轴的结构设计
轴的结构设计及强度计算
轴的结构设计及强度计算(1)轴的概述一.轴的功能及分类1.功能支撑回转零件并传递扭矩。
2.分类轴的用途及分类轴的主要功用是支承回转零件及传递运动和动力按照承受载荷的不同,轴可分为:心轴─只承受弯矩的轴,如火车车轮轴。
传动轴─只承受扭矩的轴,如汽车的传动轴。
转轴─同时承受弯矩和扭矩的轴,如减速器的轴。
按照轴线形状的不同,轴可分为曲轴和直轴两大类。
直轴根据外形的不同,可分为光轴和阶梯轴。
轴一般是实心轴,有特殊要求时也可制成空心轴,如航空发动机的主轴。
除了刚性轴外,还有钢丝软轴,可以把回转运动灵活地传到不开敞地空间位置。
二.轴的材料轴的材料主要是碳钢和合金钢,钢轴的毛坯多数用圆钢或锻件,各种热处理和表面强化处理可以显著提高轴的抗疲劳强度。
碳钢比合金钢价廉,对应力集中的敏感性比较低,适用于一般要求的轴。
合金钢比碳钢有更高的力学性能和更好的淬火性能,在传递大功率并要求减小尺寸和质量、要求高的耐磨性,以及处于高温、低温和腐蚀条件下的轴常采用合金钢。
在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此相同尺寸的碳钢和合金钢轴的刚度相差不多。
高强度铸铁和球墨铸铁可用于制造外形复杂的轴,且具有价廉、良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,但是质较脆。
三.轴设计的主要内容轴的设计包括结构设计和工作能力验算两方面的内容。
(1)根据轴上零件的安装、定位以及轴的制造工艺等方面的要求,合理地确定轴的结构形式和尺寸。
(2)轴的承载能力验算指的是轴的强度、刚度和振动稳定性等方面的验算。
轴的设计过程是:选择材料—初估轴径—结构设计—校核强度,刚度,稳定性(2)轴的直径初估方法:类比法按扭矩估算一.轴的扭转强度强度条件:校核式:τT =T/WT=9.55 106P/0.2d3n≤[τT]设计式:d ≥[]362.01055.9n P T τ⨯=C 3nP C---系数(表12-2)(3)轴的结构设计轴的结构设计应该确定:轴的合理外形和全部结构尺寸。
轴的结构设计
a)截面尺寸变化处 的应力集中
b)过盈配合处的应力集中
c)小孔处的应力集中
减小应力集中的措施: 1)用圆角过渡; 2)尽量避免在轴上开横孔、切口或凹槽; 3)重要结构可增加卸载槽B、过渡肩环、凹切圆角、
增大圆角半径。也可以减小过盈配合处的局部应力。
B d/4 B
30˚ r
d
卸载槽
过渡肩环
凹切圆角
4)避免相邻轴径相差太大;
① ② ③
⑧ ⑩ ⑥ ⑤ ③ ⑦
⑧ ⑩
①
④
⑨
① 轴承端盖与箱体间无调整垫片;② 键顶部与键槽顶部接触;③ 两键槽不在 轴的同一母线上;④ 端盖孔与轴径间无间隙; ⑤ 多键槽;⑥ 轴的长度等于 轮毂长度;⑦ 无定位轴肩;⑧ 轴承未相对安装;⑨ 轴颈长度与端盖相接触; ⑩ 无挡油环。
三、轴的强度计算
轴上零件的定位和固定 加工和装配的工艺性 提高轴强度的结构措施
轴的结构设计
轴的强度计算 轴的刚度计算
有特殊要求时
轴的稳定性计算
二、轴的结构设计
1. 轴的结构设计原则
(1) 满足强度、刚度、防振的要求,并通过 结构设计提高这些方面的性能 (2) 保证轴上零件定位且固定可靠 (3) 便于轴上零件装拆和调整 (4) 轴的加工工艺性好
尽量统一。
二)轴上零件装配工艺性要求 1.轴的配合直径应圆整为标准值。 2.轴端应有cX45º的倒角。 3.与零件过盈配合的轴端应加工出导向锥面。
°
°
a)倒角
b)导向锥面
4.装配段不宜过长。
