因式分解公式法
公式法因式分解
公式法因式分解公式法因式分解是一种有效的数学方法,它可以帮助我们快速找出复杂的表达式的因式分解结果。
它的基本原理是,通过运用因式的定义和性质,将一个复杂的表达式分解成若干个简单的因式,从而得到它的因式分解式。
因式分解是一个十分复杂的概念,它涉及到多个关键概念,如因式、因数、展开式、积式、系数、系数和系数等。
因式分解的过程可以概括为:①将一个表达式分为因式;②将这些因式各自因数分解;③用展开式、积式等简单形式重新构造出因式分解式。
公式法因式分解的基本思想是,将一个复杂的多项式以特定的形式分解成若干个因式,从而使其因式分解式更加清晰明了。
例如,将多项式2x2+7x+6分解成因式,可以先将其分解成展开式2x2+7x+3x+3,再进行因式分解:2x2+3x+3=(2x+3)(x+1),再重新构造出它的因式分解式:2x2+7x+6=(2x+3)(x+2),这样就得到了它的因式分解式了。
公式法因式分解的步骤如下:①根据多项式的式子把它分解成若干个简单的因式;②把每个因式因数分解;③用展开式、积式等形式重新构造出因式分解式。
本文将从实例出发,重点介绍公式法因式分解的实践方法。
首先,根据多项式的式子把它分解成若干个简单的因式。
需要特别注意的是,分解时一定要满足因式分解的特殊性质,即每个因式至少有一个非零系数。
例如:将多项式2x2+7x+6分解成展开式2x2+7x+3x+3,再进行因式分解:2x2+3x+3=(2x+3)(x+1),即可满足因式分解的特殊性质。
其次,要把每个因式的因数分解出来,以便重新构造出因式分解式。
这一部分最重要的是,要能够分解出每一组因式的因数,具体的方法是,把因式的项的系数分别乘起来,得到它的常数项,再根据它的单项式把它分解出对应的因数,就可以得到完整的因式分解式了。
最后,要把因式按照正确的形式重新构造出因式分解式。
首先,要根据因式分解的特殊性质重新排列因式,使每个因式的非零系数在因式分解式的头部;其次,要把多项式的最高次数项保留,其他项按降幂排序;最后,要对除系数外的各项因数进行乘积运算,把它们组合成因式分解式。
因式分解的公式大全,因式分解万能公式法的应用
因式分解的公式大全,因式分解万能公式法的应用因式分解的公式大全?因式分解公式:平方差公式:(a+b)(a-b)=a²-b²完全平方公式:(a±b)²=a²±2ab+b²把式子倒过来: (a+b)(a-b)=a²-b² a²±2ab+b²= (a±b)²就变成了因式分解,因为这个原因,我们把用利用平方差公式和完全平方公式进行因式分解的方式称之为公式法。
例子:1、25-16x²=5²-(4x)²=(5+4x)(5-4x)2、p4-1 =(p²+1)(p²-1) =(p²+1)(p+1)(p-1)3、x²+14x+49 =x²+2·7·x+7² =(x+7)²4、(m-2n)²-2(2n-m)(m+n)+(m+n)² =(m-2n)²+2(m-2n)²(m+n)+(m+n)² =[(m-2n)+(m+n)]² =(2m-n)²因式分解万能公式法?1、平方差公式:a²-b²=(a+b)(a-b)。
2、完全平方公式:a²+2ab+b²=(a+b)²。
3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。
4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。
5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。
6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。
《公式法》因式分解
汇报人: 2023-12-26
目录
• 公式法因式分解简介 • 公式法因式分解的基本步骤 • 公式法因式分解的常见类型 • 公式法因式分解的实例解析 • 公式法因式分解的注意事项
01
公式法因式分解简介
因式分解的定义
01
02
03
因式分解的定义
将一个多项式表示为几个 整式的积的形式,这种变 形叫做把这个多项式因式 分解,也叫做分解因式。
在化简过程中,需要注意消除项和合 并同类项。
简化多项式可以使其更容易理解和计 算。
03
公式法因式分解的常见类型
二次多项式的因式分解
01
02
03
04
总结词
利用完全平方公式和平方差公 式进行因式分解
公式法
$ax^2+2abx+b^2=(ax+b) ^2$
公式法
$ax^2-b^2=(ax+b)(ax-b)$
