重积分积分区域的对称性
积分的对称性
L
( 2) 当 f ( x , y ) f ( x , y ) 时
L f ( x, y)ds 2L
f ( x , y )ds
3
其中 L3 是 L 的对称的部分弧段
L3 ( x , y ) | ( x , y ) L , x 0 y 0
D3
①、②、③简单地说就是 奇函数关于对称域的积分等于0,偶函数关于 对称域的积分等于对称的部分区域上积分的两倍, 完全类似于对称区间上奇偶函数的定积分的性质
三重积分的对称性
使用对称性时应注意: 1、积分区域关于坐标面的对称性;
2、被积函数在积分区域上的关于三个坐标轴的 奇偶性.
一般地,当积分区域 关于 xoy 平面对称,且 被积函数 f ( x , y , z ) 是关于 z 的奇函数,则三重积分 为零,若被积函数 f ( x , y , z ) 是关于 z 的偶函数,则 三重积分为 在 xoy 平面上方的半个闭区域的三重 积分的两倍.
D1 ( x, y ) ( x, y ) D, x 0 D
1
③若D关于原点对称
(1) 当f( x, y) f( x, y) 时I 0 (2)当f ( x, y ) f ( x , y )时 I 2 f ( x , y )dxdy
D3 ( x, y ) D, x 0, y 0
(2)当f ( x, y ) f ( x, y )时 I 2 f ( x , y )dxdy
D2 ( x , y ) D, y 0
D2
②若D关于 y 轴对称
(1)当f ( x, y ) f ( x, y )时 I 0
重积分积分的轮换对称性
若f ( x, y) f ( x, y)
则 f ( x, y)d 2 f ( x, y)d
D
D1
其 中D1为D的 上 半 部 分 ( 或 右 半 部分 ) 区 域
例 计算 e y2 dxdy,其中D为直线y x,与曲线
D
1
y x 3所围有界区域
轮换对称性
定 义1 设 Rn , ( x1 , x2 ,, xn ) , , 都 有 ( x2 , x3 ,, xn , x1 ) ,( xn , x1 ,, xn1 ) , 则 称 区 域关 于 变 量x1 , x2 ,, xn具 有 轮 换 对 称 性
定 义2 若 函 数 F ( x1 , x2 , x3 ,, xn ) F ( x2 , x3 ,, xn , x1 ) F ( xn , x1 ,, xn1 ) 则 称 函 数F关 于 变 量x1 , x2 ,, xn具 有 轮 换 对 称 性
命 题 设 区 域D关 于x, y具 有 轮 换 对 称 性 , 则 ( x, y) D, 有( y, x) D。 而( x, y)与( y, x) 关 于 直 线y x对 称 , 由( x, y)任 意 性 知 , 区 域D 关 于y x是 对 称 的
命 题 若 积 分区 域D关 于x, y具 有 轮换 对 称 性 , 则
1.
D
f
( x,
y)d
1 2
(
D
f
( x,
y)
f
( y,
x))d
2.D关 于 直线y x对 称 。 记D位 于 直线y x
上 半 部 分 区 域 为D1。
(1)当f ( x, y) f ( y, x)时, f ( x, y)d 2 f ( x, y)d
积分的对称性问题
例 1:求积分 ∫(∫ 2x + y)2dxdy x2 + y 2 ≤1
分析: ∫(∫ 2x + y)2dxdy = ∫∫ (4x2 + y2 + 4xy)dxdy = 4 ∫∫ x2 + ∫∫ y2 + 4 ∫∫ xy 。
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y2 ≤1
43
L
分析:xy 关于 x 为奇函数,曲线 L 关于 Oyz 面对称。
∫ ∫ ∫ ∴ 2xyds = 0 ,原积分 = 12 ( x2 + y2 )ds = 12 ds = 12a。
L
L4 3
L
上面的结论还可推广到第二型曲面积分,但第二型曲面积分的奇偶对称性定理与第一型积分及重积分的奇偶对称性定理
相反。
D1UD2
D3UD4
D
∫∫ 而在 D3∪D4 上, f (x, y) = sin ye−x2 −y2 是关于 y 的奇函数,所以 sin ye−x2−y2dxdy = 0 。
D3UD4
∫∫ ∫∫ 在 D1∪D2 上, f (x, y) = sin ye−x2 −y2 是关于 x 的偶函数,所以 sin ye−x2−y2 dxdy = 2 sin ye−x2−y2dxdy 。因此选 A。
x2+ y2≤1
x2 + y2≤1
(-1,1)
y
∫∫ ∫∫ ∫ ∫ 所以:原积分 = 5 y2dσ = 5 (x2 + y2)dσ = 5 2π dθ 1r3dr = 5π 。
D
2D
20
0
4
积分中的对称性
积分中的对称性作者:刘建康【摘要】介绍几种常见对称性在重积分、曲线积分及曲面积分的计算过程中的几个结论。
【关键词】积分;轮换对称性;奇对称;偶对称在积分的计算过程中,当积分区域具有某种对称性时,如果被积函数具有某种特性,这时可以利用对称性简化积分的计算。
这里所讨论的对称性主要包括两个方面:积分区域关于坐标轴(或坐标面)的对称性和积分区域的轮换对称性。
设Dn为一积分区域,所谓积分区域的轮换对称性是指当任一点P(x1,x2,…,xn)∈Dn时,有Pi(xi, xi+1, … , xn,x1,x2,…,xi-1)∈Dn, i=1,2,…,n。
在一元函数积分学中,我们有下面所熟悉结论:若f(x)在闭区间[-a,a]上连续,则有∫a-af(x)dx= 0, f(-x)=-f(x)2〖JF(Z〗a0f(x)dx〖JF)〗,f(-x)=f(x)利用这一性质,可以简化较复杂的定积分的计算。
对重积分、曲线积分及曲面积分也有类似的结论。
下面我们根据积分范围的不同来介绍对称性在各类积分计算中的几点应用。
1 对称性在重积分计算中的应用对称性在计算二重积分Df(x,y)dσ方面的应用。
结论1 若f(x,y)在区域D内可积,且区域D关于y轴(或x轴)对称,则有①Df(x,y)dσ=0, f(x)为关于x(或y)的奇函数②Df(x,y)dσ=2D1f(x,y)dσ,f(x,y)为关于x(或y)的偶函数。
其中D1为区域D被y轴(或x轴)所分割的两个对称区域之一。
结论2 若f(x,y)在区域D内可积,且区域D关于原点成中心对称,则有:①Df(x,y)dσ=0,f(-x,-y)=-f(x,y),即f(x,y)关于原点成奇对称;②Df(x,y)dσ=2D1f(x,y)dσ=2D2f(x,y)dσ,f(-x,-y)=f(x,y),即f(x,y)关于原点成偶对称,其中D1、D2关于原点对称,且D1+D2=0。
结论3 若f(x,y)在区域D内可积,且区域D关于直线L对称,则有:①Df(x,y)dσ=0,f(x,y)关于直线L奇对称;②Df(x,y)dσ=2D1f(x,y)dσ,f(x,y) 关于偶对称。
积分对称性定理
关于积分对称性定理1、定积分:设 f ( x) 在 a,a 上连续,则2、 二重积分:若函数f(x,y)在平面闭区域D 上连续,则(1) 如果积分区域D 关于x 轴对称,f(x,y)为y 的奇(或偶)函数, 即 f(x, y) f(x, y)(或 f(x, y) f (x, y)),则二重积分0,f x,y 为y 的奇函数f x, y dxdy2 f x, y dxdy, f x,y 为y 的偶函数DD 1其中:D i 为D 满足y 0上半平面区域。
(2) 如果积分区域D 关于y 轴对称,f(x,y)为x 的奇(或偶)函数, 即 f x, y f x, y (或 f x, y f x, y ),则二重积分0, f x, y 为x 的奇函数,fx,ydxdy 2 f x,ydxdy, f x, y 为)的偶函数.DD 2其中:D 2为D 满足x 0的右半平面区域。
(3) 如果积分区域D 关于原点对称,f(x,y)为x,y 的奇(或偶)函a -ax dx0,a2 f x dx,0 x 为X 的奇函数, X 为X 的偶数,即卩f ( x, y) f (x,y)(或 f ( x, y) f(x,y))则二重积分0, f x,y为x,y的奇函数f x,ydx:y2 f xydxy,f x,y 为Xy的偶函数DD2其中:D1为D在y 0上半平面的部分区域。
(4)如果积分区域D关于直线y x对称,则二重积分f x, ydxdy f y,x dxdy .(二重积分的轮换对称性)D D(5)如果积分区域D关于直线y x对称,则有0, 当f( y, x) f(x,y)时f(x,y)dxdy 2 f(x,y)dxdy 当仁y, x) f(x,y)时D D利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D对称及被积函数fx,y具有奇偶性两个特性。
3、三重积分:(1)若f X, y,z为闭区域上的连续函数,空间有界闭区域关于xoy坐标面对称,1为位于xoy坐标面上侧z 0的部分区域,贝卩有0, f x, y, z为z的奇函数f儿y,zcXdydz 2 f x,y,zdxdydz, f x,y,z 为z的偶函数1注:f (x, y,z)是z的奇函数:f(x, y z) f (x,y,z)f (x, y,z)是z的偶函数:f(x,y z) f(x, y,z)同样,对于空间闭区域关于xoz, yoz坐标面对称也有类似的性质。
积分区域关于原点对称二重积分
积分区域关于原点对称二重积分一、什么是积分区域关于原点对称二重积分?在数学中,积分是一种重要的运算工具,它可以用来计算函数在某个区域上的总量。
积分区域关于原点对称二重积分是一种特殊的积分形式,它要求被积函数关于原点对称。
在这种情况下,我们可以通过一些特殊的技巧来简化积分计算过程。
二、如何计算积分区域关于原点对称二重积分?要计算积分区域关于原点对称二重积分,我们可以按照以下步骤进行:1. 确定积分区域首先,我们需要确定被积函数的积分区域。
积分区域通常由一些特定的几何形状所构成,如圆、矩形、三角形等。
在确定积分区域时,我们需要考虑被积函数的定义域和对称性。
2. 利用对称性简化积分由于积分区域关于原点对称,我们可以利用对称性简化积分计算。
具体来说,如果被积函数关于原点对称,则可以将积分区域分为对称的两个部分,并只计算其中一个部分的积分,然后将结果乘以2。