六、提高轴强度和刚度的措施 1.减小应力集中 合金钢对应力集中比较敏感,应加以注意。 a)截面尺寸变化处的应力集中 轴的应力集中 b)过盈配合处的应力集中 发生的位置 c)小孔处的应力集中
第4章轴系的结构设计
第4章轴系的结构设计一、引言轴系是机械传动中最为常见的一种形式,它将动力源的转动运动传递给工作机构,并起到支撑、定位和传递扭矩的作用。
轴系的结构设计是保证传动系统正常运行和提高传动效率的重要环节。
本章将着重介绍轴系结构设计的要点和方法。
二、轴系结构设计的基本原则1.合理选择轴的材料和形状:轴的材料要具有足够的强度、硬度和耐磨性,一般选择优质合金钢。
轴的形状要尽量简单,以减小结构应力集中的程度。
2.合理选择轴的直径:轴的直径要根据传动扭矩和转速选择。
直径过小会导致轴变形和破坏,直径过大则会增加轴的重量和制造成本。
3.合理设计轴的轴向尺寸:轴的轴向尺寸要满足承载力和刚度的要求。
一般情况下,轴的轴向尺寸要宽于直径的1.5-2倍,以提高刚度。
4.合理设计轴的键槽和连接方式:轴与零件之间的连接方式有键连接、花键连接、伸缩套连接等。
要根据实际情况选择合适的连接方式,并合理设计键槽的尺寸和位置。
5.合理设计轴的支撑方式:轴系的支撑方式有轴承支撑、轴承端支撑、轴心支承等。
要根据轴系的具体情况选择合适的支撑方式,并合理设计轴承的型号、安装间隙和润滑方式。
三、轴系结构设计的方法1.确定传动需求:要确定传动的功率、转速和转矩等参数,以便选择合适的轴材料和直径。
2.计算轴的载荷和应力:根据传动功率和转速,计算轴的载荷和应力,以确定轴的直径和轴向尺寸。
3.选择合适的轴材料:根据轴的载荷和应力,选择合适的轴材料,考虑材料的强度、硬度和耐磨性等因素。
4.设计轴的形状和结构:根据轴的载荷和支撑方式,设计轴的形状和结构,使其具有足够的刚度和稳定性。
5.设计轴的连接方式:根据轴与零件之间的连接要求,选择合适的连接方式,并设计合适的键槽和位置。
6.设计轴的支撑方式:根据轴系的支撑方式和轴承的工作要求,选择合适的支撑方式,并设计合适的轴承型号、安装间隙和润滑方式。
四、轴系结构设计的实例分析以汽车发动机的曲轴轴系为例,进行轴系结构设计的实例分析。
轴的分类与结构设计及其应用
②保证零件所需的装配空间、调整空间。应考虑轴 上零件之间的距离及轴上零件与机架之间的距离
4 轴的结构工艺性
主要考虑以下因素: (1) 为了便于装配零件并去掉毛刺,轴端应制出45的倒角。
(2)需要磨削加工的轴段,应留有砂轮越程槽。 (3) 需要切制螺纹的轴段,应留有退刀槽。
(4) 为了减少装夹工件的时间,同一轴上不同轴段的键 槽应布置在轴的同一母线上。
双圆螺母
④轴端挡圈 只适用于定位轴端零件。
⑤弹性挡圈、紧钉螺钉、锁紧挡圈作轴向定位
特点:承受轴向力能力较差,适用于轴向力不大 的场合。
弹性挡圈
紧钉螺定
锁紧挡圈
6圆锥面定位 特点: ⑥多用于承受冲击
载荷和同心度要求较高的 轴端零件。
⑦ 轴承盖 特点:可承受较大的轴
向力,通常通过螺钉或榫 槽与箱体联接,通过轴承可对整个轴起轴向定位 作用
按纯扭T确定dmin
从dmin (处于轴端)开始
轴中间(d )
在确定各轴段直径时应注意的问题;
(1)安装标准件的部位的轴径,应取为相应的标准值。
(2)为了使齿轮、轴承等零件装拆方便,可设置非定位 轴肩。
⑵各轴段长度的确定
轴的各段长度主要是根据轴上零件的宽度及它 们的相对位置来确定。
在确定轴长时注意: ① 为了保证轴向定位可靠,与齿轮和 联轴器等零件相配合部分的轴段长度一 般应比轮毂长度短2 ~ 3mm。
no 验算合格?