二次多项式的实例解析
总结词
二次多项式是多项式中最简单的一类, 其因式分解方法相对固定,公式法是其 中最常用的方法之一。
VS
详细描述
对于形如ax^2+bx+c的二次多项式,我 们可以使用公式法进行因式分解。首先计 算判别式b^2-4ac的值,然后根据判别式 的值选择合适的公式进行因式分解。当判 别式大于0时,二次多项式有两个实根, 可以使用公式法分解为两个一次多项式的 乘积;当判别式等于0时,二次多项式有 一个重根,可以分解为一个一次多项式的 平方;当判别式小于0时,二次多项式没 有实根,无法使用公式法进行因式分解。
因式分解的步骤
提取公因式、公式法、十 字相乘法、分组分解法等 。
因式分解的作用
多项式的因式分解方法
多项式的因式分解方法在代数学中,多项式因式分解是将一个多项式拆分成一些乘积的形式,以便更好地理解和求解问题。
多项式因式分解是代数中重要的解题方法之一,它可以帮助我们简化计算,寻找方程的解,以及进行数学模型的建立等。
本文将介绍几种常见的多项式因式分解方法。
一、公式法公式法是多项式因式分解中最常见的方法之一。
它基于一些常见的应用公式和恒等式,通过将多项式转化为已知的因式形式进行分解。
1. 平方差公式:$(a+b)^2 = a^2 + 2ab + b^2$平方差公式可以用来因式分解具有平方项的多项式。
例如,对于多项式 $x^2+6x+9$,我们可以将其看作是 $(x+3)^2$,因此可以分解为$(x+3)(x+3)$。
2. 差平方公式:$(a-b)^2 = a^2 - 2ab + b^2$差平方公式和平方差公式相似,只是符号相反。
例如,对于多项式$x^2-10x+25$,可以将其看作是 $(x-5)^2$,因此可以分解为 $(x-5)(x-5)$。
3. 因式分解公式:$a^2 - b^2 = (a+b)(a-b)$因式分解公式适用于具有差平方形式的多项式。
例如,对于多项式$x^2-4$,我们可以将其分解成 $(x+2)(x-2)$。
二、提公因式法提公因式法是另一种常用的多项式因式分解方法,它利用多项式中的公因式进行分解。
1. 提取公因式:将多项式中的公因式提取出来,并将剩余部分分解为简单的因式形式。
例如,对于多项式 $3x^2+6x$,我们可以提取公因式 $3x$,然后将剩余部分 $x+2$ 进行分解,最终得到 $3x(x+2)$。
2. 分组分解:对于某些特殊的多项式,可以将其通过分组分解的方法进行因式分解。
例如,对于多项式 $3x^3+3x^2+4x+4$,我们可以将其分成两组,然后提取公因式,得到 $3x^2(x+1)+4(x+1)$,进而将$(x+1)$ 提取出来,得到最终的因式分解形式 $(x+1)(3x^2+4)$。
因式分解的多种方法(全)
因式分解的多种方法1】提取公因式这种方法比较常规、简单,必须掌握。
常用的公式有:完全平方公式、平方差公式等例一:2x^2-3x=0解:x(2x-3)=0x1=0,x2=3/2这是一类利用因式分解的方程。
总结:要发现一个规律就是:当一个方程有一个解x=a时,该式分解后必有一个(x-a)因式这对我们后面的学习有帮助。
2】公式法将式子利用公式来分解,也是比较简单的方法。
常用的公式有:完全平方公式、平方差公式等注意:使用公式法前,建议先提取公因式。
例二:x^2-4分解因式分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2解:原式=(x+2)(x-2)3】十字相乘法是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。
注意:它不难。
这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果例三:把2x^2-7x+3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数):2=1×2=2×1;分解常数项:3=1×3=3×1=(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:1 1╳2 31×3+2×1=51 3╳2 11×1+2×3=71 -1╳2 -31×(-3)+2×(-1)=-51 -3╳2 -11×(-1)+2×(-3)=-7经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解原式=(x-3)(2x-1).总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c 2,排列如下:a1 c1╳a2 c2a1c2+a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx +c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2).这种方法要多实验,多做,多练。