3. 坐标变换在计算积分时,我们通常需要进行坐标变换,以便更方便地表示积分区域和被积函数。
常见的坐标变换方法包括极坐标变换和直角坐标变换。
4. 积分计算最后,我们可以根据坐标变换后的积分区域和被积函数,利用积分的定义进行计算。
根据具体情况,我们可以选择使用定积分、累次积分或其他积分方法。
三、积分区域关于原点对称二重积分的应用积分区域关于原点对称二重积分在数学和物理领域中有广泛的应用。
以下是一些常见的应用场景:1. 几何体的体积计算积分区域关于原点对称二重积分可以用来计算几何体的体积。
例如,我们可以通过将几何体划分为对称的两个部分,并计算其中一个部分的体积,然后将结果乘以2来得到整个几何体的体积。
2. 质心的计算质心是一个几何体的重心或平均位置。
通过对积分区域关于原点对称二重积分进行计算,我们可以求得几何体的质心坐标。
3. 物理问题的建模积分区域关于原点对称二重积分在物理问题的建模中也有重要的应用。
例如,在电磁场中计算电荷分布的势能、计算质点在力场中的位能等问题中,我们可以利用积分区域关于原点对称二重积分来进行计算。
积分对称性定理
关于积分对称性定理1、 定积分:设)(x f 在[],a a -上连续,则()()()()-00,d 2d ,a aaf x x f x x f x x f x x ⎧⎪=⎨⎪⎩⎰⎰为的奇函数,为的偶函数.2、 二重积分:若函数),(y x f 在平面闭区域D 上连续,则(1)如果积分区域D 关于x 轴对称,),(y x f 为y 的奇(或偶)函数,即 ),(),(y x f y x f -=-(或),(),(y x f y x f =-),则二重积分()()()()10,,,d d 2,d d ,,D D f x y y f x y x y f x y x y f x y y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数. 其中:1D 为D 满足0≥y 上半平面区域。
(2) 如果积分区域D 关于y 轴对称,),(y x f 为x 的奇(或偶)函数,即()(),,f x y f x y -=-(或()(),,f x y f x y -=),则二重积分()()()()20,,,d d 2,d d ,,DD f x y x f x y x y f x y x y f x y x ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:2D 为D 满足0x ≥的右半平面区域。
(3)如果积分区域D 关于原点对称,),(y x f 为y x ,的奇(或偶)函数,即),(),(y x f y x f -=--(或),(),(y x f y x f =--)则二重积分()()()()20,,,,d d 2,d d ,,,D D f x y x y f x y x y f x y x y f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:1D 为D 在0≥y 上半平面的部分区域。
(4)如果积分区域D 关于直线x y =对称,则二重积分()()y x x y f y x y x f DDd d ,d d ,⎰⎰⎰⎰=.(二重积分的轮换对称性)(5)如果积分区域D 关于直线y x =-对称,则有10,(,)(,)(,)2(,),(,)(,)D D f y x f x y f x y dxdy f x y dxdy f y x f x y --=-⎧⎪=⎨--=⎪⎩⎰⎰⎰⎰当时当时利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D 对称及被积函数()y x f ,具有奇偶性两个特性。
对称性在定积分及二重积分计算中的应用
定积分和二重积分是高等数学中常用的积分计算方法,它们都可以用来计算曲线、曲面或曲面的某些区域的积分。
它们的计算方法是基于定积分和二重积分的对称性的,而对称性是它们的重要特性之一。
对称性在定积分和二重积分计算中可以用来提高计算效率。
在定积分计算中,我们可以用对称性来减少计算量,只需要计算一半的区域,就可以得出积分值。
在二重积分计算中,我们可以利用对称性来减少计算量,只需要计算一半的单元格,就可以得出积分值。
此外,对称性在定积分和二重积分计算中还可以用来检查计算结果的准确度。
在定积分计算中,如果积分结果不是对称的,则可能存在计算错误;在二重积分计算中,如果积分结果不是对称的,则可能存在计算错误。
总之,对称性在定积分和二重积分计算中具有重要的意义,可以提高计算效率,也可以检查计算结果的准确性。
二重积分的对称性计算
利用对区域
对称,而且被积函数也要对称(即对x(或y)是 奇或偶函数),两者缺一都不能使用。
(1)若D对称于x轴,且f ( x , y ) f ( x , y )则
f ( x , y )d 2 f ( x , y )d . D D
1
其中D1是D位于x轴上方的部分。
(2)若D对称于x轴,且f ( x , y ) f ( x , y )则
f ( x , y )d 0. D
(3)若D对称于y轴,且f ( x, y ) f ( x, y )则
f ( x , y )d 2 f ( x , y )d . D D
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重 ,相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人 。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!
积分区域关于原点对称二重积分
积分区域关于原点对称二重积分积分区域关于原点对称的二重积分是一种在平面上计算函数在某个区域上的积分值的方法。
在这种情况下,将积分区域分为两个对称部分,并利用对称性简化计算过程。
对于平面上的二重积分而言,我们可以将积分区域分成有限个子区域,然后对每个子区域进行积分后再求和得到最终的积分值。
在一些问题中,积分区域往往具有某种对称性,例如关于原点对称,这种对称性可以大大简化计算过程。
假设我们要计算一个关于原点对称的二重积分,即要计算的函数f(x, y)在关于原点对称的区域D上的积分。
为了利用对称性简化计算,我们可以将区域D分成两个关于x轴对称的子区域D1和D2,其中D1位于x轴的上方,D2位于x轴的下方。
我们可以利用对称性将D1和D2的积分值相加得到整个区域D上的积分值。
即∬Df(x, y)dA = ∬D1f(x, y)dA + ∬D2f(x, y)dA。
然后,我们可以进一步利用区域D1和D2的对称性来简化计算。
由于D1和D2是关于x轴对称的,所以在计算D1的积分时,我们可以先对x轴上方的一半区域D1'进行积分,然后将积分值乘以2。
同样地,在计算D2的积分时,我们可以先对x轴下方的一半区域D2'进行积分,然后将积分值乘以2。
即∬Df(x, y)dA = 2∬D1'f(x, y)dA + 2∬D2'f(x, y)dA =4∬D1'f(x, y)dA。
接下来,我们可以继续利用对称性简化D1'和D2'的计算过程。
由于D1'和D2'是关于y轴对称的,所以在计算D1'的积分时,我们可以先对y轴右侧的一半区域D1''进行积分,然后将积分值乘以2。
同样地,在计算D2'的积分时,我们可以先对y轴左侧的一半区域D2''进行积分,然后将积分值乘以2。
即∬Df(x, y)dA = 4∬D1'f(x, y)dA = 8∬D1''f(x, y)dA。
二重积分对称性
重积分是多元微积分中的一个重点模块,经常会出现在一些较为困难的计算题与证明题中。
此外,在物理学中也经常能见到重积分的身影。
在各大高校的研究生入学试题以及期末测试题中,重积分往往也是不可忽视的一部分。
本文在默认读者有着熟练计算二重积分的基础上,旨在通过几个例题来介绍一类典型的重积分问题:“具有轮换对称性的重积分”。
我们首先先关注区域D的轮换对称性。
这里直接给出它的定义“若区域D关于直线y=x对称,那么对于区域内的任意一点P1(x,y) ,都有P2(y,x)∈D ,我们称这样的区域D具有轮换对称性。
”那么什么是二重积分的轮换对称性呢?这里有一个定理:“若D有轮换对称性,则∬Df(x,y)dxdy=∬Df(y,x)dxdy .”通过这个定理,我们可以解决很多关于二重积分的计算与证明题。
【例.1】求积分I=∬D(x2a2+y2b2)dxdy的值,其中D:x2+y2≤R2 . 解:注意到区域D具有轮换对称性,故I=∬D(x2a2+y2b2)dxdy=∬D(y2a2+x2b2)dxdy考虑求和,等式变为I=12[∬D(x2a2+y2b2)dxdy+∬D(y2a2+x2b2)dxdy]化简提出公因式,则变成I=12(1a2+1b2)∬D(x2+y2)dxdy此时后面的二重积分已经可以计算出,最终结果为I=πR44(1a2+1b2)【例.2】设f(x)在[0,1]上连续,且∫01f(x)dx=A ,求积分I=∫01dx∫x1f(x)f(y)dy的值.解:遇见二次积分,第一反应先把它转化为二重积分,I=∬Df(x,y)dxdy,其中D为直线x=0 ,直线y=x ,直线y=1围成的区域。
显然,区域D是正方形:0≤x≤1 , 0≤y≤1的对角线上半部分,我们将这个正方形区域补齐,考虑到正方形区域具有轮换对称性,所以有等式I=∫01dx∫1xf(x)f(y)dy所以这个二次积分满足I=12∫01dy∫01f(x)f(y)dx=12∫01f(y)dy∫01f(x)dx=12A2【例.3】求积分I=∬Daf(x)+bf(y)f(x)+f(y)dσ的值,其中区域D为x2+y2≤1,x≥0,y≥0 , f为D上的连续非负函数,a,b为常数.解:首先判断区域D的形状,是一个在第一象限内的四分之一单位圆,显然,这个区域D具有轮换对称性。
积分对称性解答
问题 1、为什么说设 f (x, y) 在区域 D ⊂ R2 上可积,若 D 的的形状关于 x 轴
对称,当 f (x, − y) = − f (x, y) 时, ∫∫ f (x, y)dxdy = 0 ;当 f (x, − y) = f (x, y) 时,
D
∫∫ f (x, y)dxdy = 2∫∫ f (x, y)dxdy ,其中 D1 为 D 中位于 x 轴上方的部分?