yes
结束
3 轴的材料
轴的材料:主要是碳钢和合金钢 轴的毛坯:轧制圆钢:d<100mm,锻件d>100mm ①②..一 传般 递应 大用 动力:4,5钢要(求35减、少50尺代寸用及),重调量质,正提火 高
轴的结构设计要点
轴的结构设计要点学习轴的结构设计这么久,今天来说说关键要点。
首先呢,我理解轴的结构设计要考虑它承受的载荷类型。
就像是咱们盖房子,如果是盖那种小平房,可能屋顶的重量对于墙的压力就比较小,比较好设计;但要是盖高楼大厦,就要考虑承受很重的重量、风力等等。
对于轴来说,如果是只受扭矩的轴,像汽车里光负责传递动力的那部分轴,设计就相对简单些。
可要是个既受弯矩又受扭矩的轴,比如车床的主轴,那就复杂多啦。
轴的材料选择很重要。
我总结了一下,要综合考虑强度、韧性和成本这些因素。
你比如说,45号钢比较常用,强度还行,价格也比较亲民;要是要求特别高的强度又不差钱,那就可以选择合金钢。
我之前就很困惑,为啥不能都用便宜的材料呢?后来才明白,不同的使用环境对轴的要求不一样。
要是在一些高负荷、高精度的设备里头,便宜材料可能满足不了要求,容易出问题呀。
还有啊,轴的直径设计是个要点。
这可不能瞎定,得根据它承担的力量来算。
对了,计算这个力的时候一定要准确,我以前就忽略了一些小部分的力,结果算出来的直径就不对,还好后来发现了。
这就好比咱们估算买东西的钱,还差个零头没算进去,咋算都对不上账。
确定轴的直径,有很多公式可以用,这个在机械设计手册上都能查到,那可是个好东西,里面有很多详细的例子。
轴上键槽的设计也不能小看。
键槽是用来连接其他零件的,它的尺寸、位置能影响到整个轴系的传动性能。
我理解键槽要是开得不合适,就像鞋不合脚,跑起来肯定不舒服。
比如说,键槽开太深了,可能会削弱轴的强度;要是位置偏了,和配合的零件就难以正确装配。
再说轴颈的设计吧,这部分跟轴承配合。
它的表面粗糙度、尺寸公差都得考虑好。
我就想啊,这就跟找对象一样讲究配对,要是轴颈的尺寸公差、表面质量不符合轴承的要求,那可就没法好好配合工作了。
在轴的结构设计里,还得考虑会不会发生共振。
要是轴转起来像个发疯的振动器一样全场都抖,那设备肯定要废了。
为了避免这个,就要计算轴的临界转速,不能让工作转速太接近临界转速。
轴的结构设计
机械设计基础
Machine Design Foundation
轴的结构设计
4 轴的结构工艺性 轴的结构工艺性是指所轴的结构形式应便于加工和
装配轴上的零件,并且生产率高,成本低。为了使轴的 工艺性好,轴的结构设计应注意以下几个问题。
(1) 为便于零件的装拆,轴端应有45°的倒角,零件装 拆时所经过的各段轴径都要小于零件的孔径;
(2) 轴肩或轴环定位时,其高度必须小于轴承内圈端 部的厚度; (3) 用套筒、圆螺母、轴端挡圈作轴向定位时,一般 装配零件的轴头长度应比零件的轮毂长度短2~3mm, 以确保套筒、螺母或轴端挡圈能靠紧零件端面;
机械设计基础
Machine Design Foundation
轴的结构设计
(4) 轴上的圆角、倒角和退刀槽应尽可能取相同尺寸, 以减少刀具数量和换刀时间。为了减少轴的装夹次数, 轴上有两个以上键槽时,应尽可能布置在同一条母线上; (5) 轴上磨削的轴段和车制螺纹的轴段,应分别留有螺 纹退刀槽和砂轮越程槽;且后轴段的直径小于轴颈处的 直径,来减少应力集中,提高疲劳强度; (6) 装配段不宜太长。
机械设计基础
