不等式(组)综合应用(习题及答案)
八年级不等式组习题以及答案
一元一次不等式组【基础回顾】1.数轴上与坐标为3的点距离小于7的点的坐标x 满足( ).(A) 0<x-3<7 (B) -7<x-3<7 (C) -7≤x-3≤ 7 (D)x-3<7或x-3>-72.不等式组⎪⎩⎪⎨⎧-≤-->xx x 28432的最小整数解 ( ). (A) –1 (B) 0 (C) 1 (D) 43.若方程组⎩⎨⎧=++=+3414y x k y x 的解满足10<+<y x ,则k 的取值范围是( ).(A) -4<k <1 (B) -4<k <0 (C) 0<k <9 (D) k > -44. 若不等式组⎩⎨⎧>->-022x b a x 的解集是-1<x <1,则(a+b)2006= 5.若不等式组⎩⎨⎧≤->03x a x 有三个整数解,则a 的取 值范围为6.解不等式组 ⎪⎩⎪⎨⎧+≥->+<-x x x x x 312113250104【综合运用】7.设a,b 为正整数,且满足56≤a+b ≤59,91.09.0<<ba ,则b2-a2为( ). (A) 171 (B) 177 (C) 180 (D) 1828.已知a ,b 为常数,若ax+b >0的解集为31<x ,则b x-a <0的解集是( ). (A) x >-3 (B) x <-3 (C) x >3 (D) x <39.如果关于x 的不等式组⎩⎨⎧<-≥-0607n x m x 的整数解仅为1,2,3,那么适合这个不等式组的整数对(m,n)共有( ).(A) 49对 (B ) 42对 (C ) 3 6对 (D )13对10.已知关于x 、y 的方程组⎩⎨⎧=++=-a y x a y x 523的解满足x >y >0,化简=-+a a 311.已知m 是整数且-60<m <-30,关于x,y 的二元一次方程组⎩⎨⎧=---=-my x y x 73532有整数解,求x 2+y 的值.参考答案1. B 2 . B 3. A 4. 1 5.0<a ≤16.-1<x≤2 7. B,由0.9b +b<59,0.91b+b>56,故29<b <32,则b =30,31,可求得a=2 8,故b2-a2=177选(B).8.B 9. B,由得m=1,2,…,7;n=19,20,…24;10.当2<a≤3时,原式=3;当a≥3 时,原式=2a-3.11.30:由,又m,x,y为整数,且15-2m为奇数,所以15-2m为23倍数,而-60<m<-30即75<15-2m <135,故15-2m=175,解得m=-50,y=5,x= 5,故x2+y=30.。
不等式组应用题及答案
不等式组应用题及答案篇一:不等式(组)应用题类型及解答(包含各种题型)一元一次不等式(组)应用题类型及解答1. 分配问题1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。
3、把若干颗花生分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,有多少颗?4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二、比较问题1、某校王校长暑假将带领该校市级三好学生去北京旅游。
甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元)①学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式)②当学生数是多少时,两家旅行社的收费一样???就学生数x 讨论哪家旅行社更优惠。
③就学生数x讨论哪家旅行社更优惠。
2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。
完整版)解不等式组计算专项练习60题(有答案)
完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。
专题07 不等式(组)(专项训练)(解析版)
专题07 不等式(组)一、单选题1.(2021·沙坪坝区·重庆八中九年级)若数a使关于x的不等式组3124(2)53x xx a-≤-⎧⎨-<⎩有且仅有4个整数解,且使关于y的分式方程31222y ay y++--=1有正整数解,则满足条件的a的个数是()A.0个B.1个C.2个D.3个【答案】B【分析】不等式组变形后,根据有且仅有四个整数解确定出a的范围,再表示出分式方程的解,由分式方程有整数解,确定出满足条件a的值.【详解】解:解不等式组3124(2) 53x xx a-≤-⎧⎨-<⎩,解得:435xax≥-⎧⎪+⎨<⎪⎩,∵不等式组3124(2)53x xx a-≤-⎧⎨-<⎩有且仅有4个整数解,∵﹣1<35a+≤0,∵﹣8<a≤﹣3.解分式方程31222y ay y++--=1,得y=102a+,∵y=102a+≠2为整数,∵a≠﹣6,∵所有满足条件的只有﹣4,故选:B.【点睛】本题考查了解分式方程,解一元一次不等式组,熟练掌握解分式方程和一元一次不等式组的方法是解题的关键.2.(2021·珠海市九洲中学九年级)不等式组2131x xx+≤+⎧⎨>⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2x+1≤x+3,得:x≤2,∵不等式组的解集为1<x≤2,故答案选D.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2021·重庆北碚·西南大学附中九年级)若关于x的二次函数21y x ax=-+,当2x-≤时,y随着x的增大而减小,且关于x的分式方程11222axx x-=+--有正数解,那么所有满足条件的整数a的值有()A.6个B.5个C.4个D.3个【答案】B【分析】先解分式方程求出22xa=-,关于x的分式方程有正数解满足2﹣a>0利用二次函数21y x ax=-+,当x≤﹣2时,y随x的增大而减小,求出对称轴x=﹣-2a≥﹣2,求出a的范围﹣4≤a<2,且a≠1即可.【详解】解:∵112 22axx x--= --∵1+1﹣a x=2(2﹣x)∵(2﹣a)x=2∵22xa =-关于x的分式方程有正数解∵22a->0∵2﹣a>0∵a<2但该分式方程当x=2时显然是增根,故当a=1时不符合题意,舍去.∵二次函数21y x ax=-+,当x≤﹣2时,y随x的增大而减小∵其对称轴x=﹣-2a≥﹣2∵a≥﹣4∵﹣4≤a<2,且a≠1符合条件的整数a的值有﹣4、﹣3、﹣2、﹣1、0,共5个故选B.【点睛】本题考查分式方程的解法,抛物线的增减性,不等式的解法,掌握分式方程的解法,抛物线的性质,会求抛物线的对称轴,会利用分式方程的解为正数构造不等式,结合函数的增减性解决问题.4.(2021·陕西师大附中)已知一次函数y=(3﹣2k)x+6(k为常数)的图象经过A(x1,y1),B(x2,y2),若x1>x2,y1<y2,则k的值可能是()A.﹣1B.0C.1D.2【答案】D【分析】利用一次函数y随x的增大而减小的性质,得3﹣2k<0,通过求解一元一次不等式,即可得到答案.【详解】∵一次函数y=(3﹣2k)x+6(k为常数)的图象经过A(x1,y1),B(x2,y2),若x1>x2,y1<y2,∵3﹣2k<0,解得k>32,∵A、B、C不符合题意,D符合题意故选:D.【点睛】本题考查了一次函数、一元一次不等式的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解.5.(2021·山东日照·中考真题)若不等式组643x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( ) A .3m >B .3m ≥C .3m ≤D .3m <【答案】C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式643x x +<-,得:3x >,x m >且不等式组的解集为3x >,3m ∴, 故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(2021·辽宁鞍山·)不等式32x x -的解集在数轴上表示正确的是( )A .B .C .D .【答案】B【分析】 求出不等式的解集,将解集在数轴上表示出来.【详解】解:∵32x x -≤,∵23x x --≤-,∵33x -≤-,解得:1≥x ,∵不等式的解集为:1≥x ,表示在数轴上如图:故选B .【点睛】本题主要考查了解一元一次不等式,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握相关知识进行求解.7.(2021·辽宁朝阳·中考真题)不等式﹣4x ﹣1≥﹣2x +1的解集,在数轴上表示正确的是( ) A .B .C .D .【答案】D【分析】不等式移项,合并,把x 系数化为1,求出解集,表示在数轴上即可.【详解】解:不等式﹣4x ﹣1≥﹣2x +1,移项得:﹣4x +2x ≥1+1,合并得:﹣2x ≥2,解得:x ≤﹣1,数轴表示,如图所示:故选:D .【点睛】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键. 8.(2021·山东滨州·中考真题)把不等式组622154x x x x -<⎧⎪+-⎨≥⎪⎩中每个不等式的解集在同一条数轴上表示出来,正确的为( )A .B .C .D .【答案】B【分析】先解出不等式组中的每一个不等式的解集,然后即可写出不等式组的解集,再在数轴上表示出每一个不等式的解集即可.【详解】 解:622154x x x x -<⎧⎪⎨+-≥⎪⎩①②,解不等式∵,得:x >-6,解不等式∵,得:x ≤13,故原不等式组的解集是-6<x ≤13,其解集在数轴上表示如下:故选:B .【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法,会在数轴上表示不等式组的解集.9.(2021·贵州遵义·)小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x 支签字笔,则下列不等关系正确的是( ) A .5×2+2x ≥30B .5×2+2x ≤30C .2×2+2x ≥30D .2×2+5x ≤30【答案】D【分析】设小明还能买x 支签字笔,则小明购物的总数为22+5x ⨯元,再列不等式即可.【详解】解:设小明还能买x 支签字笔,则:22530,x ⨯+≤故选:.D【点睛】本题考查的是一元一次不等式的应用,确定购物的总金额不大于所带钱的数额这个不等关系是解题的关键.10.(2021·湖南湘潭·中考真题)不等式组12480xx+≥⎧⎨-<⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【分析】先解不等式组,再按照大于向右拐,小于向左拐,有等于号用实心点表示,没有用空心圈表示,画好图即可.