D(2) k
,
D(1) k
与
D(2) k
关于
x
轴对称.
∀(ξk ,ηk
)∈
D(1) k
(ηk
≥
0)
,则 ∃(ξk , −ηk
)∈
Dk(2) ,记 λ
=
max{Dk(1)
的直径},则
n2
∫∫ ∑ D1
f (x, y)dxdy = lim λ →0 k =1
f (ξk ,ηk )Δσ k
,
n2
∫∫ ∑ D2
Σ
Σ1
于 xz 面右边的部分。
(3) 设 Σ 的形状关于 yz 面对称,若在 Σ 上,有 f (−x, y, z) = − f (x, y, z) ,则
∫∫ f (x, y, z)dS = 0
Σ
若 f (−x, y, z) = f (x, y, z) ,则 ∫∫ f (x, y, z)dS = 2∫∫ f (x, y, z)dS ,其中 Σ1 是 Σ
D
D1
1
问题 2、若区域 D ⊂ R2 关于直线 y = x (或 y = −x )对称,且
f (x, y) = − f ( y, x) (或 f (− y, −x) = − f (x, y) ),是否有 ∫∫ f (x, y)dxdy = 0 ? D
积分区域关于原点对称二重积分
积分区域关于原点对称二重积分一、引言在数学中,积分是一个重要的概念,用于描述曲线、曲面以及空间中的面积、体积等量。
而对称性也是数学中一个重要的概念,可以帮助我们简化问题的求解过程。
本文将介绍关于原点对称的二重积分,并讨论如何利用对称性简化计算过程。
二、二重积分及其性质1. 二重积分的定义设函数f(x,y)在闭区域D上有界,将D分成无穷多个小区域,每个小区域用Δσi表示。
在每个小区域上取任意一点(ξi,ηi),构成面积Δσi。
当maxΔσi→0时,如果极限limmaxΔσi→0∑f(ξi,ηi)Δσi存在,则称此极限为函数f(x,y)在闭区域D上的二重积分,记作∬fD(x,y)dσ2. 二重积分的性质•线性性质:设函数f(x,y)和g(x,y)在闭区域D上可积,c为常数,则有∬(f(x,y)+g(x,y)) D dσ=∬fD(x,y)dσ+∬gD(x,y)dσ∬c D ⋅f(x,y)dσ=c⋅∬fD(x,y)dσ•区域可加性:若将闭区域D分成两个不相交的闭区域D1和D2,则有∬fD (x,y)dσ=∬fD1(x,y)dσ+∬fD2(x,y)dσ•积分保号性:若在闭区域D上有界函数f(x,y)恒有f(x,y)≥0,则有∬fD(x,y)dσ≥0三、关于原点对称的二重积分1. 关于原点对称的定义一个闭区域或曲线称为关于原点对称的,是指当(x,y)在该区域或曲线上时,有(−x,y),(x,−y),(−x,±y)(其中±表示取正或负)也在该区域或曲线上。
2. 关于原点对称的性质•若函数f(x,y)关于原点对称,即f(x,y)=f(−x,−y),则有∬f D (x,y)dσ=4∬fD1(x,y)dσ其中D1为闭区域D中关于原点的一个象限。
•若函数f(x,y)关于y轴对称,即f(x,y)=f(−x,y),则有∬f D (x,y)dσ=2∬fD1(x,y)dσ其中D1为闭区域D中关于y轴的一侧。
对称性在积分计算中的应用
对称摘 要 对称性是解决数学问题的重要方法之一.在积分学中充分利用积分区域的对称性和被积函数的奇偶性,使得数学积分的计算过程得到简化.本文通过总结定理和性质并借助实例说明对称性在定积分、重积分、曲线积分、曲面积分计算中的应用.关键词 对称性 定积分 重积分 曲线积分 曲面积分1. 前言在许多人眼里,数学是抽象和复杂的,但在此背后,也有着它和谐的旋律.如果我们能够更多的理解和掌握数学中的很多规律,就会对数学有更深的认识和感受.目前人们普遍认识到的数学美的基本内容有:统一美、对称美、简洁美、奇异美.它们各有内涵,各有吸引人之处,而对称美是指数学内容中的部分与部分、部分与整体之间和谐一致,以及各种数学概念和理论之间所存在的“对等美”.关于对称性在积分计算中的应用,首先明确以下问题:(1)关于对称性的了解,以简单点为例:点),(y x 关于x 轴的对称点为),(y x -;点),(y x 关于y 轴的对称点为),(y x -;点),(y x 关于原点对称的对称点为),(y x --;点),(y x 关于x y =对称的对称点为),(x y .(2)函数的奇偶性判断,以及两个函数和差积运算后的奇偶性.(3)本文所涉及内容都是R —可积函数.(],[b a 上的连续函数在],[b a 上必可积;只有有限个第一类不连续点的函数是可积的,即分段函数是可积的;单调有界函数必定可积.)(4)清楚的区分各种积分的表达式.(5)用极坐标将二、三重积分化为累次积分时应该注意的地方.(6)数学分析就是用极限的思想来研究函数的一门学科,需对研究内容的产生和如何解决的方式有一定的了解.(7)基本积分公式、倍角公式的熟悉应用.2. 对称性在定积分计算中的应用定理1[4] 设函数)(x f 在],[a a -上连续,那么⎪⎩⎪⎨⎧=--=-=⎰⎰-aaax f x f x x f x f x f x x f 0)()(,d )(2)()(,0d )( 2.1 计算.d 11lnI 442⎰-+-=ππx xxx分析:定积分在研究区间]4,4[ππ-是关于原点对称的, 又因为2x 为偶函数,xx+-11ln是奇函数,故由定理1可知,0=I . 2.2 计算.d cos21)arctan 1(I 22⎰-++=ππx x x分析:定积分在研究区间是关于原点对称的,又因为⎰-++=22d cos21)arctan 1(I ππx x x⎰-+++=22d )2cos 1arctan 2cos 1(ππx x x x因为x 2cos 1+为偶函数,x x2cos 1arctan +为奇函数,故由定理1知 ,0d 2cos 1220++=⎰πx x⎰=202d cos 22πx x⎰=20d cos 22πx x22 =2.3[8] 计算.d 4cos I 224⎰-=ππx x 分析:定积分研究区间]4,4[ππ-是关于原点对称的, 因为x 4cos 4为偶函数,故由定理1知,23d cos 8d cos 42I 204204πππ===⎰⎰x x x x (进行积分计算时,有x x x x n nn d cos d sin 2020⎰⎰==I ππ,且有递推公式21-I -=I n n nn 成立.) 2.4 计算.d 1)(arcsin I 232322x xx ⎰--=分析:先用凑分法,再做代换,最后利用对称性,则有 x xx d 1)(arcsin I 232322⎰--=x x darcsin )(arcsin 23232⎰-=⎰=33-2d ππt t27d 330-2ππ==⎰t t2.5 计算.d )1ln(I 22⎰-+=x e x x分析:显然积分区间关于原点对称,但)1ln(x e +既不是奇函数也不是偶函数,我们可以利用2)()(2)()()(x f x f x f x f x f --+-+=,其中2)()(x f x f -+为偶函数, 2)()(x f x f --为奇函数,把它分解成为一个奇函数和一个偶函数的和. 令)1ln()(xe xf +=,则)2ln(212)()(x x e e x f x f -++=-+,22)()(x x f x f =--所以有, ⎰-+=22d )1ln(I xe x x⎰--+++=22d )]2ln([21xe e x x x x 然而)2ln(xxe e x -++是关于x 的奇函数,2x 是关于x 的偶函数,由定理1知,⎰⎰-==202222d d 21x x x x 38= 2.6 计算.d 1I 112⎰-=x x分析:定积分在研究区间]1,1[-是关于原点对称的,又因为21x 是偶函数,由定理1知, ⎰-=112d 1I x x⎰=102d 12x x2-=然而这个答案是不正确的,事实上,由于被积函数012>x ,所以当积分存在时,其值必大于零,原因在于在区间]1,1[-上有第二类间断点0=x ,因而不能用对称性或者莱布尼茨公式计算. 小结 在定积分对称性的应用中,我们看到,这里所指的对称性是区间是否关于原点对称,而与被积函数的图像是否关于对称轴或者原点对称无关,但是与被积函数的奇偶性密切相关;另外经过奇偶函数的和差积得到的新函数的奇偶性,倍角公式,特殊公式的熟练掌握和应用也是非常重要的;最重要的是无论用公式还是用对称性来解题都要首先确定被积函数是R —可积函数.3. 