中考复习图形的对称平移和旋转课件.ppt
合集下载
广东省中考数学专题总复习ppt课件:图形的对称、平移、旋转和位似
第一部分 单元知识复习
第八章 图形的变化
第1讲 图形的对称、平移、 旋转和位似
考点梳理
一、考试要求:
1.图形的轴对称 (1)通过具体实例认识轴对称,理解对应点所连的线 段被对称轴垂直平分的性质. (2)能够按要求作出简单平面图形经过一次或两次轴 对称后的图形. (3)能利用轴对称进行图案设计. 2.图形的平移 (1)通过具体实例认识平移,理解对应点连线平行且 相等的性质. (2)能按要求作出简单平面图形平移后的图形. (3)利用平移进行图案设计,认识和欣赏平移在现实 生活中的应用.
【变式】 (2013· 宜宾) 如图,将面积
为5的△ABC沿BC方向平移至△DEF 的位置,平移的距离是边BC长的两倍, 那么图中的四边形ACED的面积为 ___________.
课堂精讲
课堂精讲
考点:平移
例2.(2013· 广安) 将点A (−1,2) 沿x轴向右平移3个单位 长度,再沿y轴向下平移4个长度单位后得到点A′的坐标为 ___________ . (2,−2) 【方法点拨】根据点的平移规律,左右移,横坐标加减, 纵坐标不变;上下移,纵坐标加减,横坐标不变,即可解 得答案.
课堂精讲
考点:旋转
例1.(2013· 牡丹江) 如图,△ABO中, AB⊥OB,OB= 3 ,AB=1,把△ABO 绕点O旋转150°后得到△A1B1O,则 点A1的坐标为 ( ) 3) 3 )或(−2,0) A.(−1, B.(−1, C.( 3,−1)或(0,−2) D.( 3 ,−1) 【方法点拨】需要分类讨论:在把△ABO绕点O顺时针旋转 150°和逆时针旋转150°后得到△A1B1O时点A1的坐标 【变式】(2013· 广州) 如图,Rt△ABC 的斜边AB=16,Rt△ABC绕点O顺时 针旋转后得到Rt△A′B′C′,则 Rt△A′B′C′的斜边A′B′上的中线C′D的 8 长度为____.
第八章 图形的变化
第1讲 图形的对称、平移、 旋转和位似
考点梳理
一、考试要求:
1.图形的轴对称 (1)通过具体实例认识轴对称,理解对应点所连的线 段被对称轴垂直平分的性质. (2)能够按要求作出简单平面图形经过一次或两次轴 对称后的图形. (3)能利用轴对称进行图案设计. 2.图形的平移 (1)通过具体实例认识平移,理解对应点连线平行且 相等的性质. (2)能按要求作出简单平面图形平移后的图形. (3)利用平移进行图案设计,认识和欣赏平移在现实 生活中的应用.
【变式】 (2013· 宜宾) 如图,将面积
为5的△ABC沿BC方向平移至△DEF 的位置,平移的距离是边BC长的两倍, 那么图中的四边形ACED的面积为 ___________.
课堂精讲
课堂精讲
考点:平移
例2.(2013· 广安) 将点A (−1,2) 沿x轴向右平移3个单位 长度,再沿y轴向下平移4个长度单位后得到点A′的坐标为 ___________ . (2,−2) 【方法点拨】根据点的平移规律,左右移,横坐标加减, 纵坐标不变;上下移,纵坐标加减,横坐标不变,即可解 得答案.
课堂精讲
考点:旋转
例1.(2013· 牡丹江) 如图,△ABO中, AB⊥OB,OB= 3 ,AB=1,把△ABO 绕点O旋转150°后得到△A1B1O,则 点A1的坐标为 ( ) 3) 3 )或(−2,0) A.(−1, B.(−1, C.( 3,−1)或(0,−2) D.( 3 ,−1) 【方法点拨】需要分类讨论:在把△ABO绕点O顺时针旋转 150°和逆时针旋转150°后得到△A1B1O时点A1的坐标 【变式】(2013· 广州) 如图,Rt△ABC 的斜边AB=16,Rt△ABC绕点O顺时 针旋转后得到Rt△A′B′C′,则 Rt△A′B′C′的斜边A′B′上的中线C′D的 8 长度为____.
