灰色理论灰色预测模型和灰色关联度分析matlab通用代码

合集下载

灰色预测模型及MATLAB实例

灰色预测模型及MATLAB实例

灰⾊预测模型及MATLAB实例下⾯将主要从三⽅⾯进⾏⼤致讲解,灰⾊预测概念及原理、灰⾊预测的分类及求解步骤、灰⾊预测的实例讲解。

⼀、灰⾊预测概念及原理:1.概述:关于所谓的“颜⾊”预测或者检测等,⼤致分为三⾊:⿊、⽩、灰,在此以预测为例阐述。

其中,⽩⾊预测是指系统的内部特征完全已知,系统信息完全充分;⿊⾊预测指系统的内部特征⼀⽆所知,只能通过观测其与外界的联系来进⾏研究;灰⾊预测则是介于⿊、⽩两者之间的⼀种预测,⼀部分已知,⼀部分未知,系统因素间有不确定的关系。

细致度⽐较:⽩>⿊>灰。

2.原理:灰⾊预测是通过计算各因素之间的关联度,鉴别系统各因素之间发展趋势的相异程度。

其核⼼体系是灰⾊模型(Grey Model,GM),即对原始数据做累加⽣成(或者累减、均值等⽅法)⽣成近似的指数规律在进⾏建模的⽅法。

⼆、灰⾊预测的分类及求解步骤:1.GM(1,1)与GM(2,1)、DGM、Verhulst模型的分类⽐较:预测模型适⽤场景涉及的序列GM(1,1)模型⼀阶微分⽅程,只含有1个变量的灰⾊模型。

适⽤于有较强指数规律的序列。

累加序列均值序列GM(2,1)模型适⽤于预测预测具有饱和的S形序列或者单调的摆动发展序列缺陷。

累加序列累减序列均值序列DGM模型累加序列累减序列Verhulst模型累加序列均值序列2.求解步骤思维导图:其中预测过程可能会涉及以下三种序列、⽩化微分⽅程、以及⼀系列检验,由于⼤致都相同,仅仅是某些使⽤累加和累减,⽽另外⼀些则使⽤累加、累减和均值三个序列的差别⽽已。

于是下⾯笔者将对其进⾏归纳总结再进⾏绘制思维导图,帮助读者理解。

(1)原始序列(参考数据列):(2)1次累加序列(1-AGO):(3)1次累减序列(1-IAGO ):(也就是原始序列中,后⼀项依次减去前⼀项的值,例如,[x(2)-x(1),x(3-x(2),...,x(n)-x(n-1))]。

)(4)均值⽣成序列:(这是对累加序列"(前⼀项+后⼀项)/2"得出的结果。

灰色预测matlab代码

灰色预测matlab代码

%灰色预测function gm(x0,m) %定义函数gm(x0,m) ,x0为原始数据,m为预测个数n=length(x0);x1=zeros(1,n);x1(1)=x0(1);for i=2:n %计算累加序列x1x1(i)=x1(i-1)+x0(i);endi=2:n; %对原始数列平行移位并赋给yy(i-1)=x0(i);y=y'; %将y变成列向量for i=1:n-1; %计算数据矩阵B 的第一列数据c(i)=-0.5*(x1(i)+x1(i+1));endB=[c' ones(n-1,1)];%构造矩阵Bau=inv(B'*B)*B'*y;%计算参数a,u 矩阵for i=1:n+1+m; %计算预测累加数列的值ago(i)=(x0(1)-au(2)/au(1))*exp(-au(1)*(i-1))+au(2)/au(1);endyc(1)=ago(1);for i=1:n-1; %还原数列的值yc(i+1)=ago(i+1)-ago(i);endfor i=2:n;error(i)=yc(i)-x0(i); %计算残差值endyc(1)=ago(1);for i=1:n-1+m; %修正的还原数列的值yc(i+1)=ago(i+1)-ago(i);endc=std(error)/std(x0); %计算后验差比p=0;for i=2:nif(abs(error(i)-mean(error))<0.6745*std(x0))p=p+1;endendp=p/(n-1);w1=min(abs(error));w2=max(abs(error));for i=1:n; %计算关联度w(i)=(w1+0.5*w2)./(abs(error(i))+0.5*w2);endw=sum(w)/(n-1);%axis([1979+m,1988+m,30,160]); %x,y,(z)坐标范围plot([1979:n+1978],x0,'+',[1979:n+1978+m],yc,'*'); %grid on;xlabel('时序');ylabel('沉降量(mm)');title('地面沉降灰色模型预测拟和曲线');legend('实测值','预测值',4);fprintf('a,u值:')fprintf('%g ',au) %输出参数a,u 的值fprintf('\n累加数列:\n')fprintf('%g ',ago) %输出累加数列ago 的值fprintf('\n原始序列:\n')fprintf('%g ',x0) %输出原始序列值fprintf('\n预测:\n')fprintf('%g ',yc) %输出预测的值fprintf('\n残差:\n')fprintf('%g ',error) %输出残差的值fprintf('\n后验差比:\n')fprintf('%g',c) %输出后验差比的值fprintf('\n小误差概率:\n')fprintf('%g',p) %输出小误差概率的值fprintf('\n关联度:\n')fprintf('%g\n',w) %输出关联度w。

利用matlab进行灰色预测

利用matlab进行灰色预测

(k ) 1 (
1 0.5a ) ( k ) 1 0.5a
如果 (k ) 0.2 ,则可认为达到一般要求,如果 (k ) 0.1 ,则认 为达到较高要求。 (4)预测
ˆ (0) (k ) ,根据实际需要,求出问 由模型GM(1,1)得到的预测值 x
文章地址 /logs/163249158.html 2
, n) 。
,n
求出均值数列: z (1) (k ) 0.5x(1) (k ) 0.5x(1) (k 1), k 2,3, 由此得到 z (1) ( z (1) (2), z (1) (3), 建立灰微分方程:
x(0) (k ) az (1) (k ) b, k 2,3, ,n , z (1) (n))
(0)
GM(1,1)的数据进行灰色预测。否则,需要对数列 x 入可容覆盖内。即取适当的常数c ,作平移变换
做必要的变换处理,使其落
y (0) x(0) (k ) c ,
使数列 y
(0)
k 1, 2,
,n
( y (0) (1), y (0) (2),
, y (0) (n)) 的级比 y (k ) 落入可容覆盖区内。
文章地址 /logs/163249158.html 1
, n 1
利用 Matlab 进行灰色预测