【详解】解:12 480 xx+≥⎧⎨-<⎩①②由∵得:1,x≥由∵得:4x<8,解得:x<2,所以不等式组的解集在数轴上表示如下:所以不等式组的解集为:1x≤<2,故选:.D【点睛】本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,注意实心点与空心圈的使用是解本题的易错点.二、填空题11.(2021·辽宁盘锦·)从不等式组3(2)42213x xxx--≤⎧⎪+⎨≥-⎪⎩的所有整数解中任取一个数,它是偶数的概率是________【答案】2 5【分析】首先求得不等式组3(2)42213x xxx--≤⎧⎪+⎨≥-⎪⎩的所有整数解,然后由概率公式求得答案.【详解】解:∵3(2)42213x xxx--≤⎧⎪⎨+≥-⎪⎩①②,由∵得:x≥1,由∵得:x≤5,∵不等式组的解集为:1≤x≤5,∵整数解有:1,2,3,4,5;∵它是偶数的概率是25.故答案为:25.【点睛】此题考查了概率公式的应用以及不等式组的解集.用到的知识点为:概率=所求情况数与总情况数之比.12.(2021·湖北荆门·)如果关于x的不等式组()31213x axx--<⎧⎪+⎨-⎪⎩恰有2个整数解,则a的取值范围是________.【答案】56a <【分析】求出不等式组的解集,得到其取值范围,再根据不等式组有整数解解答.【详解】解:()31213x axx--<⎧⎪⎨+-⎪⎩①②,由∵得,x>a-3;由∵得,x≤4;∵关于x的不等式组恰有2个整数解,∵整数解为3,4,∵2≤a-3<3;∵56a<.故答案为:56a<【点睛】本题考查了一元一次不等式组的整数解,根据x的取值范围,得出x的整数解,然后解不等式即可解出a 的值.13.(2021·湖南常德·中考真题)刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个.【答案】20【分析】设弹珠的总数为x个, 蓝珠有y个,根据总数不超过50个列出不等式求解即可.【详解】解:设弹珠的总数为x个, 蓝珠有y个,根据题意得,{16x+14x+8+y=x①x≤50②,由∵得,x=96+12y7,结合∵得,96+12y7≤50解得,y≤2116,又因为总的弹珠数量、红珠数量和绿珠数量都是整数,所以,刘凯的蓝珠最多有20个.故答案为:20.【点睛】此题主要考查了一元一次不等式的应用,能够找出不等关系是解答此题的关键.14.(2021·辽宁丹东·中考真题)不等式组213xx m-<⎧⎨>⎩无解,则m的取值范围_________.【答案】2m≥【分析】先求出每个不等式的解集,再根据已知得出关于m的不等式,求出不等式的解集即可.【详解】解:213 xx m-<⎧⎨>⎩①②解不等式∵得:2x<由∵式知:x m>∵不等式组无解∵2m≥故答案为:2m≥【点睛】本题主要考查了解一元一次不等式组,能够根据不等式的解集和已知得出关于m的不等式是解题的关键.15.(2021·贵州黔东南·中考真题)不等式组()5231131722x xx x⎧+>-⎪⎨-≤-⎪⎩的解集是__________.【答案】54 2x-<≤【分析】分别求出各不等式的解集,再求出其公共解集.【详解】解:解不等式5x+2>3(x﹣1),得:x52>-,解不等式131722x x-≤-,得:4x≤,则不等式组的解集为542x-<≤,故答案为542x-<≤.【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.三、解答题16.(2021·山东济南·中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【答案】(1)乙种粽子的单价为4元,则甲种粽子的单价为8元;(2)最多购进87个甲种粽子【分析】(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,然后根据“购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个”可列方程求解;(2)设购进m个甲种粽子,则购进乙种粽子为(200-m)个,然后根据(1)及题意可列不等式进行求解.【详解】解:(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,由题意得:1200800+=,502x x解得:4x=,经检验4x=是原方程的解,答:乙种粽子的单价为4元,则甲种粽子的单价为8元.(2)设购进m个甲种粽子,则购进乙种粽子为(200-m)个,由(1)及题意得:()+-≤,m m842001150解得:87.5m≤,∵m为正整数,∵m的最大值为87;答:最多购进87个甲种粽子.【点睛】本题主要考查分式及一元一次不等式的应用,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.17.(2021·西宁市教育科学研究院中考真题)城乡学校集团化办学已成为西宁教育的一张名片.“五四”期间,西宁市某集团校计划组织乡村学校初二年级200名师生到集团总校共同举办“十四岁集体生日”.现需租用A,B两种型号的客车共10辆,两种型号客车的载客量(不包括司机)和租金信息如下表:若设租用A 型客车x 辆,租车总费用为y 元.(1)请写出y 与x 的函数关系式(不要求写自变量取值范围);(2)据资金预算,本次租车总费用不超过11800元,则A 型客车至少需租几辆?(3)在(2)的条件下,要保证全体师生都有座位,问有哪几种租车方案?请选出最省钱的租车方案. 【答案】(1)30012000y x =-+;(2)1辆;(3)租车方案有3种:方案一:A 型客车租1辆,B 型客车租9辆;方案二:A 型客车租2辆,B 型客车租8辆;方案三:A 型客车租3辆,B 型客车租7辆;最省钱的租车方案是A 型客车租3辆,B 型客车租7辆 【分析】(1)根据租车总费用=每辆A 型号客车的租金单价×租车辆数+每辆B 型号客车的租金单价×租车辆数,即可得出y 与x 之间的函数解析式,再由全校共200名师生需要坐车及x ≤10可求出x 的取值范围; (2)由租车总费用不超过11800元,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,取其中的整数即可找出各租车方程,再利用一次函数的性质即可找出最省钱的租车方案; (3)由题意得出()162210200x x +-≥,求出x 的取值范围,分析得出即可. 【详解】解:(1)()90012001030012000y x x x =+-=-+, ∵30012000y x =-+;(2)根据题意,得:3001200011800x -+≤, 解得23x ≥, ∵x 应为正整数, ∵1≥x∵A 型客车至少需租1辆;(3)根据题意,得()162210200x x +-≥, 解得103x, 结合(2)的条件,21033x , ∵x 应为正整数,∵x 取1,2,3, ∵租车方案有3种:方案一:A 型客车租1辆,B 型客车租9辆; 方案二:A 型客车租2辆,B 型客车租8辆;方案三:A 型客车租3辆,B 型客车租7辆. ∵30012000y x =-+,0k < ∵y 随x 的增大而减小, ∵当3x =时,函数值y 最小,∵最省钱的租车方案是A 型客车租3辆,B 型客车租7辆 【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.18.(2021·广西河池·)在平面直角坐标系中,抛物线()214y x =--+与x 轴交于A ,B 两点(A 在B 的右侧),与y 轴交于点C .(1)求直线CA 的解析式;(2)如图,直线x m =与抛物线在第一象限交于点D ,交CA 于点E ,交x 轴于点F ,DG CA ⊥于点G ,若E 为GA 的中点,求m 的值.(3)直线y nx n =+与抛物线交于()11,M x y ,()22,N x y 两点,其中12x x <.若213x x ->且210y y ->,结合函数图象,探究n 的取值范围.【答案】(1)3y x =-+;(2)2m =;(3)01n <<或7n >. 【分析】(1)由()214y x =--+中,得()3,0A ,()1,0B -,()0,3C ,利用待定系数法即可得,直线CA 的解析式为3y x =-+;(2)根据直线x m =与抛物线在第一象限交于点D ,交CA 于点E ,交x 轴于点F ,可得()()2,14D m m --+,且03m <<,(),3E m m -+,(),0F m ,从而3AF m =-,23DE m m =-+,而EAF △是等腰直角三角形,可得AE =,DEG △是等腰直角三角形,即可列)23m m -+=,解得m =2或m =3(舍去);(3)由()214y nx ny x =+⎧⎪⎨=--+⎪⎩得:10x y =-⎧⎨=⎩或234x n y n n =-⎧⎨=-+⎩,∵若31n ->-,即4n <,根据213x x ->且210y y ->,可得()313n --->,且2400n n -+->,即解得01n <<;∵若31n -<-,即4n >,可得:()133n --->且()2040n n --+>,即解得7n >,综合可得结果.【详解】解:(1)在()214y x =--+中, 令0x =得3y =,令0y =得11x =-或23x =, ∵()3,0A ,()1,0B -,()0,3C ,设直线CA 的解析式为y kx b =+,则033k bb =+⎧⎨=⎩,解得13k b =-⎧⎨=⎩,∵直线CA 的解析式为3y x =-+;(2)∵直线x =m 与抛物线在第一象限交于点D ,交CA 于点E ,交x 轴于点F , ∵()()2,14D m m --+,且03m <<,(),3E m m -+,(),0F m , ∵3AF m =-,()()221433DE m m m m =--+--+=-+, ∵()3,0A ,()0,3C ,∵45EAF ∠=︒,EAF △是等腰直角三角形,∵AE ==,45DEG AEF ∠=∠=︒, ∵DEG △是等腰直角三角形, ∵DE =, ∵E 为GA 的中点, ∵GE AE ==,∵)23m m -+=,解得2m =或3m =,∵3m =时,D 与A 重合,舍去, ∵2m =;(3)由()214y nx ny x =+⎧⎪⎨=--+⎪⎩得:10x y =-⎧⎨=⎩或234x n y n n =-⎧⎨=-+⎩, ∵若31n ->-,即4n <, ∵213x x ->且210y y ->,∵()313n --->,且2400n n -+->, 解得01n <<;∵若31n -<-,即4n >,可得:()133n --->且()2040n n --+>,解得7n >.综上所述,n 的取值范围是01n <<或7n >.【点睛】本题考查二次函数综合应用,涉及待定系数法、等腰三角形性质等知识,用含m 的代数式表示相关点坐标和相关线段的长度及分类讨论思想的应用是解题的关键.19.