《1111三角形的边》教案4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《11.1.1 三角形的边》教案
教学目标:
1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第
三边,并应用这关系解释一些生活现象,解决一些简单的生活问题.
2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力.
教学重点、难点:
探索并发现三角形任意两边之和大于第三边.
教学准备:
学生、老师各准备几根长短不等的小棒、直尺、探究报告单.
教学过程:
一、创设情境,激发探究欲望
1、看动画:警察抓劫匪(一名罪犯实施抢劫后,经AB——BC的路线往山上逃窜.警察为了能尽快抓到逃犯,经路线AC追赶,终于在山脚下将罪犯捉拿归案.)
A
C
B
师:警察为什么能在这么短的时间内抓到罪犯呢?(学生各抒己见)
2、引入:警察的追击路线和罪犯的逃跑路线正好围成了一个三角形,那警察能在这么
短的时间内抓到罪犯,是不是与三角形的三条边有关系呢?是不是任意的三条线段都能围成
一个三角形呢?今天我们就通过实际操作,分组讨论来研究三角形三条边之间的关系.
板书课题:三角形三边的关系.
二、操作验证,揭示三边关系
(一)分组研究,四人一组,由组长拿出准备好的四根小棒.(5厘米、7厘米、11厘米、13厘米)
出示实验要求:
1、量出每根小棒的长度;
2、任意选三根小棒首尾相接,看是否能围成三角形;
3、把任意两边的长度加起来,再与第三边进行比较.(用式子表示)
4、小组讨论,你发现了什么?
5、将实验结果填写在探究报告单上,要求的第三项填入“发现栏”内.附:实验报告单(如下)
情况数据(厘米)
我的发现
式子结论
能围成三角形1 2 3 4
不能围成三角形1 2 3
(二)小组汇报交流实验结果
1、小组长汇报本组实验情况.
2、归纳结论:三角形任意两边之和大于第三边.(引导学生理解“任意”的意思)
3、用结论解释实验中围不成三角形的原因.
三、应用与拓展
1、操作:3根同样长的小棒,能否摆成一个三角形?它是什么三角形?用4根同样长的小棒,能否摆成一个三角形?5根、6根呢?
2、判断下面几组线段能否围成三角形,为什么?
(121厘米、4厘米、6厘米
(2)3厘米、5厘米、2厘米
(3)5厘米、12厘米、6厘米
(4)4厘米、4厘米、4厘米
3、用一根10米长的木料做一个三角形的支架,如果其中的一边是2米,另外两边分别是多长?
(1)2米、3米、5米
(2)2米、4米、4米
(3)2米、2米、6米
(4)2米、1米、7米
4、小设计:休闲广场要建一个凉亭,亭子顶部是三角形支架,现在已准备了两根长分
别为5米和7米的钢管,假如你是设计师,第三根钢管会准备多长?(取整米数)(1)小组讨论;
(2)汇报交流;
(3)你们发现这根钢管最长、最短各能取多少?(取整米数)(11米、3米)从这个发现中你又明白了什么?
(4)小结:要判断三条线段能否围成三角形,只要看两条短边之和是否大于第三边.
四、全课总结
这节课,我们大家一起研究了三角形三条边之间的关系,希望大家今后能自觉应用这些知识解决一些生活中的实际问题.