因式分解的公式法
因式分解的公式法
因式分解是将一个多项式表达式写成若干个因式相乘的形式。
有以下几种常用的公式法进行因式分解:
1. 公因式提取法:
当多项式的每一项都有一个公因子时,可以将这个公因子提
取出来。
例如:2x + 4y = 2(x + 2y)
2. 完全平方公式:
当一个二次多项式是一个完全平方时,可以使用完全平方公
式进行因式分解。
例如:x^2 + 2xy + y^2 = (x + y)^2
3. 差平方公式:
当一个二次多项式可以表示为两个项的差的平方时,可以使
用差平方公式进行因式分解。
例如:x^2 - y^2 = (x + y)(x - y)
4. 因式定理:
当一个多项式可以被一个因式整除时,可以使用因式定理进
行因式分解。
例如:x^2 - 4 = (x + 2)(x - 2)
5. 一般情况下,可以使用试除法、短除法等方法进行因式分解。
以上是一些常用的公式法进行因式分解的方法,具体的应用需要根据多项式的形式和特点来选择相应的方法进行因式分解。
因式解法公式法公式
因式解法公式法公式
一、因式分解的概念
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
例如:x^2-4=(x + 2)(x- 2)。
二、公式法因式分解的公式
1. 平方差公式
- 公式:a^2-b^2=(a + b)(a - b)
- 适用条件:多项式是两项式,并且这两项都能写成平方的形式,而且符号相反。
- 示例:
- 分解因式9x^2-16y^2,这里a = 3x,b=4y,根据平方差公式可得9x^2-16y^2=(3x + 4y)(3x-4y)。
2. 完全平方公式
- 完全平方和公式:a^2+2ab + b^2=(a + b)^2
- 完全平方差公式:a^2-2ab + b^2=(a - b)^2
- 适用条件:
- 对于a^2+2ab + b^2=(a + b)^2,多项式是三项式,其中两项能写成平方的形式(a^2和b^2),另一项是这两个数乘积的2倍(2ab)。
- 对于a^2-2ab + b^2=(a - b)^2同理。
- 示例:
- 分解因式x^2+6x + 9,这里a=x,b = 3,因为x^2+6x+9=x^2+2×3x + 3^2,根据完全平方和公式可得x^2+6x + 9=(x + 3)^2。
- 分解因式4x^2-20x+25,这里a = 2x,b=5,因为4x^2-20x +
25=(2x)^2-2×5×2x+5^2,根据完全平方差公式可得4x^2-20x + 25=(2x - 5)^2。
公式法因式分解
2 a2 6a 9 原式 x 32
3 4a2 4a 1 原式 2a 12
4 9m2 6mn n2 原式 3m n2
5 x2 1 x
4
原式
x
1 2
2
6 4a2 12ab 9b2 原式 2a 3b2
1. 因式分解 (1)9-a2-4ab-4b2 (2) 1+a2b2-a2-b2 (3) x2-4xy+4y2-5x+10y
(3)-3a+6a2-3a3 (4)4(a-b)3-9(a-b)
2.计算 (1)13×9.98+5.6×99.8+310×0.998
(2)9992-9982 (3)172+26×17+132
2.计算:542 462 2 54 46
3.已知 x y 2, xy ,2 求
x2 y2 6xy 的值。
(2)25m2 80m 64
(3)a2 1 a
(4) 24xy x2 y2
(5)(a b)2 18(a b) 81
[例3]分解因式: (1)(x+4)2+2x(x+4)+x2
(2)a4-2a2b2+b4
(3)(x2+3x)2-(x-1)2 (4)-2an+1+2an- 1 an-1
2
练习. 2.分解因式:
(1)x2 y 4 y
(2) 3x3 12x2 y 12xy2 (3)3ax2 6axy 3ay2 (4)a4 8a2 16
(5)x3 4x2 4x
3、计算:8002-1600×798+7982
应用提高、拓展创新
1.把下列多项式分解因式,从中你能发现 因式分解的一般步骤吗?