对称性在二重积分计算中的应用定理2 [5][7][9] 设函数),(y x f 在D 上连续,且⎰⎰=I Dy x y x f d d ),(存在,记}0,),(|),{(1≥∈=x D y x y x D }0,),(|),{(2≥∈=y D y x y x D}0,0,),(|),{(3≥≥∈=y x D y x y x D }0,),(|),{(4≥∈=y D y x y x D(1)设D 关于轴x 对称,D y x ∈∀),(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰2),(),(,d d ),(2),(),(,0d d ),(D Dy x f y x f y x y x f y x f y x f y x y x f(2)设D 关于y 轴对称,D y x ∈∀),(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰1),(),(,d d ),(2),(),(,0d d ),(D Dy x f y x f y x y x f y x f y x f y x y x f(3)设D 关于原点对称,D y x ∈∀),(,()⎪⎩⎪⎨⎧=---=--=⎰⎰⎰⎰3),(),(,d d ,2),(),(,0d d ),(D Dy x f y x f y x y x f y x f y x f y x y x f(4)设D 关于直线x y =对称,D y x ∈∀),(,⎪⎩⎪⎨⎧=-==⎰⎰⎰⎰4),(),(,d d ),(2),(),(,0d d ),(D Dy x f x y f y x y x f y x f x y f y x y x f(5)设D 关于x 轴和y 轴均对称,D y x ∈∀),(⎪⎩⎪⎨⎧=-=--=--=-=⎰⎰⎰⎰3),(),(),(),(,d d ),(4),(),(),(),(,0d d ),(D Dy x f y x f y x f y x f y x y x f y x f y x f y x f y x f y x y x f 或者或者(6)(变量可轮换性)若积分区域关于z y x ,,具有轮换对称性,则[]⎰⎰⎰⎰⎰⎰⎰⎰++===DDDDy x x z f z y f y x f yx x z f y x z y f y x y x f d d ),(),(),(31d d ),(d d ),(d d ),(3.1 计算⎰⎰=I Dy x y x d d sin 其中D 由双纽线)()(222222y x a y x -=+围成. 分析:已知D 关于y 轴对称,且是关于x 的奇函数,所以0=I . 3.2[8] 计算⎰⎰++-=I Dy x zy x x y d d 22222,其中}1|),{(≤+=y x y x D分析:由于D 关于直线y x =对称,且被积函数具有性质),(),(y x f z y f -=,所以0=I . 3.3[5] 计算()⎰⎰+=I Dy x y x d d 22,其中D :122≤+y x 分析:()⎰⎰+=I Dy x y x d d 22⎰⎰++=Dy x xy y x d d 4422积分区域D 关于x 轴对称,且被积函数xy 4为y 的奇函数,所以,0d d 4=⎰⎰Dy x xy又因为在积分区域D 中y x ,的地位相同,则有⎰⎰⎰⎰=DDy x y y x x d d d d 22,所以, ⎰⎰=I Dy x y d d 52⎰⎰+=Dy x y x d )d (2522 ⎰⎰=10320d d 25r r πθ45π=3.4 计算⎰⎰+=I Dy x y x d )d (,其中D :1y x22≤+.分析:积分区域D :1y x 22≤+关于x 轴,y 轴均对称,而且被积函数关于y 和x 是偶函数, 固有 ⎰⎰+=I 3d )d (4D y x y x⎰⎰+=120d )d sin cos (4r r r r πθθθ⎰⎰+=12220)d sin cos (d 4r r r θθθπ38=3.5[5] 设D 是()()()1-1-1,1-1,1,、、为顶点的三角形区域,1D 为D 在第一象限的部分,则) (d d )sin (22=+⎰⎰--Dy x y x ye xy分析:如图4321D D D D D =,由对称性可知0d d 21=⎰⎰D D y x xy ,0d d 43=⎰⎰D D y x xy 所以0d d =⎰⎰Dy x xy .在43D D 上,22--sinye y x 是关于y 的奇函数,故有,0d d esin 4322-=⎰⎰D D -y xy x y在21D D 上 是关于x 的偶函数,所以,⎰⎰⎰⎰=+12222d d sinye 2d )d sinye (--D -y xD-y xy x y x xy3.6 计算⎰⎰++=I Dy x y x yf x d d ])(1[22,其中D 由1,1,3-===x y x y 围成. 分析:如图所示,做辅助线3x y -=的左半部分,则积分区域被分为21D D 和,其中21D 表示1D 位于x 轴上方的部分,1D 关于x 对称,2D 关于y 轴对称,由于被积函数是关于x 的奇函数,故有,0d d ])(1[222=++=I ⎰⎰D y x y x yf x 又由于)(22y x xyf +是关于y 的奇函数,故有,⎰⎰++=I 1d d ])(1[22D y x y xyf x0d d 21+=⎰⎰D y x x⎰⎰-=2001d d 2x y x x⎰--=014d 2x x52-= 小结 )(x,y f 关于x,y 的奇偶性,只能分别对一个变量来考虑,而不能将两个变量混在一起来考虑,即若区域关于x 轴对称,就要考虑)(x,y f 关于y 的奇偶性,若区域关于y 轴对称,就要考虑)(x,y f 关于x 的奇偶性,且容易看出对称性应用过程中被积函数一般比较复杂和抽象.4.对称性在三重积计算分中的应用定理3 设函数)(x,y,z f 在空间区域Ω上连续,且⎰⎰⎰Ω=I z y x x,y,z f d d d )(存在,记}0,)(|){(1≥Ω∈=Ωz x,y,z x,y,z }0,)(|){(2≥Ω∈=Ωx x,y,z x,y,z{}0)(|)(3≥Ω∈=Ωy x,y,z x,y,z ,(1)设Ω关于xoy 面对称,Ω∈∀)(x,y,z ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰⎰⎰ΩΩ1)(),,(,d d d )(2)(),,(,0d d d )(x,y,z f z y x f z y x x,y,z f x,y,z f z y x f z y x x,y,z f(2)设Ω关于yoz 面对称,Ω∈∀)(x,y,z ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰⎰⎰ΩΩ2)(),,(,d d d )(2)(),,(,0d d d )(x,y,z f z y x f z y x x,y,z f x,y,z f z y x f z y x x,y,z f (3)设Ω关于xoz 面对称,Ω∈∀)(x,y,z ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰⎰⎰ΩΩ3)(),,(,d d d )(2)(),,(,0d d d )(x,y,z f z y x f z y x x,y,z f x,y,z f z y x f z y x x,y,z f (4)(变量可轮换性)若积分区域Ω关于z y x ,,具有轮换对称性,则[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩ++===z y x z,x,y f y,z,x f x,y,z f zy x z,x,y f z y x y,z,x f z y x x,y,z f d d d )()()(31d d d )(d d d )(d d d )(4.1 计算z y x z y x z y x z d d d 1)1ln(222222⎰⎰⎰Ω++++++=I ,其中Ω是球体1222≤++z y x . 分析:被积函数是z 的奇函数,而积分区域Ω关于平面xoy 对称,故有,0d d d 1)1ln(222222=++++++=I ⎰⎰⎰Ωz y x z y x z y x z 4.2 计算z y x e xd d d ⎰⎰⎰Ω=I ,其中Ω是球体1222≤++z y x . 分析:被积函数是x 的偶函数,而积分区域Ω关于平面yoz 对称, 故z y x e z y x e xxd d d 2d d d 1⎰⎰⎰⎰⎰⎰ΩΩ==I ,其中1Ω是半球体:0,1222≥≤++x z y x . 从而 , z y x e z y x e xx d d d 2d d d 1⎰⎰⎰⎰⎰⎰ΩΩ==I⎰⎰⎰=xD 1d de d 2z y x x⎰=102d )z -1(e2x xππ2=4.3 计算z y x z y x d d d )(⎰⎰⎰Ω++=I ,其中Ω是球体)0,0,0(2222≥≥≥≤++z y x R z y x . 分析:由变量的轮换性可知,z y x z z y x y z y x x d d d d d d d d d ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==,设)0,0(:2222≥≥-≤+y x z R y x D Z .则有,z y x z d d d 3⎰⎰⎰Ω=I⎰⎰⎰=RD Zy x z z 0d d d 3 ( 4.3.1 )z z R Rd )(3022⎰-=π443R π= 此题容易在(4.3.1)式中将z 判断为奇函数,则积分为零,但是在条件0,0,0≥≥≥z y x 下,区域不是关于平面0=z 对称的,故有以上做法,这也充分说明了,区域的对称性和被积函数的奇偶性必须同时满足才能进行积分计算.4.4 计算z y x z y x d d d )532(222⎰⎰⎰Ω++=I ,其中Ω是球体)0(2222≥≤++R R z y x . 分析:由变量的轮换性可得,z y x z z y x y z y x x d d d d d d d d d 222⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==,设)0,0(:2222≥≥-≤+y x z R y x D Z .则有,z y x z z y x y z y x x d d d 5d d d 3d d d 2222⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ++=Iz y x z d d d 102⎰⎰⎰Ω= ⎰⎰⎰=RD Zy x z z 02d d d 20⎰-=Rz z z 0222d )R (20π385R π=4.5 计算z y x z x d d d )(2⎰⎰⎰Ω+=I ,其中Ω是球体)0(,1222≥≤++z z y x . 