初中数学中考知识点考点学习课件PPT之图形的对称、平移与旋转知识点学习PPT
图(3)
【分步分析】
① 过点 <m></m> 作 <m></m> 于点 <m></m> ,则 <m></m> ______,可得 <m></m> 的长度为_ ____.
② 在点 <m></m> 运动的过程中,点 <m></m> 在_ ____________________________________上运动.
75
75
[答案] 如图(2)所示.
图(2)
平行于 且到 的距离为 的直线
③ 线段 <m></m> 的最小值为_____.
(4) 如图(4),将 <m></m> 平移5个单位长度,得到 <m></m> ,点 <m></m> 为 <m></m> 的中点,点 <m></m> 为 <m></m> 的中点,连接 <m></m> ,则线段 <m></m> 的长度的取值范围为_______________________.
图(2)
(3) 如图(3),点 <m></m> 为 <m></m> 的中点,点 <m></m> 为 <m></m> 上一动点,将线段 <m></m> 绕点 <m></m> 顺时针旋转 <m></m> ,得到线段 <m></m> ,连接 <m></m> ,则线段 <m></m> 的最小值为_____.
【2024版】中考一轮复习《第24讲:图形的平移、对称和旋转》课件
解析 当点A的对应点为点C时,连接AC,BD,分别作线段AC,BD的
垂直平分线交于点E,如图1所示.∵A点的坐标为(-1,5),B点的坐标为(3,3),∴E点的坐标为(1,1);当点A的对应点为点D时,连接AD,BC,分别作线段AD,BC的垂直
平分线交于点M,如图2所示,∵A点的坐标为(-1,5),B点的坐标为(3,3),∴M点的坐标为(4,4).综上所述:这个旋转中心的坐标为(1,1)或(4,4).
线,其交点即为旋转中心.
2.旋转的性质(1)旋转前、后的图形的形状和大小都没有 发生改变 ;(2)对应点到旋转中心的距离 相等 ,对应线段 相等 ,对应角 相等 ;(3)对应点与旋转中心所连线段的夹角等于 旋转角 .
知识点四 中心对称与中心对称图形
线段③ 相等 ,对应角④ 相等 ,各对应点所连的线段平行(或在同一条直线上)且相等.温馨提示 (1)平移的要素:平移的方向和平移的距离.(2)平移只改变图形的位置,不改变图形的形状和大小
知识点二 轴对称与轴对称图形
轴对称
轴对称图形
定义
把一个图形沿着某一条直线折叠,如果它能够
中心对称
中心对称图形
定义
把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这
一点成中心对称,这个点叫做对称中心
把一个图形绕着某一点旋转180°,如果它能与原图形重合,那么这个图形是中心对称图形,
这个点叫做对称中心,这个图形的对应点叫做关于对称中心的对称点
中心对称
中心对称图形
第24讲 图形的对称、平移和旋转
总纲目录
知识点一 平移1.平移的定义:在平面内,把一个图形沿着① 一定的方向 移动一定的距离,这种变换叫做平移. 2.平移的性质(1)通过平移得到的图形与原来的图形是② 全等形 ;(2)在平面内,一个图形经过平移后得到的图形与原来图形的对应
垂直平分线交于点E,如图1所示.∵A点的坐标为(-1,5),B点的坐标为(3,3),∴E点的坐标为(1,1);当点A的对应点为点D时,连接AD,BC,分别作线段AD,BC的垂直
平分线交于点M,如图2所示,∵A点的坐标为(-1,5),B点的坐标为(3,3),∴M点的坐标为(4,4).综上所述:这个旋转中心的坐标为(1,1)或(4,4).
线,其交点即为旋转中心.
2.旋转的性质(1)旋转前、后的图形的形状和大小都没有 发生改变 ;(2)对应点到旋转中心的距离 相等 ,对应线段 相等 ,对应角 相等 ;(3)对应点与旋转中心所连线段的夹角等于 旋转角 .
