万有引力练习题及答案详解
万有引力试题及答案
1.已知太阳到地球与地球到月球的距离的比值约为390,月球绕地球旋转的周期约为27天.利用上述数据以及日常的天文知识,可估算出太阳对月球与地球对月球的万有引力的比值约为A.0.2B.2C.20D.2002..1990年4月25日,科学家将哈勃天文望远镜送上距地球表面约600 km 的高空,使得 人类对宇宙中星体的观测与研究有了极大的进展。
假设哈勃望远镜沿圆轨道绕地球运行。
已知地球半径为6.4×106m ,利用地球同步卫星与地球表面的距离为3.6×107m 这一事实可得到哈勃望远镜绕地球运行的周期。
以下数据中最接近其运行周期的是A .0.6小时B .1.6小时C .4.0小时D .24小时答案:B3.火星的质量和半径分别约为地球的101和21,地球表面的重力加速度为g ,则火星表面的重力加速度约为A .0.2gB .0.4gC .2.5gD .5g答案:B解析:考查万有引力定律。
星球表面重力等于万有引力,G Mm R2 = mg ,故火星表面的重力加速度g 火g = M 火R 地2M 地R 火2= 0.4,故B 正确。
4.图是“嫦娥一导奔月”示意图,卫星发射后通过自带的小型火箭多次变轨,进入地月转移轨道,最终被月球引力捕获,成为绕月卫星,并开展对月球的探测,下列说法正确的是A .发射“嫦娥一号”的速度必须达到第三宇宙速度B .在绕月圆轨道上,卫星周期与卫星质量有关C .卫星受月球的引力与它到月球中心距离的平方成反比D .在绕月轨道上,卫星受地球的引力大于受月球的引力【】C 答案5.假定地球,月球都静止不动,用火箭从地球沿地月连线向月球发射一探测器。
假定探测器在地球表面附近脱离火箭。
用W 表示探测器从脱离火箭处飞到月球的过程中克服地球引力做的功,用E k 表示探测器脱离火箭时的动能,若不计空气阻力,则BDA .E k 必须大于或等于W ,探测器才能到达月球B .E k 小于W ,探测器也可能到达月球C .E k =12W ,探测器一定能到达月球 D .E k =12W ,探测器一定不能到达月球 6.我国探月的“嫦娥工程”已启动,在不久的将来,我国宇航员将登上月球。
万有引力定律的应用练习题含答案及解析
万有引力定律的应用练习题含答案及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m的物体P置于弹簧上端,用力压到弹簧形变量为3x0处后由静止释放,从释放点上升的最大高度为4.5x0,上升过程中物体P的加速度a与弹簧的压缩量x间的关系如图中实线所示。
若在另一星球N上把完全相同的弹簧竖直固定在水平桌面上,将物体Q在弹簧上端点由静止释放,物体Q的加速度a与弹簧的压缩量x间的关系如图中虚线所示。
两星球可视为质量分布均匀的球体,星球N半径为地球半径的3倍。
忽略两星球的自转,图中两条图线与横、纵坐标轴交点坐标为已知量。
求:(1)地球表面和星球N 表面重力加速度之比; (2)地球和星球N 的质量比;(3)在星球N 上,物体Q 向下运动过程中的最大速度。
【答案】(1)2:1(2)2:9(3)0032v a x = 【解析】 【详解】(1)由图象可知,地球表面处的重力加速度为 g 1=a 0 星球N 表面处的重力加速度为 g 2=00.5a 则地球表面和星球N 表面重力加速度之比为2∶1 (2)在星球表面,有2GMmmg R = 其中,M 表示星球的质量,g 表示星球表面的重力加速度,R 表示星球的半径。
则M =2gR G因此,地球和星球N 的质量比为2∶9(3)设物体Q 的质量为m 2,弹簧的劲度系数为k 物体的加速度为0时,对物体P :mg 1=k·x 0对物体Q :m 2g 2=k ·3x 0联立解得:m 2=6m在地球上,物体P 运动的初始位置处,弹簧的弹性势能设为E p ,整个上升过程中,弹簧和物体P 组成的系统机械能守恒。
万有引力及答案
1.苹果落向地球,而不是地球向上运动碰到苹果,产生这个现象的原因是( )A.由于地球对苹果有引力,而苹果对地球没有引力造成的B.由于苹果质量小,对地球的引力小,而地球质量大,对苹果的引力大造成的C.苹果与地球间的相互引力是相等的,由于地球质量极大,不可能产生明显加速度D.以上说法都不对2.两行星的质量分别为1m 和2m ,绕太阳运行的轨道半径分别是1r 和2r ,若它们只要万有引力作用,那么这两个行星的向心加速度之比 ( ) A.1 B.1221r m r m C.2122r r D.2112r m r m 3.地球绕地轴自转时,对静止在地面上的某一个物体,下列说法正确的是( )A.物体的重力并不等于它随地球自转所需要的向心力B.在地面上的任何位置,物体向心加速度的大小都相等,方向都指向地心C.在地面上的任何位置,物体向心加速度的方向都垂直指向地球的自转轴D.物体随地球自转的向心加速度随着地球纬度的减小而增大4.地球和月球中心距离是3.84×108m ,月球绕地球一周所用时间大约为27天,则地球的质量为。
5.地球半径为R ,地面附近的重力加速度为0g ,试求在地面高度为R 处的重力加速度。
6.一个人在某一星球上以速度v 竖直上抛一个物体,经时间t 落回抛出点。
已知该星球的半径为R ,若要在该星球上发射一颗靠近该星球运转的人造卫星,则该人造卫星的速度大小为多少?7.月球质量是地球质量的811,月球半径是地球半径的8.31,在距月球表面56m 高处,有一个质量为60千克的物体自由下落。
试求:(1)它落到月球表面需要多长时间?(2)它在月球上的“重力”跟在地球上是否相等?1. C2. C3. CD4. 6×1024kg5. 在地球表面附近,重力近似等于万有引力,即20R Mm G mg =,∴20R GM g = 当距地面R 处时,万有引力提供向心力,()g m R Mm G '=22,∴24R GM g ='∴041g g ='6.t VR gR V 2== 7.8s ,不等。
物理万有引力定律的应用题20套(带答案)
mg
对于嫦娥三号由万有引力等于向心力:
联立可得:
GMm r2
m4 T2
2r
g
4 2r3 T 2R2
(3)第一宇宙速度为沿月表运动的速度:
GMm mg mv2
R2
R
可得月球的第一宇宙速度:
v
gR
4 2r3 T 2R
9.2019 年 4 月 20 日 22 时 41 分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成 功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为 r 的匀速圆周运动。卫星的 质量为 m,地球的半径为 R,地球表面的重力加速度大小为 g,不计地球自转的影响。 求:
4 (4000 103 )2 6.67 1011
kg
11024 kg
6.2018 年 11 月,我国成功发射第 41 颗北斗导航卫星,被称为“最强北斗”。这颗卫星是 地球同步卫星,其运行周期与地球的自转周期 T 相同。已知地球的 半径为 R,地球表面的 重力加速度为 g,求该卫星的轨道半径 r。
(1)A 星体所受合力的大小 FA; (2)B 星体所受合力的大小 FB; (3)C 星体的轨道半径 RC; (4)三星体做圆周运动的周期 T.