Machine Design Foundation
轴的结构设计
2) 轴段长度的确定 (1) 在安装齿轮时为了使齿轮固定可靠,应使齿轮轮毂 宽度大于与之相配合的轴段长度,一般两者的差取2~ 3 mm。 (2) 装滚动轴承处的轴长,查手册按轴承宽度来确定。 (3) 轴上回转零件与其他零件之间的轴向距离推荐:两 回转件间的距离取10~20 mm;回转件与内壁之距离取 10~20 mm;轴承端面至箱体内壁之距离为当减速器齿轮 圆周速度v>2 m/s时,轴承采用油液飞溅润滑,取5~ 10 mm;当减速器齿轮圆周速度v<2 m/s时,轴承采用油 脂润滑,还需加挡油环,防止油脂被稀释,取10~15mm; 外伸件距箱体轴承盖的距离,考虑应留有螺钉装拆及扳 手空间位置,取20~35mm。
轴的结构设计课件
球墨铸铁容易获得复杂的形状,而且吸振性好,对应 力集中敏感性低,适用于制造外形复杂的轴,如曲轴和凸 轮轴等。
轴的结构设计
27
五、轴的设计
类比法
根据轴的工作条件,选择与其相似的轴进行类比及结 构设计,画出轴的零件图。
设计计算法
开始设计轴时,通常还不知道轴上零件的位置及支点情 况,无法确定轴的受力情况,只有待轴的结构设计基本完 成后,才能对轴进行受力分析及强度计算。因此,一般在 进行轴的结构设计前先按纯扭转受力情况对轴的直径进行 估算。然后进行轴的结构设计后,再按弯扭合成的理论进 行轴危险截面的强度校核。
强度不够,则必须重新修改轴的结构。 (5)绘制轴的零件工作图
轴的结构设计
29
六、轴毂联接
轴毂联接主要是用来实现轴和轮毂之间的周向固定并 用来传递运动和扭矩,有些可承受少量轴向力。
轴毂连接
键连接 花键连接
松键连接 紧键连接
过盈配合连接
销连接
平键连接 半圆键连接
楔键连接 切向键连接
轴的结构设计
30
(一)键联接
1.轴上零件的轴向定位与固定 常用的轴向固定方法有:轴肩(轴环)、圆螺母(止
动片)、套筒、弹性挡圈、紧定螺钉、轴端挡圈定位等。
轴的结构设计
12
轴肩(轴环)
特点:结构简单,定位可靠 ,可承受较大的轴向力 应用:齿轮、带轮、联轴器、 轴承等的轴向定位
轴的结构设计
13
圆螺母
特点:定位可靠,装拆方便,可承受较大的轴向力 由于切制螺纹使轴的疲劳强度下降
轴的结构设计
17
2.轴上零件的周向固定
为了传递运动和转矩,防止轴上零件与轴作相对转动, 轴和轴上零件必须可靠地沿周向固定(连接)。常用的周 向固定方法有:销、键、花键、过盈配合和成形联接等, 其中以键和花键联接应用最广。
轴的结构设计
轴的结构设计
轴的结构设计是指在机械设备中使用的轴的形状、尺寸、材料、加工工艺等方面的设计。
轴是一种常见的机械零件,用于传递旋转运动和承受力矩。
在轴的结构设计中,需要考虑以下几个方面:
1. 轴的形状和尺寸:根据传递的力矩和转速要求,确定轴的直径、长度、几何形状等。
轴的形状可以是圆柱形、圆锥形、轮廓复杂的曲线形等。
2. 轴的材料:选择合适的材料,以满足轴的强度、刚度和耐磨性等要求。
常用的轴材料有结构钢、合金钢、不锈钢等。
3. 轴的加工工艺:确定轴的加工工艺,包括车削、磨削、冷挤压等。
根据轴的尺寸和形状,选择合适的加工方法,以保证轴的精度和表面质量。
4. 轴的键槽和轴承座设计:考虑轴与其他部件的连接方式和承载情况,设计合适的键槽形状和尺寸,以及轴承座的布局和结构。