2. 灰色预测的步骤
(1)数据的检验与处理 首先,为了保证建模方法的可行性,需要对已知数据列做必要的检验处理。设参考 数据为 x
(3)检验预测值 a.残差检验:残差实际值与预测值之差,令残差为 (k ) ,计算
ˆ (0) (k ) x(0) (k ) x (k ) , x(0) (k ) k 1, 2, ,n

灰色模型预测GM(1,1)MATLAB程序代码

灰色模型预测GM(1,1)MATLAB程序代码

灰⾊模型预测GM(1,1)MATLAB程序代码版权所有引⽤请注明出处function gmcal=gm1(x)%% ⼆次拟合预测GM(1,1)模型%x = [5999,5903,5848,5700,7884];sizexd2 = size(x,2);%求数组长度k=0;for y1=xk=k+1;if k>1x1(k)=x1(k-1)+x(k);%累加⽣成z1(k-1)=-0.5*(x1(k)+x1(k-1));%z1维数减1,⽤于计算Byn1(k-1)=x(k);elsex1(k)=x(k);endend%x1,z1,k,yn1sizez1=size(z1,2);%size(yn1);z2 = z1';z3 = ones(1,sizez1)';YN = yn1'; %转置B=[z2 z3];au0=inv(B'*B)*B'*YN;au = au0';afor = au(1);ufor = au(2);ua = au(2)./au(1);constant1 = x(1)-ua;afor1 = -afor;x1t1 = 'x1(t+1)';estr = 'exp';tstr = 't';leftbra = '(';rightbra = ')';strcat(x1t1,'=',num2str(constant1),estr,leftbra,num2str(afor1),tstr,rightbra,'+',leftbra,num2str(ua),rightbra) %输出时间响应⽅程k2 = 0;for y2 = x1k2 = k2 + 1;if k2 > kelseze1(k2) = exp(-(k2-1)*afor);endendsizeze1 = size(ze1,2);z4 = ones(1,sizeze1)';G=[ze1' z4];X1 = x1';au20=inv(G'*G)*G'*X1;au2 = au20';Aval = au2(1);Bval = au2(2);strcat(x1t1,'=',num2str(Aval),estr,leftbra,num2str(afor1),tstr,rightbra,'+',leftbra,num2str(Bval),rightbra) %输出时间响应⽅程nfinal = sizexd2-1 + 1; %决定预测的步骤数5 这个步骤可以通过函数传⼊%nfinal = sizexd2 - 1 + 1;%预测的步骤数 1for k3=1:nfinalx3fcast(k3) = constant1*exp(afor1*k3)+ua;end%⼀次拟合累加值for k31=nfinal:-1:0if k31>1x31fcast(k31+1) = x3fcast(k31)-x3fcast(k31-1);elseif k31>0x31fcast(k31+1) = x3fcast(k31)-x(1);elsex31fcast(k31+1) = x(1);endendendx31fcast%⼀次拟合预测值for k4=1:nfinalx4fcast(k4) = Aval*exp(afor1*k4)+Bval;end%x4fcastfor k41=nfinal:-1:0if k41>1x41fcast(k41+1) = x4fcast(k41)-x4fcast(k41-1);elseif k41>0x41fcast(k41+1) = x4fcast(k41)-x(1);elsex41fcast(k41+1) = x(1);endendendx41fcast,x%⼆次拟合预测值%***精度检验p C************//////////////////////////////////k5 = 0;for y5 = xk5 = k5 + 1;if k5 > sizexd2elseerr1(k5) = x(k5) - x41fcast(k5);endend%err1%绝对误差xavg = mean(x);%xavg%x平均值err1avg = mean(err1);%err1avg%err1平均值k5 = 0;s1total = 0 ;for y5 = xk5 = k5 + 1;if k5 > sizexd2elses1total = s1total + (x(k5) - xavg)^2;endends1suqare = s1total ./ sizexd2;s1sqrt = sqrt(s1suqare);%s1suqare,s1sqrt%s1suqare 残差数列x的⽅差 s1sqrt 为x⽅差的平⽅根S1k5 = 0;s2total = 0 ;for y5 = xk5 = k5 + 1;if k5 > sizexd2elses2total = s2total + (err1(k5) - err1avg)^2;endends2suqare = s2total ./ sizexd2;%s2suqare 残差数列err1的⽅差S2Cval = sqrt(s2suqare ./ s1suqare);Cval%nnn = 0.6745 * s1sqrt%Cval C检验值k5 = 0;pnum = 0 ;for y5 = xk5 = k5 + 1;if abs( err1(k5) - err1avg ) < 0.6745 * s1sqrtpnum = pnum + 1;%ppp = abs( err1(k5) - err1avg )elseendendpval = pnum ./ sizexd2;pval%p检验值%arr1 = x41fcast(1:6)%预测结果为区间范围预测步长和数据长度可调整程序参数进⾏改进。

灰色关联度 matlab

灰色关联度 matlab

灰色关联度matlab
灰色关联度是一种用于研究因素之间关联程度的方法,常用于灰色系统理论。

在Matlab 中,你可以使用以下步骤计算灰色关联度:
1.数据准备:将你的数据整理成矩阵形式,其中每一行代表一个因素,每一列代表不同的观测值。

2.数据标准化:对数据进行标准化,确保所有的数据都在相似的尺度上。

你可以使用Matlab内置的`zscore`函数来进行标准化。

```matlab
%假设data是你的数据矩阵
standardized_data=zscore(data);
```
3.计算关联系数:计算标准化后数据的关联系数。

关联系数通常使用绝对值来计算。

```matlab
correlation_matrix=abs(corr(standardized_data));
```
4.计算灰色关联度:利用关联系数计算灰色关联度。

