>b>0,且ab=1,则下列不等式成立的是 A .21log ()2aba ab b +<<+ B .21log ()2a b a b a b<+<+ C . 21log ()2a b a a b b +<+< D . 21log ()2aba b a b +<+< 【答案】B【详解】因为0a b >>,且1ab =,所以221,01,1,log ()log 1,2aba b a b ><<∴+ 设()()2,1x f x x x =−>,则()2ln 210xf x '=−>,所以()()2,1x f x x x =−>单调递增,所以12112log ()a ba ab a a b b b+>+>+⇒+>+ ,所以选B. 【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数单调性进行比较,若底数不同,可考虑利用中间量进行比较.本题虽小,但考查的知识点较多,需灵活利用指数函数、对数函数的性质及基本不等式作出判断.4.(2016·浙江)已知a ,b >0,且a≠1,b≠1.若log >1a b ,则( ) A .(1)(1)0a b −−< B .(1)()0a a b −−> C . D .(1)()0b b a −−>【答案】D【详解】试题分析:log log 1a a b a >=,当1a >时,1b a >>,10,010,0a b a b a b ∴−>−>−>−<,,(1)(1)0,(1)()0,(1)()0.a b a a b b b a ∴−−>−−−−当01a <<时,01b a ∴<<<,10,010,0,a b a b a b ∴−<−<−−,(1)(1)0,(1)()0,(1)()0.a b a a b b b a ∴−−>−−−−观察各选项可知选D. 【考点】对数函数的性质.【易错点睛】在解不等式log 1a b >时,一定要注意对a 分为1a >和01a <<两种情况进行讨论,否则很容易出现错误.5.(2016·北京)已知,x y R ∈,且0x y >>,则( )A .110x y −>B .sin sin 0x y −>C .11()()022x y−< D .ln ln 0x y +>【答案】C【详解】试题分析:A :由,得,即,A 不正确; B :由及正弦函数的单调性,可知不一定成立;C :由,,得,故,C 正确;D :由,得,但xy 的值不一定大于1,故ln ln =ln 0x y xy +>不一定成立,故选C.【考点】函数性质【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法. (2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;(3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性. 6.(2016·全国)若1a b >>,01c <<,则( ) A .c c a b < B .c c ab ba < C .log log b a a c b c < D .log log a b c c <【答案】C【详解】试题分析:用特殊值法,令3a =,2b =,12c =得112232>,选项A 错误,11223223⨯>⨯,选项B 错误, 3211log log 22>,选项D 错误, 因为lg lg log log lg ()lg (),11lg lg lg lg a bb b a b a a b a b ac b c c c a b b a a b a b a −−=⋅−=⋅>>∴<<<lg lg 001lg 0log log lg lg a bb a a bc c a c b c b a−∴><<∴<∴<选项C 正确,故选C .【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.7.(2015·浙江)设a ,b 是实数,则“0a b +>”是“0ab >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D【详解】本题采用特殊值法:当3,1a b ==−时,0a b +>,但0ab <,故是不充分条件;当3,1a b =−=−时,0ab >,但0a b +<,故是不必要条件.所以“0a b +>”是“0ab >”的既不充分也不必要条件.故选D. 考点:1.充分条件、必要条件;2.不等式的性质.考点02 解不等式1.(2024·全国新Ⅰ卷)已知集合{}355,{3,1,0,2,3}A xx B =−<<=−−∣,则A B =( ) A .{1,0}− B .{2,3} C .{3,1,0}−− D .{1,0,2}−【答案】A【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<=−−,且注意到12,从而A B ={}1,0−.故选:A.2.(2024·上海)已知,x ∈R 则不等式2230x x −−<的解集为 . 【答案】{}|13x x −<<【分析】求出方程2230x x −−=的解后可求不等式的解集.【详解】方程2230x x −−=的解为=1x −或3x =,故不等式2230x x −−<的解集为{}|13x x −<<, 故答案为:{}|13x x −<<.3.(2023·全国新Ⅰ卷)已知集合{}2,1,0,1,2M =−−,{}260N x x x =−−≥,则M N ⋂=( )A .{}2,1,0,1−−B .{}0,1,2C .{}2−D .{}2【答案】C【分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出. 方法二:将集合M 中的元素逐个代入不等式验证,即可解出.【详解】方法一:因为{}(][)260,23,N x x x ∞∞=−−≥=−−⋃+,而{}2,1,0,1,2M =−−,所以M N ⋂={}2−.故选:C .方法二:因为{}2,1,0,1,2M =−−,将2,1,0,1,2−−代入不等式260x x −−≥,只有2−使不等式成立,所以M N ⋂={}2−.故选:C .4.(2020·全国)已知集合2{|340},{4,1,3,5}A x x x B =−−<=−,则A B =( ) A .{4,1}− B .{1,5} C .{3,5} D .{1,3}【答案】D【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果. 【详解】由2340x x −−<解得14x −<<,所以{}|14A x x =−<<, 又因为{}4,1,3,5B =−,所以{}1,3A B =, 故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.5.(2019·全国)设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =( ) A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)【答案】A【分析】先求出集合A ,再求出交集.