(2021·广西河池·)为庆祝中国共产党成立100周年,某校组织九年级全体师生前往广西农民运动讲习所旧址列宁岩参加“学党史、感党恩、听党话、跟党走”的主题活动,需要租用甲、乙两种客车共6辆.已知甲、乙两种客车的租金分别为450元/辆和300元/辆,设租用乙种客车x 辆,租车费用为y 元. (1)求y 与x 之间的函数关系式(写出自变量的取值范围);(2)若租用乙种客车的数量少于甲种客车的数量,租用乙种客车多少辆时,租车费用最少?最少费用是多少元?【答案】(1)1502700y x =-+(06)x ≤≤;(2)乙种客车2辆时, 租车费用2400 【分析】(1)根据题意列出函数表达式即可; (2)根据一次函数的性质,求得最值. 【详解】(1)设租用乙种客车x 辆,租车费用为y 元, 甲、乙两种客车共6辆,∴租用甲种客车(6)x -辆,60x -≥,0x ≥,06x ∴≤≤,(6)4503001502700y x x x ∴=-⨯+=-+,∴1502700y x =-+(06)x ≤≤;(2) 租用乙种客车的数量少于甲种客车的数量, 即6x x <-, 解得3x <,x 是正整数,x 最大为2,1502700y x =-+,1500-<,∴y 随x 的增大而减小,当x 取最大值时候,y 取得最小值. ∴当2x =时,租车费用最少为150227002400y =-⨯+=.答:租用乙种客车2辆时,租车费用最少,费用为2400元. 【点睛】本题考查了一次函数的应用,一次函数的性质,掌握一次函数的性质是解题的关键.20.(2021·建昌县教师进修学校九年级)某加工厂甲、乙两人加工机器零件,已知甲每天加工的数量是乙每天加工数量的1.2倍,甲加工900个这种零件比乙加工500个这种零件多用10天. (1)求甲、乙每天各加工多少个机器零件?(2)甲、乙两人每天加工这种机器零件的加工费分别是160元和120元,现有1500个这种零件的加工任务,若工厂要求总加工费用不超过7500元,求乙至少加工多少天(取整数).【答案】(1)甲每天加工30个机器零件,乙每天加工25个机器零件;(2)乙至少加工38天 【分析】(1)设乙每天加工x 个零件,则甲每天加工1.2x 个零件,根据甲加工900个这种零件比乙加工500个这种零件多用10天,列分式方程求解; (2)设乙加工m 天,乙加工了15002530m-天,根据加工费分别是160元和120元,总加工费不超过7500元,列不等式,求解即可. 【详解】解:(1)设乙每天加工x 个机器零件,则 900500101.2x x-=, 解方程得25x =经检验,25x =是原方程的解,这时1.230x =答:甲每天加工30个机器零件,乙每天加工25个机器零件 (2)设乙加工m 天,则 15002512016030mm -+⨯≤7500, 解得m ≥1372∵m 取整数,∵m 最小值为38(或m ≥38) 答:乙至少加工38天 【点睛】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大. 21.(2021·银川市第三中学)解不等式组:()2732131234x x x x ⎧+≥-⎪⎨---<⎪⎩【答案】513x -<≤. 【分析】分别解出两个不等式的解集,再将解集表示在数轴上,找到公共解集即可. 【详解】解不等式组:()2732,1312.34x x x x ⎧+≥-⎪⎨---<⎪⎩解:()2732,1312.34x x x x ⎧+≥-⎪⎨---<⎪⎩①② 解不等式∵得13x ≤,解不等式∵得5x >-,将不等式的解集表示在数轴上:所以不等式组的解集为513x -<≤. 【点睛】本题考查解一元一次方程组、将不等式的解集表示在数轴上,是重要考点,掌握相关知识是解题关键. 22.(2021·沙坪坝区·重庆八中九年级)某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价1元.销售量就减少20件. (1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m %,但售价比9月份在(1)的条件下的最高售价减少215m %.结果10月份利润达到3168元,求m 的值. 【答案】(1)售价应不高于15元;(2)60 【分析】(1)设售价应为x 元,根据不等关系:该文具店在9月份销售量不低于1100件,列出不等式求解即可; (2)先求出10月份的进价,再根据等量关系:10月份利润达到3168元,列出方程求解即可. 【详解】解:(1)设售价应为x 元,依题意有 1160﹣20(x ﹣12)≥1100, 解得:x ≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元), 由题意得:1100(1+m %)[15(1﹣215m %)﹣12]=3168,设m%=t,化简得50t2﹣25t﹣3=0,解得:t1=0.6,t2=﹣0.1(舍去),所以m=60.答:m的值为60.【点睛】此题考查了一元一次不等式的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等关系和等量关系,列出不等式和方程,再求解.23.(2021·重庆实验外国语学校九年级)永川黄瓜山,林场万亩、环境优美,山势雄伟、地貌奇特,现已成为全国面积最大的南方早熟梨基地,品种以黄花梨为主,还有黄冠、圆黄、红梨、鄂梨2号等.永川梨香甜,脆嫩,皮薄,多汁.2020年,永川梨入选第一批全国名特优新农产品名录.(1)某水果经销商第一批购进黄花梨5000千克,黄冠梨2000千克,黄冠梨每千克的进价比黄花梨的进价每千克多2元,经销商所花费的费用不超过60000元,求黄花梨每千克进价最多为多少元?(2)在第(1)问最高进价的基础上,随着梨大量成熟,该水果经销商第二批购进的黄花梨的数量比第一批的数量增加了2a%,第二批购进的黄冠梨的数量不变,黄花梨的进价减少了12a%,黄冠梨的进价减少了2a%,第二批购进梨的总成本与第一批购进梨的总成本相同,求a的值.【答案】(1)8元;(2)50【分析】(1) 设黄花梨的进价每千克x元,黄冠梨每千克的进价为(x+2)元,由经销商所花费的费用不超过60000元,得出不等式求解即可;(2)根据题意列出方程式15000(12%)8(1%)200010(12%)600002a a a+⨯-+⨯-=求解即可.【详解】解:(1)设黄花梨的进价每千克x元,黄冠梨每千克的进价为(x+2)元,所以5000x+2000(x+2)≤60000,解得:x≤8,答:黄花梨每千克进价最多为8元;(2)由(1)得:15000(12%)8(1%)200010(12%)600002a a a+⨯-+⨯-=,解得:a=50,(0a=舍去)答:a得值为50.【点睛】本题考查了一元一次不等式得实际应用,一元二次方程得实际应用问题,掌握一元二次方程的实际应用是解题的关键.。
七年级下册数学一元一次不等式组应用题专项练习附答案
七年级下册数学一元一次不等式组应用题专项练习附答案七年级下册数学一元一次不等式组应用题专项练习附答案一、综合题(共11题;共108分)1.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2.某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件?(2)若该超市要使两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.3.为了更好地保护美丽如画的邛海湿地,西昌市污水处理厂决定先购买A,B两种型号的污水处理设备共20台,对邛海湿地周边污水进行处理.每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640 t,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1 080 t.(1)求A,B两种型号的污水处理设备每周每台分别可以处理污水多少吨.(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4 500 t,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少.4.某商店需要购进甲、乙两种商品共130件,其进价和获利情况如下表:(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于3000元,且销售完这批商品后总获利多于1048元,请问有哪些购货方案?5.某校组织夏令营活动,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则刚好坐满;若只租用42座客车,则能少租一辆,而且还有一辆没有坐满,但超过30人,问:(1)该校有多少人参加夏令营活动?(2)已知36座客车每辆租金400元,42座客车每辆租金440元,请你帮该校设计一种最省钱得租车方案。
不等式(组)及分式方程综合应用
典例精解
考点: 分式方程,一元一次不等式(组)的应用
开明中学开学初在金利源商场购进A,B两种品牌的足球, 购买A品牌足球花费了2500元,购买B品牌足球花费了2000 元,且购买A品牌足球的数量是购买B品牌足球数量的2倍, 已知购买一个B品牌足球比购买一个A品牌足球多花30元. (1)求购买一个A品牌、一个B品牌的足球各需多少元;
专题突破
旧知回顾
1、某产品进价120元,共有15件,为了使利润不低 于1000元,那么这件产品的定价至少在多少元?
解:设定价为x元
(x-120) ×15≥1000
2.某人骑一辆电动自行车,如果行驶速度增加5km/h ,那么2h所行驶的路程不少于原来速度2.5h所行驶 的路程.他原来行驶的速度最大是多少?
(3)【延伸题】在(2)条件下,若购买B品牌的足球数 不少于A品牌足球数的1.5倍,求有多少种购买方案?
变式训练
考点: 分式方程,一元一次不等式(组)的应用
为配合“一带一路”国家倡议,某铁路货运集装箱物流 园区正式启动了2期扩建工程.一项地基基础加固处理 工程由A、B两个工程公司承担建设,已知A工程公司 单独建设完成此项工程需要180天.A工程公司单独施 工45天后,B工程公司参与合作,两工程公司又共同施 工54天后完成了此项工程. (1)求B工程公司单独建设完成此项工程需要多少天?
(2)设未知数注意和题目中各个量关系都密切 的量,注意根据问题情况灵活选择设法,如直接 法,间接法,设多元等 (3)求分式方程的解,验根应从两个方面出发: 方程本身和实际意义
(2)开明中学为响应习总书记“足球进校园”的号召,决 定再次购进A,B两种品牌足球共50个.恰逢金利源商场对两 种品牌足球的售价进行调整,A品牌足球的售价比第一次购 买时提高了8%,B品牌足球按第一次购买时售价的9折出售. 如果这所中学此次购买A,B两种品牌足球的总费用不超过 3260元,那么开明中学此次最多可购买多少个B品牌足球?