分析:z y x xz z x d d d )2(22⎰⎰⎰Ω++=I (xz 2关于yoz 平面对称,又是关于x 的奇函数) z y x z x d d d )(22⎰⎰⎰Ω+=(根据Ω具有轮换性,z y x z z y x x d d d d d d 22⎰⎰⎰⎰⎰⎰ΩΩ=) z y x z d d d 22⎰⎰⎰Ω=(由于条件0≥z ,2z 关于xoy 面不对称,所以不能用其偶函数的性质) =⎰⎰⎰102d d d 2ZD y x zz⎰-=1022)d (12z z zπ154π=小结 4.3和4.5充分说明当且仅当积分区域的对称性与被积函数),,(z y x f 奇偶性同时具备才能使用定理3.5.对称性在第一类曲线积分计算中的应用第一型曲线积分的奇偶性与二重积分类似. 定理4 函数),(y x f 在曲线L 上连续,s y x f Ld ),(⎰=I 存在,记}{0,),(|),(1≥∈=y L y x y x L }{0,),(|),(2≥∈=x L y x y x L}{0,0,),(|),(3≥≥∈=y x L y x y x L }{y x L y x y x L ≥∈=,),(|),(4(1)设积分曲线L 关于x 轴对称,则⎪⎩⎪⎨⎧=--=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f s y x f y x f y x f s y x f L L(2)设积分曲线L 关于y 轴对称,则⎪⎩⎪⎨⎧=--=-=⎰⎰),(),(,d ),(2),(),(,0d ),(2y x f y x f s y x f y x f y x f s y x f L L(3)设积分曲线L 关于原点对称,则⎪⎩⎪⎨⎧=---=--=⎰⎰),(),(,d ),(2),(),(,0d ),(3y x f y x f s y x f y x f y x f s y x f L L(4)设积分曲线L 关于x y =对称,则⎪⎩⎪⎨⎧=-==⎰⎰),(),(,d ),(2),(),(,0d ),(4y x f x y f s y x f y x f x y f s y x f L L(5)设积分曲线L 关于x 轴, y 轴均对称,则⎪⎩⎪⎨⎧=-=--=--=-=⎰⎰),(),(),().(,d ),(4),(),(),(),(,0d ),(3y x f y x f y x f y x f s y x f y x f y x f y x f y x f s y x f L L或者或者5.1[4] 计算s x Ld ⎰=I ,其中L 是双纽线:)()(22222y x y x -=+.分析: 被积函数x 为偶函数,双纽线关于x 轴、y 轴均对称, 故s x s x L Ld 4d 1⎰⎰==I ,其中1L 是L 在第一象限的部分,将双纽线化为极坐标表示:θ2cos 2=r ,则1L :40,2cos πθθ≤≤=r ,θθθd 2cos 1d 'd 22=+=r r s则 22d 2cos 1cos 2cos 4d 4401===I ⎰⎰πθθθθs x L5.2 计算⎰++=I s y x xy )d 23(22,设L 为椭圆13222=+y x ,其周长为a . 分析:由于L 关于x 轴(或y 轴)对称, 且xy 是关于y (或x )的奇函数, 故有, 0xyd =⎰s ,那么 , ⎰+=I s y x )d 23(22a s 66d ==⎰5.3 计算s z y x Ld )573(⎰++=I ,已知积分曲线L :⎩⎨⎧=+=++1122y x z y x ,其周长为a . 分析:已知积分曲线L 中y x ,的位置对称,可得⎰⎰=LLs s x yd d ,所以, s z y x Ld )573(⎰++=Is z y x Ld )(5⎰++=a s L5d 5==⎰5.4 计算s x Ld 2⎰=I ,其中L 为圆周2222a z y x =++,0=++z y x .分析:由对称性知,s z s y s x LLLd d d 222⎰⎰⎰==.于是,s z y x s x LLd )(31d 2222⎰⎰++= ⎰=Ls a d 32 332a π= 5.5 计算s xy Ld ⎰=I ,其中L :2y x =上从)1,1(A -到)1,1(B 的一段弧.分析:由于L 关于x 轴对称,被积函数xy 是关于y 的奇函数,所以, 0d ==I ⎰s xy L6.[10]对称性在第二类曲线积分计算中的应用定理15[10] 设L 为xoy 平面上关于x 轴对称的一条光滑曲线弧,其方程是一双值函数,设为)(),(b x a x y y ≤≤±=.记21,L L 分别为L 位于x 轴的上半部分和下半部分,21,L L 分别在x 轴上的投影方向相反,函数()y x f ,在L 上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f x y x f y x f y x f x y x f L L同理:设L 为xoy 平面上关于y 轴对称的一条光滑曲线弧,其方程是一双值函数,设21,L L 为分别为L 位于y 轴的左半部分和右半部分,21,L L 分别在y 轴上的投影方向相反,函数),(y x f 在L 上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f y y x f y x f y x f y y x f L L应用口诀:“反对偶零,反对奇倍”,其中“反”指21,L L 在x (或y )轴上的投影方向相反;“对”指L 关于x (或y )轴对称;“偶”指被积函数在L 上关于y (或x )为偶函数;“零”指曲线积分的结果等于零.反对奇倍的含义类似解释.定理25[10] 设L 为xoy 平面上关于x 轴对称的一条光滑曲线弧,其方程是一双值函数,设21,L L 为分别为L 位于x 轴的上半部分和下半部分,21,L L 分别在y 轴上的投影方向相同,函数),(y x f 在L 上连续,那么⎪⎩⎪⎨⎧=--=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f x y x f y x f y x f x y x f L L同理:设L 为xoy 平面上关于y 轴对称的一条光滑曲线弧,其方程是一双值函数,设21,L L 为分别为L 位于y 轴的右半部分和左半部分,21,L L 分别在x 轴上的投影方向相同,函数),(y x f 在L 上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f y y x f y x f y x f y y x f L L应用口诀:“同对奇零 ,同对偶倍”,其中“同”指21,L L 在x 轴上的投影方向相同;“对”指L 关于y 轴对称;“奇”指被积函数在L 上关于x 为奇函数;“零”指曲线积分的结果等于零.同对偶倍的含义类似解释.6.1 计算x xy Ld ⎰=I ,其中L :2y x =上从A(1,-1)到B(1,1)的一段弧.分析:满足“反对奇倍”,故有 , x xy Ld ⎰=Idx 21⎰=L xy⎰=1d 2x x x54=其中,x 从点0变化到点1.小结 6.1和 5.5很相似,它们唯一的区别在于积分式子x xy Ld ⎰=I ,s xy Ld ⎰=I 的不同,其根本原因是第二类曲线积分具有方向性.6.2 计算x y x Ld ⎰=I 其中L :2y x =上从A(1,-1)到B(1,1)的一段弧.分析:满足“反对偶零”.故有0d ==I ⎰x xy L6.3 计算y y y x x y x Ld )sin (d )(222+-+=I ⎰,其中L :)0(222>=+a a y x 按逆时针方向从)0,A(a ,)0,(B a -的上半圆周.分析:y y y x x xy x y x LL Ld )sin (d 2d )(222⎰⎰⎰+-++=I(三个积分分别适合“同对偶倍”、“同对奇零”、“反对偶零”) ⎰+=I 1d )(22L x y x⎰+=02d )(2a x y x32a -= 其中, x 从点a 变化到点0.6.4[4] 计算⎰++=I ABCDAy x yx d d ,其中ABCDA 是以A(1,0)、B(0,1)、C(-1,0)、D(0,-1)为顶点的正方形正向边界线.分析:⎰++=I ABCDA y x y x d d ⎰⎰+++=ABCDAABCDA y x yy x x d d 对于第一个积分,因为曲线关于x 轴对称,且在x 轴上的投影方向相反,被积函数yx +1是y 的偶函数,所以积分为零.对于第二个积分,因为曲线关于y 轴对称,且方y 轴上的投影方向相反,被积函数yx +1是x 的偶函数,所以积分为零.7.对称性在第一类曲面积分计算中的应用第一类曲面积分的奇偶性与三重积分相似. 