因式分解的常用方法
因式分解的常用方法一、提公因式法.:ma +mb +mc =m (a +b +c )二、运用公式法.在整式的乘法中,我们学过若干个乘法公式,将其反向使用,即为因式分解中常用的公式,例如:(1)a 2-b 2=(a+b)(a -b); (2) a 2±2ab+b 2=(a ±b)2;三、分组分解法.(一)分组后能直接提公因式对于含四项、五项、六项的多项式通常会考虑用分组分解法:四项2+2模式:每一小组通常会用提取公因式或平方差公式进行局部分解,然后组与组之间用提公因式法;3+1模式:通常含3项的组用完全平方公式,组与组之间用平方差公式. 五项3+2模式:通常含3项的组用完全平方公式,含2项的组用平方差或提公因式法,组与组之间用提公因式法.六项3+3模式:两个含3项的组都用完全平方公式,组与组之间用平方差公式. 3+2+1模式:两个含3项的组用完全平方公式,含2项的组用提公因式法,三组之间形成一个新的完全平方式.2+2+2模式:每一组都用提公因式法或平方差公式,三组之间用提公因式法.例1 分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++ =)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++例2 分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3 分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
因式分解常用的六种方法详解
一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。
例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。
常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。
因式分解常用的六种方法详解
因式分解常用的六种方法详解因式分解常用的六种方法详解因式分解是代数式变形的基本形式之一,它被广泛地应用于初等数学中,并成为解决许多数学问题的有力工具。
因式分解方法灵活,技巧性强,研究这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。
本文将介绍因式分解的方法、技巧和应用。
1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:1) $a^2-b^2=(a+b)(a-b)$;2) $a^2±2ab+b^2=(a±b)^2$;3) $a^3+b^3=(a+b)(a^2-ab+b^2)$;4) $a^3-b^3=(a-b)(a^2+ab+b^2)$。
下面再补充几个常用的公式:5) $a^2+b^2+c^2+2ab+2bc+2ca=(a+b+c)^2$;6) $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$;7) $a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+…+ab^{n-2}+b^{n-1})$,其中$n$为正整数;8) $a^n-b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^2-…+ab^{n-2}-b^{n-1})$,其中$n$为偶数;9) $a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^2-…-ab^{n-2}+b^{n-1})$,其中$n$为奇数。
在运用公式法分解因式时,需要根据多项式的特点,正确恰当地选择公式,考虑字母、系数、指数、符号等因素。
例如,分解因式:1) $-2x^{5n-1}y^n+4x^{3n-1}y^n+2-2x^{n-1}y^n+4$原式=$-2x^{n-1}y^n(x^{4n-2}-2x^{2n}y^2+y^4)$2x^{n-1}y^n[(x^{2n})^2-2x^{2n}y^2+(y^2)^2]$2x^{n-1}y^n(x^{2n}-y^2)^2$2x^{n-1}y^n(x^n-y)^2(x^n+y)^2$。
因式分解的四种方法
因式分解的四种方法
1. 提取公因式法
首先找出多项式中所有项的公因式,然后将这个公因式提取出来。
例如,对于多项式6x^2+9x,可以提取公因式3x得到
3x(2x+3)。
2. 十字相乘法
这种方法适用于二次三项式的因式分解。
先将二次三项式写成两个一次三项式相加或相减的形式,然后使用十字相乘法分解。
例如,对于二次三项式x^2+5x+6,可以将它分解为(x+2)(x+3)。
3. 特殊因式公式法
特殊因式公式是一些常见的多项式因式分解公式,例如
(a+b)^2=a^2+2ab+b^2和(a-b)^2=a^2-2ab+b^2。
通过应用这些
特殊因式公式,可以快速得到多项式的因式分解形式。
4. 带余除法
带余除法是一种用来分解多项式的方法,其中通过多次用因式去除被除式,直到余式无法再继续分解为止。
这种方法适用于任何多项式的因式分解,但可能需要进行多次长除法运算。
因式分解的七种常见方法
因式分解的七种常见方法因式分解是代数学中非常重要的一个基本概念,可以帮我们优化计算过程,得到简化的式子。
在因式分解的过程中,需要运用不同的方法来将一个给定的式子分解为若干个简单的乘积,本文将会介绍七种常见的因式分解方法。
1. 公式法公式法是一种较为常见的因式分解方法,它可以应用于一些特定的式子。