灰色关联度的计算方式可以根据具体的算法来确定,例如可以使用灰色关联度分析法中的一种。

假设你采用灰色关联度分析法中的一种算法,比如最小值法:
```matlab
%假设correlation_matrix是关联系数矩阵
gray_relation_degree=1./(1+correlation_matrix);
```
5.结果分析:分析计算得到的灰色关联度矩阵,了解因素之间的关联程度。

请注意,以上步骤是一种简单的实现方式,具体的计算方法可能会根据你选择的灰色关联度算法而有所不同。

确保在实际应用中了解所使用算法的具体计算步骤。

灰色预测MATLAB程序

灰色预测MATLAB程序

灰色预测心设尹曲⑴#为原始数列,其1次累<加生成数列为炉=(孝①宀2\S,其中©=2^°:⑺卫=12…止i-1尋定文沙的灰导数为d(Jt)=玄㈣(Jt)=尤⑴的-工⑴(*-1).令尹为数列壬⑴的邻值生成数列,即尹)(町=加小(町十(1—a)x山(k-1).于是定文GM(1T1)的灰微分方程模型为d(k)+az①(上)=&_即或.严⑹+盘⑴懐)=乩⑴在式(1)中口①的称为灰导数’熬称为发展系数'弧称为白化背景值,b称为灰作用量。

将时刻表庄=23…用代入(O式有j<0)(2)-az⑴(2)=工®⑶—俺叫巧=»于是GMIL)樫型可表示为r=现在问题归结为求巧h在值。

用一元绒性回归,即最小二垂進求它们的估计值住=[]卜护跖护F奕厢上回归分析中求诂计值是用软件计算的,有标淮程博求解,如山訥甜等。

GM(1.1)的白化型对于的(1-1)的获微分方程⑴,如果将解导教矿悶的时報=%…屮观対连续叢里"则工⑴衩为时间i函敕卅®,于是-<'W耐应于导敕重级必%),白化背杲值刃(時对应于导數申⑴。

于是GM(1,1)的换微分方嗨对应于的白微分方程为写®4曲%「)=也⑵GAI(1>1)换色预刪的步叢1-數堀的椅噓弓处理为了保证©M(B1)屋複方达的可行性・需要対已却皴堀锁必要的检峻处Ho 设療皓数攥列为了-计算埶列的级比如果所有的级比都落在可容覆盖区间盂-內・则數摒列X糾可咲建立G*ICL-1)複型且可以避行页色预测。

否则,丙軌据懺适当的叢换处理,如平移銮换:取C使得敕培列严⑹二工蚀盘)+匚用二12…”的级比都落在可啓禎盖内。

(1)残差檢验:计算相对薙差Z 建立GM (L T 1)複型不妬设少弋以m 叫唠霸足上面的要求,以它芮議堀列建立GM(1>1)型蛊(仍(i)+血C1\A)=b ・用回归分祈求得目上的估计值"于是相应的白化模型为 气^十小卄工解为工叱)=0)①—勺中1-色-⑶ 应Q于是停到预测值壬⑴(上+1)=0叫1)一勺>加+仝血二12…卫一1=aa伙而相应地得到预«=x co \t +1)=x 0)(t+l)-x a)(i)3i =1,2,-?n-l ?如果对所有的^<0.1・则认为达到鞭嵩的要求:否则,若耐所有的|^)1<0^,则认対达到一般要求©(2)级比偏差値桧验:计算能)=1-呂学©如果对所有的|,则认为达列较高的要求孑吾则若对斫有的,则认为达到一般要求O灰色预测计算实例^…;=:=-■■■■昏例北方某城市1986—1992年道路交通噪声平均声级数据见表6序号年吶寺表拆市近年来交通噪声数据[眶(应)]二諾;二319S872.4第—爭:级比检验建立丢通噪屛均声级数锯时间序列如下:4198972.1j 1990?1.4 619?17201199771.6艸=(•严①卫购(2)厂卅⑺) =(711,72.4.71.4,72.1.71.4,7UQ.71.6)些(1)求级比k(k)忠防护住T)2=(几⑵山⑶.…也⑺)g=(0.982JJ.0042J.0098-0.9917J.0056)(2)级比判断由于所有的X.(10e[0.982J.009S],k=2,3.6故可以用双0)作满意的GM(1,1)建模’第二步:GM(1,1)建模(1)对原始数据X®作一次累加,即卞⑴=(71.L143.5215.9.288359.4.431.4,503)(2)构造数据矩阵B及数据向量Y-2)—H 弋3/>1⑶讦算1T心求解得F'⑴=(工倒〔1〉_-)e 弋Q f+-1*^+1)=0<l,U)--)£-t +-=-3092^--^+31000⑶求生咸数列值歸型齊看:n令“is 那血由上面的碉醯数可甲得,其中取菱由龙⑴(i}=恥壮曲5加得丁I —"炉閃=进悶-进德-尊(71儿72.4.72.2:72.1:71.9:71.7,71.6)^}=(s"a >亍⑴⑵,…,网⑺A<第三步;模型检验•>模型的各种检验指标值的计算结果见表工 •t*表7GM(1检验表<序号年俯原始值模型值残差相对误差级比偏差•>1 19S6 71.1 71.1<219S7 72.4 72.4 -0.0057 0.01%0.0023 <3 19S S 72.4 72.2 0.163S 0.23%0.0203 •>4 19S9 72.1 72.1 0.0329 0.05%-O.(K H8 •>5199071.4 71.9 -0-49S4 0.7%-0.0074 <61991 72.0 71.7 0.21599 037%0.0107<71992 71.6 71.6 0.037S0.05%-0.0032于是得到目=山的餡,立欖型7-B)'1B TY=(dt0.0023 72.6573dt+0.002ix (1>=72.657^心经验证・该模型的精度较高.可进行预测和预报计算的Matlab 程序如下:仃坝测和预报n=length(x); z=0;%取输入数据的样本量for i=1:nz=z+x(i,:)be(i,:)=z; %计算累加值,并将值赋予矩阵beend for i=2:n %对y(i-1,:)=x(i,:)%对原始数列平行移位 endfor i=1:n-1%计算数据矩阵B 的第一列数据c(i,:)=-0.5*(be(i,:)+be(i+1,:)); clCjdearxO=[71H 72.472A 72J71477m c n.lengthtxO);*'b%注意这里为列帖lamda =xD(l :n-1),A0(2:n)%计算级比range =minmaxflamda f )%计算级比的范阖 X1=cumsum(xO);%累加运算B=['0,5*(xl(l ;n ^l)+xl(2:n))t ones(n -1,1)]TY 二甸(2:町;口=B\Y%拟合参数u(l>=a .u(2)=bx=dsolve (+a 'x =b\f x(0)-xO^J ;%求徴分方程的特号解x =subs(xJ*a\,b r /xO ,Mu(l)P u(2)t xO(l)|)i%代入荷计痹擞值和初蜡值yucel =subs %求巳知数擁的扳测位y-vpa(x,6)奄其中的石表示显不白位数字yuce=[x0(l)T diff(yucel)]%羔分运算,还原数据 epsiIon=-yuce%计算战羞作用:求累加数列、求ab 的值、求预测方程、求残差clc %清屏,以使结果独立显示x=[71.172.472.472.171.472.071.6]; format long ;%设置计算精度if length(x(:,1))==1%对输入矩阵进行判断,如不是一维列矩阵,进行转置变换x=x endM.I-JTVorhlllst 模型endfor j=1:n-1%计算数据矩阵B的第二列数据e(j,:)=1;endfor i=1:n-1%构造数据矩阵BB(i,1)=c(i,:);B(i,2)=e(i,:);endalpha=inv(B'*B)*B'*y;%计算参数矩阵即ab的值for i=1:n+1%计算数据估计值的累加数列,如改为n+1为n+m可预测后m-1个值ago(i,:)=(x(1,:)-alpha(2,:)/alpha(1,:))*exp(-alpha(1,:)*(i-1))+alpha( 2,:)/alpha(1,:);%显示输出预测值的累加数列endvar(1,:)=ago(1,: )for i=1:n%显示输出预测值%如改n为n+m-1,可预测后m-1个值var(i+1,:)=ago(i+1,:)-ago(i,:);%估计值的累加数列的还原,并计算出下一预测值endfor i=1:nerror(i,:)=x(i,:)-var(i,:);%计算残差endc=std(error)/std(x);%调用统计工具箱的标准差函数计算后验差的比值cago alpha var%显示输出预测值的累加数列%显示输出参数数列%显示输出预测值error %显示输出误差c %显示后验差的比值作用:数据处理判断是否可以用灰色预测、求级比、求累加数列、求ab的值、求预测方程clc,clearx0=[71.172.472.472.171.472.071.6]';%注意这里为列向量n=length(x0);lamda=x0(1:n-1)./x0(2:n)%计算级比range=minmax(lamda')%计算级比的范围x1=cumsum(x0)%累加运算B=[-0.5*(x1(1:n-1)+x1(2:n)),ones(n-1,1)];Y=x0(2:n);u=B\Y%拟合参数u(1)=a,u(2)=bx=dsolve('Dx+a*x=b','x(0)=x0');%求微分方程的符号解x=subs(x,{'a','b','x0'},{u(1),u(2),x0(1)})%代入估计参数值和初始值yuce1=subs(x,'t',[0:n-1]);%求已知数据的预测值y=vpa(x,6)%其中的6表示显示6位数字yuce=[x0(1),diff(yuce1)]%差分运算,还原数据。