一元一次不等式(组)应用题及练习(含答案)
类型一例1.*校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,则正好坐满;假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游"(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】此题的关键语句是:"假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人〞.理解这句话,有两层不等关系.(1)租用36座客车*辆的座位数小于租用42座客车(*-1)辆的座位数.(2)租用36座客车*辆的座位数大于租用42座客车(*-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车*辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意*应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,假设每人分4个,则剩下9个橘子;假设每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李〔药品、器械〕,租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车*辆,请你设计所有可能的租车方案;(2) 假设甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.*市局部地区遭受了罕见的旱灾,"旱灾无情人有情〞.*单位给*乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现方案租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.〔3〕在〔2〕的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:〔1〕设饮用水有*件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.〔2〕设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960〔元〕;②3×400+5×360=3000〔元〕;③4×400+4×360=3040〔元〕.所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积〔单位:亩〕种植B类蔬菜面积〔单位:亩〕总收入〔单位:元〕甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵ *种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积〔两类蔬菜的种植面积均为整数〕,求该种植户所有租地方案.2、*公司为了更好得节约能源,决定购置一批节省能源的10台新机器。
一元一次不等式应用题分类训练(含答案)
一元一次不等式(组)解应用题精讲及分类练习识别不等式(组)类应用题的几个标志,供解题时参考.一.下列情况列一元一次不等式解应用题1.应用题中只含有一个不等量关系,文中明显存在着不等关系的字眼,如“至少”、“至多”、“不超过”等.例1.为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电” 价),22:00至次日8:00每千瓦时0.28元(“谷电” 价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.当“峰电”用量不超过...每月总电量的百分之几时,使用“峰谷”电合算? 分析:本题的一个不等量关系是由句子“当‘峰电’用量不超过...每月总电量的百分之几时,使用‘峰谷’电合算”得来的,文中带加点的字“不超过...”明显告诉我们该题是一道需用不等式来解的应用题. 解:设当“峰电”用量占每月总用电量的百分率为x 时,使用“峰谷”电合算,月用电量总量为y.依题意得0.56xy+0.28y(1-x)<0.53y.解得x <89℅答:当“峰电”用量占每月总用电量的89℅时,使用“峰谷”电合算.2.应用题仍含有一个不等量关系,但这个不等量关系不是用明显的不等字眼来表达的,而是用比较隐蔽的不等字眼来表达的,需要根据题意作出判断.例2.周未某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一段路程所用的时间之比为2:3.⑴直接写出甲、乙两组行进速度之比;⑵当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米.试问山脚离山顶的路程有多远?⑶在题⑵所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B 处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件).解:⑴甲、乙两组行进速度之比为3:2.⑵设山腰离山顶的路程为x 千米,依题意得方程为232.1=-x x , 解得x =6.3(千米).经检验x =6.3是所列方程的解,答:山脚离山顶的路程为6.3千米.⑶可提问题:“问B 处离山顶的路程小于多少千米?”再解答如下:设B 处离山顶的路程为m千米(m>0)甲、乙两组速度分别为3k 千米/时,2k 千米/时(k >0)依题意得k m 3<km 22.1-,解得m<0.72(千米). 答:B 处离山顶的路程小于0.72千米.说明:本题由于所要提出的问题被两个条件所限制,因此,所提问题应从句子“乙组从A 处继续登山,甲组到达山顶后休息片刻....,再从原路下山,并且在山腰B 处与乙组相遇”去突破,若注意到“甲组到达山顶后休息片刻....”中加点的四个字,我们就可以看出题中隐含着这样一个不等关系:乙组从A 处走到B 处所用的时间比甲组从山顶下到B 处所用的时间来得少,即可提出符合题目要求的问题且可解得正确的答案.二.下列情况列一元一次不等式组解应用题1.应用题中含有两个(或两个以上,下同)不等量的关系.它们是由两个明显的不等关系体现出来,一般是讲两件事或两种物品的制作、运输等.例3.已知服装厂现有A 种布料70米,B 种布料52米,现计划用这两种面料生产M,N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料0.6米,B 种布料0.9米,可获利45元;做一套N 型号的时装需用A 种布料1.1米,B 种布料0.4米,可获利润50元.若设生产N 型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y 元.(1)求y(元)与x(套)的函数关系式,并求出自变量x 的取值范围;(2)服装厂在生产这批时装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少?分析:本题存在的两个不等量关系是:①合计生产M 、N 型号的服装所需A 种布料不大于70米;②合计生产M 、N 型号的服装所需B 种布料不大于52米.解:(1)=y ()x x 508045+-,即36005+=x y .依题意得⎩⎨⎧≤+-≤+-.524.0)80(9.0;701.1)80(6.0x x x x 解之,得40≤x ≤44.∵x 为整数,∴自变量x 的取值范围是40,41,42,43,44.(2)略2.两个不等关系直接可从题中的字眼找到,这些字眼明显存在着上下限.例4.某校为了奖励在数学竞赛中获胜的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足..3.本..设该校买了m 本课外读物,有x 名学生获奖.请回答下列问题:(1)用含x 的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.分析:不等字眼“不足..3.本.”即是说全部课外读物减去5(x -1)本后所余课外读物应在大于等于0而小于3这个范围内.解:(1)m=3x+8(2)由题意,得⎩⎨⎧<--+≥--+.3)1(5830)1(583x x x x∴不等式组的解集是:5<x ≤213 ∵x 为正整数,∴x=6.把x=6代入m=3x+8,得m=26.答:略例5.某城市的出租汽车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,每行驶1千米加1.2元(不足1千米也按1千米计).现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少?分析:本题采用的是“进一法”,对于不等关系的字眼“不足1千米也按1千米计”,许多同学在解题时都视而不见,最终都列成了方程类的应用题,事实上,顾客所支付的17.2元车费是以上限11公里来计算的,即顾客乘车的范围在10公里至11公里之间.理论上收费是按式子10+1.2(x-5)来进行的,而实际收费是取上限值来进行的.解:设从甲地到乙地的路程大约是x 公里,依题意,得10+5×1.2<10+1.2(x-5)≤17.2解得10<x ≤11答:从甲地到乙地的路程大于10公里,小于或等于11公里.用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。
备战中考数学分点透练真题不等式(组)及不等式的应用(解析版)
第七讲不等式(组)及不等式的应用命题点1 不等式的性质1.(2021•常德)若a>b,下列不等式不一定成立的是()A.a﹣5>b﹣5B.﹣5a<﹣5b C.>D.a+c>b+c【答案】C【解答】解:A.∵a>b,∴a﹣5>b﹣5,故本选项不符合题意;B.∵a>b,∴﹣5a<﹣5b,故本选项不符合题意;C.∵a>b,∴当c>0时,;当c<0时,,故本选项符合题意;D.∵a>b,∴a+c>b+c,故本选项不符合题意;故选:C.2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1B.2C.3D.4【答案】A【解答】解:a>b,∴当a>0时,a2>ab,当a=0时,a2=ab,当a<0时,a2<ab,故①结论错误∵a>b,∴当|a|>|b|时,a2>b2,当|a|=|b|时,a2=b2,当|a|<|b|时,a2<b2,故②结论错误;∵a>b,b<0,∴a+b>2b,故③结论错误;∵a>b,b>0,∴a>b>0,∴,故④结论正确;∴正确的个数是1个.故选:A.3.(2021•苏州)若2x+y=1,且0<y<1,则x的取值范围为.【答案】0<x<【解答】解:由2x+y=1得y=﹣2x+1,根据0<y<1可知0<﹣2x+1<1,∴﹣1<﹣2x<0,∴0<x<.故答案为:0<x<.命题点2 一元一次不等式(组)的解法类型一不等式(组)的解法及解集表示4.(2021•吉林)不等式2x﹣1>3的解集是()A.x>1B.x>2C.x<1D.x<2【答案】B【解答】解:2x﹣1>3,2x>3+1,2x>4,x>2.故选:B.5.(2021•临沂)不等式<x+1的解集在数轴上表示正确的是()A.B.C.D.【答案】B【解答】解:去分母,得:x﹣1<3x+3,移项,得:x﹣3x<3+1,合并同类项,得:﹣2x<4,系数化为1,得:x>﹣2,将不等式的解集表示在数轴上如下:故选:B.6.(2021•湘潭)不等式组的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解答】解:解不等式x+1≥2,得:x≥1,解不等式4x﹣8<0,得:x<2,则不等式组的解集为1≤x<2,将不等式组的解集表示在数轴上如下:故选:D.7.(2021•凉山州)解不等式:﹣x<3﹣.【答案】x>﹣2【解答】解:去分母,得:4(1﹣x)﹣12x<36﹣3(x+2),去括号,得:4﹣4x﹣12x<36﹣3x﹣6,移项、合并,得:﹣13x<26,系数化为1,得:x>﹣2.8.(2021•宁夏)解不等式组:.