5. 轴的表面处理:根据使用环境和要求,对轴进行表面处理,如镀铬、钝化、渗碳等,以提高轴的耐磨性和防腐蚀性。
总之,轴的结构设计需要兼顾轴的强度、刚度、耐磨性、轴与
其他部件的连接方式等方面的要求,以保证轴在工作过程中的可靠性和寿命。
机械设计-轴的结构设计
D h
d D
h C d
r为过渡圆角 R为圆角
C 零件倒角
应使: r < R < h 或 r <C < h
要求轴肩零件的定位与固定
1、轴向定位和固定
2)套筒
(简单可靠、常用于近距离,且承受轴向力大) 多用于转速不高的场合。
轴的结构设计
3 轴上零件的定位与固定
轴的结构设计
1 基本要求 2 轴的结构和轴上零部件 3 轴上零件的定位与固定 4 轴的直径和长度确定 5 轴的结构工艺性 6 提高轴强度的措施
CONTENTS
目 录
轴的结构设计
1 基本要求 ①轴和轴上零件要有准确、牢固的工作位置; ②轴上零件装拆、调整方便; ③轴应具有良好的制造工艺性等; ④尽量避免应力集中。
1、各轴段直径确定 1) 按应力估算轴段直径d min 。 2) 按轴上零件安装、定位要求确定各段轴径,经验值 3~5 1~2
d1 d2 d3 d4 d5 d6 d
7
轴的结构设计
4 轴的直径和长度的确定
2、各轴段长度
①各轴段与其上相配合零件宽度相对应; ②转动零件与静止零件之间必须有一定的间隙。
轴的结构设计
轴的结构应便于加工、装配、拆卸、测量和维修等。 5)同一轴上键槽位于圆柱同一母线上,尺寸尽量相同。
轴的结构设计
6 提高轴强度的措施
1、合理布置轴上零件以减少轴的载荷
MB
MC
MA
MD
MB
MC
B
C
A
T
700N.mm
D
B
C
T
B
C
A
Dx B
C
MD
MA
轴的结构设计
轴的设计1.轴的功用1)支撑回转零件2)传递运动和转矩。
2.轴设计时要解决的问题1)结构问题,确定轴的形状和尺寸;2)强度问题,防止轴发生疲劳断裂;3)刚度问题,防止轴发生过大的弹性变形;4)振动稳定性问题,防止轴发生共振。
3.轴结构应满足的要求1)加工工艺性好;2)便于轴上零件装拆;3)轴上零件要有准确的定位;4)轴上零件要有可靠的固定。
4.轴上零件的轴向定位和固定1)轴肩或轴环定位轴肩:h=(0.07~0.1)d>R或C;非定位轴肩:h=1~2 mm,作用是便于轴上零件的装拆;轴环宽度一般取:b =1.4 h;滚动轴承的定位轴肩或轴环高度-查标准;2)套筒对轴上零件起固定作用,常用于近距离的两个零件间的固定。
3)圆螺母用于轴上两零件距离较远时,或轴端。
需切制螺纹,削弱了轴的强度。
4)弹性挡圈需切环槽,削弱了轴的强度。
承受不大的轴向力。
5)轴端挡圈用于固定轴端零件,能承受较大的轴向力。
常配合锥面使用。
5.轴上零件的周向固定防止轴上零件与轴发生相对转动,以传递转矩。
常用的周向固定方法:平键、花键、紧定螺钉。
6.轴的强度计算1)按扭转强度计算式中,系数C 与轴的材料和承载情况有关,查表。
弯矩相对转矩较小或只受转矩时,C 取小值;弯矩较大时,C 取大值;扭转强度公式一般用来初算轴的直径,计算出的d 作为受扭段的最小直径d min;若该轴段有一个键槽,d 值增大5% ,有两个键槽,增大10%。
2)按弯扭合成强度计算由于σb 与τ的循环特征可能不同,需引进校正系数α将τ折合成对称循环变应力。
式中,M e为当量弯矩。