知识点四 中心对称与中心对称图形
线段③ 相等 ,对应角④ 相等 ,各对应点所连的线段平行(或在同一条直线上)且相等.温馨提示 (1)平移的要素:平移的方向和平移的距离.(2)平移只改变图形的位置,不改变图形的形状和大小
知识点二 轴对称与轴对称图形
轴对称
轴对称图形
定义
把一个图形沿着某一条直线折叠,如果它能够
中心对称
中心对称图形
定义
把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这
一点成中心对称,这个点叫做对称中心
把一个图形绕着某一点旋转180°,如果它能与原图形重合,那么这个图形是中心对称图形,
这个点叫做对称中心,这个图形的对应点叫做关于对称中心的对称点
中心对称
中心对称图形
第24讲 图形的对称、平移和旋转
总纲目录
知识点一 平移1.平移的定义:在平面内,把一个图形沿着① 一定的方向 移动一定的距离,这种变换叫做平移. 2.平移的性质(1)通过平移得到的图形与原来的图形是② 全等形 ;(2)在平面内,一个图形经过平移后得到的图形与原来图形的对应
中考数学总复习图形变换之 轴对称 平移与旋转 课件
A
B
C
D
4.(2020·郴州)下列图形是中心对称图形的是 ( D)
A
B
C
D
5.(2020·广东)如图,在正方形 ABCD 中,AB =3,点 E,F 分别在边 AB,CD 上,∠EFD=60°. 若将四边形 EBCF 沿 EF 折叠,点 B 恰好落在 AD 边上,则 BE 的长度为( D )
A.1 B. 2 C. 3 D.2
3.下列图形,是中心对称图形的是_①__②__④_____. ①平行四边形;②矩形;③等边三角形;④线段. 4.如图,在△ABC 中,∠B=10°,∠ACB=20°, AB=4 cm,将△ABC 逆时针旋转一定角度后与 △ADE 重合,且点 C 恰好为 AD 的中点,如图所 示.
(1)旋转中心为点___A____,旋转的度数为__1_5_0_°___; (2)∠BAE 的度数为___6_0_°___,AE 的长为__2__c_m___.
2.如图,各电视台的台标图案,其中是轴对称图形 的是( C )
A
B
C
D
3.旋转: (1)基本性质:图形中的每一个点都绕着旋转中心 旋转了同样大小的角度,对应点到旋转中心的距离 相等,对应线段、对应角都相等,对应点与旋转中 心的连线所成的角(叫旋转角)彼此相等,图形的形 状和大小都不会发生变化;
(2)旋转的三要素:旋转中心、旋转角度、旋转方 向; (3)中心对称图形:一个图形绕着某一个点旋转 180°后能够跟原来图形重合,那么这个图形是中 心对称图形.
考点 旋转(5 年 2 考) 6.(2019·翔安区模拟)如图,在同一平面内,将 △ABC 绕点 A 逆时针旋转 50°到△AB′C′的位置, 使得 C′C∥AB,则∠CAB 等于( C )
《平移和旋转》平移、旋转和轴对称PPT课件
愿知识与您相伴 让我们共同成长 感谢您的阅读与支持
因绿色为最佳感受色, 可使睫状体放松,图案从里 到外大小不等,不断变化图 案可不断改变眼睛晶状体的 焦距,使调节他们的睫状体 放松而保护视力。
远眺图使用说明
1、远眺距离为1米-2.5米(远眺图电脑版比纸质版小 ,距离相应缩短),每日眺望5次以上,每次3—15分 钟。
2、要思想集中,认真排除干扰,精神专注,高度标 准为使远眺图的中心成为使用者水平视线的中心点 。
3、远眺开始,双眼看整个图表,产生向前深进的感 觉,然后由外向内逐步辨认每一层的绿白线条。
4、如果视力不良,只能进到某一层时,不要立即停 止远眺,应多看一会儿,将此层看清楚后,再向内 看一层,如此耐心努力争取尽量向内看,才能使眼 的睫状肌放松。
5、双眼视力相近的,两眼可同时远眺;双眼视力相 差大的、将左右眼轮流遮盖,单眼远眺,视力差的 一只眼睛,其远眺时间要延长。
《平移和旋转》平移、 旋转和轴对称PPT课件
2
物体沿着一条直线方 向运动的现象叫平移
物体绕着一个点或一个轴 做圆周运动的现象叫旋转。
3
4
5
6
7
8
9
看一看 生活中的旋转现象
10
11
12
13
14
15
16
17
18
金鱼图向〔 〕平移了〔 〕格
19
①
①
金鱼图向〔 〕平移了〔 〕格
远眺图使用方法
第一步、首先在能把远眺图都看清的位置,熟悉一 下最远处几个框细微的纹路,
第二步、然后逐渐加大距离至远眺图最远处的几个 框处于模糊与清晰之间的位置停止。
第三步、思想集中,认真排除干扰,精神专注,开 始远眺,双眼看整个图表,产生向前深进的感觉, 然后由外向内逐步辨认最远处几个框每一层的绿白 线条。
《图形的旋转》平移旋转和轴对称PPT课件
与时针旋转方向相同的是顺时针, 与时针旋转方向相反的是逆时针。
栏杆的打开和关闭是怎样旋转的? 它们的运动有什么相同点和不同点?