公式法常用的公式有两个:(1)$a^2-b^2=(a+b)(a-b)$该公式被称为"a二次减b二次"公式。
它告诉我们,一个平方数减另一个平方数的结果可以表示为两个因子的乘积,并分别是它们的和与差。
例如:$16-9=7\times5=(4+3)\times(4-3)$(2)$a^3+b^3=(a+b)(a^2-ab+b^2)$该公式被称为"a立方加b立方"公式。
它告诉我们一个立方数加另一个立方数的结果可以表示为两个因子的乘积,并分别是它们的和与差减去它们的积。
例如:$8^3+1^3=513=(8+1)\times(8^2-8+1)$2. 提公因式法提公因式法是一种常用的因式分解方法。
它的主要思想是将式子中的公因式先提出来,再对剩下的部分进行因式分解。
例如:$ax^2+bx=a(x^2+\frac{b}{a}x)$在上述式子中,$a$是公因式,$(x^2+\frac{b}{a}x)$是剩余部分的因式分解。
这样我们就把原始式子分解成了两个因子的乘积。
3. 十字相乘法十字相乘法主要用于二次三项式的因式分解。
该方法基于以下思想:将二次三项式分解为两个一次三项式的乘积,其中每个一次三项式的首项系数积等于原始式子的二次项系数,常数项积等于原始式子的常数项。
例如:$ax^2+bx+c$,首先将它分解为两个一次三项式$(px+q)(rx+s)$,然后进行十字相乘运算$(px+q)(rx+s)=px\times rx+px\times s+qrx+qs$,其中最后两项括号里的$c$是常数项。
因式分解的9种方法
因式分解的9种⽅法因式分解的多种⽅法----知识延伸,向竞赛过度1. 提取公因式:这种⽅法⽐较常规、简单,必须掌握。
常⽤的公式:完全平⽅公式、平⽅差公式例⼀:0322=-x x解:x(2x-3)=0, x1=0,x2=3/2这是⼀类利⽤因式分解的⽅程。
总结:要发现⼀个规律:当⼀个⽅程有⼀个解x=a 时,该式分解后必有⼀个(x-a)因式,这对我们后⾯的学习有帮助。
2. 公式法常⽤的公式:完全平⽅公式、平⽅差公式。
注意:使⽤公式法前,部分题⽬先提取公因式。
例⼆:42-x 分解因式分析:此题较为简单,可以看出4=2 2,适⽤平⽅差公式a 2 -b 2 =(a+b)(a-b) 2解:原式=(x+2)(x-2)3. ⼗字相乘法是做竞赛题的基本⽅法,做平时的题⽬掌握了这个也会很轻松。
注意:它不难。
这种⽅法的关键是把⼆次项系数a 分解成两个因数a1,a2的积a1?a2,把常数项c 分解成两个因数c1,c2的积c1?c2,并使a1c2+a2c1正好是⼀次项b ,那么可以直接写成结果例三:把3722+-x x 分解因式.分析:先分解⼆次项系数,分别写在⼗字交叉线的左上⾓和左下⾓,再分解常数项,分别写在⼗字交叉线的右上⾓和右下⾓,然后交叉相乘,求代数和,使其等于⼀次项系数.分解⼆次项系数(只取正因数): 2=1×2=2×1;分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3).⽤画⼗字交叉线⽅法表⽰下列四种情况:经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于⼀次项系数-7.解原式=(x-3)(2x-1).总结:对于⼆次三项式ax^2+bx+c(a≠0),如果⼆次项系数a 可以分解成两个因数之积,即a=a1a2,常数项c 可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:a1 c1╳a2 c2a1c2+a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于⼆次三项式ax2+bx+c 的⼀次项系数b ,即a1c2+a2c1=b ,那么⼆次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2).这种⽅法要多实验,多做,多练。
因式分解的常用方法
因式分解的常用方法一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 2 ------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 2+b 2+c 2-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是()A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++例2、分解因式:bx by ay ax -+-5102练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22例4、分解因式:2222c b ab a -+-练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式))(()(2q x p x pq x q p x ++=+++进行分解。
例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a .例5、分解因式:652++x x例6、分解因式:672+-x x练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --练习8、分解因式(1)2223y xy x +- (2)2286n mn m +-(四)二次项系数不为1的齐次多项式例9、22672y xy x +- 例10、2322+-xy y x练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a思考:分解因式:abc x c b a abcx +++)(2222五、换元法。