7.轴的设计步骤1)根据功率P 和转速n ,用扭转强度公式初算受扭段的最小直径d min;2)根据初算轴径,进行轴的结构设计;3)按弯扭合成强度校核轴的危险截面(N则返回步骤2);4)将d min 圆整成标准直径。
典型轴系结构教学PPT轴的结构设计
点击图像看大图
14.7 滚动轴承的组Байду номын сангаас设计
3.两端游动式
b
D h r R
d D
h
C
r d
13.2 轴的结构设计
➢用轴肩或轴环固定零件时,常需采用其他附件来防止零件向另一方向 移动。
13.2 轴的结构设计
➢当轴向力不大而轴上零件间的距离较大时,可采用弹性挡圈固定。
13.2 轴的结构设计
➢当轴向力很小,转速很低或仅为防止零件偶然沿轴向滑动时,可采用 紧定螺钉固定。
13.2 轴的结构设计
13.2.2 零件在轴上的固定
周向固定 为了传递运动和转矩,防止轴上零件与轴作相对转动,轴上零件的周向
固定必须可靠。常用的周向固定方法有键、花键、销和过盈配合等联接。
13.2 轴的结构设计
轴向固定 零件在轴上的轴向定位要准确而可靠,以使其安装位置确定,能
承受轴向力而不产生轴向位移 ➢轴肩由定位面和内圆角组成
13.2 轴的结构设计
13.2.3 轴的加工和装配工艺性
轴的形状要力求简单,阶梯轴的级数应尽可能少,轴上各段的键槽、 圆角半径、倒角、中心孔等尺寸应尽可能统一,以利于加工和检验
轴上需磨削的轴段应设计出砂轮越程槽,需车制螺纹的轴段应有退 刀槽
当轴上有多处键槽时,应使各键槽位于轴的同一母线上
为使轴便于装配,轴端应有倒角
14.7.1 轴承的轴向固定
14.7 滚动轴承的组合设计
14.7.2 轴承组的轴向固定
除了合理选择轴承的类型和尺寸外,还必须正确、合理地进行轴承的 组合设计。即正确解决轴承的轴向位置固定、轴承与其它零件的配合、轴 承的调整与装拆等问题。
轴系的结构设计
四、轴上零件的周向定位
运转时,为了传递转矩或避免与轴发生相对转动, 零件在轴上必须周向固定。
轴上零件的周向定位方法主要有键联接(平键、 半圆键、楔键等)、花键联接、弹性环联接、过 盈配合联接、销联接、成型联接等等。
a)平键
制造简单、装拆方便。用 于传递转矩较大,对中性 要求一般的场合
b)花键
锥顶重合于轴承回转 轴线
七、轴的结构工艺性
1、关于轴的形状:阶梯轴
• 由于阶梯轴接近于等强度,而且便于加工和轴 上零件的定位和拆装,所以实际上的轴多为阶 梯形.
2、关于轴的有关尺寸
➢ 为了能选用合适的圆钢和减少切削用量,阶梯轴 各轴段的直径不宜相差过大,一般取为5~10MM。
➢ 为了便于切削加工,一根轴上的圆角应尽可能取 相同的半径;
轴系结构的设计
第一节 轴 一、轴的功用和分类
1、功用:支承其他回转件,承受转矩与弯矩, 并传递运动和动力。
2.轴的分类
1)按所受载荷特点分三种: 心轴: 只承受弯矩;如 传动轴:只承受转矩;如 转轴:同时承受弯矩和转矩;如
2)按轴的结构形状分:
直轴,曲轴; 光轴,阶梯轴; 空心轴,实心轴; 刚性轴,挠性轴。
3、用带螺纹的端盖调整;
4、用圆螺母调整轴承内圈调整游隙。
预紧的定义:
对某些可调游隙的轴承,为提高旋转精度和 刚度,常在安装时施加一定的轴向作用力(预紧 力)消除轴承游隙,并使内、外圈和滚动体接触 处产生微小弹性变形。
预紧的方法有:
一般采用移动轴承套圈的方法;对一些支承 的轴承组合,还可用金属垫片或磨窄外圈等方法 获得预紧。
内圈滚道、滚子和外圈滚道这三个圆锥面的锥顶必须重合于轴承回 转轴线上——说着玩的!