GM(1,n)(灰色模型代码)

GM(1,n)(灰色模型代码)

GM(1,n)(灰色模型代码)%灰色预测模型GM(1,n)模型的matlab源代码,包括预测模型的建立,以及模型的精度检验指标c,p的计算%假设预测3步,N=3%如在命令窗口键入:%gm=ycgm1n([1.6,1.7,2,1.8,1.9],[2,2.4,3,3.2,3.1],[3,3.1,3.2,3.5 ,2.8],3)function GM=ycgm1n(data1,data2,data3,N) %data1:纵摇,data2:升沉,data3:波浪T=length(data1);PYX1=data1;PYX2=data2;PYX3=data3;%进行数据预处理,这里用初值化X0_1=PYX1./PYX1(1);X0_2=PYX2./PYX2(1);X0_3=PYX3./PYX3(1);%用AGO生成一阶累加生成模块X1_1(1)=X0_1(1);X1_2(1)=X0_2(1);X1_3(1)=X0_3(1);for i=2:TX1_1(i)=X1_1(i-1)+X0_1(i);X1_2(i)=X1_2(i-1)+X0_2(i);X1_3(i)=X1_3(i-1)+X0_3(i);end%构造累加矩阵Bfor i=1:T-1M1(i)=(0.5*(X1_1(i)+X1_1(i+1)));M2(i)=(0.5*(X1_2(i)+X1_2(i+1)));M3(i)=(0.5*(X1_3(i)+X1_3(i+1)));endB1=zeros(T-1,3);for i=1:(T-1)B1(i,1)=-M1(i); %-(X1_1(i)+X1_1(i+1)))/2; B1(i,2)=X1_2(i+1);B1(i,3)=X1_3(i+1);endB2=zeros(T-1,2);for i=1:(T-1)B2(i,1)=-M2(i); %-(X1_2(i)+X1_2(i+1)))/2; B2(i,2)=X1_3(i+1);endB3=zeros(T-1,2);for i=1:(T-1)B3(i,1)=-M3(i); %-(X1_3(i)+X1_3(i+1)))/2; B3(i,2)=1;endsave B1 B1;save B2 B2;save B3 B3;%构造常数项向量Yfor i=2:TY1(i-1)=X0_1(i);Y2(i-1)=X0_2(i);Y3(i-1)=X0_3(i);endHCS1=inv(B1'*B1)*B1'*Y1'; %用最小二乘法求灰参数HCS1 H1=HCS1'; %H1=[a,b2,b3]HCS2=inv(B2'*B2)*B2'*Y2'; %用最小二乘法求灰参数HCS2 H2=HCS2'; %H2=[a,b3]HCS3=inv(B3'*B3)*B3'*Y3'; %用最小二乘法求灰参数HCS3 H3=HCS3'; %H3=[b,a]%计算出X3的累加序列for i=1:T+NYCX13(i)=(X0_3(1)-H3(2)/H3(1))*exp(-1*H3(1)*(i-1))+H3(2)/H3(1);endfor i=2:T+N% K(i)=XR1(i)-XR1(i-1);YCX0_3(i)=YCX13(i)-YCX13(i-1);endYCX0_3(1)=X0_3(1);%对参数作alpha,beta变换H2=H2./(1+0.5*H2(1));%还原计算出X2的预测值YCX0_2(1)=X0_2(1);for i=2:TYCX0_2(i)=H2(2).*X1_3(i)-H2(1).*X1_2(i-1);endYCX12(T)=X1_2(T);for i=T+1:T+NYCX0_2(i)=H2(2).*YCX13(i)-H2(1).*YCX12(i-1);YCX12(i)=YCX0_2(i)+YCX12(i-1);end%对参数作alpha,beta变换H1=H1./(1+0.5*H1(1));%还原计算出X1的预测值YCX0_1(1)=X0_1(1);for i=2:TYCX0_1(i)=H1(2).*X1_2(i)+H1(3).*X1_3(i)-H1(1).*X1_1(i-1);endYCX11(T)=X1_1(T);for i=T+1:T+NYCX0_1(i)=H1(2).*YCX12(i)+H1(3).*YCX13(i)-H1(1).*YCX11(i-1);YCX11(i)=YCX0_1(i)+YCX11(i-1);end%数据还原GM=YCX0_1; %.*PYX1(1);save GM GM;e0(1,T-1)=zeros;for i=1:T-1 %求X1到X5的残差值e0e0(i)=(X0_1(i+1)-YCX0_1(i+1))/X0_1(i+1); %1-YCX0_1(i+1)/X0_1(i+1);endsave e0 e0;e0_average=sum(abs(e0))/length(e0)p=1-e0_average;X_average=mean(X0_1) %求原始数据x0均值s1=std(PYX1) %求原始数据的标准差s2=std(e0)c=s2/s1 %计算方差比c,c<0.35为好end。