定理6 设函数),,(z y x f 在曲面S 中连续,⎰⎰=I Ss z y x f d ),,(存在,记{}0,),,(|),,(1≥∈=z S z y x z y x S{}0,),,(|),,(2≥∈=x S z y x z y x S{}0,),,(|),,(3≥∈=y S z y x z y x S(1)设积分曲面关于xoy 面对称,S z y x ∈∀),,(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰),,(),,(,d ),,(2),,(),,(,0d ),,(1z y x f z y x f s z y x f z y x f z y x f s z y x f S S(2)设积分曲面关于yoz 面对称,S z y x ∈∀),,(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰),,(),,(,d ),,(2),,(),,(,0d ),,(2z y x f z y x f s z y x f z y x f z y x f s z y x f S S(3)设积分曲面关于xoz 面对称, S z y x ∈∀),,( ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰),,(),,(,d ),,(2),,(),,(,0d ),,(3z y x f z y x f s z y x f z y x f z y x f s z y x f S S(4)(变量可轮换性)若积分曲面关于z y x ,,具有轮换对称性,则[]⎰⎰⎰⎰⎰⎰⎰⎰++-===-SSSSs y x z f x z y f z y fx sy x fz s x z y f s z y fx d ),,(),,(,,31d ,,d ),,(d ,,7.1 计算⎰⎰=I Ss z d 2,其中S :2222R z y x=++.分析:由S 的轮换对称性知,⎰⎰⎰⎰⎰⎰==SSSs z s y s x d d d 222,故有,⎰⎰=I Ss z d 2⎰⎰++=Ss z y x )d (31222 ⎰⎰=Ss R d 312 434R π=7.2 计算⎰⎰++=I Ss z y x )d (,其中S 为球面2222a z y x =++上满足)0(a h h z <<≥的部分.分析:由S 的对称性知,0d d ==⎰⎰⎰⎰SSs y s x ,那么,⎰⎰++=I Ss z y x )d (⎰⎰=Ss z d⎰⎰++--=xyD y x s z z y x a d ''1222⎰⎰=xyD s a d)(22h a a -=π7.3 计算⎰⎰+=I Ss z y x )d 2(224,其中S 是闭曲面:2222=++z y x . 分析:由S 的轮换对称性知, ⎰⎰+=I Ss z y x )d 2(224 ⎰⎰+++++=Ss y x z z x y z y x]d )2()2()2([224224224⎰⎰++=Ss z y x d )(312222 ⎰⎰=Ss 4d 31ο332=7.4 计算⎰⎰=I Ss x d 2,其中S 为圆柱面:222a y x =+,介于平面0=z 和h z =之间的部分.分析:由于在S 中,x 与y 的地位是等价的,所以, ⎰⎰⎰⎰==I SSs y s x d d 22,于是, ⎰⎰⎰⎰+==I SSs y x s x )d (21d 222 ⎰⎰=Ss a d 212h a a ⋅⋅=π2212h a 3π=8. 对称性在第二类曲面积分计算中的应用定理7[10] 设∑为关于xoy 面对称的有向光滑曲面,其方程是一双值函数,设为xy D y x y x z z ∈±=),(),,((其中xy D 为∑在xoy 平面上的投影),记21,∑∑分别为位于xoy 平面的上半部分和下半部分,21,∑∑的侧关于xoy 平面相反,函数),,(z y x f 在∑上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰⎰⎰∑∑),,(),,(,d d ),,(2),,(),,(,0),,(1z y x f z y x f y x z y x f z y x f z y x f ds z y x f同理有:(1)设积分曲面关于xoz 面对称,∑∈∀),,(z y x ,⎪⎩⎪⎨⎧-=-=-=⎰⎰⎰⎰∑∑),,(),,(,d d ),,(2),,(),,(,0),,(1z y x f z y x f z x z y x f z y x f z y x f ds z y x f(2)设积分曲面关于yoz 面对称,∑∈∀),,(z y x ,⎪⎩⎪⎨⎧-=-=-=⎰⎰⎰⎰∑∑),,(),,(,d d ),,(2),,(),,(,0),,(1z y x f z y x f z y z y x f z y x f z y x f ds z y x f8.1 计算()⎰⎰∑++++=I 23222d d d d d d z y xyx z z x y z y x ,其中∑是球面:2222a z y x =++的外侧.分析:由∑的轮换对称性知,⎰⎰∑++=I y x z z x y z y x a d d d d d d 13⎰⎰∑=z y x a d d 33]d )d y -x -a (d d y -x -a [32222223⎰⎰⎰⎰--=xy xyD D y x y x a ⎰⎰=xyD y x a d d y -x -a 6222333326a a π⋅=π4=8.2 计算⎰⎰∑=I y x xyz d d ,其中∑是球面:1222=++z y x的外侧,位于0,0≥≥y x 的部分.分析:∑关于xoy 面对称,而xyz 是关于z 的奇函数,满足“反对奇倍”, 故有, ⎰⎰∑=I 1d d 2y x xyz⎰⎰=xyD y x xy d d y -x -1222 ⎰⎰=13320d r -1d sin r r πθθ152=其中1∑: 22y -x -1=z , }0,0,1|),{(),(22≥≥=+=∈y x y x y x D y x xy8.3[10] 计算y x z z x z y yz x d d 2d d )xz -y (d )d (22++-=I ⎰⎰∑,其中∑是锥面:221y x z +-=被平面0=z 所截得的部分,取上侧.分析:y x z z x z y yz xd d 2d d )xz -y (d )d (22++-=I ⎰⎰∑⎰⎰⎰⎰⎰⎰∑∑∑++-=y x z z x z y yz x d d 2d xz)d -(y d )d (22 ⎰⎰∑++=y x z d d 200⎰⎰+-=xyD y x y x d d )1(222 ⎰⎰-=120d )1(d 2r r r πθπ32=其中}1|),{(22≤+=y x y x D xy8.4[10] 计算⎰⎰∑++=I y x r z z x r y z y r x d d d d d d 333,其中222z y x r ++=, ∑是球面:)0(2222>=++a a z y x 的外侧.分析:根据∑的轮换对称性,可知, ⎰⎰∑=I z y zd d r33⎰⎰∑=1d d r63z y z(反对奇倍) ⎰⎰--=xyD y x a y x a d d 63222π4=8.5 设∑是球面:2222R z y x =++,在下面四组积分中,同一组的两个积分均为0的是:(C )A . ⎰⎰∑=I s x d 2, ⎰⎰∑=I z y x d d 2B . ⎰⎰∑=I s x d , ⎰⎰∑=I z y x d dC . ⎰⎰∑=I s x d , ⎰⎰∑=I z y x d d 2D . ⎰⎰∑=I s xy d , ⎰⎰∑=I z y y d d分析:由于曲面∑关于yoz 平面对称,被积函数 xy x ,关于x 为奇函数,被积函数2x 关于x 为偶函数.故有, 第一型曲面积分 0d ==I ⎰⎰∑s x , 0d ==I ⎰⎰∑s xy ,⎰⎰⎰⎰∑∑++==I s z y x s x )d (31d 22224234d 31R s R π==⎰⎰∑第二型曲面积分 0d d 2==I ⎰⎰∑z y x0d d 2d d 222222>--==I ⎰⎰⎰⎰≤+∑R z y z y z y R z y x0d d 2d d 222222>--==I ⎰⎰⎰⎰≤+∑R x y z x z x R z y y8.6 [6] 设∑是球面:1222=++z y x 的上半部分,则下列错误的是:(B )A . 0d d 2==I ⎰⎰∑z y x B . 0d d ==I ⎰⎰∑z y xC . 0d d 2==I ⎰⎰∑z y y D . 0d d ==I ⎰⎰∑z y y分析:由于曲面∑关于yoz 面对称,被积函数x 关于x 为奇函数,被积函数22,,y y x 关于x 为偶函数.0d d 2==I ⎰⎰∑z y x ,0d d ==I ⎰⎰∑z y y ,0d d 2==I ⎰⎰∑z y y0d d 2d d 222222>--==I ⎰⎰⎰⎰≤+∑R z y z y z y R z y x9.总结(1)对称的对象:积分区间对称,积分区域对称.(2)关于对称性,除关于原点和x y =对称外,都遵循关于谁对称谁不变的原则. (3)变量的轮换性是指对称的对象∑由0),,(≤z y x f 表示,若将z y x ,,的位置变换后,0),,(≤z y x f 仍然表示∑.在其他书籍和相关资料中提及的y x ,具有相同的地位,y x ,具有循环性都是这里所指的轮换性.(4)当且仅当积分区域对称性与被积函数),(y x f 奇偶性同时具备才能使用本文中提及的定理.(5)),(y x f 关于y x ,的奇偶性,只能分别对一个变量来考虑,而不能将两个变量混在一起来考虑.若关于x 轴对称,就要考虑关于y 的奇偶性,若关于y 轴对称,就要考虑关于x 的奇偶性. 若关于xoy 面对称,就要考虑被积函数关于z 的奇偶性依次类推.(6)第二类曲线积分和第二类曲面积分如果关于对称对象方向相反,那么它们的积分结论刚好与第一类曲线积分和第一类曲面积分结论相反.根据以上总结,对称性的问题便能很好的被应用,使数学积分的计算过程得到简化.参考文献:[1] 明清河著.数学分析的思想与方法[M].