《轴的结构设计》课件
根据轴的用途和受力情况,确定轴的直径和长度 考虑轴的强度、刚度和耐磨性等因素,选择合适的材料和热处理工艺 计算轴的临界转速,避免共振现象 设计轴的键槽、螺纹等结构,保证轴的装配和拆卸方便
轴肩固定:轴肩与轴承外圈配合,轴肩与轴承内圈配合 轴套固定:轴套与轴承外圈配合,轴套与轴承内圈配合 轴肩轴套固定:轴肩与轴承外圈配合,轴套与轴承内圈配合 轴肩轴套轴端固定:轴肩与轴承外圈配合,轴套与轴承内圈配合,轴端与轴承外圈配合
,
汇报人:
01
02
03
04
05
06
轴头:轴的端部,用于安装轴承或 其他零件
轴肩:轴颈与轴头之间的过渡部分, 用于固定轴承
添加标题
添加标题
添加标题
添加标题
轴颈:轴的圆柱形部分,用于支撑 和传递扭矩
轴端:轴的末端,用于安装其他零 件或连接其他部件
轴身是轴的主要组 成部分,通常由钢、 铝或其他金属材料 制成
汇报人:
确定轴承的类型: 球轴承、滚子轴承、 滑动轴承等
确定轴承的尺寸: 根据轴的直径和长 度选择合适的轴承 尺寸
确定轴承的数量: 根据轴的载荷和转 速选择合适的轴承 数量
确定轴承的安装方 式:轴向固定、径 向固定、轴向和径 向固定等
固定端:轴的一 端固定在支撑件 上,提供轴的稳
定性和刚度
游动端:轴的另 一端可以自由移 动,提供轴的灵
材料特性:高强 度、高硬度、耐 磨损、耐腐蚀
应用领域:广泛应 用于机械、汽车、 航空、航天等领域
热处理:淬火、 回火、正火等热 处理工艺
合金元素:铬、镍、 钼、钒等元素,提 高材料的性能和稳 定性
轴的结构设计
轴旳毛坯:一般用圆钢或锻件,有时也用铸钢或球墨铸铁。
如用球墨铸铁制造曲轴和凸轮轴,具有成本低廉、吸振性很好、相应力集中旳敏感较低、强度很好等优点。
表15-1 轴旳常用材料及其主要力学性能
材料及热处理
毛坯直径 mm
硬度 强度极限σb 屈服极限σs
HBS
MPa
弯曲疲劳极限σ-1
应用阐明
Q235
440
240
类
型 按轴旳形状分有:
发动机
传动轴
后桥
青岛科技大学专用
潘存云教授研制
§15-1 概 述
一、轴旳用途及分类
功用:用来支撑旋转旳机械零件,如齿轮、带轮、 链轮、凸轮等。
分类:
转轴---传递扭矩又承受弯矩
按承受载荷分有: 传动轴---只传递扭矩
类
心轴---只承受弯矩
型 按轴旳形状分有:
自行车
车厢重力
前轮轴
对于只传递扭转旳圆截面轴,强度条件为:
T
T WT
9.55106 P 0.2d 3n
[ T ]
解释各符
MPa 号旳意义
及单位
设计公式为:d 3
9.55 106
0.2[ ]
3
P n
A0 3
P n
mm
计算成果为:最小直径! 考虑键槽对轴有减弱,可按下列方式修正轴径:
轴径d>100mm
轴径d≤100mm
按轴旳形状分有:
阶梯轴
青岛科技大学专用
潘存云教授研制
§15-1 概 述
一、轴旳用途及分类
功用:用来支撑旋转旳机械零件,如齿轮、带轮、 链轮、凸轮等。
分类:
转轴---传递扭矩又承受弯矩
轴结构设计的基本要求
轴结构设计的基本要求
轴结构设计是指在机械设备中,对于轴的使用和设计方法的总称。
对于轴的结构设计,有以下几个基本要求。
1.强度要求:轴的强度是设计的一个重要方面,需要考虑到承受
的载荷和力矩等因素,才能确定合适的材料和尺寸。
2.刚度要求:轴的刚度直接影响到机械设备的工作性能,刚度越大,失配的可能性就越小,精度也越高。
3.稳定性要求:轴的稳定性就是指轴能够承受震动、突然负载等
外界因素的影响,不会发生任何的变形或破裂现象。
4.平衡要求:轴在使用过程中,如果出现了不平衡现象,就会使
得机械设备的工作出现问题。
因此,设计时需要考虑轴的平衡性。
5.装配配合要求:轴与相邻零件的配合是设计的重要方面,使得
机械设备能够保持稳定和精确的运行。
6.可靠性要求:轴结构设计需要考虑到耐久性、使用寿命、维护
保养等诸多方面,以最大程度地保证设备的可靠性和持久性。
综上所述,轴结构设计的基本要求是强度、刚度、稳定性、平衡、装配配合和可靠性。
只有在满足这些基本要求的基础上,才能有效地