灰色系统预测GM(1-1)模型及其Matlab实现

灰色系统预测GM(1-1)模型及其Matlab实现

灰色系统预测GM(1,1)模型及其Matlab 实现预备知识(1)灰色系统白色系统是指系统内部特征是完全已知的;黑色系统是指系统内部信息完全未知的;而灰色系统是介于白色系统和黑色系统之间的一种系统,灰色系统其内部一部分信息已知,另一部分信息未知或不确定。

(2)灰色预测 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行 预测。

尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此得到的数据集合具备潜在的规律。

灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。

目前使用最广泛的灰色预测模型就是关于数列预测的一个变量、一阶微分的GM(1,1)模型。

它是基于随机的原始时间序列,经按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近。

经证明,经一阶线性微分方程的解逼近所揭示的原始时间序列呈指数变化规律。

因此,当原始时间序列隐含着指数变化规律时,灰色模型GM(1,1)的预测是非常成功的。

1 灰色系统的模型GM(1,1)1.1 GM(1,1)的一般形式设有变量X (0)={X (0)(i ),i =1,2,...,n}为某一预测对象的非负单调原始数据列,为建立灰色预测模型:首先对X(0)进行一次累加(1—AGO , Acum ul at ed Ge nera ting Opera to r)生成一次累加序列: X (1)={X(1)(k ),k =1,2,…,n}其中X (1)(k )=∑=ki 1X (0)(i)=X (1)(k-1)+ X (0)(k) (1)对X(1)可建立下述白化形式的微分方程:dtdX )1(十)1(aX =u (2)即G M(1,1)模型。

上述白化微分方程的解为(离散响应): ∧X(1)(k +1)=(X (0)(1)-a u )ake -+au (3)或∧X (1)(k )=(X (0)(1)-a u ))1(--k a e +au (4)式中:k 为时间序列,可取年、季或月。

灰色预测+灰色关联分析

灰色预测+灰色关联分析

灰色关联分析法根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,来衡量因素间关联程度。

灰色关联分析法的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密。

根据评价目的确定评价指标体系,为了评价×××我们选取下列评价指标: 收集评价数据(此步骤一般为题目中原数据,便省略)将m 个指标的n 组数据序列排成m*n 阶矩阵:'''12''''''1212'''12(1)(1)(1)(2)(2)(2)(,,,)()()()n n n n x x x x x x X X X x m x m x m ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭对指标数据进行无量纲化为了消除量纲的影响,增强不同量纲的因素之间的可比性,在进行关联度计算之前,我们首先对各要素的原始数据作...变换。

无量纲化后的数据序列形成如下矩阵:01010101(1)(2)(1)(2)(2)(2)(,,,)()()()n n n n x x x x x x X X X x n x n x n ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 确定参考数据列为了比较...【评价目的】,我们选取...作为参考数据列,记作''''0000((1),(2),,())T X x x x n =计算0()()i x k x k -,得到绝对差值矩阵求两级最小差和两级最大差011min min ()()min(*,*,*,*,*,*)*nmi i k x k x k ==-==011max max ()()max(*,*,*,*,*,*)*nmi i k x k x k ==-==求关联系数由关联系数计算公式0000min min ()()max max ()()()()()max max ()()i i ikiki i i ikx k x k x k x k k x k x k x k x k ρζρ-+⋅-=-+⋅-,取0.5ρ=,分别计算每个比较序列与参考序列对应元素的关联系数,得关联系数如下:ζ=(ζ1(1)⋯ζn (1)⋮⋱⋮ζ1(n )⋯ζn (n))=()计算关联度分别计算每个评价对象各指标关联系数的均值,以反映各评价对象与参考序列的关联关系,并称其为关联度,记为:011()mi i k r k m ζ==∑。