因式分解的常用方法7种
因式分解的常用方法(7种)把一个多项式化成几个整式积的形式这种变形叫做把这个多项式因式分解(或分解因式) 因式分解X2-1 ---------- * (X+1)(X-1)I y整式乘法一■、提公因式法.:ma+mb+mc = m(a+b+c)如何找公因式?(1)取各项系数的最大公约数;(2)取各项都含有的相同字母;(3)取相同字母的最低次赛.二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a2-b2(2)(a±b)2 = a2±2ab+b2(3)(a+b)(a2-ab+b2) = a3-a2b+ab2+a2b-ab2+b3= a3+b3(4)(a-b)(a2+ab+b2) = a3+a2b+ab2-a2b-ab2-b3= a3-b3下面再补充两个常用的公式:(5)a2+b2+c2+2ab+2bc+2ac=a2+2ab+b2+2ac+2bc+c2=(a+b) 2+2(a+b)c +c 2=[(a+b)+c] 2=(a+b+c) 2 ;(6)a3+b3+c3-3abc=(a3+ab2+ac2-a2b-abc-ca2) + (a2b+b3+bc2-ab2-b2c-abc) + (a2c+b2c+c3-abc-bc2-c2a) = (a+b+c)(a2+b2+c2-ab-bc-ca);例.已知a,b, c是A ABC的三边,且a 2 + b 2 + c 2 = ab + bc + ca,则A ABC的形状是() 人.直角三角形8等腰三角形C等边三角形口等腰直角三角形解:a 2 + b 2 + c 2 = ab + bc + ca n 2 a 2 + 2 b 2 + 2 c 2 = 2 ab + 2 bc + 2 can (a一b)2 + (b一c)2 + (c一a)2 = 0 n a = b = c三、分组分解法.(一)分组后能直接提公因式例1、分解因式:am + an + bm + bn分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部” 看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
公式法分解因式
公式法分解因式公式法是一种将函数拆解为多个因式相乘的方法,用于分解多项式的因式。
它是数学中的一种重要的技巧,尤其在解决代数方程和求解多项式零点时经常使用。
公式法的基本思想是寻找函数的因式,并将其分解为多个较简单的因式相乘。
下面将详细介绍公式法分解因式。
步骤一:判断函数的类型首先,我们需要确定给定函数的类型,以便于采取相应的公式法。
函数可以是多项式函数、有理函数或三角函数等。
不同类型的函数需要采用不同的分解方法。
步骤二:因子分解在确定了函数的类型之后,我们需要寻找函数的因子。
对于多项式函数,我们可以使用多项式的因式分解公式,如二次函数或三次函数的因式分解公式。
对于有理函数,我们可以使用有理函数的因式分解公式。
而对于三角函数,我们可以使用特定的三角函数的因式分解公式。
步骤三:分解因式接下来,我们将找到的因子进行分解。
对于多项式函数,我们可以使用多项式的因式分解公式进行因式分解。
对于有理函数,我们可以使用有理函数的因式分解公式进行因式分解。
对于三角函数,我们可以使用特定的三角函数的因式分解公式进行因式分解。
步骤四:合并因式在完成因素的分解后,我们可以将所有的因素合并到一起,形成最终的因式分解结果。
这些因式相乘就可以得到原函数。
公式法分解因式的优点是能够将复杂的函数分解为多个较简单的因式相乘,从而让计算更加方便快捷。
公式法在代数方程的求解和多项式零点的求解中有着广泛的应用。
对于复杂的函数,我们可以通过分解因式来简化问题的解决过程,从而得到更加清晰简洁的结果。
需要注意的是,公式法分解因式需要对不同种类的函数有一定的了解和掌握。
对于不同类型的函数,我们需要使用相应的公式法进行分解。
此外,公式法的应用也需要一定的经验和技巧,通过不断的练习和实践,我们可以更加熟练地运用公式法分解因式。
因式分解-公式法第一课时
13
解决问题
把下列各式分解因式:
(1) 16a2-9b2 (2) 9(a+b)2-4(a-b)2 (3) 9xy2-36x3y²
14
牛刀小试
利用因式分解计算:
(1)2.882-1.882;
(2)782-222。
15
首页
上页
下页
通过本课时的学习,需要我们掌握:
1.利用平方差公式分解因式: a² - b²= (a+b)(a-b) 2.因式分解的步骤是: ①如果多项式各项含有公因式,则第一步提取公因式 ②如果多项式各项不含有公因式则考虑用平方差因式分解公式法. ③因式分解应进行到每一个因式不能分解为止. 3.计算中应用因式分解,可使计算简便. 4进一步了解了整体换元的思想方法在数学中的应用
§14.3.2 公式法
1
1.根据因式分解的概念,判断下列由左边到右边的
变形,哪些是因式分解,哪些不是,为什么? 1.(2x-1)2=4x2-4x+1 否 2. 3x2+9xy-3x=3x(x+3y-1) 3.4x2-1=(2x+1)(2x-1)
4. x2-4+2x=(x+2)(方差,等于这两个数 的和与这两个数的差的乘积.
5
公式法(1)
(a+b)(a-b) = a2-b2 a2-b2 =(a+b)(a-b)
两个数的平方差,等于这两个数的和与 这两个数的差的积. 【规律总结】凡是符合平方差公式左边特 点的二项式 a²-b² ,都可以运用平 方差公式分解因式.
2
2、我们学习了什么方法进行因式分解?