逆时针方向Biblioteka 顺时针方向OO
课堂探究
探究一: 转杆的打开和关闭,分别是绕哪个点按什么方向旋转的?旋转了多少度?
转杆的打开是绕o顺时针旋转90°。 ②转杆的打开是绕o逆时针旋转90°
随堂检测
(1)把三角形绕点A顺时针旋转90° (2)把四边形绕点B逆时针旋转90°
一、学习新课
把三角板绕A点顺时针旋转90。
A
当堂练习
(3)指针顺时针旋转90°,从指向A 旋转到指( D ) ; 指针逆时针旋转90°,从指向B旋转到指向( C ) 。
给出一个方向和角度,让线段OA绕着O点转一转
A
O
小结: 与时针旋转方向相同的是顺时针旋转,相反的是逆时针 旋转。转杆打开是顺时针旋转,转杆关闭是逆时针旋转。
课后练习
一、学习新课
把三角板绕A点顺时针旋转90。
A
讲授新课
你会把方格纸上的三角形绕点A逆时针旋转90°吗?
从113页剪下和它同样 大的三角形,在图上试 一试。
A
( 1 )千克的物品可以使指针按顺时针
方向旋转90。 。
4 0
3
1
2
4 0
3
1
2
如果不借助具体的实物,该怎样画出 三角形逆时针旋转90后的图形?
图形的旋转
学习目标
1.认识绕点顺时针或逆时针旋转90°的含义, 能在方格纸上画出把简单图形旋转90°后的图形。
2.认识对图形变化的兴趣,并进一步感受旋 转在生活中的应用。
讲授新课
与时针旋转方向相同的是顺时针旋转,相反的是逆时针旋转。
16.5 利用图形的平移、旋转和轴对称设计图案课件(共18张PPT)
中心
4
轴归纳小结图案Fra bibliotek设计: 利用图形的平移、旋转和轴对称设计图案,是人们在进行图案设计时经常使用的一种方法.
同学们再见!
授课老师:
时间:2024年9月15日
做一做 如图,在同一平面内有一些几何图形,请利用图形的平移、旋转和轴对称,设计一个你想象中的“房屋示意图”.
图案设计的一般步骤:(1)选择基本图案(基本图案可以是一个图案,也可以是几个图案的组合).(2)对基本图案进行变换(变换可以是单纯的平移,旋转或轴对称,也可以是多种变换).(3)对图案进行修饰.要点精析: 进行图案设计时,首先要整体构思,确定“基本图形”,再制定出“基本图形”变换的具体操作程序.
随堂练习
1.如图,下列一些图标都可以由“基本图形”通过变换得到,请你根据要求用图标的序号填空:(1)可以通过平移变换得到但不能通过旋转变换得到的图案是________;(2)可以通过旋转变换得到但不能通过平移变换得到的图案是________;(3)既可以由平移变换得到,也可以由旋转变换得到的图案是________.
36
拓展提升
2.如图所示,网格图中每个小正方形的边长为1.请你认真观察三个网格图中阴影部分构成的图案.解答下列问题:(1)这三个图案都具有以下共同特征:①都是______对称图形;②阴影部分面积都是______;③都不是____对称图形.(2)请你在备用图中设计出一个具备上述特征的图案.(图中已给出的除外)
2.如图,将这个三角形绕两条虚线的交点,先旋转90°,再将整个图形旋转180°,画出旋转后的图形.(保留原图痕迹)
思考:
1.观察下列两组图案,请你分别说说由图案(1)到图案(2)的变化过程.
2.观察下图,请你说说由图案(1)到图案(2),再到图案(3)的变化过程.