提高机械设备的工作性能。
举例说明轴结构设计的要点
轴结构设计要点1. 什么是轴结构设计轴结构设计是指在建筑设计中,针对建筑物或结构的轴线进行规划和设计,以确定其中的主轴线、次轴线、平行轴线、对称轴线等。
轴结构设计不仅仅是对建筑形式进行布局,还包括对建筑物功能、空间布局和流线等方面的考虑。
2. 轴结构设计的重要性轴线是建筑设计的基础,它决定了整个建筑物的形式和内部布局。
合理的轴线设计可以使建筑物更加美观、功能布局合理,并且增强建筑的整体性和统一性。
同时,轴线还是建筑物内部空间流线的引导者,可以使人在建筑内部产生直观、连贯的空间感。
3. 轴结构设计的要点3.1 主轴线的确定主轴线是建筑物整体形式和布局的基础,一般沿建筑物的最主要的线性方向进行布置。
确定主轴线时,需要考虑建筑物的用途、功能需求、场地条件等因素,并且要与周围环境和背景相协调。
3.2 次轴线和平行轴线的确定除了主轴线外,还可以通过次轴线和平行轴线来丰富建筑的形式和空间布局。
次轴线可以是相对主轴线垂直或与之成角的线,平行轴线可以沿主轴线的方向延伸。
次轴线和平行轴线的设置要考虑建筑物的功能和空间需求,以及视觉效果的追求。
3.3 轴线的对称性轴线的对称性是轴结构设计中的重要要点之一。
对称轴线可以增强建筑物的整体性和稳定感,使建筑物更加协调。
对称轴线不仅可以体现在建筑物的平面布局上,还可以体现在立面和空间布局中。
3.4 空间流线的引导轴结构设计还要考虑建筑物内部的空间流线,即人在建筑物内部的移动路径。
合理的空间流线设计可以提高建筑物的使用效率和功能性,使人在其中感到舒适和便捷。
空间流线的引导可以通过轴线的设置和空间布局来实现。
4. 轴结构设计的案例举例4.1 欧洲古典建筑的轴线设计欧洲古典建筑中经典的轴线设计可以通过拿破仑的凯旋门来说明。
凯旋门的主轴线延伸至远处的卢浮宫,在主轴线上还设置了平行轴线和次轴线。
整个轴线系统通过对称和空间流线的引导,形成了庄严、壮观的建筑形式和布局。
4.2 现代建筑的轴线设计现代建筑中的轴线设计注重独特性和个性化。
轴的结构设计及计算
轴的结构设计及计算一、轴的结构设计1.轴的外形尺寸设计轴的外形尺寸设计包括轴的直径、长度、轴颈长度、轴草图等方面。
具体设计参数受以下因素影响:(1)载荷:轴的外形尺寸应根据设计负载来确定。
载荷分为轴向负载和弯矩负载两部分。
轴向负载通过轴承来传递,而弯矩负载作用在轴的中部。
(2)材料:轴的外形尺寸受轴材料的强度和刚度限制。
根据材料的特性,考虑到轴的强度、韧性和硬度。
(3)工作条件:轴工作环境的温度、湿度、油脂润滑、振动等因素对外形尺寸的设计有影响。
例如,在高温情况下,轴的线膨胀要考虑,以保证工作正常。
2.轴的内部结构设计轴的内部结构设计包括轴承座设计、防滑设计和轴孔尺寸设计。
(1)轴承座设计:根据所选定的轴承类型和尺寸,设计轴承座结构,以确保轴与轴承之间的协调度。
轴承座结构应具有足够的强度和刚度,能够传递载荷,并保证轴与轴承之间的空隙要求。
(2)防滑设计:轴与零件之间需要使用紧固件进行连接,以避免轴在工作时滑动和脱离。
必须根据设计载荷和接口尺寸来计算紧固件的数量和规格。
(3)轴孔尺寸设计:根据零件的要求和装配要求,设计轴孔尺寸,使得轴能够与其他零件有效连接,并保证装配的质量。
二、轴的计算1.轴的强度计算轴的强度计算一般涉及以下几个方面:(1)轴的弯曲强度计算:根据所受弯矩以及轴的几何形状、材料等参数,计算轴在弯曲工况下的承载能力。
考虑轴的弯矩分布、扭转矩、振动疲劳影响等因素,进行强度计算。
(2)轴的切削强度计算:当轴上存在切削力或切削载荷时,计算轴在切削区域内的切削强度,以确保轴能够承受切削载荷,并避免刀具和轴的损坏。
(3)轴的挤压强度计算:当轴上存在压力或挤压载荷时,计算轴在压力区域内的挤压强度,以确保轴能够承受挤压载荷,并避免轴的变形或破裂。
2.轴的刚度计算轴的刚度计算是为了评估轴的变形情况,以确保设计轴的刚度足够,以满足使用要求。
在刚度计算中,可以应用刚度矩阵法和有限元法计算轴的刚度。