济南:山东大学出版社,2004.7(2006.9重印) [2] 殷锡鸣等编著.高等数学(下册)[M].上海:华东理工大学出版社,2005.2(2007.6重印)[3] 吴良森等编著.数学分析学习指导书(下册)[M].北京:高等教育出版社,2004.8[4] 费定辉,周学圣编演.吉米多维奇数学分析习题集题解(第三版)[M].济南:山东科学技术出版社,2005.1(2005.3重印)[5] 顾庆凤.关于重积分、曲线积分、曲面积分的对称性定理的应用[J].中国教育研究论丛,2006[6] 苏海军.对称性在定积分中的应用[J].四川文理学院学报(自然科学),2007.9,17(5)[7] 赵云梅,李薇. 对称性在积分中的妙用[J].红河学院学报,2005.6,3(3)[8] 常浩.对称性在积分学中的应用[J].高等数学研究,2011.3,14(2)[9] 于宁丽,王静.利用对称性计算两类区面积分时的差异问题[J].专题研究,2009.7[10] 刘福贵,鲁凯生.利用对称性计算第二类曲线积分与曲面积分的方法[J].武汉理工大学学报,2006,30(6):1069-1072[11] 西北工业大学高等数学教研室编.高等数学学习辅导:问题、解法、常见错误剖析[M].北京:科学出版社,2007[12] 魏平等编著.高等数学复习指导[M].西安:西安交通大学出版社,1999.11[13] 华罗庚著.高等数学引论[M].沈阳:科学出版社.2003[14] 朱学炎等编著.数学分析[M].北京:高等教育出版社,2007.4[15] 裴礼文.数学分析中的典型问题与方法[M].高等教育出版社,2006.4[16]邹本腾等编著.高等数学辅导[M].北京:科学技术文献出版社,1999.6数学系数学与应用数学2009级本科毕业论文Application of symmetry in the integral calculation Abstract The s ymmetry is one of the important methods to solve mathematical problems. In integral calculus, it can make the integral calculation process simplified to make full use of symmetry of integral region and the parity of integrand. This paper illustrates the application of symmetry in definite integral, multiple integrals, curve integrals, and surface integrals in the calculation through summary theorem and its nature and with the aid of examples.Key words definite integral multiple integrals curve integrals surface integrals第21页共22页。
对称性在重积分计算中的应用
对称性在重积分计算中的应用作者:左俊梅来源:《大学教育》2014年第14期[摘要]在积分计算中,运用积分区域的对称性和被积函数的奇偶性,以及轮换对称性可以简化计算.对称性在重积分计算中具有多方面的应用.[关键词]对称性重积分积分计算[中图分类号] O172.2 [文献标识码] A [文章编号] 2095-3437(2014)14-0177-02一、对称性在二重积分计算中的应用对于二重积分,我们主要讨论积分区域关于x轴(或y轴)对称、关于原点对称以及轮换对称性的类型.定理1 设函数f(x,y)在xoy平面上的有界区域D上连续,且D关于x轴对称.如果函数f(x,y)是关于y的奇函数,即f(x,-y)=-f(x,y),(x,y)∈D则■f(x,y)dσ=0;如果f(x,y)是关于y的偶函数,即f(x,-y)=f (x,y),(x,y)∈D,则■f(x,y)dσ=2■f(x,y)dσ.其中D1是D在x轴上方的平面区域.同理可写出积分区域关于y轴对称的情形.当积分区域关于原点对称时,我们可以得到如下的定理.定理2 设函数f(x,y)在xoy平面上的有界区域D上连续,且D关于原点对称.如果f (-x,-y)=-f(x,y),(x,y)∈D,则■f(x,y)dσ=0;如果f (-x,-y)=f(x,y),(x,y)∈D,则■f(x,y)dσ=2■f(x,y)dσ=2■f(x,y)dσ,其中D1={(x,y)∈D|x≥0},D2={(x,y)∈D|y≥0}.为了叙述的方便,我们给出区域关于x,y的轮换对称性的定义.定义1 设D为一有界可度量平面区域(或光滑平面曲线段),如果对于任意(x,y)∈D,存在(y,x)∈D,则称区域D(或光滑平面曲线段)关于(x,y)具有轮换对称性.关于区域的轮换对称性,有如下定理.定理3 设函数f(x,y)在xoy平面上的有界区域D上连续,且D关于x,y具有轮换对称性,则■f(x,y)dσ=■f(y,x)dσ.例1 计算二重积分I=■■ dσ,其中f(x)是区间[-1,1]上的正值连续函数,D={(x,y)|x2+y2≤1,x≥0,y≥0}.解由于积分区域D关于x,y具有轮换对称性,则由定理3得I=■■ dσ=■■ dσ,所以I=■■[■+■]dσ=■■dσ=■(a+b).二、对称性在三重积分计算中的应用经过分析,我们可以很容易地看到对称性在三重积分计算中的应用与二重积分非常类似,根据对称性在二重积分计算中的结论可以得到下面的定理.定理4 设函数f(x,y,z)是定义在空间有界区域Ω上的连续函数,且Ω关于坐标平面x=0对称,则(1)若f(x,y,z)是关于变量x的奇函数,则■f(x,y,z)dV=0;(2)若f(x,y,z)是关于变量x的偶函数,则■f(x,y,z)dV=2■f(x,y,z)dV.其中Ω1是Ω的前半部分,Ω1={(x,y,z)∈Ω|x≥0}.同理可写出Ω关于坐标平面y=0(或z=0)对称时的情形.例2 计算三重积分I=■(x+z)dV,其中Ω是由曲面z=■与z=■所围成的区域.解I=■xdV+■zdV,由于Ω关于坐标面x=0对称,且x为关于变量x的奇函数,则由定理4知■xdV=0.则I=■zdV=■dθ■dφ■rcosφr2sinφdr=■.与二重积分类似,我们也可得到如下结论.定理5 设函数f(x,y,z)是定义在空间有界区域Ω上的连续函数,且Ω关于原点对称,则(1)若f(-x,-y,-z)=-f(x,y,z),(x,y,z)∈Ω,则■f(x,y,z)dV=0;(2)若f(-x,-y,-z)=f(x,y,z),(x,y,z)∈Ω,,则■f(x,y,z)dV=2■f(x,y,z)dV=2■f(x,y,z)dV=2■f(x,y,z)dV.其中Ω1={(x,y,z)∈Ω|x≥0},Ω2={(x,y,z)∈Ω|y≥0},Ω3={(x,y,z)∈Ω|z≥0}为了方便叙述,我们先给出一个空间几何体关于x,y,z的轮换对称性定义.定义2 设Ω是一有界可度量的几何体(Ω可为空间区域、空间曲线或曲面块),且它的边界光滑,若对任意的(x,y,z)∈Ω,都存在(y,z,x)∈Ω,存在(z,x,y)∈Ω,则称Ω关于x,y,z具有轮换对称性.关于空间区域的轮换对称性,我们有如下的定理.定理6 设函数y(x,y,z)是定义在空间有界区域Ω上的连续函数,且Ω关于x,y,z具有轮换对称性,则■f(x,y,z)dV=■f(y,z,x)dV=■f(z,x,y)dV.例3 计算■f(x+y+z)2dΩ.其中Ω为正方体0≤x≤1,0≤y≤1,0≤z≤1.解由于Ω关于x,y,z具有轮换对称性,由定理6知■x2dΩ=■y2dΩ=■z2dΩ,■2xydΩ=■2yzdΩ=■2zxdΩ,那么■(x+y+z)2dΩ=■(3x2+6xy)2dΩ=■dx■dy■(3x2+6xy)dz=■.[ 参考文献 ][1] 孙钦福.二重积分的对称性定理及其应用[J].曲阜师范大学学报,2008(29):9-10.[2] 张仁华.二重积分计算中的若干技巧[J].湖南冶金职业技术学院学报,2008(2):102-104.[3] 陈云新.轮换对称性在积分中的应用[J].高等数学研究,2001(4):29-31.[4] 王宪杰.对称区域上二重积分和三重积分的计算[J].牡丹江师范学院学报,2007(4):65-66.[责任编辑:林志恒]。
重积分的对称性与轮换对称性
Dxy
1
3 xdx
1-( x 1-x-y) dy=1
0
0
8
•xd其 y中 d z是 由 抛 物
面 zx2y2和 球 面 x2y2z22所 围 成 的 空 间 闭 区 域 .
(xyz)2
x 2 y 2 z 2 2 (x y z)x
其 中 x y 是 y 关 于 z y 的 奇 函 数 ,
且 关 于 z面 o 对 称 x , (x yy)d z v0 ,
积分区域D关于坐标区域内任意直线对称
的计算,我们总是将其化为二次定积分来完成的,而在定积分的计算中,若遇到对称区间,则有下面非常简洁的结论:
的计算,我们总是将其化为二次定积分来完成的,而在定积分的计算中,若遇到对称区间,则有下面非常简洁的结论:
解:因为积分曲面D关于x,y,z具有轮换对称性,所以
被积函数
x' (uvtan)cos
uav 1a2
y' (uvtan)sinvsec
auv
1a2
解:由于积分区域D关于直线x=1对称,
当f(x)在区间上为连续的奇函数时,
积分区域D关于坐标区域内任意直线对称
这个结论,常可简化计算奇、偶函数在对称于原点的区间上的定积分.