【答案】x>2【解答】解:解不等式4(x﹣1)>3x﹣2,得:x>2,解不等式+≥1,得:x≥1,则不等式组的解集为x>2.9.(2021•天津)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】x≥﹣1;x≤3,﹣1≤x≤3【解答】解:(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x≤3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣1≤x≤3.故答案为:x≥﹣1,x≤3,﹣1≤x≤3.10.(2019•凉山州)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)【答案】(1)﹣1<x<3.(2)x>1或x<﹣4【解答】解:(1)原不等式可化为:①或②.由①得,空集,由②得,﹣1<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3.(2)由<0知①或②,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<0的解集为x>1或x<﹣4.类型二不等(组)的特殊解11.(2021•南充)满足x≤3的最大整数x是()A.1B.2C.3D.4【答案】C【解答】解:满足x≤3的最大整数x是3,故选:C.12.(2021•邵阳)下列数值不是不等式组的整数解的是()A.﹣2B.﹣1C.0D.1【答案】A【解答】解:,解不等式①,得:x>﹣,解不等式②,得:x≤1,∴不等式组的解集为:﹣<x≤1,∴不等式组的整数解为﹣1,0,1,故选:A.命题点3 含参不等式(组)问题13.(2020•潍坊)若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.0≤a≤2B.0≤a<2C.0<a≤2D.0<a<2【答案】C【解答】解:解不等式3x﹣5≥1得:x≥2,解不等式2x﹣a<8得:x<,∴不等式组的解集为:2≤x<,∵不等式组有三个整数解,∴三个整数解为:2,3,4,∴4<≤5,解得:0<a≤2,故选:C.14.(2021•日照)若不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【答案】C【解答】解:解不等式x+6<4x﹣3,得:x>3,∵x>m且不等式组的解集为x>3,∴m≤3,故选:C.15.(2021•黑龙江)关于x的一元一次不等式组有解,则a的取值范围是.【答案】a<6【解答】解:解不等式2x﹣a>0,得:x>,解不等式3x﹣4<5,得:x<3,∵不等式组有解,∴<3,解得a<6,故答案为:a<6.16.(2021•丹东)不等式组无解,则m的取值范围.【答案】m≥2.【解答】解:,解不等式①得:x<2,解不等式②x>m,∵不等式组无解∴m≥2,故答案为:m≥2.命题点4 不等式的实际应用17.(2020•朝阳)某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?()A.8B.6C.7D.9【答案】B【解答】解:设可以打x折出售此商品,由题意得:240×,解得x≥6,故选:B.命题点5 方程与不等式结合的实际应用18.(2020•资阳)新冠肺炎疫情发生以来,国家紧急调拨了大量物资驰援武汉,全国各地的民间组织也积极捐赠,我市的民间组织捐赠了一批医用物资即将运往武汉,现有A、B 两种车型,A种型的载重量比B种车型的载重量多5吨,2辆A种车型与4辆B种车型的总载重量为100吨.(1)求A、B两种车型的载重量分别是多少吨?(2)现有医用物资264吨,计划用A、B两种车型共15辆将这批医用物资一次性的运往武汉,那么至少安排A种车型多少辆?【答案】(1)A种车型的载重量是20吨,B种车型的载重量是15吨(2)a的最小值为8,【解答】解:(1)设1辆A型车的载重量是x吨,1辆B型车的载重量是y吨,依题意,,解得.答:A种车型的载重量是20吨,B种车型的载重量是15吨;(2)设安排A种车型a辆,则B种种车型(15﹣a)辆,由题意得,20a+15(15﹣a)≥264,解得a,∵a为整数,∴a的最小值为8,答:至少安排A种车型8辆,才能将这批医用物资一次性的运往武汉.19.(2020•大庆)期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元.已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过上一次总费用的90%,求至多需要购买多少个甲种笔记本?并求购买两种笔记本总费用的最大值.【答案】(1)甲种笔记本需要10元,购买一个乙种笔记本需要5元(2)m=21时,w取得最大值,最大值=4×21+140=224.【解答】解:(1)设购买一个甲种笔记本需要x元,购买一个乙种笔记本需要y元,依题意,得:,解得:.答:购买一个甲种笔记本需要10元,购买一个乙种笔记本需要5元.(2)设购买m个甲种笔记本,则购买(35﹣m)个乙种笔记本,依题意,得:(10﹣2)m+5×0.8(35﹣m)≤250×90%,解得:m≤21,又∵m为正整数,∴m可取的最大值为21.设购买两种笔记本总费用为w元,则w=(10﹣2)m+5×0.8(35﹣m)=4m+140,∵k=4>0,∴w随m的增大而增大,∴当m=21时,w取得最大值,最大值=4×21+140=224.答:至多需要购买21个甲种笔记本,购买两种笔记本总费用的最大值为224元.20.(2021•长沙)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?【答案】(1)22 (2)23【解答】解:(1)设该参赛同学一共答对了x道题,则答错了(25﹣1﹣x)道题,依题意得:4x﹣(25﹣1﹣x)=86,解得:x=22.答:该参赛同学一共答对了22道题.(2)设参赛者需答对y道题才能被评为“学党史小达人”,则答错了(25﹣y)道题,依题意得:4y﹣(25﹣y)≥90,解得:y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.21.(2021•黑龙江)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?【答案】(1)1件甲种农机具需要1.5万元,1件乙种农机具需要0.5万元(2)m可以取5,6,7 (3)最少资金是10万元【解答】解:(1)设购进1件甲种农机具需要x万元,1件乙种农机具需要y万元,依题意得:,解得:.答:购进1件甲种农机具需要1.5万元,1件乙种农机具需要0.5万元.(2)设购进甲种农机具m件,则购进乙种农机具(10﹣m)件,依题意得:,解得:4.8≤m≤7,又∵m为整数,∴m可以取5,6,7,∴共有3种购买方案,方案1:购进甲种农机具5件,乙种农机具5件;方案2:购进甲种农机具6件,乙种农机具4件;方案3:购进甲种农机具7件,乙种农机具3件.(3)方案1所需资金为1.5×5+0.5×5=10(万元);方案2所需资金为1.5×6+0.5×4=11(万元);方案3所需资金为1.5×7+0.5×3=12(万元).∵10<11<12,∴购买方案1所需资金最少,最少资金是10万元.。
不等式组的练习题及答案
不等式组的练习题及答案不等式组是数学中的一个重要概念,它涉及到多个不等式的组合和求解。
以下是一些不等式组的练习题及其答案,供学生练习和教师参考。
练习题1:解不等式组:\[ \begin{cases}x + 2 > 0 \\3 - x \geq 0\end{cases} \]答案:首先解第一个不等式 \( x + 2 > 0 \),得到 \( x > -2 \)。
接着解第二个不等式 \( 3 - x \geq 0 \),得到 \( x \leq 3 \)。
综合两个不等式的解,不等式组的解集是 \( -2 < x \leq 3 \)。
练习题2:若不等式组:\[ \begin{cases}x - 5 \leq 7 \\2x + 1 > 10\end{cases} \]求 \( x \) 的取值范围。
答案:解第一个不等式 \( x - 5 \leq 7 \),得到 \( x \leq 12 \)。
解第二个不等式 \( 2x + 1 > 10 \),得到 \( x > 4.5 \)。
不等式组的解集是 \( 4.5 < x \leq 12 \)。
练习题3:解不等式组:\[ \begin{cases}3x - 1 \geq 5 \\x + 4 < 7\end{cases} \]答案:解第一个不等式 \( 3x - 1 \geq 5 \),得到 \( x \geq 2 \)。
解第二个不等式 \( x + 4 < 7 \),得到 \( x < 3 \)。
不等式组的解集是 \( 2 \leq x < 3 \)。
练习题4:若不等式组:\[ \begin{cases}-3x + 2 \leq 4 \\5 - 2x > 3x - 5\end{cases} \]求 \( x \) 的解集。
答案:解第一个不等式 \( -3x + 2 \leq 4 \),得到 \( x \geq -\frac{2}{3} \)。
历年不等式(组)的应用题不等式组应用题及答案
历年不等式(组)的应用题不等式组应用题及答案2008年不等式(组)的简单应用1.某学校准备添置一些“中国结”挂在教室。
若到商店去批量购买,每个“中国结”需要10元;若组织一些同学自己制作,每个“中国结”的成本是4元,无论制作多少,另外还需共付场地租金200元。
亲爱的同学,请你帮该学校出个主意,用哪种方式添置“中国结”的费用较节省?2.1月底,某公司还有11000千克椪柑库存,这些椪柑的销售期最多还有60天,60天后库存的椪柑不能再销售,需要当垃圾处理,处理费为0.05元/吨。
经测算,椪柑的销售价格定为2元/千克时,平均每天可售出100千克,销售价格降低,销售量可增加,每降低0.1元/千克,每天可多售出50千克。
(1)如果按2元/千克的价格销售,能否在60天内售完这些椪柑?按此价格销售,获得的总毛利润是多少元((2)设椪柑销售价格定为x)?元/千克时,平均每天能售出y千克,求y关于x的函数解析式;如果要在2月份售完这些椪柑(2月份按28天计算),那么销售价格最高可定为多少元/千克(精确到0.1元/千克)?3.一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对道题.(1)根据所给条件,完成下表:(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?5.为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化..绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.(1)种植草皮的最小面积是多少?(2)种植草皮的面积为多少时绿化总费用最低?最低费用为多少6.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可...以预订这三种球类门票各多少张?7. 荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.8.2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A 种船票的数量不少于B种船票数量的一半.若设购买A种船票x 张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?9.某公司有型产品40件,型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:(1)设分配给甲店型产品件,这家公司卖出这100件产品的总利润为(元),求关于的函数关系式,并求出的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店型产品让利销售,每件让利元,但让利后型产品的每件利润仍高于甲店型产品的每件利润.甲店的型产品以及乙店的型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?10.某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品,经过了解得知,该超市的A,B两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本。