灰色预测的matlab实现,代码大全

灰色预测的matlab实现,代码大全

disp('确定的模型为:x1(k+1)=(x(1)-u_a)*exp(-k*a)+u_a') 改进灰色模型代码: for i=1:inf if i==1
e(i)=input('输入数据:'); else if e(i-1)==0 break; else end
e(i)=input('输入数据:');
6
1
x2(k+1)=(x0(1)-u_a)*exp(-k*a)+u_a; end %求出新数列的模拟值 x2 x3=x2; x3(m2+k0)=[]; x4=[0 x3]; x5=x2-x4;%利用累减生成法求出原始数据的模拟值 x5 disp('3.一次累加(1-AGO)生成的数据的模拟值:') Y=''; for z=1:m2+k0 Y=strcat(Y,'(',num2str(x2(z)),')'); end disp(Y); disp('4.原始数据的模拟值:') Y=''; for z=1:m2+k0 Y=strcat(Y,'(',num2str(x5(z)),')'); end disp(Y); % 4. 模型检验(算出的值到等级参照表中检查其精度等级) %计算后验差比 C 和残差序列 Q x6=x5(1:m2); Q=x0-x6;%Q 为残差序列 s1=std(Q);%s1 为残差序列 Q 的标准差 s2=std(x0);%s2 为初始序列 x0 的标准差 C=s1/s2;%后验差比 C(越小越好) w1=1:m2; w1=[ones(m2,1) w1']; w2=Q'; [bb,bint,r1,rint,stats]=regress(w2,w1); rcoplot(r1,rint) C1=strcat('5.后验差比(均方差比值): C=',num2str(C));disp(C1); if C<=0.35 disp(' 由于 C<=0.35,则此模型精度等级为 1 级(好) 。'); else if C<=0.5 disp(' 由于 0.35<C<=0.5,则此模型精度等级为 2 级(合格) 。'); else if C<=0.65 disp(' 由于 0.5<C<=0.65,则此模型精度等级为 3 级(勉强) 。'); else disp(' 由于 C>0.65,则此模型精度等级为 4 级(不合格) 。'); end end end

灰色关联度matlab源程序(完整版)

灰色关联度matlab源程序(完整版)

灰色关联度matlab源程序(完整版)近几天一直在写算法,其实网上可以下到这些算法的源程序的,但是为了搞懂,最搞清楚,还是自己一个一个的看了,写了,作为自身的积累,而且自己的的矩阵计算类库也迅速得到补充,以后关于算法方面,基本的矩阵运算不用再重复写了,挺好的,是种积累,下面把灰关联的matlab程序与大家分享。

灰色关联度分析法是将研究对象及影响因素的因子值视为一条线上的点,与待识别对象及影响因素的因子值所绘制的曲线进行比较,比较它们之间的贴近度,并分别量化,计算出研究对象与待识别对象各影响因素之间的贴近程度的关联度,通过比较各关联度的大小来判断待识别对象对研究对象的影响程度。