【答案】(1) 2
Gm2 3
a2
(2)
7Gm2 a2
(3) 7 a (4)T π 4
a3 Gm
【解析】
【分析】
【详解】
(1)由万有引力定律,A 星体所受 B、C 星体引力大小为
则合力大小为
FR 4
G
mAmB r2
G
2m2 a2
FCA ,
FA 2
3G
m2 a2
(2)同上,B 星体所受 A、C 星体引力大小分别为
万有引力习题及答案
【典型例题】例1、海王星的公转周期约为5.19×109s,地球的公转周期为3.16×107s,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍?例2、有一颗太阳的小行星,质量是1.0×1021kg,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。
例3、16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个观点,这四个论点目前看存在缺陷的是()A、宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动。
B、地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动。
C、天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象。
D、与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多。
例4.假设已知月球绕地球做匀速圆周运动,万有引力提供向心力,假如地球对月球的万有引力突然消失,则月球的运动情况如何?若地球对月球的万有引力突然增加或减少,月球又如何运动呢?【针对训练】1、某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3则此卫星运行的周期大约是:()A.1-4天之间 B.4-8天之间 C.8-16天之间 D.16-20天之间2、两行星运行周期之比为1:2,其运行轨道的半长轴之比为:()A.1/2B.C.D.3、地球到太阳的距离是水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(设地球和水星绕太阳运转的轨道是圆轨道)4.关于日心说被人们所接受的原因是()A.以地球为中心来研究天体的运动有很多无法解决的问题B.以太阳为中心,许多问题都可以解决,行星的运动的描述也变得简单了C.地球是围绕太阳转的 D.太阳总是从东面升起从西面落下5、考察太阳M的卫星甲和地球m(m<M)的卫星乙,甲到太阳中心的距离为r1,乙到地球中心的距离为r2,若甲和乙的周期相同,则:()A、r1>r2B、r1<r2C、r1=r2D、无法比较6、设月球绕地球运动的周期为27天,则地球的同步卫星到地球中心的距离r与月球中心到地球中心的距离R之比r/R为()A. 1/3B. 1/9C. 1/27D. 1/18【能力训练】1、关于公式R3 / T2=k,下列说法中正确的是()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k 值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错2、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A. 1:27B. 1:9C. 1:3D. 9:13、两颗小行星都绕太阳做圆周运动,它们的周期分别是T和3T,则()A、它们绕太阳运转的轨道半径之比是1:3B、它们绕太阳运转的轨道半径之比是1:C、它们绕太阳运转的速度之比是:1:4D、它们受太阳的引力之比是9:74、开普勒关于行星运动规律的表达式为,以下理解正确的是()A.k是一个与行星无关的常量B.R代表行星运动的轨道半径C.T代表行星运动的自传周期D.T代表行星绕太阳运动的公转周期5、关于天体的运动,以下说法正确的是()A.天体的运动与地面上物体的运动遵循不同的规律B.天体的运动是最完美、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都绕太阳运动6、关于太阳系中各行星的轨道,以下说法正确的是:()A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同7、如果某恒星有一颗卫星,此卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度ρ=_________(万有引力常量为G)8、两颗行星的质量分别是m1,m2,它们绕太阳运转轨道的半长轴分别为R1、R2,如果m1=2m2,R1=4R2,那么,它们的运行周期之比T1:T2= 9、已知两行星绕太阳运动的半长轴之比为b,则它们的公转周期之比为多少?10、有一行星,距离太阳的平均距离是地球到太阳平均距离的8倍,则该行星绕太阳公转周期是多少年?11、地球公转运行的轨道半径R=1.49×1011m,若把地球的公转周期称为1年,土星运行的轨道半径是r=1.43×1012m,那么土星的公转周期多长?参考答案:例1. 646倍例2. 4.61年例3. ABC 例4. 略。
万有引力练习题(含答案)精编版
万有引力练习题一.选择题(本题共8小题,每小题6分,共48分,在每小题给出的四个选项中,有的小题只有一个选项正确;有的小题有多个选项正确。
全部选对的得4分,选对但不全的得2分,有选错或不答的得0分。
把正确答案填到答案纸上) 1.关于万有引力的说法,正确的是( )。
A.万有引力只是宇宙中各天体之间的作用力B.万有引力是宇宙中具有质量的物体间普遍存在的相互作用力C.地球上的物体以及地球附近的物体除受到地球对它们的万有引力外还受到重力作用D.太阳对地球的万有引力大于地球对太阳的万有引力 2. 关于万有引力定律,下列说法中正确的是( )A.万有引力定律是牛顿在总结前人研究成果的基础上发现的B.万有引力定律适宜于质点间的相互作用C.公式中的G 是一个比例常数,是有单位的,单位是N·m 2/kg 2D.任何两个质量分布均匀的球体之间的相互作用可以用该公式来计算,r 是两球球心之间的距离3.假设行星绕恒星的运动轨道是圆,则其运行周期T 的平方与其运行轨道半径R 的三次方之比为常数,那么该常数的大小( )A.只与行星的质量有关B.只与恒星的质量有关C.与行星及恒星的质量都有关D.与恒星的质量及行星的速率有关4.设地球是半径为R 的均匀球体,质量为M ,若把质量为m 的物体放在地球的中心,则物体受到的地球的万有引力大小为( )。
A.零B.无穷大C.G 2Mm RD.无法确定5.对于万有引力定律的表达式221r m Gm F,下列说法中正确的是( ). (A )公式中G 为引力常量,它是由实验测得的,而不是人为规定的 (B )当r 趋于零时,万有引力趋于无限大(C )两物体受到的引力总是大小相等的,而与m 1、m 2是否相等无关 (D )两物体受到的引力总是大小相等、方向相反,是一对平衡力6.地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为( )A. 1︰27B. 1︰9C. 1︰3D. 9︰17.火星的质量和半径分别约为地球的 110和 12,地球表面的重力加速度为g ,则火星表面的重力加速度约为( )A .0.2 gB .0.4 gC .2.5 gD .5 g8.一名宇航员来到一个星球上,如果星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受到的万有引力大小是他在地球上所受万有引力的( )。