不等式应用题(带答案)
不等式应用题(带答案)不等式应用题1. 某商场正在举行打折活动,标有原价为x元的商品打7折出售,小明买了一个售价为y元的商品打了折后用了z元购买,设不等式x>y>z,请计算头一个不等式。
解: 原价为x元的商品打7折后的价格为0.7x元,由题意可知小明买的商品在打折后售价为0.7x元,且小明用z元购买了该商品。
根据不等式的性质,可得到如下关系式:0.7x > z即,x > z/0.7所以,头一个不等式为x > z/0.7。
2. 一辆汽车每小时以v公里的速度行驶,已知行驶t小时后行驶了s 公里,求不等式v < s/t。
解: 汽车行驶t小时后行驶的路程为vt公里,已知行驶了s公里,则可得到如下关系式:vt > s即,v > s/t所以,不等式为v > s/t。
3. 小明参加了一场马拉松比赛,他总共用时t小时,已知他的平均速度为v千米每小时,求不等式t > d/v,其中d为比赛的总路程。
解: 小明参加马拉松比赛用时t小时,根据速度的定义可知,平均速度v等于总路程d除以用时t,即:v = d/t由于不等式是要求t > d/v,将v的表达式代入可得:t > d/(d/t)化简后得到:t > t,该不等式恒成立。
所以,不等式为t > d/v。
4. 一个三角形的两边长分别为a和b,夹角为θ (0° < θ < 180°),求不等式a + b > 2absin(θ)。
解: 根据三角形的余弦定理可得 a² = b² + c² - 2bc cos(θ),将此式代入不等式中可得:a +b > 2ab sin(θ) + 2bc cos(θ)又因为sin(θ) ≤ 1,所以2ab sin(θ) ≤ 2ab,化简后得到:a +b > 2bc cos(θ)由于夹角θ位于 (0°, 180°) 之间,所以cos(θ) > 0,即2bc cos(θ) > 0。
人教版七年级数学下册 第九章:不等式(组)和方程(组)的综合应用(含答案)
不等式(组)与方程(组)的综合应用1.方程组或不等式出现字母系数时可将字母当数字,解方程组成不等式的参数解。
2.解决不等式(组)或方程(组)的问题可运用整体思想、转化思想、消元思想。
【例1】若方程组3133x y k x y +=+⎧⎨+=⎩解为x ,y ,且2<k <4,则x -y 的取值范围是( ) A.102x y -<<B.01x y -<<C.31x y ---<<D.11x y --<<【例2】若关于x ,y 的二元一次方程组323225x y m x y m -=+⎧⎨-=-⎩的解满足x >y ,求m 的取值范围。
【例3】若2a +b =12,其中a ≥0,b ≥=0,又P=3a +2b ,试确定P 的最小值和最大值。
【例4】若关于x ,y 的二元一次方程组25x y a x y +=⎧⎨-=⎩的解满足1x >,1y ≤,其中a 是满足条件的最小整数,求a 2+1的值。
【例5】已知关于x,y的方程组2232 4x y mx y m-=⎧⎨+=+⎩①②的解满足不等式组3050x yx y+≤⎧⎨+⎩>,求满足条件的m的整数值。
1.已知关于x,y的方程组2121x y ax y a-=+⎧⎨+=-⎩的解满足不等式21x y->,求a的取值范围。
2.已知x、y同时满足三个条件:①324x y p-=-,②4x-3y=2+p,③x>y,则()A.p>-1B.p<1C.1p-< D.1p>3.若30x y z++=,350x y z+-=,x、y、z皆为非负数,求M=5x+4y+2z的取值范围。
4.在关于x ,y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值在数轴上应表示为( )5.已知关于x ,y 的方程组213252x y k x y k +=+⎧⎨-=-⎩的解满足5035x y x y -⎧⎨-+≥-⎩>,求整数k 的值。
不等式综合应用
不等式复习1.某种植物适宜生长在温度在18℃~20℃的山区,已知山区海拔每升高100米,气温下降0.5℃,现在测得山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)2.足球比赛的记分规则为:胜一场得3分,平一场得1,输一场得0分.一去足球队在某个赛季中共需比赛14场,现已经比赛了8场,输了1场,得17.请问:(1)前8场比赛中,这去球队共胜了多少场?(2)这去球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的分析,这去球队打满14场比赛,得分不低于29分,就可以达到预期的目标,请你分析一下,在后面的6场比赛中,这去球队至少要胜几场,才能达到预期目标?3.我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售。
按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满。
根据下表提供的信息,解答以下问题:(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,用含x的式子表示y;(2)如果装运每种脐橙的车辆数都不少于6辆,,如果你是水果老板,请你写出运送方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值4.现有一个种植总面积为540m 2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:(1)若设草莓共种植了x 垄,通过计算说明共有几种种植方案?分别是哪几种?(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少? 解答1略2.(1)5场;(2)打满14场比赛最高能得17(148)335+-⨯=分; (3)在以后的比赛中这个球队至少要胜3场.3.解:(1)由题意可知:装运C 种脐橙的车辆数为(20-x-y),据题意可列如下方程: 6x+5y+4(20-x-y)=100 解得y=-2x+20 ∴y与x 之间的函数关系式为:y=-2x+20 ·························(3分)(2)由题意可得如下不等式组:⎪⎩⎪⎨⎧≥--≥≥62066y x y x即⎪⎩⎪⎨⎧≥+---≥+-≥6)202(2062026x x x x解得6≤x ≤7因为x 是正整数,所以x 的值可为6;7;共两个值,因而有两种安排方案。
不等关系综合应用,附练习题含参考答案
不等关系综合应用不等式的学习,类比等式的学习,包括定义、性质、解法、解集的数轴表示及实际应用等部分.请读一读下面的内容,并做题.⎧⎧⎪⎪⎪⎨⎪⎪⎪⎩⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎨⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩⎪⎪⎩定义不等式性质解和解集、数轴表示定义一元一次不等式解法解集的数轴表示一元一次不等式(组)定义解法解集的数轴表示一元一次不等式组数学应用应用实际应用一元一次不等式与一次函数、方程的关系解题策略一元一次不等式(组)是探求不等关系的基本工具,主要应用在复杂不等式(含参、高次、多元等)的处理,以及与其他知识组合等方面.1. 复杂不等式的处理①含参不等式(组)解题步骤:解不等式(组);确定大致范围;验证端点值.②高次不等式:降次,转化成一元一次不等式(组)求解.2. 知识之间组合①方程与不等式组合:方程变形代入不等式,转化成一元一次不等式(组)求解. ②一次函数与不等式组合: 利用数形结合求解.例1:若关于x 的一元一次不等式组只有一个整数解,则m 的取值范围是_________________. 【思路分析】含参不等式(组)解题步骤: ① 解不等式(组) ② 确定大致范围 ③ 验证端点值 【具体操作】41321x xx m+⎧>+⎪⎨⎪+>⎩①解不等式(组)解得②确定大致范围由数轴可得0<m -1<1. ③验证端点值当m -1=0时,符合题意; 当m -1=1时,不符合题意. 综上,m 的取值范围是1≤m <2.例2:若,,则b 的取值范围是_______. 【思路分析】方程与不等式结合的问题,一般考虑方程变形代入不等式, 本质是消元. 【具体操作】根据目标“求b 的取值范围”,把方程变形为a =b +2, 代入不等式组求解. 把a =b +2代入不等式组,得解得.练习题1. 若关于x 的不等式组有解,则a 的取值范围是_______________.2. 若关于x 的不等式组无解,则a 的取值范围是_______________.3. 若不等式x a <只有4个正整数解,则a 的取值范围是_________.4. 若不等式x a ≥只有2个负整数解,则a 的取值范围是_________.5. 若关于x 的一元一次不等式组721x mx <⎧⎨-<⎩的整数解共有3个,则m 的取值范围是( )A .67m <<B .67m <≤C .67m ≤≤D .67m <≤21x x m <⎧⎨>-⎩2a b -=123a b -<+<2a b -=12(2)3b b -<++<5133b -<<-1240x ax +>⎧⎨-⎩≤4050a x x a -⎧⎨+->⎩≥6. 若关于x 的不等式组只有两个整数解,则a 的取值范围是_______________.7. 已知a ,b 为实数,则解集可以为的不等式组是( )A .B .C .D .8. 阅读下列材料,并解答问题.例题:解一元二次不等式.解:把因式分解,得,又∵, ∴,由有理数的乘法法则“两数相乘,同号得正”得, ①或②解不等式组①得,解不等式组②得,∴的解集为或. ∴原不等式的解集为或.仿照上面的解法解不等式. (1)若,则x 的取值范围是______________. (2)若,则x 的取值范围是_____________.9. 已知,,则a 的取值范围是___________.10. 阅读下列材料,并解答问题.例题:已知2x y -=,且1x >,0y <,试确定x y +的取值 范围.解:∵2x y -=∴2y x =- ∵0y <∴20x -<∴2x < ∵1x >∴12x <<∵222x y x x x +=+-=-∴02x y <+< 请按照上述方法,完成下列问题:(1)已知3x y -=,且2x >,1y <,则2y x -的取值范围是____________________.(2)已知1x <-,1y >,若2x y a a -=<-()成立,求x y +的取值范围(结果用含a 的式子表示).23335x x x a >-⎧⎨-⎩≥22x -<<11ax bx >⎧⎨>⎩11ax bx >⎧⎨<⎩11ax bx <⎧⎨>⎩11ax bx <⎧⎨<⎩2620x x -->262x x --262(32)(21)x x x x --=-+2620x x -->(32)(21)0x x -+>320210x x ->⎧⎨+>⎩320210x x -<⎧⎨+<⎩23x >12x <-(32)(21)0x x -+>23x >12x <-23x >12x <-2210x x +-≥2230x x >-++4a b +=23a b a <<11. 已知直线l 1:1y k x b =+与直线l 2:2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b <+的解集为( ) A .1x <- B .1x >- C .2x >D .2x <12. 如图,函数2y x =和4y ax =+的图象交于点A (m ,3),则不等式24x ax <+的解集为( ) A .32x <B .3x <C .32x >D .3x >第12题图 第13题图13. 如图,直线1y mx =与直线2y kx b =+交于点P (2,1),则不等式组12mx kx b -<<+的解集为________________.14. 