提公因式 法因式分 解
把下列各式进行因式分解 1. a3b3-ab ab(a2b2-1) -3xy(3x-y+2)
因式分解(提公因式法、公式法)
因式分解讲义一、概念因式分解:把一个多项式化成几个整式乘积的形式,叫做把这个多项式因式分解。
二、因式分解方法1、提公因式法ma+mb+mc=m(a+b+c)公因式:一个多项式每项都含有的相同因式,叫做这个多项式各项的公因式。
公因式确定方法:(1)系数是整数时取各项最大公约数。
(2)相同字母(或多项式因式)取最低次幂。
(3)系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
2、公式法(1)平方差公式:即两个数的平方差,等于这两个数的和与这两个数的差的积。
(2)完全平方公式:即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和 (或差)的平方。
口诀:首平方,尾平方,积的二倍放中央。
同号加、异号减,符号添在异号前。
公式法小结:(1)公式中的字母可代表一个数、一个单项式或一个多项式。
(2)选择公式的方法:主要看项数,若多项式是二项式可考虑平方差公式;若多项式是三项式,可考虑完全平方公式。
(3)完全平方公式要注意正负号。
【典型例题】1、下列从左到右是因式分解的是( )A. x(a-b)=ax-bxB. x 2-1+y 2=(x-1)(x+1)+y 2C. x 2-1=(x+1)(x-1)D. ax+bx+c=x(a+b)+c2、若2249a kab b ++可以因式分解为2(23)a b -,则k 的值为______3、已知a 为正整数,试判断2a a +是奇数还是偶数?4、已知关于x 的二次三项式2x mx n ++有一个因式(5)x +,且m+n=17,试求m ,n 的值5、将多项式3222012a b a bc -分解因式,应提取的公因式是( )A 、abB 、24a bC 、4abD 、24a bc6、已知(1931)(1317)(1317)(1123)x x x x -----可因式分解为()(8)ax b x c ++,其中a ,b ,c 均为整数,则a+b+c 等于( ) A 、-12 B 、-32 C 、38 D 、727、分解因式(1)6()4()a a b b a b +-+ (2)3()6()a x y b y x --- (3)12n n n x x x ---+(4)20112010(3)(3)-+- (5)ad bd d -+; (6)4325286x y z x y -(10)(a -3)2-(2a -6) (11)-20a -15ax; (12)(m +n )(p -q )-(m +n )(q +p )8、先分解因式,再计算求值(1)22(21)(32)(21)(32)(12)(32)x x x x x x x -+--+--+ 其中x=1.5(2)22(2)(1)(1)(2)a a a a a -++--- 其中a=189、已知多项式42201220112012x x x +++有一个因式为21x ax ++,另一个因式为22012x bx ++,求a+b 的值10、若210ab +=,用因式分解法求253()ab a b ab b ---的值11、下列各式中,能用平方差公式分解因式的是( )A 、22x 4y +B 、22x 2y 1-+C 、224x y -+D 、224x y --12、分解下列因式(1)2312x - (2)2(2)(4)4x x x +++- (3)22()()x y x y +--(4)32x xy - (5)2()1a b -- (6)22229()30()25()a b a b a b ---++(7)2522-b a ; (8)229161b a +-; (9)22)()(4b a b a +--(10)22009201120101⨯- (11)22222100999897...21-+-++-13、若n 为正整数,则22(21)(21)n n +--一定能被8整除14、)10011)(9911()411)(311)(211(22222--⋅⋅⋅---15、在多项式①22x 2xy y +- ②22x 2xy y -+- ③22x xy+y + ④24x 1+4x +,(5)2161a +中,能用完全平方公式分解因式的有( )16、A 、①② B 、②③ C 、①④ D 、②④16、222)2(4)________(y x y x -=++ 222)(88)_______(8y x y x +=++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)x2-x+0.25=( x-0.5 ) 2 (6)4x2+4xy+( ) 2=(2x+y ) 2
y
例题
16x2+24x+9
解原:式 (4x)2 2 4x 3 32
(4x 3) 2
(a b)2 12(a b) 36
解:原式 (a b)2 2 (a b) 6 62