积分区域D关于坐标区域内任意直线对称
其次,将坐标系x'o'y'沿逆时针方向旋转,旋转角为 (tan =a)使x'轴与直线y=ax+b重合.得新坐标系uo'v 解:由于积分区域D关于直线x=1对称, 解:由于积分区域D关于直线x=1对称, 其中D是平面x=0,y=0,z=0,x+y+z=1所围成的空间区域的整个边界曲面的外侧 当f(x)在区间上为连续的奇函数时,
积分对称性定理
曲面 1取前侧,在 yoz后半空间的部分曲面 2 取后侧,则
P x, y, z dxdy
0,
P x, y, z 关于x是偶函数,
2 P x, y, z dydz, P x, y, z 关于x是奇函数.
1
(3)设分片光滑的曲面 关于 xoz 坐标面对称,且 在 xoz 右半空间的部分 曲面 1取右侧,在 xoz 左半空间的部分曲面 2 取左侧,则
f x, y ds
L
0,
f x, y 为x的奇函数,
2 f x, y ds, f x, y 为x的偶函数. L1
(2)若分段光滑平面曲线 L 关于 x 轴对称,且 f x, y 在 L 上为连续函
数, L1 为 L 位于 x 轴上侧的弧段,则
欢迎下载
3
—
f x, y ds
L
0,
f x, y 为y的奇函数,
4
—
位于 xoy上侧 z 0的部分曲面,则
f x, y, z dS
0,
f x, y, z 为z的奇函数,
2 f x, y, z dS, f x, y, z 为z的偶函数.
1
曲面关于 yoz, xoz坐标平面对称也有类似的性质。
7、第二类曲面积分的对称性
设函数 P( x, y, z) , Q (x, y, z) , R( x, y, z) 在分片光滑的曲面 上连续,
—
f x, y dxdy
D
0,
f x, y 为x的奇函数 ,
2 f x, y dxdy, f x, y 为x的偶函数 .
D2
其中: D2 为 D 满足 x 0 的右半平面区域。 (3) 如果积分区域 D 关于原点对称, f ( x, y) 为 x, y 的奇(或偶)函
《重积分对称性》课件
04
CATALOGUE
重积分对称性的证明
偶函数对称性的证明
偶函数在对称轴两侧的积分值相等
如果函数$f(x)$是偶函数,那么对于任意实数$a$,有$f(-x) = f(x)$。因此,在重积分 中,偶函数关于对称轴的两侧对称,它们的积分值相等。
举例
考虑函数$f(x) = x^2$,这是一个偶函数。在区间$[-a, a]$上,该函数关于$x=0$对称 。因此,$int_{-a}^{a} x^2 dx = int_{0}^{a} x^2 dx + int_{-a}^{0} x^2 dx$,两侧
。
周期函数对称性的证明
要点一
周期函数在周期内的积分值相等
如果函数$f(x)$是周期函数,那么对于任意实数$a$,有 $f(x+T) = f(x)$,其中$T$是函数的周期。因此,在重积分 中,周期函数在每个周期内的积分值相等。
要点二
举例
考虑函数$f(x) = sin(x)$,这是一个周期为$2pi$的函数。 在区间$[0, 2pi]$上,该函数的图像是周期性的。因此, $int_{0}^{2pi} sin(x) dx = int_{0}^{pi} sin(x) dx + int_{pi}^{2pi} sin(x) dx$,两侧的积分值相等。
05
CATALOGUE
重积分对称性的扩展
对称性与积分路径无关
总结词
重积分对称性的一个重要特性是积分路 径的无关性,即积分结果不依赖于积分 路径的选择。
VS
详细描述
在多重积分中,如果积分区域在坐标平面 上是对称的,那么无论选择什么样的积分 路径,只要最终经过相同的积分点,积分 的结果都是相同的。这个特性在解决复杂 积分问题时非常有用,因为它允许我们选 择更简单的积分路径来简化计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
情形一:积分区域D 关于坐标轴对称
定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则 1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有 (,)0D
f x y dxdy =⎰⎰ .
2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有
1
(,)2(,)D
D f x y dxdy f x y dxdy =⎰⎰
⎰⎰ .
其中1D 是由x 轴分割D 所得到的一半区域。
例5 计算3()D
I xy y dxdy =+⎰⎰,其中D 为由22y x =与2x =围成的区域。
解:如图所示,积分区域D 关于x 轴对
称,且
3(,)()(,)f x y xy y f x y -=-+=-
有
即(,)f x y 是关于y 的奇函数,由定理13()0D
f xy y dxdy +=⎰⎰
.
类似地,有:
定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则 其中2D 是由y 轴分割D 所得到的一半区域。
例 6 计算
2,
D
I x ydxdy =⎰⎰其中D 为由
22;-220y x y x y =+=+=及所围。
解:如图所示,D 关于y 轴对称,并且
2(,)(,)f x y x y f x y -==,即被积分函数是关于x 轴的偶
函数,由对称性定理结论有:
1
1
22
22200
2
2215
x D
D I x ydxdy x ydxdy dx x ydxdy -+====
⎰⎰⎰⎰⎰⎰
.
定理6 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴和y 轴都对称,则 (1)当(,)(,)f x y f x y -=-或(,)(,)f x y f x y -=-时,有
(,)0D
f x y dxdy =⎰⎰
.
(2)当(,)(,)(,)f x y f x y f x y -=-=时,有 其中1D 为由x 轴和y 轴分割D 所的到的1/4区域。
9例7 计算二重积分()D
I x y dxdy =+⎰⎰,其中D :1x y +≤ .
解:如图所示,D 关于x 轴和y 轴均对称,且被积分函数关于x 和y 是偶函数,即有
(,)(,)(,)f x y f x y f x y -=-=,由定理2,得
其中1D 是D 的第一象限部分,由对称性知,1
1
D D x dxdy y dxdy =
⎰⎰⎰⎰
,
故1
4()D I x y dxdy =+⎰⎰1
4()D x x dxdy =+⎰⎰1
8D x dxdy =⎰⎰4
3
=.
情形二、积分区域D 关于原点对称
定理7 设平面区域12D D D =+,且1,D 2D 关于原点对称,则当D 上连续函数满足 1)(,)(,)f x y f x y --=时,有1
(,)2(,)D
D f x y dxdy f x y dxdy =⎰⎰⎰⎰
2)(,)(,)f x y f x y --=-时,有(,)0D
f x y dxdy =⎰⎰.
例8 计算二重积分33()D
x y dxdy +⎰⎰,D 为3y x =与y x =所围区域.
解:如图所示,区域D 关于原点对称,对于被积函数
33(,)f x y x y =+,有
3333(,)()()()(,)f x y x y x y f x y --=-+-=-+=-,有定
理7,得
3
3()0D
x
y dxdy +=⎰⎰.
情形三、积分区域D 关于直线y x =±对称
定理8 设二元函数(,)f x y 在平面区域D 连续,且12D D D =+,1,2D D 关于直线y x =对
称,则
1)(,)(,)D
D
f x y dxdy f y x dxdy =⎰⎰⎰⎰;
1
2
(,)(,)D D f x y dxdy f x y dxdy =⎰⎰⎰⎰.
2)当(,)(,)f y x f x y =-时,有(,)0D
f x y dxdy =⎰⎰.
3)当(,)(,)f y x f x y =时,有1
(,)2(,)D
D f x y dxdy f x y dxdy =⎰⎰⎰⎰.
例9 求22
22()D
x y I dxdy a b =+⎰⎰,D 为222x y R +≤所围.
解:积分区域D 关于直线y x =对称,由定理8,得
2222
2222()()D D
x y y x dxdy dxdy a b a b +=+⎰⎰⎰⎰, 故 2222()D x y I dxdy a b =+⎰⎰2222
22221[()()]2D D
x y y x dxdy dxdy a b a b =+++⎰⎰⎰⎰
422
11
(
)4
R a b π
=
+. 类似地,可得:
定理9 设二元函数(,)f x y 在平面区域D 连续,且12D D D =+,1,2D D 关于直线y x =对称,则 (1)当(,)(,)f y x f x y --=-,则有(,)0D
f x y dxdy =⎰⎰;
(2)当(,)(,)f y x f x y --=,则有1
(,)2(,)D
D f x y dxdy f x y dxdy =⎰⎰⎰⎰.
例10 计算22()arcsin()D
I x y x y dxdy =++⎰⎰,其中D 为区域:
01x ≤≤,10y -≤≤ .
解:如图所示,积分区域D 关于直线y x =-对称,且满足
(,)(,)f y x f x y --=-,
由以上性质,得:
22()arcsin()0D
I x y x y dxdy =++=⎰⎰.
注:在进行二重积分计算时,善于观察被积函数的积分区域的特点,注意兼顾被积函数的奇偶性和积分区域的对称性,恰当地利用对称方法解题,可以避免繁琐计算,使二重积分的解答大大简化。