高中物理(新人教版)必修第二册课后习题:万有引力定律(课后习题)【含答案及解析】
第七章万有引力与宇宙航行万有引力定律课后篇巩固提升合格考达标练1.月球在如图所示的轨道上绕地球运行,近地点、远地点受地球的万有引力分别为F1、F2,则F1、F2的大小关系是()A.F1<F2B.F1>F2C.F1=F2D.无法确定,当两物体的质量确定时,引力与物体之间的距离的二次方成反比,有F1>F2,选项B正确。
2.关于万有引力定律,下列说法正确的是()A.牛顿是在开普勒揭示的行星运动规律的基础上,发现了万有引力定律,因此万有引力定律仅适用于天体之间B.卡文迪什首先用实验比较准确地测定了引力常量G的数值C.两物体各自受到对方引力的大小不一定相等,质量大的物体受到的引力也大D.万有引力定律对质量大的物体适用,对质量小的物体不适用,A、D错误;根据物理学史可知卡文迪什首先用实验比较准确地测定了引力常量G的数值,B正确;两物体各自受到对方的引力遵循牛顿第三定律,大小相等,C错误。
3.根据万有引力定律,两个质量分别是m1和m2的物体,它们之间的距离为r时,它们之间的吸引力大,式中G是引力常量,若用国际单位制的基本单位表示G的单位应为()小为F=Gm1m2r2A.kg·m/s2B.N·kg2/m2C.m3/(s2·kg)D.m2/(s2·kg2)m、距离r、力F的基本单位分别是kg、m、kg·m/s2,根据万有引力定律,得到用国际单位制的基本单位表示G的单位为m3/(s2·kg),选项C正确。
F=Gm1m2r24.图甲是用来“显示桌(或支持)面的微小形变”的演示实验;图乙是用来“测量万有引力常量”的实验。
由图可知,两个实验共同的物理思想方法是( )A.极限的思想方法B.放大的思想方法C.控制变量的思想方法D.猜想的思想方法5.地球对月球具有相当大的引力,可它们没有靠在一起,这是因为( )A.不仅地球对月球有引力,月球对地球也有引力,这两个力大小相等,方向相反,互相抵消了B.不仅地球对月球有引力,太阳系中的其他星球对月球也有引力,这些力的合力为零C.地球对月球的引力还不算大D.地球对月球的引力不断改变月球的运动方向,使得月球围绕地球做圆周运动,作用在两个物体上,不能互相抵消,选项A 错误;地球对月球的引力提供了月球绕地球做圆周运动的向心力,从而不断改变月球的运动方向,选项B 、C 错误,D 正确。
万有引力练习题及答案详解
万有引力练习题及答案详解单 元 自 评1.人造地球卫星环绕地球做匀速圆周运动时,以下叙述正确的是( bc ) A. 卫星的速度一定大于或等于第一宇宙速度 B.在卫星中用弹簧秤称一个物体,读数为零C.在卫星中,一个天平的两个盘上,分别放上质量不等的两个物体,天平不偏转D.在卫星中一切物体的质量都为零2.两颗靠得较近的天体组成双星,它们以两者连线上某点为圆心,做匀速圆周运动,因而不会由于相互的引力作用而被吸到一起,下面说法正确的是( )A.它们做圆周运动的角速度之比,与它们的质量之比成反比B.它们做圆周运动的线速度之比,与它们的质量之比成反比C.它们做圆周运动的向心力之比,与它们的质量之比成正比D.它们做圆周运动的半径之比,与它们的质量之比成反比3.苹果落向地球,而不是地球向上运动碰到苹果,发生这个现象的原因是( ) A.由于苹果质量小,对地球的引力小,而地球质量大,对苹果引力大造成的 B.由于地球对苹果有引力,而苹果对地球无引力造成的C.苹果与地球间的引力是大小相等的,由于地球质量极大,不可能产生明显的加速度D.以上说法都不对4.两颗人造地球卫星,质量之比m 1:m 2=1:2,轨道半径之比R 1:R 2=3:1,下面有关数据之比正确的是( )A.周期之比T 1:T 2=3:1B.线速度之比v 1:v 2=3:1C.向心力之比为F 1:F 2=1:9D.向心加速度之比a 1:a 2=1:95.已知甲、乙两行星的半径之比为a ,它们各自的第一宇宙速度之比为b ,则下列结论不正确的是( )A.甲、乙两行星的质量之比为b 2a:1B.甲、乙两行星表面的重力加速度之比为b 2:a C.甲、乙两行星各自的卫星的最小周期之比为a:b D.甲、乙两行星各自的卫星的最大角速度之比为b:a6.地球同步卫星距地面高度为h ,地球表面的重力加速度为g ,地球半径为R,地球自转的角速度为ω,那么下列表达式表示同步卫星绕地球转动的线速度的是( )A.ω)(h R v +=B.)/(h R Rg v +=C.)/(h R g R v +=D.32ωg R v =7.某一行星有一质量为m 的卫星,以半径r ,周期T 做匀速圆周运动,求: (1)行星的质量; (2)卫星的加速度;(3)若测得行星的半径恰好是卫星运行半径的1/10,则行星表面的重力加速度是多少?8.两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。
高考物理万有引力定律的应用题20套(带答案)含解析
高考物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π= 解得2a RT gπ= b 卫星2224·4(4)bGMm m R R T π= 解得16b RT gπ= (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a GMv R=b 卫星b 卫星22(4)4Mm v G m R R= 解得v 4b GM R=所以 2abV V = (3)最远的条件22a bT T πππ-= 解得87R t gπ=3.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4.双星系统由两颗彼此相距很近的两个恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的共同质量中心做周期相同的匀速圆周运动。
高中物理万有引力定律的应用题20套(带答案)及解析
高中物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.土星是太阳系最大的行星,也是一个气态巨行星。
图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h。
土星视为球体,已知土星质量为M,半径为R,万有引力常量为.G求:()1土星表面的重力加速度g;()2朱诺号的运行速度v;()3朱诺号的运行周期T 。
【答案】()()()()21?2?3?2GM GM R h R h R R h GM π+++ 【解析】【分析】土星表面的重力等于万有引力可求得重力加速度;由万有引力提供向心力并分别用速度与周期表示向心力可求得速度与周期。