(6)9 - 12(a-b) + 4 (a-b)2
解:原式=32-2×3×2(a-b)+[2(a b)]2
= 3 2(a b)2
=(3-2a+2b)2
分解因式:
(1)x2-12xy+36y2 =(x-6y)2 (2)16a4+24a2b2+9b4 =(4a2+3b2)2 (3)-2xy-x2-y2 =-(x+y)2 (4)4-12(x-y)+9(x-y)2=(2-3x+3y)2
(a b 6)2
3ax2+6axy+3ay2
解:原式 3a(x2 2xy y2 )
3a(x y)2
-x2+4xy -4y2
解:原式 (x2 - 4xy 4y2 )
[x2 2 x (2y) (2y)2 ]
(x 2 y)2
判断因式分解正误。
(1) -x2-2xy-y2= -(x-y)2
(7)(a+1)2-2(a2-1) +(a-1)2=(a+1-a+1)2=4
(8)9(a b)2 12(a2 b2 ) 4(a b)2
3(a b) 2(a b)2
(5a b)2
因式分解:
(y2 + x2 )2 - 4x2y2
解: 原式 ( y2 x2 2xy)(y2 x2 2xy)
(2) 9x2 4 y2 (2y 3x)(2y 3x)
(3)9x2 12 xy 4 y2 (3x 2 y)2
(4) 9x2 12 xy 4 y2 (3x 2 y)2
把下列各式因式分解
(5)9a2 4b(3a b) 9a2 12ab 4b2 (3a 2b)2
(6)3ax2 6axy 3ay2 3a(x2 2xy y2 ) 3a(x y)2
2.已知 a(a+1)-(a2-b)=-2, 求 a2+b2 +ab 2
的值。
解: 由a(a+1)-(a2-b)=a2+a-a2+b=a+b=-2得
a2 b2 ab a2 b2 2ab (a b)2 (2)2 2
2
2
2
2
3.已知x2+4x+y2-2y+5=0,求 x-y 的值。 解:由x2+4x+y2-2y+5=(x2+4x+4)+(y2-2y+1)
a2 ± 2 a b + b2 =ห้องสมุดไป่ตู้( a ± b )2
(一数) 2 ± 2(一数)(另一数)+(另一数)2=(一数±另一数)2
从项数看: 都有两项可化为两个数(或整式)
的平方,另一项为这两个数(或整式) 的乘积的2倍.
从符号看: 平方项符号相同 (即:两平方项的符号同号,首尾2倍中间项)
填空:
(1)a2+ 2ab +b2=(a+b)2 (2)a2-2ab+ b2 =(a-b) 2 (3)m2+2m+ 1 =( m+1) 2
课前复习:1、分解因式学了哪些方法
提取公因式法:ma+mb+mc=m(a+b+c) 运用公式法: ① a2-b2=(a+b)(a-b)
练习 把下列各式分解因式
① ax4 ax2
② x4-16
解:原式=ax2(x2-1)
解:原式=(x2+4)(x2-4)
=ax2(x+1)(x-1)
=(x2 +4)(x+2)(x-2)
(有公因式,先提公因式。) (因式分解要彻底。)
课前复习:
2.除了平方差公式外,还学过了哪些公式?
(a b)2 a2 2ab b2 (a b)2 a2 2ab b2
a 2 2ab b2 a b2 a2 2ab b2 a b2 完全平方式
用公式法正确分解因式关键是什熟么知?公式特征! 完全平方式
=(3a-b)2
练一练 因式分解:
(3)49a2 b2 14ab
解:原式=(7a)2+2×7a×b+b2 =(7a+b)2
(4)-a2-10a -25
解:原式=-(a2+2×a×5+52)
=-(a+5)2
练一练 因式分解:
(5)-a3b3+2a2b3-ab3 解:原式=-ab3(a2-2a×1+12) =-ab3(a-1)2
=(x+2)2+(y-1)2=0得
x+2=0,y-1=0
∴x=-2,y=1
∴x-y=(-2)-1= 1 2
分解因式:
1. x2 8x 16 =-(x+4)2
2. 4x2 x y2 4xx y =(3x+y)2
3. ax2 2a2 x a3 =a(x+a)2
把下列各式因式分解
(1)9x2 4 y2 (3x 2y)(3x 2y)
总结与反思:
• 1:整式乘法的完全平方公式是:
a b2 a2 2ab b2
• 2:利用完全平方公式分解因式的公式形式是:
a2 2ab b2 a b2
• 3:完全平方公式特点: 含有三项;两平方项的符号同号;首尾2倍中间项
1.已知 4x2+kxy+9y2 是一个完全
平式,则k= ±12
错。应为: -x2-2xy-y2
=-( x2+2xy+y2)
=-(x+y)2
(2)a2+2ab-b2 (a b)2
错。此多项式不是完全平方式
练一练 因式分解:
(1)25x2+10x+1
解:原式=(5x)2+2×5x×1+12
=(5x+1)2
(2)9a2 6ab b2
解:原式=(3a)2-2×3a×b+b2
=(y+x)2(y-x)2
简便计算: 562 68 56 342
解:原式=(56+34)2=902=8100
• 小结: • 本节课你有何收获?有哪些困惑?
•
同学们再见!