简言之,灰色关联度分析的意义是指在系统发展过程中,如果两个因素变化的态势是一致的,即同步变化程度较高,则可以认为两者关联较大;反之,则两者关联度较小。

因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态(Dynamic)的历程分析。

灰色关联度可分成“局部性灰色关联度”与“整体性灰色关联度”两类。

主要的差别在于局部性灰色关联度有一参考序列,而整体性灰色关联度是任一序列均可为参考序列。

关联度分析是基于灰色系统的灰色过程, 进行因素间时间序列的比较来确定哪些是影响大的主导因素, 是一种动态过程的研究。

关联度计算的预处理,一般初值化或者均值化,根据我的实际需要,本程序中使用的是比较序列与参考序列组成的矩阵除以参考序列的列均值等到的,当然也可以是其他方法。

%注意:由于需要,均值化方法采用各组值除以样本的各列平均值clear;clc;yangben=[47.924375 25.168125 827.4105438 330.08875 1045.164375 261.37437516.3372 6.62 940.2824 709.2752 962.1284 84.87455.69666667 30.80333333 885.21 275.8066667 1052.42 435.81]; %样本数据fangzhen=[36.27 14.59 836.15 420.41 1011.83 189.5464.73 35.63 755.45 331.32 978.5 257.8742.44 23.07 846 348.05 1025.4 296.6959.34 39.7 794.31 334.63 1016.4 317.2752.91 17.14 821.79 306.92 1141.94 122.044.21 4.86 1815.52 2584.68 963.61 0.006.01 2.43 1791.61 2338.17 1278.08 30.873.01 1.58 1220.54 956.14 1244.75 3.9125.65 7.42 790.17 328.88 1026.01 92.82115.80 27 926.5 350.93 1079.49 544.3812.63 8.75 1055.50 1379.00 875.10 1.65]; %待判数据[rows,cols]=size(fangzhen);p=0.5; %分辨系数[m,n]=size(yangben);R=[];for irow=1:rowsyy=fangzhen(irow,:);data=[yy;yangben];data_gyh1=mean(yangben)for i=1:m+1for j=1:ndata_gyh(i,j)=data(i,j)/data_gyh1(j);endendfor i=2:m+1for j=1:nDij(i-1,j)=abs(data_gyh(1,j)-data_gyh(i,j));endendDijmax=max(max(Dij));Dijmin=min(min(Dij));for i=1:mfor j=1:nLij(i,j)=(Dijmin+p*Dijmax)/(Dij(i,j)+p*Dijmax); endendLijRowSum=sum(Lij');for i=1:mRij(i)=LijRowSum(i)/n;endR=[R;Rij];endRmatlab求灰色关联度矩阵源代码2010-12-11 22:57 function greyrelationaldegree(X,c)%GRAYRELATIONALDEGREE this function is used for calculating the gery %relation between squence%rememeber that the first column of the input matrix is the desicion %attribution squences.what we want to calculate is the grey ralational degree between%it and other attributions%X is the squence matrix, c is the parameter used in the function%in most of the time, the value of c is 0.5firstrow = X(1,:);reci_firstrow = 1./firstrow;reci_convert = diag(reci_firstrow);initialMIRROR = X*reci_convert;% find the initial value mirror of the sequce matrixA = initialMIRROR'[nrow,ncolumn] = size(A);for (i=2:nrow)C = A(i,:)-A(1,:)D=abs(C);eval(['B' num2str(i) '=D']);amax = max(eval(['B' num2str(i)]))amin = min(eval(['B' num2str(i)]))maxarray(i-1)=amaxminarray(i-1)=aminend %find the difference squence and the max value and min value of each squencemaxmax = max(maxarray)minmin = min(minarray)for(i=2:nrow)for(j=1:ncolumn)eval(['greyrelationdegree' num2str(i)'(j)=(minmin+c*maxmax)/(B' num2str(i) '(j)+c*maxmax)'])endend % calculate the greyralational degree of each datafor(i=2:nrow)eval(['greyrelatioanaldegree_value' num2str(i) '= mean (greyrelationdegree' num2str(i) ')' ])end基于matlab灰色关联度计算的实现2006年07月28日星期五上午 11:06 function r=incident_degree(x0,x1)%compute the incident degree for grey model.%Designed by NIXIUHUI,DalianFisherUniversity.%17 August,2004,Last modified by NXH at 21 August,2004%数据初值化处理x0_initial=x0./x0(1);temp=size(x1);b=repmat(x1(:,1),[1 temp(2)]);x1_initial=x1./b;%分辨系数选择K=0.1;disp('The grey interconnect degree is: ');x0_ext=repmat(x0_initial,[temp(1) 1]);contrast_mat=abs(x0_ext-x1_initial);delta_min=min(min(contrast_mat));%delta_min在数据初值化后实际为零delta_max=max(max(contrast_mat));a=delta_min+K*delta_max;incidence_coefficient=a./(contrast_mat+K*delta_max);%得到关联系数r=(sum(incidence_coefficient'))'/temp(2); %得到邓氏面积关联度我们根据图1的步骤和图2的数据进行编程实现,程序如下:%清除存空间等clear;close all;clc;%载入源数据 %其实这里可以载入execl表格的n=15; %参与评价的人数m=4; %参与评价的指标个数X_0=zeros(n,m); % 数据矩阵X_2=zeros(n,m); %偏差结果的求取矩阵X_3=zeros(n,m); % 相关系数计算矩阵a1_0=[13 18 17 18 17 17 18 17 13 17 18 13 18 13 18];a2_0=[18 18 17 17 18 13 17 13 18 13 17 13 13 17 17];a3_0=[48.67 43.33 43.56 41.89 39.47 43.44 37.97 41.14 39.67 39.83 34.11 40.58 34.19 30.75 21.22];a4_0=[10 10.7 3 5.4 5.4 0.7 4.2 0.5 9.3 0.85 2.9 5.45 4.2 2.7 6]; %指标数X_1=[a1_0',a2_0',a3_0',a4_0']; %最后使用到的数据矩阵%1 寻找参考列x0=[max(a1_0),max(a2_0),max(a3_0),max(a4_0)]; %取每列的最大值(指标的最大值)%2 计算偏差结果i=1;while(i~=m+1) %为什么这个地方会出问题呢for j=1:1:nX_2(j,i)=abs(X_1(j,i)-x0(i));end;i=i+1;end%3 确定偏差的最值error_min=min(min(X_2));error_max=max(max(X_2));%4 计算相关系数i=1;p=0.5;while(i~=m+1)for j=1:1:nX_3(j,i)=(error_min+p*error_max)/(X_2(j,i)+p*error_max); end;i=i+1;end%X_3 %可以在此观察关联矩阵%5 计算各个学生的关连序a=zeros(1,n);for j=1:1:nfor i=1:1:ma(j)=a(j)+X_3(j,i); %%%%其实可以直接用sumend;a(j)=a(j)/m; %%%%%%%%%可以改进%%%%%%%%%%123下一页%end%a %在此可以观测各个学生的序%改进:如果各个指标的所占权重不一样的话,可以添加相应的权系数%6 排序b=a';[c,s]=sort(b);for i=1:1:nd(i)=i;endd=d';result=[d b c s]%7 将结果显示出来figure(1);plot(a);figure(2)bar(a); %柱状图最后所得到的结果如图3到图5所示。

Matlab学习系列28.-灰色关联分析

Matlab学习系列28.-灰色关联分析

Matlab学习系列28.-灰色关联分析28. 灰色关联分析一、灰色系统理论简介若系统的内部信息是完全已知的,称为白色系统;若系统的内部信息是一无所知(一团漆黑),只能从它同外部的联系来观测研究,这种系统便是黑色系统;灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。

灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统为研究对象,其特点是:(1)认为不确定量是灰数,用灰色数学来处理不确定量,使之量化,灰色系统理论只需要很少量的数据序列;(2)观测到的数据序列看作随时间变化的灰色量或灰色过程,通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析;(3)通过累加生成和累减生成逐步使灰色量白化,从而建立相应于微分方程解的模型,从而预测事物未来的发展趋势和未来状态。

二、灰色关联度分析1. 要定量地研究两个事物间的关联程度,可以用相关系数和相似系数等,但这需要足够多的样本数或者要求数据服从一定概率分布。

在客观世界中,有许多因素之间的关系是灰色的,分不清哪些因素之间关系密切,哪些不密切,这样就难以找到主要矛盾和主要特性。

灰因素关联分析,目的是定量地表征诸因素之间的关联程度,从而揭示灰色系统的主要特性。

关联分析是灰色系统分析和预测的基础。

关联分析源于几何直观,实质上是一种曲线间几何形状的分析比较,即几何形状越接近,则发展变化趋势越接近,关联程度越大。

如下图所示:xABCDt曲线A与B比较平行,则认为A与B的关联程度大;曲线C与A随时间变化的方向很不一致,则认为A 与C 的关联程度较小;曲线A 与D 相差最大,则认为两者的关联程度最小。

2. 关联度分析是分析系统中各因素关联程度的方法步骤:(1) 计算关联系数设参考序列为0000{(1),(2),...,()}X x x x n =比较序列为{(1),(2),...,()}, 1,,i i i i X x x x n i m ==比较序列X i 对参考序列X 0在k 时刻的关联系数定义为:0000min min ()() max max ()()()()() max max ()()s s s t s ti i s s t x t x t x t x t k x k x k x t x t ρηρ-+-=-+- 其中,0min min ()()s s t x t x t -和0max max ()()s s tx t x t -分别称为两级最小差、两级最大差,[0,1]ρ∈称为分辨系数,ρ越大分辨率越大,一般采用0.5ρ=对单位不一,初值不同的序列,在计算关联系数之前应首先进行初值化,即将该序列的所有数据分别除以第一数据,将变量化为无单位的相对数值。