4
轴归纳小结图案Fra bibliotek设计: 利用图形的平移、旋转和轴对称设计图案,是人们在进行图案设计时经常使用的一种方法.
同学们再见!
授课老师:
时间:2024年9月15日
做一做 如图,在同一平面内有一些几何图形,请利用图形的平移、旋转和轴对称,设计一个你想象中的“房屋示意图”.
图案设计的一般步骤:(1)选择基本图案(基本图案可以是一个图案,也可以是几个图案的组合).(2)对基本图案进行变换(变换可以是单纯的平移,旋转或轴对称,也可以是多种变换).(3)对图案进行修饰.要点精析: 进行图案设计时,首先要整体构思,确定“基本图形”,再制定出“基本图形”变换的具体操作程序.
随堂练习
1.如图,下列一些图标都可以由“基本图形”通过变换得到,请你根据要求用图标的序号填空:(1)可以通过平移变换得到但不能通过旋转变换得到的图案是________;(2)可以通过旋转变换得到但不能通过平移变换得到的图案是________;(3)既可以由平移变换得到,也可以由旋转变换得到的图案是________.
36
拓展提升
2.如图所示,网格图中每个小正方形的边长为1.请你认真观察三个网格图中阴影部分构成的图案.解答下列问题:(1)这三个图案都具有以下共同特征:①都是______对称图形;②阴影部分面积都是______;③都不是____对称图形.(2)请你在备用图中设计出一个具备上述特征的图案.(图中已给出的除外)
2.如图,将这个三角形绕两条虚线的交点,先旋转90°,再将整个图形旋转180°,画出旋转后的图形.(保留原图痕迹)
思考:
1.观察下列两组图案,请你分别说说由图案(1)到图案(2)的变化过程.
2.观察下图,请你说说由图案(1)到图案(2),再到图案(3)的变化过程.
人教版九年级中考复习数学课件:第25讲 图形的对称、平移与旋转(共27张PPT)
对称图形,故B选项错误;C.既不是轴对称图形,也不是中心对称图形,故C选项错误;D.
是轴对称图形,也是中心对称图形,故D选项正确.故选D.
(1)判断轴对称图形,关键看其沿某一条直线折叠后能否与自身重合; (2)判断中心对称图形,关键看其绕某一点旋转180°后能否与自身重合.
图形的平移与旋转
【例2】 如图,在Rt△ABC中,∠ABC=90°,AB=BC= 60°,得到△MNC,连接BM,则BM的长是
2.性质
(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平
分线. (2)轴对称图形的对称轴,是任何一对对应点所连线段的 垂直平分线 .
平移的有关概念与性质 一定方向 移动相同的距离叫做平移. 1.定义:把图形上所有的点都按
2.性质:把△ABC平移到△DEF(如图).平移后的图形与原图形是全等三角形,其对应 同一条直线上 平行 相等 相等 边 ,对应角 ;连接各组对应点的线段 (或在 )且相
等. 图形的旋转 转动 1.定义:把一个平面图形绕着平面内某一点O 一个角度,叫做图形的旋转. 2.性质:对应点到旋转中心的距离 相等 ;对应点与旋转中心所连线段的夹角等 于 旋转角 ;旋转前、后的图形 形状、大小 不变.
中心对称与中心对称图形(常考点)
旋转180° 1.定义:把一个图形绕着某一点 ,如果它能够与另一个图形 完全重合 ,那么就说这两个图形关于这个点对称或中心对称. 2.性质:关于中心对称的两个图形,对称点所连线段都经过 全等 平分 心 ;关于中心对称的两个图形是 图形 . 对称中心 ,并且被对称中
180° 3.把一个图形绕着某一个点旋转 ,如果旋转后的图形与原来的图形 重合 ,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
2024年河北省中考数学一轮复习课件:图形的对称、平移与旋转
方向平移至△O′A′B′的位置,此时点 A′的横坐标为 3,则点 B′的坐标为
( A
)
A.(4,
C.(4,3)
)
B.(3,3)
D.(3,2)
题型解法
对应练习
练习一 [2023·衡水桃城区三模]如图,在
ABCD中,AD>AB,∠ABC 为
锐角,将△ABC 沿对角线AC 边平移,得到△A′B′C′,连接 AB′和C′D,若
求解.