【详解】(1)土星表面的重力等于万有引力:2Mm Gmg R = 可得2GM g R = (2)由万有引力提供向心力:22()Mm mv G R h R h=++ 可得:GM v R h=+ (3)由万有引力提供向心力:()222()()GMm m R h R h Tπ=++ 可得:()2R h T R h GMπ+=+3.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有w 1=w 2 ① (1分)r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分) G ④ (3分) 联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解4.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间. 【答案】203t gR r ω=-或者202t gR r ω=- 【解析】【分析】【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有 22Mm G mr rω= 航天飞机在地面上,有2mM GR mg = 联立解得22gR rω= 若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π 所以202t gR r ω=- 若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π 所以202t gR r ω=-. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.5.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g s v H L=-201[1]42()s T mg H L L =+- 【解析】【分析】【详解】 (1)由万有引力等于向心力可知22Mm v G m R R= 2Mm G mg R= 可得2v g R= 则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t = 解得0024g sv H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.6.为了探测月球的详细情况,我国发射了一颗绕月球表面飞行的科学实验卫星.假设卫星绕月球做圆 周运动,月球绕地球也做圆周运动.已知卫星绕月球运行的周期为 T0,地球表面重力加速度为 g ,地球半径为 R0,月心到地心间的距离为 r0,引力常量为 G ,求: (1)月球的平均密度;(2)月球绕地球运行的周期.【答案】(1)203GT π(2) T = 【解析】【详解】(1)月球的半径为R ,月球质量为M ,卫星质量为m 由于在月球表面飞行,万有引力提供向心力:22204mM G m R R T π= 得23204R M GT π= 且月球的体积V =43πR 3 根据密度的定义式 M V ρ=得232023043 43R GT GT R ππρπ== (2)地球质量为M 0,月球质量为M ,月球绕地球运转周期为T 由万有引力提供向心力2202004 r GM M M r Tπ= 根据黄金代换GM 0=gR 02得T =7.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
万有引力练习题与答案
万有引力 - 练习1答案一、不定项选择题1.(2016,全国I 卷)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯。
目前,地球同步卫星的轨道半径约为地球半径的6.6倍。
假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( ) A. 1hB. 4hC.8h D. 16h【答案】B【解析】地球自转周期变小,卫星要与地球保持同步,则卫星的公转周期也应随之变小,由2224πMm G mr r T =可得T =高度应变小,要实现三颗卫星覆盖全球的目的,则卫星周期最小时,由数学几何关系可作出右图。
由几何关系得,卫星的轨道半径为2sin30Rr R ==︒○1由开普勒第三定律33122212r r T T = ,代入题中数据,得33222(6.6)24R r T = ②由①②解得24T h ≈2.(2016,江苏卷)如图所示,两质量相等的卫星A 、B 绕地球做匀速圆周运动,用R 、T 、E k 、S 分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积.下列关系式正确的有A.T A >T BB.E k A >E K bC.S A =S BD.3322A BA BR R T T =【答案】AD【解析】根据2224πMm G m r r T=知,轨道半径越大,周期越大,所以T A >T B ,故A正确;由G Mm r 2=m v 2r知,r GM v =,所以v B >v A ,又因为质量相等,所以E k B >E k A ,故B 错误;根据开普勒第二定律可知,同一行星与地心连线在单位时间内扫过的面积相等,所以C 错误;由开普勒第三定律知,D 正确.卫星卫星(2015,全国I卷子). 我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落,已知探测器的质量约为1.3×103kg,地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,地球表面的重力加速度约为9.8m/s2,则此探测器A. 着落前的瞬间,速度大小约为8.9m/sB. 悬停时受到的反冲作用力约为2×103NC. 从离开近月圆轨道这段时间内,机械能守恒D. 在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度【答案】BD【考点】万有引力定律及共应用;环绕速度【解析】在中心天体表面上万有引力提供重力:G Mmr2=mg, 则可得月球表面的重力加速度g月=GM81R3.7æèçöø÷2≈ 0.17g地= 1.66m/s2 .根据平衡条件,探测器悬停时受到的反作用力F = G探= m探g月≈ 2×103N,选项B正确;探测器自由下落,由V2=2g月h ,得出着落前瞬间的速度v ≈3.6m/s ,选项A错误;从离开近月圆轨道,关闭发动机后,仅在月球引力作用下机械能守恒,而离开近月轨道后还有制动悬停,发动机做了功,机械能不守恒,故选项C错误;在近月圆轨道万有引力提供向心力:G Mmr2=mv2r,解得运行的线速度V月=GMmRm=3.7GMe81Re<GMeRe,小于近地卫星线速度,选项D正确。
(word完整版)高中物理万有引力经典习题30道带答案
一.选择题(共30小题)1.(2014•浙江)长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r1=19600km,公转周期T1=6.39天.2006年3月,天文学家发现两颗冥王星的小卫星,其中一颗的公转半径r2=48000km,则它的公转周期T2,最接近于()A.15天B.25天C.35天D.45天2.(2014•海南)设地球自转周期为T,质量为M,引力常量为G,假设地球可视为质量均匀分布的球体,半径为R.同一物体在南极和赤道水平面上静止时所受到的支持力之比为()A.B.C.D.3.(2014•广东)如图所示,飞行器P绕某星球做匀速圆周运动,星球相对飞行器的张角为θ,下列说法正确的是()A.轨道半径越大,周期越长B.轨道半径越大,速度越大C.若测得周期和张角,可得到星球的平均密度D.若测得周期和轨道半径,可得到星球的平均密度4.(2014•江苏)已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为()A.3.5km/s B.5.0km/s C.17.7km/s D.35.2km/s 5.(2014•福建)若有一颗“宜居”行星,其质量为地球的p倍,半径为地球的q倍,则该行星卫星的环绕速度是地球卫星环绕速度的()A.倍B.倍C.倍D.倍6.