【详解】由题意得,{}{}23,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A . 【点睛】本题考点为集合的运算,为基础题目.6.(2019·天津) 设x R ∈,使不等式2320x x +−<成立的x 的取值范围为 . 【答案】2(1,)3−【分析】通过因式分解,解不等式.【详解】2320x x +−<,即(1)(32)0x x +−<,即213x −<<故x 的取值范围是2(1,)3−.【点睛】解一元二次不等式的步骤:(1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.7.(2018·全国)已知集合{}220A x x x =−−>,则R A =ðA .{}12x x −<<B .{}12x x −≤≤C .}{}{|12x x x x <−⋃ D .}{}{|1|2x x x x ≤−⋃≥【答案】B【详解】分析:首先利用一元二次不等式的解法,求出220x x −−>的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.详解:解不等式220x x −−>得12x x <−>或,所以{}|12A x x x =<−>或, 所以可以求得{}R |12C A x x =−≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.8.(2017·天津)已知函数23,1,()2, 1.x x x f x x x x ⎧−+≤⎪=⎨+>⎪⎩设a R ∈,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是 A .47[,2]16−B .4739[,]1616−C.[− D.39[]16− 【答案】A【详解】不等式()2x f x a ≥+为()()2xf x a f x −≤+≤(*), 当1x ≤时,(*)式即为22332x x x a x x −+−≤+≤−+,2233322x x a x x −+−≤≤−+,又22147473()241616x x x −+−=−−−≤−(14x =时取等号),223339393()241616x x x −+=−+≥(34x =时取等号),所以47391616a −≤≤,当1x >时,(*)式为222x x a x x x −−≤+≤+,32222x x a x x−−≤≤+,又3232()22x x xx−−=−+≤−x =时取等号),222x x +≥=(当2x =时取等号),所以2a −≤≤, 综上47216a −≤≤.故选A . 【考点】不等式、恒成立问题 【名师点睛】首先满足()2x f x a ≥+转化为()()22x xf x a f x −−≤≤−去解决,由于涉及分段函数问题要遵循分段处理原则,分别对x 的两种不同情况进行讨论,针对每种情况根据x 的范围,利用极端原理,求出对应的a 的范围.9.(2015·江苏)不等式224x x−<的解集为 .【答案】(1,2).−【详解】试题分析:本题是一个指数型函数式的大小比较,这种题目需要先把底数化为相同的形式,即底数化为2,根据函数是一个递增函数,写出指数之间的关系得到未知数的范围.,2222,xx−∴<是一个递增函数;故答案为.考点:指数函数的单调性和特殊性10.(2015·广东)不等式2340x x −−+>的解集为 .(用区间表示) 【答案】()4,1−【详解】由2340x x −−+<得:41x −<<,所以不等式2340x x −−+>的解集为()4,1−,所以答案应填:()4,1−. 考点:一元二次不等式.考点03 基本不等式1.(2024·北京)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 【答案】B【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可. 【详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得121222222x x x x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故B 正确,A 错误; 对于选项D :例如120,1x x ==,则121,2y y ==,可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误; 对于选项C :例如121,2x x =−=−,则1211,24y y ==,可得()122223log log log 332,128y y +==−∈−−,即12212log 32y y x x +>−=+,故C 错误, 故选:B.2.(2021·全国乙卷)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x −=+ D .4ln ln y x x=+【答案】C【分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【详解】对于A ,()2224133y x x x =++=++≥,当且仅当=1x −时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y −=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞,而ln x R ∈且ln 0x ≠,如当ln 1x =−,5y =−,D 不符合题意. 故选:C .【点睛】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.3.(2021·全国新Ⅰ卷)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .【点睛】4.(2020·全国)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b−=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .32【答案】B【分析】因为2222:1(0,0)x y C a b a b −=>>,可得双曲线的渐近线方程是b y x a =±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =答案. 【详解】2222:1(0,0)x y C a b a b −=>>∴双曲线的渐近线方程是b y x a=± 直线x a =与双曲线2222:1(0,0)x y C a b a b−=>>的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限,联立x a b y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b ,联立x a b y x a =⎧⎪⎨=−⎪⎩,解得x a y b =⎧⎨=−⎩故(,)E a b −∴||2ED b = ∴ODE 面积为:1282ODE S a b ab =⨯==△双曲线2222:1(0,0)x y C a b a b −=>> ∴其焦距为28c ===,当且仅当a b ==∴C 的焦距的最小值:8故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题. 5.