解下列不等式组(要求利用数轴求解集):(1)213821x x x +>-⎧⎨--⎩≤;(2)211132x +-<-≤.15. 若关于x 的一元一次不等式组122x ax x <⎧⎨-<-⎩无解,则a 的取值范围是______________.16. 如图,直线经过点A (0,2),且与直线交于点P (1,m ),则不等式组的解集是( )A .B .C .D .1y kx b =+2y mx =2mx kx b mx -<+<12x <<02x <<23x <<13x <<第14题图 第15题图17. 已知函数,,的图象如图所示,若无论x 取何值,y总取,,中的最小值,则y 的最大值为( )A .B .C .D .参考答案1. 2. 3. 4. 5.D 6. 7.D 8.(1)或;(2) 9. 10.(1);(2)()11.B 12.A 13. 14.(1);(2)15. 16.A 17.B巩固练习1. 若关于x 的不等式组有且只有3个整数解,则a 的取值范围是_________________.2. 若23a b +=-,1345a b <+<,则b 的取值范围是_________.3. 已知函数,,的图象如图所示,若无论x 取何值,y 总取,,中的最小值,则y 的最大值为_____________.1y x =2113y x =+3455y x =-+1y 2y 3y 32371760172593a < 1a ≤45a <≤32a -<-≤52a --≤<12x ≥1x -≤13x -<<413a <<725y x -<-<-22a x y a +<+<--2a <-12x -<<3x ≥514x <-≤ 1a ≤31321x a x -⎧⎨->-⎩≥1y x =221y x =-31y x =-+1y 2y 3y4. 若关于x 的不等式组无解,则m 的取值范围是__________________.5. 若关于x 的不等式组的解集是,则a 的取值范围是__________________.6. 若关于x 的不等式组只有3个整数解,则a 的取值范围是___________.7. 若关于x 的不等式组只有2个整数解,则a 的取值范围是___________.8. 若关于x 的不等式组的整数解仅有2和3,则a 的取值范围是___________,b 的取值范围是___________.9. 已知a ,b 为实数,关于x 的不等式组的解集在数轴上的表示如图所示,则这个不等式组可能是( ) A .B .C .D .10. 若,且,则b 的取值范围是______________________.11. 已知实数x ,y 满足,且,,若,则k 的取值范围是______________.12. 若,则x 的取值范围是__________________.13. 若,则x 的取值范围是___________________.14. 如图,已知直线经过点A (-2,-1)和点B (-3,0),则关于x 的不等式组的解集为______________.第14题图 第15题图15. 已知函数,,的图象如图所示,若无论x 取何值,y 总1<21x mx m -⎧⎨+⎩≥13240x ax ->⎧⎨-⎩≤2x ≤10521x a x --⎧⎨->-⎩≥2031x a x -⎧⎨->-⎩≥3123x a x b >-⎧⎨-⎩≤11ax bx >-⎧⎨>-⎩11ax bx >-⎧⎨<-⎩11ax bx <-⎧⎨>-⎩11ax bx <-⎧⎨<-⎩2a b -=1533a b a -<-≤234x y -=1x -≥2y <k x y =-(1)(3)0x x -+>2230x x --<y kx b =+102x kx b <+<1y x =22y x =-+321y x =+取y 1,y 2,y 3中的最大值,则y 的最小值为______________.16. 一次函数与方程的关系(1)一次函数的解析式就是一个二元一次方程; (2)点B 的横坐标是方程_____________的解;(3)点C 的坐标(x ,y )中x ,y 的值是方程组______________的解.17. 一次函数与不等式的关系(1)函数y =kx +b 的函数值y 大于0时,自变量x 的取值范围就是不等式的解集;(2)函数y =kx +b 的函数值y 小于0时,自变量x 的取值范围就是不等式_______________的解集;(3)如果点C 的坐标为(1,4),那么不等式的解集是______________________.【参考答案】➢ 巩固练习 1.2.3. 134. m ≥05. 5a <-6. 21a -<-≤7. 24a <≤8. 47a <≤,35b <≤9. A 10. 4b ≥ 11. 13k <≤ 12. 13x x ><-或 13. 13x -<< 14. 32x -<<- 15.3516. (2)0kx b +=(3)11y k x b y kx b =+⎧⎨=+⎩17. (1)0kx b +>(2)0kx b +< (3)1x ≤11kx b k x b ++≥74a -<-≤75b -<<-。
七年级不等式(组)应用专题试题及答案
七年级不等式(组)应用专题1.(2011江苏无锡)某企业在生产甲、乙两种节能产品时需用A 、B 两种原料,生产每吨节能产品所需原料的数量如下表所示:)销售甲、乙两种产品的利润m (万元)与销售量n (吨)之间的函数关系如图所示.已知该企业生产了甲种产品x 吨和乙种产品y 吨,共用去A 原料200吨. (1)写出x 与y 满足的关系式; (2)为保证生产的这批甲种、乙种产品售后的总利润不少于220万元,那么至少要用B 原料多少吨?【答案】解:(1)3x+y=200.(2)销售每吨甲种产品的利润为3万元,销售每吨乙种产品的利润为2万元, 由题意,得3x+2y ≥220, 200-y+2y ≥220,∴y ≥20 ∴B 原料的用量为3x+5y=200-y+5y=200+4y ≥280 答:至少要用B 原料280吨.2.(2011四川宜宾)小明利用课余时间回收废品,将卖得的钱去购买5本大小不同的两种笔记本,要求共花钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表. 为了节约资金,小明应选择哪一种购买方案?请说明理由.【答案】解:设买大笔记x 本,由题意得:解得:1≤x ≤3又∵x 为正整数,∴x=1,2,3 所以购买的放案有三种:方案一:购买大笔记本1本,小笔记本4本; 方案二:购买大笔记本2本,小笔记本3本; 方案三:购买大笔记本3本,小笔记本2本; 花费的费用为:方案一:6×1+5×4=26元;方案二:6×2+5×3=27元; 方案三:6×3+5×2=28元; 所以选择方案一省钱.3.(2011 山东莱芜)为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本. (1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?【答案】(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意得⎩⎨⎧≤-+≤-+16203060501900303080)()(x x x x 解这个不等式组得18≤x ≤20.由于x 只能取整数,∴x的取值是18,19,20. 当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10. 故有三种组建方案:方案一,组建中型图书角18个,小型图书角12个;方案二,组建中型图书角19个,小型图书角11个;方案三,组建中型图书角20个,小型图书角10个.(2)方法一:由于组建一个中型图书角的费用大于组建一个小型图书角的费用,因此组建中型图书角的数量越少,费用就越低,故方案一费用最低,最低费用是860×18+570×12=22320(元). 方法二:①方案一的费用是:860×18+570×12=22320(元); ②方案二的费用是:860×19+570×11=22610(元); ③方案三的费用是:860×20+570×10=22900(元) 故方案一费用最低,最低费用是22320元.4.(2011 四川巴中)“保护环境,人人有责”为了更好的治理巴河,巴中市污水处理厂决定购买A 、B 两型污水处理设备,共10台,其信息如下表:(1)设购买A 型设备x 台,所需资金共为W 万元,每月处理污水总量为y 吨,试写出W 与x ,y 与x 的函数关系式.(2)经预算,市污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金?【答案】(1) ,(2),解得,所以有两种方案:方案一:2台A型设备、8台B型设备,方案二:3台A型设备、7台B型设备,方案一需104万元资金,方案二需106万元资金,所以方案一最省钱,需要104万元资金5.(2011广东中山)某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【答案】解:(1)设租用甲车x辆,则租用乙车(10-x)辆,由题意可得解得 4≤x≤7.5因为x取整数,所以,x=4,5,6,7因此,有四种可行的租车方案,分别是:方案一:租用甲车4辆,乙车6辆;方案二:租用甲车5辆,乙车5辆;方案三:租用甲车6辆,乙车4辆;方案四:租用甲车7辆,乙车3辆;(2)由题意可知,方案一的租车费为:4×2000+6×1800=18800元;方案二的租车费为:5×2000+5×1800=19000元;方案三的租车费为:6×2000+4×1800=19200元;方案四的租车费为:75×2000+35×1800=19400元;18800<19000<19200<19400所以,租甲车4辆,乙车6辆费用最省.6.(2011湖南常德)今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买设备的费用不超过40000元,安装及运输费用不超过9200元.则可购买甲、乙两种设备各多少台?【答案】解:设购买甲种设备台,则购买乙种设备(12-)台,购买设备的费用为:;安装及运输费用为:.由题意得:解之得:.∴可购甲种设备2台,乙种设备10台或购甲种设备3台,乙种设备9台,或购甲种设备4台,乙种设备8台.7.(2011云南红河哈尼族彝族自治州)师徒二人分别组装28辆摩托车,徒弟单独工作一周(7天)不能完成,而师傅单独工作不到一周就已完成,已知师傅平均每天比徒弟多组装2辆,求:(1)徒弟平均每天组装多少辆摩托车(答案取整数)?(2)若徒弟先工作2天,师傅才开始工作,师傅工作几天,师徒两人做组装的摩托车辆数相同?【答案】(1)设徒弟每天组装x辆摩托车,则师傅每天组装(x+2)辆.依题意得:7x<287(x+2)>28解得2<x<4∵x取正整数∴x=3(2)设师傅工作m天,师徒两人所组装的摩托车辆数相同.依题意得:3(m+2)=5m解得:m=38.(2011云南楚雄)今年四月份,李大叔收获洋葱30吨,黄瓜13吨.现计划租用甲、乙两种货车共10辆将这两种蔬菜全部运往外地销售,已知一辆甲种货车可装洋葱4吨和黄瓜1吨,一辆乙种货车可装洋葱和黄瓜各2吨.(1)李大叔安排甲、乙两种货车时有几种方案.请你帮助设计出来;(2)若甲种货车每辆要付运费2000元,乙种货车每辆付运费1300元,请你帮助李大叔算一算应选哪种方案,才能使运费最少?最少运费是多少?【答案】设李大叔安排甲种货车辆,则乙种货车()辆.依题意得解得.故有三种租车方案:第一种是租甲种货车5辆,乙种货车5辆;第二种是租甲种货车6辆,乙种货车4辆;第一种是租甲种货车7辆,乙种货车3辆.第一种运费最少,最少为16500元9.(2011湖北随州)黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?解:设四座车租x辆,十一座车租y辆.则有,又∵y≤,故y=5,6,当y=5时,x =,故舍去. ∴x=1,y=6.10.(2011河南)为鼓励学生参加体育锻炼,学校计划拿出不超过1 600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3:2,单价和为80元.