(2014•天津)研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时,假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比()A.距地面的高度变大B.向心加速度变大C.线速度变大D.角速度变大7.(2013•安徽)质量为m的人造地球卫星与地心的距离为r时,引力势能可表示为E p=﹣,其中G为引力常量,M为地球质量.该卫星原来在半径为R1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R2,此过程中因摩擦而产生的热量为()A.GMm(﹣)B.GMm(﹣)C.(﹣)D.(﹣)8.(2013•江苏)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积9.(2013•山东)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,DC运动的周期为()A.B.C.D.10.(2013•四川)迄今发现的二百余颗太阳系外行星大多不适宜人类居住,绕恒星“Gliese581”运行的行星“G1﹣58lc”却很值得我们期待.该行星的温度在O℃到40℃之间、质量是地球的6倍、直径是地球的1.5倍、公转周期为13个地球日.“Gliese581”的质量是太阳质量的0.31倍.设该行星与地球均视为质量分布均匀的球体,绕其中心天体做匀速圆周运动,则()A.在该行星和地球上发射卫星的第一宇宙速度相同B.如果人到了该行星,其体重是地球上的倍C.该行星与“Gliese581”的距离是日地距离的倍D.由于该行星公转速率比地球大,地球上的米尺如果被带上该行星,其长度一定会变短11.(2013•上海)小行星绕恒星运动,恒星均匀地向四周辐射能量,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动.则经过足够长的时间后,小行星运动的()A.半径变大B.速率变大C.角速度变大D.加速度变大12.(2013•浙江)如图所示,三颗质量均为m的地球同步卫星等间隔分布在半径为r的圆轨道上,设地球质量为M,半径为R.下列说法正确的是()A.地球对一颗卫星的引力大小为B.一颗卫星对地球的引力大小为C.两颗卫星之间的引力大小为D.三颗卫星对地球引力的合力大小为13.(2013•海南)“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.地球静止轨道卫星和中轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和3.4倍,下列说法中正确的是()A.静止轨道卫星的周期约为中轨道卫星的2倍B.静止轨道卫星的线速度大小约为中轨道卫星的2倍C.静止轨道卫星的角速度大小约为中轨道卫星的D.静止轨道卫星的向心加速度大小约为中轨道卫星的14.(2012•浙江)如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是()A.太阳对各小行星的引力相同B.各小行星绕太阳运动的周期均小于一年C.小行星带内侧小行星的向心加速度大于外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值15.(2012•重庆)冥王星与其附近的另一星体卡戎可视为双星系统.质量比约为7:1,同时绕它们连线上某点O做匀速圆周运动.由此可知,冥王星绕O点运动的()A.轨道半径约为卡戎的B.角速度大小约为卡戎的C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍16.(2012•山东)2011年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R1、R2,线速度大小分别为v1、v2.则等于()A.B.C.D.17.(2012•福建)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v.假设宇航员在该行星表面上用弹簧测力计测量一质量为m的物体重力,物体静止时,弹簧测力计的示数为N.已知引力常量为G,则这颗行星的质量为()A.B.C.D.18.(2012•江苏)2011年8月,“嫦娥二号”成功进入了环绕“日地拉格朗日点”的轨道,我国成为世界上第三个造访该点的国家.如图所示,该拉格朗日点位于太阳和地球连线的延长线上,一飞行器处于该点,在几乎不消耗燃料的情况下与地球同步绕太阳做圆周运动.则此飞行器的()A.线速度大于地球的线速度B.向心加速度大于地球的向心加速度C.向心力仅有太阳的引力提供D.向心力仅由地球的引力提供19.(2012•天津)一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小为原来的,不考虑卫星质量的变化,则变轨前后卫星的()A.向心加速度大小之比为4:1 B.角速度大小之比为2:1C.周期之比为1:8 D.轨道半径之比为1:220.(2012•北京)关于环绕地球运动的卫星,下列说法中正确的是()A.分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期B.沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C.在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合21.(2012•广东)如图所示,飞船从轨道1变轨至轨道2.若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的()A.动能大B.向心加速度大C.运行周期长D.角速度小22.(2012•四川)今年4月30日,西昌卫星发射中心发射的中圆轨道卫星,其轨道半径为2.8×l07m.它与另一颗同质量的同步轨道卫星(轨道半径为4.2×l07m)相比()A.向心力较小B.动能较大C.发射速度都是第一宇宙速度D.角速度较小23.(2011•重庆)某行星和地球绕太阳公转的轨道均可视为圆.每过N年,该行星会运行到日地连线的延长线上,如图所示.该行星与地球的公转半径比为()A.()B.()C.()D.()24.(2011•广东)已知地球质量为M,半径为R,自转周期为T,地球同步卫星质量为m,引力常量为G,有关同步卫星,下列表述正确的是()A.卫星距地面的高度为B.卫星的运行速度小于第一宇宙速度C.卫星运行时受到的向心力大小为D.卫星运行的向心加速度小于地球表面的重力加速度25.(2011•天津)质量为m的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M,月球半径为R,月球表面重力加速度为g,引力常量为G,不考虑月球自转的影响,则航天器的()A.线速度v=B.角速度ω=C.运行周期T=2πD.向心加速度a=26.(2011•浙江)为了探测X星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1.总质量为m1.随后登陆舱脱离飞船,变轨到离星球更近的半径为r2的圆轨道上运动,此时登陆舱的质量为m2则()A.X星球的质量为M=B.X星球表面的重力加速度为g X=C.登陆舱在r1与r2轨道上运动时的速度大小之比为=D.登陆舱在半径为r2轨道上做圆周运动的周期为T2=T127.(2011•江苏)一行星绕恒星作圆周运动.由天文观测可得,其运动周期为T,速度为v,引力常量为G,则()A.恒星的质量为B.行星的质量为C.行星运动的轨道半径为D.