灰色预测模型的学习笔记(MATLAB包含模型的建立求解及检验)

灰色预测模型的学习笔记(MATLAB包含模型的建立求解及检验)

灰⾊预测模型的学习笔记(MATLAB包含模型的建⽴求解及检验)本博⽂是本⼈在学习灰⾊预测模型时所做的笔记,原理及代码部分都是基于学习各位⼤佬的博⽂,详见后⾯的参考,⼀、 实操,利⽤灰⾊预测模型预测未来⼗年湖南的⼈⼝数量⼆、 具体实现,从国家统计局获取湖南省过去⼗年的⼈⼝数据,作为原始数据,见Excel⽂件,利⽤MATLAB对灰⾊预测模型进⾏求解,具体MATLAB实现见如下代码:%MATLAB 2016a版clear,clc;A=xlsread('分省年度数据.xls','$K$5:$B$5');A=sort(A);syms a b;c=[a b]';B=cumsum(A); % 原始数据累加n=length(A);for i=1:(n-1)C(i)=(B(i)+B(i+1))/2; % ⽣成累加矩阵end% 计算待定参数的值D=A;D(1)=[];D=D';E=[-C;ones(1,n-1)];c=inv(E*E')*E*D;c=c';a=c(1);b=c(2);% 预测后续数据F=[];F(1)=A(1);for i=2:(n+10)F(i)=(A(1)-b/a)/exp(a*(i-1))+b/a;endG=[];G(1)=A(1);for i=2:(n+10)G(i)=F(i)-F(i-1); %得到预测出来的数据endt1=2007:2016;t2=2017:2026;G;a;b;% 输出预测值,发展系数和灰⾊作⽤量scatter(t1,A,'b');hold onplot(2007:2026,G,'r');xlabel('年份');ylabel('⼈⼝数/万⼈');title('基于灰⾊预测模型的未来⼗年湖南省⼈⼝趋势图');text(2026,7444.6,'7444.6万');legend('实际⼈⼝数量','预测⼈⼝数量');grid on可以得到如下结果:灰⾊预测模型的检验:%灰⾊预测模型的检验H = G(1:10);%计算残差序列epsilon = A - H;%法⼀:相对残差Q检验%计算相对误差序列delta = abs(epsilon./A);%计算相对误差Qdisp('相对残差Q检验:')Q = mean(delta)%法⼆:⽅差⽐P检验disp('⽅差⽐P检验:')P= std(epsilon, 1)/std(A, 1)在对模型的检验过程中,我们得到了如下表的检验结果:相对残差Q⽅差⽐C-0.00350.1828。

灰色理论灰色预测模型和灰色关联度分析matlab通用代码(精)

灰色理论灰色预测模型和灰色关联度分析matlab通用代码(精)

%该程序用于灰色关联分析,其中原始数据的第一行为参考序列,1至15行为正相关序列,16至17为负相关序列clc,clearload x.txt %把原始数据存放在纯文本文件x.txt 中%如果全为正相关序列,则将两个循环替换为下列代码%for i=1:size(x,1%x(i,=x(i,/x(i,1;%endfor i=1:15x(i,=x(i,:/x(i,1; %标准化数据endfor i=16:17x(i,:=x(i,1./x(i,:; %标准化数据enddata=x;n=size(data,1;ck=data(1,:;%分离参考序列bj=data(2:n,:;m1=size(bj,1;for j=1:m1t(j,:=bj(j,:-ck;endjc1=min(min(abs(t';jc2=max(max(abs(t';rho=0.5;%灰色关联度为0.5ksi=(jc1+rho*jc2./(abs(t+rho*jc2;r=sum(ksi'/size(ksi,2;r %灰色关联度向量[rs,rind]=sort(r,'descend' %对关联度进行降序排序%该函数用于灰色预测模型,其中x0为列向量,alpha一般取0.5,将第一个数据视为序号为0,k从0开始的序号矩阵function y=huiseyuce(x0,alpha,kn=length(x0;x1=cumsum(x0;for i=2:nz1(i=alpha*x1(i+(1-alpha*x1(i-1;endz1=z1';B=[-z1(2:n,ones(n-1,1];Y=x0(2:n;ab=B\Y;y1=(x0(1-ab(2/ab(1*exp(-ab(1*k+ab(2/ab(1;%产生预测累加生成序列y=[x0(1 diff(y1]%产生灰色预测数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

%该程序用于灰色关联分析,其中原始数据的第一行为参考序列,1至15行为正相关序列,16至17为负相关序列
clc,clear
load x.txt %把原始数据存放在纯文本文件x.txt 中
%如果全为正相关序列,则将两个循环替换为下列代码
%for i=1:size(x,1)
%x(i,=x(i,/x(i,1);
%end
for i=1:15
x(i,=x(i,:)/x(i,1); %标准化数据
end
for i=16:17
x(i,:)=x(i,1)./x(i,:); %标准化数据
end
data=x;
n=size(data,1);
ck=data(1,:);%分离参考序列
bj=data(2:n,:);m1=size(bj,1);
for j=1:m1
t(j,:)=bj(j,:)-ck;
end
jc1=min(min(abs(t')));jc2=max(max(abs(t')));
rho=0.5;%灰色关联度为0.5
ksi=(jc1+rho*jc2)./(abs(t)+rho*jc2);
r=sum(ksi')/size(ksi,2);
r %灰色关联度向量
[rs,rind]=sort(r,'descend') %对关联度进行降序排序
%该函数用于灰色预测模型,其中x0为列向量,alpha一般取0.5,将第一个数据视为序号为0,k从0开始的序号矩阵
function y=huiseyuce(x0,alpha,k)
n=length(x0);
x1=cumsum(x0);
for i=2:n
z1(i)=alpha*x1(i)+(1-alpha)*x1(i-1);
end
z1=z1';
B=[-z1(2:n),ones(n-1,1)];
Y=x0(2:n);
ab=B\Y;
y1=(x0(1)-ab(2)/ab(1))*exp(-ab(1)*k)+ab(2)/ab(1);%产生预测累加生成序列
y=[x0(1) diff(y1)]%产生灰色预测数据
1 / 1。

相关文档
最新文档