(2015·四川)如果函数()()()()21281002f x m x n x m n =−+−+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,则mn 的最大值为( )A .16B .18C .25D .812 【答案】B【详解】2m ≠时,抛物线的对称轴为82n x m −=−−.据题意,当m>2时,822n m −−≥−即212m n +≤.226,182m n m n mn +⋅≤≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,8122n m −−≤−即218m n +≤.28129,22n m n m mn +⋅≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n .所以(182)(1828)816mn n n =−<−⨯⨯=,所以最大值为18.选B..考点:函数与不等式的综合应用.6.(2015·陕西)设()ln ,0f x x a b =<<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q => 【答案】C【详解】p f ==()ln 22a b a b q f ++==,11(()())ln 22r f a f b ab =+==函数()ln f x x =在()0,+∞上单调递增,因为2a b +>()2a b f f +>,所以q p r >=,故选C . 【考点定位】1、基本不等式;2、基本初等函数的单调性.7.(2015·湖南)若实数,a b 满足12a b+=ab 的最小值为( )A B .2 C .D .4 【答案】C【详解】12121002ab a b ab ab a b a b a +=∴=+≥⨯=∴≥,>,>,(当且仅当2b a =时取等号),所以ab 的最小值为 C.考点:基本不等式【名师点睛】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.8.(2015·福建)若直线1(0,0)x y a b a b +=>>过点(1,1),则a b +的最小值等于( ) A .2B .3C .4D .5【答案】C 【详解】试题分析:∵直线1x y a b +=(,)过点,∴.则()11a b a b a b ⎛⎫+=++ ⎪⎝⎭224b a a b =++≥+=,当且仅当时取等号.故答案为C .考点:基本不等式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【考点20】基本不等式
2009年考题
1.(2009天津高考)设0,0.a b >>若11
333a b a b
+是与的等比中项,则的最小值为( )
A 8
B 4
C 1
D 14
故选择B.
2.(2009天津高考)设y
x b a b a b a R y x y
x
1
1,32,3,1,1,,+=+==>>∈则
若的最大值为( ) A.2 B.23 C.1 D.2
1 【解析】选C.
3.(2009重庆高考)已知0,0a b >>,则
11
2ab a b
++的最小值是( ) A .2
B .22
C .4
D .5
【解析】选C.
4.(2009湖南高考)若x ∈(0, 2π)则2tanx+tan(2
π
-x)的最小值为 .
答案:22
5.(2009湖南高考)若0x >,则2
x x
+
的最小值为 . 答案:226.(2009湖南高考)若0x >,则2
x x
+
的最小值为 . 答案:2
2008年考题
1、(2008四川高考)已知等比数列{}n a 中21a =,则其前3项的和3S 的取值范围是( ) (A )(,1]-∞- (B )(,0)(1,)-∞+∞U (C )[3,)+∞ (D )(,1][3,)-∞-+∞U 【解析】选D.方法1:∵等比数列{}n a 中21a =∴当公比为1时,1231a a a ===,33S =; 当公比为1-时,1231,1,1a a a =-==-,31S =-从而淘汰(A )(B )(C )故选D ;
方法2:∵等比数列{}n a 中21a =∴3123211(1)1S a a a a q q q q
=++=++=++∴当公比0q >时,
31113S q q =+++…;当公比0q <时,311()11S q q =-----„∴3(,1][3,)S ∈-∞-+∞U 故选D ;
方法3:311S x x =++(0)x ≠.由双勾函数1y x x =+的图象知,12x x +…或12x x +-„,故选D .
2、(2008重庆高考)函数()f x =
的最大值为( )
A .25
B .12
C
D .1
【解析】选B.
3、(2008浙江高考)已知0,0,2,a b a b +=且则厖( )
A.12
ab „
B. 12
ab …
C.222a b +…
D. 223a b +„
【解析】选C.
4、(2008陕西高考)“18a =”是“对任意的正数x ,21a x x
+…”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
【解析】选A.
5、(2008江西高考)若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是( ) A .1122a b a b + B .1212a a b b + C .1221a b a b + D .12
【解析】选A.
6、(2008年安徽高考)设函数1()21(0),f x x x x
=+-< 则()f x ( )
A .有最大值
B .有最小值
C .是增函数
D .是减函数
【解析】选A .
7、(2008江苏高考)2
,,,230,y x y z R x y z xz
*
∈-+=的最小值为 。
答案:3 2007年考题
1.(2007上海高考)已知,a b 为非零实数,且a b <,则下列命题成立的是( )
A 、22a b <
B 、22ab a b <
C 、
2211ab a b
< D 、b a
a b <
【解析】选C.
2.(2007重庆高考)若a 是1+2b 与1-2b 的等比中项,则
|
|2||2b a ab
+的最大值为( )
A.
1552 B.42 C.55 D.2
2
【解析】选B.
3.(2007山东高考)函数1(01)x
y a
a a -=>≠,的图象恒过定点A ,若点A 在直线
10(0)mx ny mn +-=>上,则
11
m n
+的最小值为 . 答案:4.
4.(2007山东高考)函数log (3)1(0,1)a y x a a =+->≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12
m n
+的最小值为_______. 答案:8.
5.(2007上海高考)已知,x y R +
∈,且41x y +=,则x y ⋅的最大值为_____
答案:
16
1。