行星运动的加速度为28.(2011•山东)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是()A.甲的周期大于乙的周期B.乙的速度大于第一宇宙速度C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方29.(2011•北京)由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的()A.质量可以不同B.轨道半径可以不同C.轨道平面可以不同D.速率可以不同30.(2010•福建)火星探测项目是我国继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目.假设火星探测器在火星表面附近圆形轨道运行的周期T1,神舟飞船在地球表面附近的圆形轨道运行周期为T2,火星质量与地球质量之比为p,火星半径与地球半径之比为q,则T1与T2之比为()A.B.C.D.一.选择题(共30小题)1.B 2.A 3.AC 4.A 5.C 6.A 7.C 8.C 9.B 10.B 11.A 12.BC 13.A 14.C 15.A 16.B 17.B 18.AB 19.C 20.B 21.CD 22.B 23.B 24.BD 25.AC 26.AD 27.ACD 28.AC 29.A 30.D。
(完整版)万有引力习题与答案
1万有引力定律注意事项:1、 第I 卷选择题部分必须使用2B 铅笔填涂在答题卡上;第II 卷非选择题部分必须使用黑色签字笔书写在答题纸上,字题工整、笔迹清晰。
2、 本试卷共150分,考试时间100分钟。
第I 卷(选择题 共40分)一、共10小题;每小题4分,共40分。
在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
全部选对的得4分,选不全的得2分,选错或不选的得0分。
1.若人造卫星绕地球做匀速圆周运动,则下列说法中正确的是 ( ) (A )卫星的轨道半径越大,它的运行速度越大 (B )卫星的轨道半径越大,它的运行速度越小(C )卫星的质量一定时,轨道半径越大,它需要的向心力越大 (D )卫星的质量一定时,轨道半径越大,它需要的向心力越小 2.可以发射这样一颗人造地球卫星,使其圆轨道 ( ) (A )与地球表面上某一纬度线(非赤道)是共面同心圆 (B )与地球表面上某一经度线所决定的圆是共面同心圆(C )与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的 (D )与地球表面上的赤道线是共面同心圆,但卫星相对地球表面是运动的 3. 对于人造地球卫星,可以判断 ( ) (A )根据gR v =,环绕速度随R 的增大而增大 (B )根据rv=ω,当R 增大到原来的两倍时,卫星的角速度减小为原来的一半 (C )根据2R GMm F =,当R 增大到原来的两倍时,卫星需要的向心力减小为原来的41(D )根据Rmv F 2=,当R 增大到原来的两倍时,卫星需要的向心力减小为原来的214. 甲、乙两个做匀速圆周运动的卫星,角速度和线速度分别为ω1、ω2和v 1、v 2,如果它们的轨道半径之比R 1:R 2=1:2,则下列说法中正确的是 ( )(A )1:22:21=ωω (B )ω1:ω2=2:1 (C )1:2:21=v v(D )2:1:21=v v5. 火星有两颗卫星,分别是火卫一和火卫二,他们的轨道近似为圆。
(完整版)万有引力练习题及答案
万有引力练习题及答案一.选择题 1.关于万有引力的说法,正确的是。
A.万有引力只是宇宙中各天体之间的作用力 B.万有引力是宇宙中具有质量的物体间普遍存在的相互作用力 C.地球上的物体以及地球附近的物体除受到地球对它们的万有引力外还受到重力作用 D.太阳对地球的万有引力大于地球对太阳的万有引力. 关于万有引力定律,下列说法中正确的是 A.万有引力定律是牛顿在总结前人研究成果的基础上发现的 B.万有引力定律适宜于质点间的相互作用 C.公式中的G是一个比例常数,是有单位的,单位是N·m2/kg2 D.任何两个质量分布均匀的球体之间的相互作用可以用该公式来计算,r是两球球心之间的距离 3.假设行星绕恒星的运动轨道是圆,则其运行周期T的平方与其运行轨道半径R的三次方之比为常数,那么该常数的大小 A.只与行星的质量有关B.只与恒星的质量有关 C.与行星及恒星的质量都有关D.与恒星的质量及行星的速率有关 4.设地球是半径为R的均匀球体,质量为M,若把质量为m的物体放在地球的中心,则物体受到的地球的万有引力大小为。
A.零 B.无穷大 C.GMm R D.无法确定 Gm1m2 ,下列说法中正确的是. r2 公式中G为引力常量,它是由实验测得的,而不是人为规定的当r趋于零时,万有引力趋于无限大 两物体受到的引力总是大小相等的,而与m1、m2是否相等无关两物体受到的引力总是大小相等、方向相反,是一对平衡力 6.地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为 A. 1︰B.1︰C.1︰3D.︰1 11 7.火星的质量和半径分别约为地球的10和,地球表面的重力加速度为g,则火星表面的重力 5.对于万有引力定律的表达式F? 加速度约为 A.0.gC.2.g B.0.g D.g 8.一名宇航员来到一个星球上,如果星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受到的万有引力大小是他在地球上所受万有引力的。
万有引力习题及答案
【典型例题】例1、海王星的公转周期约为5.19×109s ,地球的公转周期为3.16×107s ,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍?例2、有一颗太阳的小行星,质量是1.0×1021kg ,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。
例3、16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个观点,这四个论点目前看存在缺陷的是( )A 、宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动。
B 、地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动。
C 、天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象。
D 、与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多。