(1)篮球和排球的单价分别是多少?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球的数量多于25个,有哪几种购买方案?(1)设篮球的单价为x元,则排球的单价为x元,依题意得x + x = 80解得x = 48 . ∴x=32.即篮球和排球的单价分别是48元、32元.(2)设购买的篮球数量为n个,则购买的排球数量为(36 – n)个.∴解得 25< n ≦28.而n为整数,所以其取值为26、27、28,对应的36 – n的值为10,9,8.所以共有三种购买方案.方案一:购买篮球26个,排球10个;方案二:购买篮球27个,排球9个;方案三:购买篮球28个,排球8个.11.(2011山东青岛)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.解:(1)设单独租用35座客车需x辆,由题意得:,解得:.∴(人).答:该校八年级参加社会实践活动的人数为175人.(2)设租35座客车y辆,则租55座客车()辆,由题意得:,解这个不等式组,得.∵y取正整数,∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元.12.(2011四川眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗尾,由题意得:解这个方程,得:∴答:甲种鱼苗买4000尾,乙种鱼苗买2000尾.(2)由题意得:解这个不等式,得:即购买甲种鱼苗应不少于2000尾.(3)设购买鱼苗的总费用为y,则(5分)由题意,有解得:在中∵,∴y随x的增大而减少∴当时,.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.13.(2011江苏宿迁)(本题满分12分)某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别为多少元?(2)据市场调研,1株甲种花木售价为760元, 1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?(1)解:(1)设甲、乙两种花木的成本价分别为x元和y元.由题意得:解得:(2)设种植甲种花木为a株,则种植乙种花木为(3a+10)株.则有:解得:由于a为整数,∴a可取18或19或20,所以有三种具体方案:①种植甲种花木18株,种植乙种花木3a+10=64株;②种植甲种花木19株,种植乙种花木3a+10=67株;③种植甲种花木20株,种植乙种花木3a+10=70株.14.(2011福建福州)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元.用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用l000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后.余下不少于l OO元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案?【答案】(1)解:设每个书包的价格为x元,则每本词典的价格为(x-8)元.根据题意得:3 x +2(x-8)=124解得:x=28.∴ x-8=20.答:每个书包的价格为28元,每本词典的价格为20元.(2)解:设昀买书包y个,则购买词典(40-y)本.根据题意得:解得:10≤y≤12.5.因为y取整数,所以y的值为10或11或12.所以有三种购买方案,分别是:①书包10个,词典30本;②书包11个,词典29本;③书包12个,词典28本.15.(2011鄂尔多斯)在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元。
不等式的应用(带答案)
不等式(组)的实际应用1.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万元/套) 1.5 1.2售价(万元/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。
(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍。
若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?解答:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,{1.51.2660.150.29,解得:{2030,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,1.5(20a)+1.2(30+1.5a)⩽69,解得:a⩽10,答:A种设备购进数量至多减少10套。
2.2016年5月6日,中国第一条具有自主知识产权的长沙磁悬浮线正式开通运营,该线路连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将会给乘客带来美的享受。
星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方。
已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨。
(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?解答:(1)设一辆大型渣土运输车一次运输x吨,一辆小型渣土运输车一次运输y 吨,{23315670,解得{85.即一辆大型渣土运输车一次运输8吨,一辆小型渣土运输车一次运输5吨;(2)由题意可得,设该渣土运输公司决定派出大、小两种型号的渣土运输车分别为x辆、y 辆,2085y⩾148y⩾2,解得{182或{173或{164,故有三种派车方案,第一种方案:大型运输车18辆,小型运输车2辆;第二种方案:大型运输车17辆,小型运输车3辆;第三种方案:大型运输车16辆,小型运输车4辆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2x a ≥ 0 8. 若关于 x 的不等式组 3 x 1 只有 2 个整数解,则 a 的取值
范围是___________.
【思路分析】
①解不等式组得,
____________ ____________
②确定大致范围
因为不等式组只有 2 个整数解,所以利用数轴确定大致范围.
画数轴:
由数轴可得__________________, ∴a 的大致范围是__________. ③验证端点值 当_____________,即 a ____ 时,________________; 当_____________,即 a ____ 时,________________. 综上,a 的取值范围是____________________.
__________ 当 a=_____时,不等式组可化为 __________
此时,不等式组_____________,不符合题意.
综上,a 的取值范围是_________.
x 1< m
6.
若关于
x
的不等式组
x
≥
2m____________.
【思路分析】
__________ ①解不等式组得, __________
例 2:若 a b 2 , 1 2a b 3,则 b 的取值范围是_______.
【思路分析】
①方程与不等式组合,考虑方程变形代入不等式.
②根据目标“求 b 的取值范围”,把方程 a b 2 变形得,a=b+2, 代入不等式组得, 1 2(b 2) b 3 ,
解得, 5 b 1 .
是__________________.
【思路分析】
①解不等式组得,
__________ __________
②确定大致范围
因为不等式组有解,所以利用口诀“___________________”
可得,____________,
∴a 的大致范围是______________________.
③验证端点值
当
a
_____时,不等式组可化为
__________ __________
此时,不等式组的解集为____________,不符合题意.
综上,a 的取值范围是_________________.
4.
若不等式组
x 4m x 10
x
2
4
2x 3
5
的解集是
x
2
,则整数
m
的最
大值是__________________.
3
x a 1≥ 0 7. 若关于 x 的不等式组 5 2x 1 只有 3 个整数解,则 a 的取
值范围是___________.
【思路分析】
①解不等式组得,
____________ ____________
②确定大致范围
因为不等式组只有 3 个整数解,所以利用数轴确定大致范围.
画数轴:
由数轴可得__________________, ∴a 的大致范围是__________. ③验证端点值 当_____________,即 a ____ 时,________________; 当_____________,即 a ____ 时,________________. 综上,a 的取值范围是____________________.
1 3x a 3. 若关于 x 的不等式组 2x 4 ≤ 0 的解集是 x ≤ 2 ,则 a 的取值
范围是__________________.
【思路分析】
__________ ①解不等式组得, __________
②确定大致范围
∵不等式组的解集是 x ≤ 2 ∴利用口诀“________________”可得,__________, ∴a 的大致范围是______________________. ③验证端点值
3
3
1
巩固练习
1. 已知 a,b 为常数,若关于 x 的不等式 ax b 0 的解集是 x < 1 , 3
则不等式 bx a 0 的解集为________________. 2. 若关于 x 的不等式 mx n 0 的解集是 x 1 ,则关于 x 的不等
5 式 (m n)x n m 的解集为________________.
不等式(组)综合应用(习题)
例题示范
例
1:若关于
x
的一元一次不等式组
x
3
4
x 2
1
只有一个整数解,
x 1 m
则 m 的取值范围是_________________.
【思路分析】
x 2
①解不等式组得,
x
m
1
②确定大致范围
因为不等式组只有 1 个整数解,所以利用数轴确定大致范围.
画数轴:
由数轴可得 0<m-1<1, ∴m 的大致范围是 1<m<2. ③验证端点值 当 m-1=0,即 m 1时,有 1 个整数解; 当 m-1=1,即 m 2 时,有 0 个整数解. 综上,m 的取值范围是 1≤m<2.
【思路分析】
__________ ①解不等式组得,
__________
②确定大致范围
∵不等式组的解集是 x 2 ∴利用口诀“________________”可得,__________, ∴a 的大致范围是______________________. ③验证端点值
当
m=_____时,不等式组可化为
4
3x a 1 9. 若关于 x 的不等式组 2x b ≤ 3 的整数解仅有 2 和 3,则 a 的
取值范围是___________,b 的取值范围是___________.
②确定大致范围
因为不等式组无解,所以利用口诀“___________________”
可得,____________,
∴m 的大致范围是______________________.
③验证端点值
当
m
_____时,不等式组可化为
__________ __________
此时,不等式组_____________,符合题意. 综上,m 的取值范围是_________.
__________ __________
2
此时,不等式组的解集为____________,符合题意.
综上,m 的取值范围是_________________,整数 m 的最大值
是__________________. x a2
5. 若关于 x 的不等式组 2x 1≥ 4a 1 有解,则 a 的取值范围