电力系统中性点接地的三种方式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统中性点接地的三种方式
有效接地系统(又称大电流接地系统)
小电流接地系统(包含不接地和经消弧线圈接地)
经电阻接地系统(含小电阻、中电阻和高电阻)
大电流接地系统
用于110kV及以上系统及。该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。
作为220kV枢纽变电站的主变必须并列运行。其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV 系统零序保护的方向性和稳定性。主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。
作为220kV负荷变电站的主变必须分列运行。此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。所有主变不能相220kV系统提供零序电流,110kV侧零序阻抗稳定。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。
作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV 侧中性点通过间隙接地。110kV侧中性点必须全部直接接地。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。
目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。所以主变110kV侧中性点通过间隙接地,并且不再加装间隙保护。
0.4kV系统均采用大电流接地运行。对于Y/Y0接线的变压器,零序阻抗很大。
虽然接入的负荷多为单相负荷,由于每个负荷较小,并不一定会造成三相负荷电流严重不一致(中性点电流小于额定电流的25%),不会造成三相电压严重不平衡。但当线路出现对地短路时,短路电流较小,往往不能使断路器(空气开关)跳开或熔断器熔断,致使事故扩大,许多情况下形成火灾。此时应在变压器中性点引线处加装过流保护,跳开高压侧断路器。显然这是比较复杂的。
使用△/Y0接线的变压器,可以克服这一缺点。但充油变压器的分接开关制作比较困难,尤其是有载分接开关。△/Y0接线的变压器虽然有零序阻抗低,三相电流不平衡时电压差异不大的优点,但是用时中性点电流仍不得超过额定电流的60%。为此315kVA及以下中小容量的变压器(尤其是充油变压器)多采用Y/Y0接线,而315kVA 以上的变压器(尤其是干式变压器)多采用△/Y0接线。
目前,大型建筑物中供电多采用三相五线制,比原来的三相四线制多出一根地线。地线和零线在低压屏(或变压器)处是连在一起的(小电阻接地系统另有说明),从低压屏引出时分为两线。零序可接入单相负荷,会有工作电流,地线由于没有工作电流,其电位始终与大地一致。为保证地线与大地的电位一致,还需按规定进行重复接地。而零线则不应再接地,更不能再与地线相连,避免地线中产生工作电流。电气设备的金属外壳均应与地线相连。当电气设备绝缘损坏时,与地线形成回路,严重时造成保险丝熔断或空气开关跳开,而外壳电位基本不升高,对人身安全不会产生威胁。
小电流接地系统
系统的中性点全部不接地时,无论是架空线还是电缆,在正常运行时均有一三相对地基本相等的电容。由于容抗基本相等,所以三相对地电压基本相等,中性点的对地电压很低(不超过2%系统额定电压)。当其中一相接地时,接地相对地电压降低(金属性接地时为零),非接地相对地电压升高(金属性接地时为线电压),金属性接地时接地点的电流为每相对地电容电流的3倍。系统中若接有测量对地电压的电压互感器,其输出电压为额定电压(开口三角有固定接法)。根据这个电压的高低,可以判断系统是否发生了单相接地。由于接地点只有电容电流,系统可以长期运行。但接地点的跨步电压会对周围人员的生命安全(20米内)产生很大的威胁,此外系统中监视对地电压的电压互感器是按坚持8小时设计的。因此应尽快找出接地点并将其从电网中切除。接地点接触不牢固时会产生电弧。由于电弧电流不大,当导线远离接地点时电弧不能维持,会自动熄灭。间歇电弧电流会引起系统过电压,电弧电流不大时,过电压会限制在系统允许的范围内。
当此系统规模增大时,单相接地的电容电流也迅速增加,当接地点产生电弧
时电弧不易熄灭,间歇电弧电流引起的系统过电压会超过系统允许的范围,造成设备绝缘击穿,构成事故。
为了避免产生系统不能允许过电压,并且使接地点的电弧容易熄灭,在中性点对地加装一个电抗器,让其产生的电感电流抵消接地点的电容电流,使接地点的接地电流下降,过电压幅值降低到系统能够忍受的程度,并利于灭弧。这个电抗器被成为消弧线圈。电感电流大于电容电流的系统成为过补偿系统,电感电流小于电容电流的系统成为欠补偿系统,电感电流等于电容电流的系统成为全补偿系统。没有特殊措施,全补偿系统在系统没有单相接地时会产生谐振,系统无法正常运行。欠补偿系统在系统发生切除一段线路时可能接近全补偿,一般很少使用。过补偿系统在运行时必须使消弧线圈的工作电流超过系统电容电流的10%,并且不超过10A,否则运行相当困难。
许多系统的电源为变压器的三角形接线侧,没有中性点可引出。此时系统应安装可提供零序电流的接地变压器。接地变压器有两种:一种是将变压器星形接线绕组的中性点引出,另一侧绕组接为三角形;另一种是采用曲折形接线变压器(Z形变)。接地变压器只带消弧线圈时容量不小于消弧线圈容量。
通常有多个分接,在相电压下产生不同的电流,以对应不同的系统情况。由于我们并不要求系统单相接地长期运行,消弧线圈的设计一般在最大电流分接运行2小时,或上层油温(充油)绕组温度(干式)不超过允许值。所以消弧线圈必须装设测量上层油温(充油)或绕组温度(干式)的温度计并带有报警接点,无人站应有远传装置。
当系统发生变化(增加或减少线路长度)时消弧线圈的分接应按规定(过补偿、欠补偿)跟随调节。目前电网发展和变化速度较快,至使许多小电流接地系统的对地电容电流变化很快,人工操作频繁。随着电网进一步扩大,电容电流也超过100A,消弧线圈的工作电流超过系统电容电流的10%并且不超过10A的目标无法实现。于是人们开发了自动补偿消弧线圈。简单介绍两种:
一予调谐式(予置式)
它由带有载分接开关的消弧线圈、单相PT、带短路开关的电阻柜及控制器组成。运行前短路开关在分闸位置,控制柜带电后,在消弧线圈上注入一个特殊频率的电压,由单相PT和消弧线圈内附CT测量其中性点电压和电容电流分量,计算系统电容电流值。控制器将消弧线圈分接自动调整到与系统电容电流最接近的分接。由于此时回路串有电阻,谐振不能发生。控制器不停的测量系统电容电流。当系统电容电流