折叠与四 与平行四边形、矩形、菱形、正方形结合,往往利用其特殊性质解题;
边形结合 若为一般四边形,则可通过构造特殊的三角形或四边形求解.
最短路线
根据轴对称性,把要求的某些线段集中在一起,根据“两点之间,线段
最短”来解决.
对应练习
练习一 [2023·廊坊安次区二模]如图 1 为一张正三角形纸片 ABC,其中
D 是 BC 边上一点,线段 DA 绕点 D 顺时针旋转 90°得到 DE,连接 AE,若 F
是 AE 的中点.
(1)当点 F 在 AC 上时,BD=______;
(2)CF 的最小值为 ______.
题型解法
等腰直角
三角形旋
转模型
等边三角
形旋转模
型
如图,在△ABC 中,∠ACB=90°,AC=
BC,P 为△ABC 内一点,将△APC 绕点
B
)
练习二 [2023·邢台三中模拟]如图,有八个点将圆周八等分,其中连接相
邻的两个等分点,得到四条相等的弦(实线表示),若再连接以等分点为端点的
一条弦,使所得的整个图形是轴对称图形,则这条弦是 ( A )
A. ①或③
B. ①或②
C. ②或④
D. ③或④
( A
)
A.(4,
C.(4,3)
)
B.(3,3)
D.(3,2)
题型解法
对应练习
练习一 [2023·衡水桃城区三模]如图,在
ABCD中,AD>AB,∠ABC 为
锐角,将△ABC 沿对角线AC 边平移,得到△A′B′C′,连接 AB′和C′D,若
求解.
折叠与四 与平行四边形、矩形、菱形、正方形结合,往往利用其特殊性质解题;
边形结合 若为一般四边形,则可通过构造特殊的三角形或四边形求解.
最短路线
根据轴对称性,把要求的某些线段集中在一起,根据“两点之间,线段
最短”来解决.
对应练习
练习一 [2023·廊坊安次区二模]如图 1 为一张正三角形纸片 ABC,其中
D 是 BC 边上一点,线段 DA 绕点 D 顺时针旋转 90°得到 DE,连接 AE,若 F
是 AE 的中点.
(1)当点 F 在 AC 上时,BD=______;
(2)CF 的最小值为 ______.
题型解法
等腰直角
三角形旋
转模型
等边三角
形旋转模
型
如图,在△ABC 中,∠ACB=90°,AC=
BC,P 为△ABC 内一点,将△APC 绕点
B
)
练习二 [2023·邢台三中模拟]如图,有八个点将圆周八等分,其中连接相
邻的两个等分点,得到四条相等的弦(实线表示),若再连接以等分点为端点的
一条弦,使所得的整个图形是轴对称图形,则这条弦是 ( A )
A. ①或③
B. ①或②
C. ②或④
D. ③或④
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.定义:把一个平面图形绕着平面内某一点O转动一 个角度叫做图形的旋转,点O叫做旋转中心, 转动的角叫做旋转角。
(1)旋转前后的图形全等; 2.特征:(2)对应点到旋转中心的距离相等;
(3)对应点与旋转中心所连线段的夹角等于旋转角。 3.旋转三要点: 旋转的①方向 ②距离③角度
演练3:如图△ABC是等腰直角三角形, 点D是斜边BC中
1.轴对称 把一个图形沿一条直线折叠,如果它能够与 的定义: 另一个图形重合,那么就说这两个图形成轴
对称,这条直线就是对称轴。
2.轴对称 如果一个图形沿一条直线折叠,直线两旁能 图形的定 够互相重合,这个图形叫做轴对称图形,这 义:
条直线是它的对称轴。
提示:轴对称图形是针对一个图形而言,轴对称是对 两个图形而言。
❖ 3、图形的旋转 ①了解旋转的基本性质,理解对应点到旋 转中心的距离相等、对应点与旋转中心连线所成的角彼此相 等的性质 ②了解平行四边形、圆是中心对称图形 ③能 够按要求作出简单平面图形旋转之后的图形
1.定义:一个图形整体沿着一条直线的方向平行移动 一段距离叫做图形的平移。 (1)平移前后的图形全等;
个图形叫做中心对称图形,这个点就是它的
对称点。
常见的轴对称图形: 常见中心对称图形:
角 线段
等腰三角形 等边三角形
正方形 矩形 菱形
等腰梯形
圆
线段
平行四边形
矩形 菱形 正方形
圆
2.如图所示图形中,中心对称图形有( ) ❖A.1个 B.2个 C.3个 D.4个
(2)连结EF,△DEF是什么三角形?等腰直角三角形
(3)若DC=3,CE=1,则EF=? 2 5
D
C
E
F
A
B
练习4:在正方形ABCD中,E为DC边上的点,连结
BE,将△BCE绕点C顺时针方向旋转900得△DCF,连
结EF,若∠BEC=600,则∠EFD的度数为( B )
A、100
B、150 C、200
(1)关于某条直线对称的两个图形是全等的;
(2)对称点的连线段被对称轴垂直平分; 3.特征:
(3)对应线段所在的直线如果相交,则交点在 对称轴上。
演练4:下列图形中是轴对称图形的有( C )
①角 ②线段 ③等腰三角形 ④等边三角形 ⑤扇形 ⑥圆 ⑦平行四边形 A.4个 B.5个 C.6个 D.7个
点, △ABD绕点A旋转到△ACE的位置, 恰与△ACD组成
正方形ADCE, 则△ABD所经过的旋转是( D )
A. 顺时针旋转225° B. 逆时针旋转45°
C. 顺时针旋转315° D. 逆时针旋转90°
A
E
B
D
C
四边形ABCD是正方形,△DCE顺时针旋转后与
△DAF重合,那么
(1)旋转角是多少度? 90o
D、250
D A
E
B
C
F
5.在方格纸上建立如图7-1-4所示的平面 直角坐标系,将△ABO绕点O按顺时针方向 旋转90°,得△A′B′O,则点A的对应点A′的 坐标为________(.2,3)
6.如图,在△ABC中,∠CAB=70°.在同一平 面内,将△ABC绕点A旋转到△AB′C′的位置, 使得CC′∥AB, ∠BAB′=_______. A.30°B.35°C.40°D.50°
2.特征: (2)对应线段、对应点所连的线段平行(或 在同一直线上)且相等。
3.平移两要点: 平移的①方向 ②距离
演练1、将以下图案(1)通过平移可以得到图案( C )
演练2、如图:ΔDEF可以看作ΔABC平移得到
1)AB∥ DE ; AC ∥ DF .
AD
2)若BC=5cm, CE =3cm,则平移的
演练5:如图,正方形的边长为4cm,则图中阴影部分
的面积为___8____cm2.
A
B
C
1.中心对 把一个图形绕着某一个点旋转1800,如果它 称的定义:能够与另一个图形重合,那么就说这两个图
形关于这个点对称或中心对称,这个点叫做
对称中心。
2.中心对 把一个图形绕着某一个点旋转1800,如果旋 称图形的 转后的图形能够与原来的图形重合,那么这 定义:
A
B
2.在如图所示的四个汽车标志图案中,能用平 移变换来分析其形成过程的图案是 ( D )
3.如图把图①中的△ABC经过一定的变换得 到图②中的△A′B′C′,如果图①中△ABC上点 P的坐标为(a,b),那么这个点在图②中的对应 点P′的坐标为( ) C
A.(a-2,b-3) B.(a-3,b-2) C.(a+3,b+2) D.(a+2,b+3)
距离是__2__cm,EF=__5__cm.
B EC F
3)若连结AD,与AD相等的线段是:_B_E___、__C_F_.
1:如图,在10×6的网格图中(每个小正方形的边长均为1个单
位长),⊙A的半径为1, ⊙B的半径为2,要使⊙A与静止的⊙B相
切,那么⊙A由图示位置需向右平移_2___,__4____或__6___个单位长度。
中考数学总复习
图形的对称、平移和旋转
重庆中考要求:
❖ 1、图形的轴对称 ①轴对称的基本性质,理解对应点所连 的线段被对称轴垂直平分的性质 ②能够按要求作出简单平 面图形经过一次或者两次对称轴后的图形;探索简单图形之 间的对称轴关系,并能指出对称轴 ③探索基本图形的轴对 称性及其相关性质
❖ 2、图形的平移 ①了解平移的基本性质,理解对应点连线 平行且相等的性质 ②能按要求作出简单平面图形平移后的 图形