例4.假设已知月球绕地球做匀速圆周运动,万有引力提供向心力,假如地球对月球的万有引力突然消失,则月球的运动情况如何?若地球对月球的万有引力突然增加或减少,月球又如何运动呢?【针对训练】1、某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3则此卫星运行的周期大约是:( )A .1-4天之间B .4-8天之间C .8-16天之间D .16-20天之间2、两行星运行周期之比为1:2,其运行轨道的半长轴之比为:( )A.1/2B. 22C. 3221D.23213、地球到太阳的距离是水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(设地球和水星绕太阳运转的轨道是圆轨道)4.关于日心说被人们所接受的原因是( )A .以地球为中心来研究天体的运动有很多无法解决的问题B .以太阳为中心,许多问题都可以解决,行星的运动的描述也变得简单了C .地球是围绕太阳转的D .太阳总是从东面升起从西面落下5、考察太阳M 的卫星甲和地球m(m<M)的卫星乙,甲到太阳中心的距离为r1,乙到地球中心的距离为r2,若甲和乙的周期相同,则:( )A 、r1>r2B 、r1<r2C 、r1=r2D 、无法比较6、设月球绕地球运动的周期为27天,则地球的同步卫星到地球中心的距离r与月球中心到地球中心的距离R 之比r/R为()A. 1/3B. 1/9C. 1/27D. 1/18【能力训练】1、关于公式R3 /T2=k,下列说法中正确的是()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错2、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A. 1:27B. 1:9C. 1:3D. 9:13、两颗小行星都绕太阳做圆周运动,它们的周期分别是T和3T,则()A、它们绕太阳运转的轨道半径之比是1:3B、它们绕太阳运转的轨道半径之比是1:39C、它们绕太阳运转的速度之比是:1:4D、它们受太阳的引力之比是9:74、开普勒关于行星运动规律的表达式为kTR23,以下理解正确的是()A.k是一个与行星无关的常量B.R代表行星运动的轨道半径C.T代表行星运动的自传周期D.T代表行星绕太阳运动的公转周期5、关于天体的运动,以下说法正确的是()A.天体的运动与地面上物体的运动遵循不同的规律B.天体的运动是最完美、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都绕太阳运动6、关于太阳系中各行星的轨道,以下说法正确的是:()A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同7、如果某恒星有一颗卫星,此卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度ρ=_________(万有引力常量为G)8、两颗行星的质量分别是m1,m2,它们绕太阳运转轨道的半长轴分别为R1、R2,如果m1=2m2,R1=4R2,那么,它们的运行周期之比T1:T2=9、已知两行星绕太阳运动的半长轴之比为b,则它们的公转周期之比为多少?10、有一行星,距离太阳的平均距离是地球到太阳平均距离的8倍,则该行星绕太阳公转周期是多少年?11、地球公转运行的轨道半径R=1.49×1011m,若把地球的公转周期称为1年,土星运行的轨道半径是r=1.43×1012m,那么土星的公转周期多长?参考答案:例1. 646倍 例2. 4.61年 例3. ABC 例4. 略。
万有引力定律练习题(含答案)
万有引力定律练习题(含答案) 第七章万有引力与宇宙航行第2节万有引力定律1.下列现象中,不属于由万有引力引起的是……答案:C解析:A选项是由星球之间的万有引力作用而聚集不散,B选项是由地球的引力提供向心力,使月球绕地球做圆周运动,D选项是由地球的引力作用,使树上的果子最终落向地面。
只有C选项是电子受到原子核的吸引力而绕核旋转不离去,不是万有引力。
2.均匀小球A、B的质量分别为m、5m,球心相距为R,引力常量为G,则A球受到B球的万有引力大小是……答案:A解析:根据万有引力定律可得:F=G×m×5m/(2R)²,化简得F=G×m²/(2R²),即A球受到B球的万有引力大小为G×m²/(2R²)。
3.两个质点的距离为r时,它们间的万有引力为2F,现要使它们间的万有引力变为F,将距离变为……答案:B解析:根据万有引力定律,距离为r时,它们间的万有引力为2F,则2F=G×m×m/r²,将万有引力变为F,则F=G×m×m/r'²,联立可得:r' = 2r,即将距离变为原来的二分之一。
4.假设地球是一半径为R,质量分布均匀的球体。
已知质量分布均匀的球壳对壳内物体引力为零,地球表面处引力加速度为g。
则关于地球引力加速度a随地球球心到某点距离r的变化图像正确的是……答案:B解析:当距离大于地球半径时,根据万有引力提供重力可得加速度g'=GM/r²,范围内的球壳随距离增大,加速度变小。
当距离小于地球半径时,此时距离地心对物体没有引力,那么对其产生引力的就是半径为R的中心球体的引力,因此加速度与距离成正比,选项B正确。
之间的引力与它们的距离成反比,与它们的质量成正比D.万有引力只存在于地球和其他星球之间,不存在于地球和其他物体之间答案】A、C解析】A。
物理万有引力定律的应用题20套(带答案)及解析
(3)根据万有引力公式 ;可得 ,
而星球密度 ,
联立可得
8.在月球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t落回抛出点,已知该月球半径为R,万有引力常量为G,月球质量分布均匀。求:
(1)月球的密度;
(2)月球的第一宇宙速度。
【答案】(1) (2)
【解析】
【详解】
(1)根据竖直上抛运动的特点可知:
(1)试求月球表面处的重力加速度g.
(2)试求月球的质量M
(3)字航员着陆后,发射了一颗绕月球表面做匀速圆周运动的卫星,周期为T,试求月球的平均密度ρ.
【答案】(1) (2) (3)
【解析】
【详解】
(1)根据题目可得小球做平抛运动,
水平位移:v0t=L
竖直位移:h= gt2
联立可得:
(2)根据万有引力黄金代换式 ,卫星高度,用t表示所需时间,则ω0t-ωt=2π
所以 .
点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.
4.半径R=4500km的某星球上有一倾角为30o的固定斜面,一质量为1kg的小物块在力F作用下从静止开始沿斜面向上运动,力F始终与斜面平行.如果物块和斜面间的摩擦因数 ,力F随时间变化的规律如图所示(取沿斜面向上方向为正),2s末物块速度恰好又为0,引力常量 .试求:
联立得
2.如图所示,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象.已知引力常数为G.
开普勒行星运动定律 万有引力定律(解析版)--高一物理专题练习(内容+练习)
开普勒行星运动定律万有引力定律高一物理专题练习(内容+练习)一、开普勒定律1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等.3.开普勒第三定律:所有行星轨道的半长轴的三次方跟它的公转周期的二次方的比都相等.其表达式为a3T2=k,其中a代表椭圆轨道的半长轴,T代表公转周期,比值k是一个对所有行星都相同的常量.二、行星运动的近似处理行星的轨道与圆十分接近,在中学阶段的研究中我们可按圆轨道处理.这样就可以说:1.行星绕太阳运动的轨道十分接近圆,太阳处在圆心.2.行星绕太阳做匀速圆周运动.3.所有行星轨道半径r的三次方跟它的公转周期T的二次方的比值都相等,即r3T2=k.三、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比、与它们之间距离r的二次方成反比.2.表达式:F=G m1m2r2,其中G叫作引力常量.四、引力常量牛顿得出了万有引力与物体质量及它们之间距离的关系,但没有测出引力常量G的值.英国物理学家卡文迪什通过实验推算出引力常量G的值.通常取G=6.67×10-11N·m2/kg2.一、单选题1.对于开普勒行星运动定律的理解,下列说法正确的是()A.开普勒进行了长期观测,记录了大量数据,通过对数据研究总结得出了万有引力定律B.根据开普勒第一定律,行星围绕太阳运动的轨迹是圆,太阳处于圆心位置C.根据开普勒第二定律,行星距离太阳越近,其运动速度越大:距离太阳越远,其运动速度越小D.根据开普勒第三定律,行星围绕太阳运行的轨道半径跟它公转周期成正比【答案】C【解析】A .第谷进行了长期观测,记录了大量数据,开普勒通过对数据研究总结得出了开普勒行星运动定律,故A 错误;B .根据开普勒第一定律,行星围绕太阳运动的轨迹是椭圆,太阳处于椭圆的一个焦点上,故B 错误;C .根据开普勒第二定律,行星距离太阳越近,其运动速度越大,距离太阳越远,其运动速度越小,故C 正确;D .根据开普勒第三定律,行星围绕太阳运行轨道半长轴的三次方跟它公转周期的二次方成正比,故D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力练习题及答案
详解
集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]
单 元 自 评
1.人造地球卫星环绕地球做匀速圆周运动时,以下叙述正确的是( )
A. 卫星的速度一定大于或等于第一宇宙速度
B.在卫星中用弹簧秤称一个物体,读数为零
C.在卫星中,一个天平的两个盘上,分别放上质量不等的两个物体,天平不偏转
D.在卫星中一切物体的质量都为零
2.两颗靠得较近的天体组成双星,它们以两者连线上某点为圆心,做匀速圆周运动,因而不会由于相互的引力作用而被吸到一起,下面说法正确的是( )
A.它们做圆周运动的角速度之比,与它们的质量之比成反比
B.它们做圆周运动的线速度之比,与它们的质量之比成反比
C.它们做圆周运动的向心力之比,与它们的质量之比成正比
D.它们做圆周运动的半径之比,与它们的质量之比成反比
3.苹果落向地球,而不是地球向上运动碰到苹果,发生这个现象的原因是( )
A.由于苹果质量小,对地球的引力小,而地球质量大,对苹果引力大造成的
B.由于地球对苹果有引力,而苹果对地球无引力造成的
C.苹果与地球间的引力是大小相等的,由于地球质量极大,不可能产生明显的加速度
D.以上说法都不对
4.两颗人造地球卫星,质量之比m 1:m 2=1:2,轨道半径之比R 1:R 2=3:1,下面有关数据之比正确的是( )
A.周期之比T 1:T 2=3:1
B.线速度之比v 1:v 2=3:1
C.向心力之比为F 1:F 2=1:9
D.向心加速度之比a 1:a 2=1:9 5.已知甲、乙两行星的半径之比为a ,它们各自的第一宇宙速度之比为b ,则下列结论不正确的是( )
A.甲、乙两行星的质量之比为b 2a:1
B.甲、乙两行星表面的重力加速度之比为b 2:a
C.甲、乙两行星各自的卫星的最小周期之比为a:b
D.甲、乙两行星各自的卫星的最大角速度之比为b:a
6.地球同步卫星距地面高度为h ,地球表面的重力加速度为g ,地球半径为R,地球自转的角速度为ω,那么下列表达式表示同步卫星绕地球转动的线速度的是( )
A.ω)(h R v +=
B.)/(h R Rg v +=
C.)/(h R g R v +=
D.32ωg R v =
7.某一行星有一质量为m 的卫星,以半径r ,周期T 做匀速圆周运动,求:
(1)行星的质量;
(2)卫星的加速度;
(3)若测得行星的半径恰好是卫星运行半径的1/10,则行星表面的重力加速度是多少
8.两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。
现测得两星中心距离为R,其运动周期为T,求两星的总质量。
9.无人飞船“神州二号”曾在离地高度为H=3. 4⨯105m的圆轨道上运行了47小时。
求在这段时间内它绕行地球多少圈(地球半径R=⨯106m,重力加速度g=9.8m/s2)
10.(2004年全国理综第23题,16分)在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。
假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h ,速度方向是水平的,速度大小为v 0,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。
已知火星的一个卫星的圆轨道的半径为r ,周期为T 。
火星可视为半径为r 0的均匀球体。
11.已知万有引力常量G ,地球半径R ,月球与地球间距离r ,同步卫星距地面的高度h ,月球绕地球的运转周期T 1,地球自转周期T 2,地球表面的重力加速度g 。
某同学根据以上条件,提出一种估算地球质量M 的方法:
同步卫星绕地心做圆周运动,由h T
m h Mm G 222)2(π=得2
23
24GT h M π= (1)请判断上面的结果是否正确,并说明理由。
如不正确,请给出正确的
解法和结果。
(2)请根据已知条件再提出两种估算地球质量的方法,并解得结果。
单 元 自 评
详解:
7.解析:(1)设行星的质量为M ,由行星对卫星的万有引力提供向心力得
r T m r Mm G 22
24π= ,解之得2324GT r M π=
(2)卫星的加速度224T
r
a π=
(3)设行星表面的重力加速度为g ,行星半径为R ,则行星表面物体的重力
等于行星对物体的万有引力,即g m R
m M G ''
=2 ,由以上得2
2400T r g π= 8.解析:设两星质量分别为M 1和M 2,都绕连线上O 点作周期为T 的圆周运动,星球1和星球2到O 的距离分别为l 1和l 2。
由万有引力定律和牛顿第二定律及几何条件可得
对M 1:G
221R M M =M 1(T π2)2
l 1 ∴M 2=21224GT l R π
对M 2:G
2
21R M M =M 2(T π2)2
l 2 ∴M 1=22224GT
l R π
两式相加得M 1+M 2=2
224GT
R π(l 1+l 2)=
2
324GT
R π。
9.解析:用r 表示飞船圆轨道半径r =H + R ==6. 71⨯106m 。
M 表示地球质量,m 表示飞船质量,ω表示飞船绕地球运行的角速度,G 表示万有引力常量。
由万有引力定律和牛顿定律得
r m r GMm 22
ω=
利用G 2
R M =g 得
3
2r gR =ω2由于ω=
T
π
2,T 表示周期。
解得 T =
R r π2g
r
,又n =T t 代入数值解得绕行圈数为n =31。
10.解析:以g '表示火星表面附近的重力加速度,M 表示火星的质量,m 表示火星的卫星的质量,m '表示火星表面出某一物体的质量,由万有引力定律和牛顿第二定律,有
g m r m M G ''='20 ① ; r T m r
Mm G 22)2(π
= ② 设v 表示着陆器第二次落到火星表面时的速度,它的竖直分量为v 1,水平
分量仍为v 0,有 h g v '=221 ③ 2
021v v v +=
④
由以上各式解得2
02
2328v r T hr v +=π
11.解析:(1)上面结果是错误的,地球的半径R 在计算过程中不能忽
略,正确解法和结果:)()2()(222h R T m h R mM G +=+π得2
2
3
2)(4GT h R M +=π (2)方法一:月球绕地球做圆周运动,由212)2(T mr r Mm G π=得2
13
24GT r M π=
方法二:在地面重力近似等于万有引力,由mg R
Mm
G =2得G gR M 2=
答案:(1)结果错误,正确结果2
2
3
2)(4GT h R M +=π (2)2
1
3
24GT r M π= ; G gR M 2=。