运动的能量代谢(1)
运动的能量代谢(1)幻灯片PPT
糖的有氧氧化反响过程简式
反响过程简式如下: 葡萄糖 糖原 丙酮酸
乙酰辅酶A 三羧酸循+O2 CO2+H2O+ATP 糖有氧氧化时,1mol葡萄糖生成 38moIATP。
?人体生理学?
?人体生理学?
三羧酸循环
乙酰辅酶A进入三羧酸循环彻底氧化 为CO2和H2O乙,酰同辅时酶释A放Co能A 量合成ATP。
肌细胞 糖酵解与乳酸生成
?人体生理学?
血液
糖的无氧酵解
▪ 糖无氧酵解时,1mol葡萄糖产生 2moIATP。
▪ 在氧供给充足时,大局部乳酸又可 以进一步氧化供能。
▪ 人体在从事一定持续时间的剧烈运 动时,肌肉活动所需要的ATP的再合 成便依赖于糖无氧酵解供能过程。
?人体生理学?
糖酵解在运动中的应用
第一章 运动的能量代谢
新陈代谢
物质代谢 能量代谢 分解代谢 合成代谢
?人体生理学?
能量代谢
在生物体内物质代谢的过程 中,伴随着能量的储存、释放、 利用和转移的过程。
?人体生理学?
第一节 生物能量学概要
一、叶绿体和线粒体是高等生物细胞 主要的能量转换器
生物体不能直接利用光能,需要其细 胞通过叶绿体和线粒体装置,将太阳能 转换成自身可被利用的化学能。超过 50%以热能形式散发体外。
?人体生理学?
ATP的构造
?人体生理学?
?人体生理学?
ATP是肌肉活动唯一的一种直接能量 来源
ATP酶
ATP
ADP+Pi+能
?人体生理学?
ATP的分解放能
肌肉活动时,贮存在肌纤维中的 ATP分解放出能量,使肌纤维缩短, 以完成机械功。
肌肉中ATP的贮量甚少,仅为 5mmol·kg-1湿肌左右 ,必需边分解 边再合成,才能不断地供给肌肉的 需要。
邓树勋《运动生理学》(第2版)配套题库-课后习题-运动的能量代谢【圣才出品】
第1章运动的能量代谢一、概念题1.能量代谢答:能量代谢是指伴随物质代谢发生的能量释放、转移和利用等过程,它是以ATP为中心进行的。
在物质代谢过程中,物质的变化与能量的代谢是紧密联系着的。
2.生物能量学答:生物能量学是研究与生命现象相伴的活体内能量的进出和转换的生物物理学的一个分支学科。
从生物化学的角度,正进行着与活体能量转换有关的生物膜、肌肉(收缩性蛋白质)和酶合成的本质的探究,以及以ATP为中心的活体的能量流通机理的研究。
3.磷酸原供能系统答:磷酸原供能系统是指ATP、ADP和磷酸肌酸(CP)组成的系统,由于它们都属高能磷酸化合物,故称为磷酸原系统(ATP-CP系统)。
磷酸原系统在代谢过程中不需要氧的参与,能瞬时供应能量。
4.糖酵解供能系统答:糖酵解供能系统是指糖在相对缺氧的条件下(不完全氧化)合成ATP并产生乳酸的过程。
在三大营养物质中,只有糖能够直接在相对缺氧的条件下(不完全氧化)合成ATP。
5.有氧氧化供能系统答:有氧氧化供能系统是指糖、脂肪和蛋白质在细胞内(主要是线粒体内)彻底氧化成H2O和CO2的过程中,再合成ATP的能量系统。
细胞在生命活动中首先以糖类作为有氧氧化的燃料,机体糖供应相对不足时再消耗脂肪,仅在糖及脂肪均相对不足时蛋白质才作为有氧氧化的底物。
6.基础代谢率答:基础代谢率是指人体在清醒而又极端安静的状态下,不受肌肉活动、环境温度、食物及精神紧张等影响时的能量代谢率。
基础代谢率以每小时每平方米体表面积的产热量为单位,通常以kj/(m2·h)来表示。
7.能量代谢的整合答:能量代谢是指伴随物质代谢发生的能量释放、转移和利用等过程,它是以ATP为中心进行的。
在物质代谢过程中,物质的变化与能量的代谢是紧密联系着的。
大强度运动中各能量代谢系统对能量供应的参与并非以顺序出现,而是相互整合、协调,共同满足体力活动的基本器官肌肉对能量的需求。
8.最大摄氧量答:最大摄氧量是指人体在进行有大量肌肉群参加的长时间剧烈运动中,当心肺功能和肌肉利用氧的能力达到本人极限水平时,单位时间所能摄取的最大氧量,又称最大吸氧量、最大耗氧量。
运动的能量代谢
2、脂肪在体内的代谢过程
β-氧化 脂肪组织 脂肪 肌肉 甘油 + 磷酸甘油脂 糖异生 肝 脂 肪 脂肪酸 乙酰辅酶A 三羧酸循环 ATP
血液
小 肠
2、脂肪:提供大约 30%的能量
甘油 脂肪 脂肪酸
磷酸化脱氢化
有氧氧化
葡萄糖
乙酰辅酶A
氧化
3、蛋白质(氨基酸):提供少量的能量
(四)蛋白质代谢
1.蛋白质的生物学功能 构成和修补机体组织。 调节机体生理功能; 氧化供能(参与供能的氨基酸只有6种)。
二、能量连续统一体理论及其应用
(一)、能量连续统一体的概念 (二)、能量连续统一体的四区 (三)、能量连续统一体理论在体育实践中的应用—— 能量专门化原则
1.首先明白某项运动所需的主要供能系统。 2.训练中重点发展这项运动所需的供能系统。 3.要注意选择与运动项目能量供应相一致的 运动练习手段。
肌肉运动可以产生骨骼肌血管扩张、血 流量增加,内脏血管收缩、血流量减少 的效应,导致胃肠道血流量明显减少(约 较安静时减少2/3左右),消化腺分泌消 化液量下降;运动应激亦可致胃肠道机 械运动减弱,使消化能力受到抑制。
为了解决运动与消化机能的矛盾,一 定要注意运动与进餐之间的间隔时间。饱 餐后,胃肠道需要血液量较多,此时立即 运动,将会影响消化,甚至可能因食物滞 留造成胃膨胀,出现腹痛、恶心及呕吐等 运动性胃肠道综合征。剧烈运动结束后, 亦应经过适当休息,待胃肠道供血量基本 恢复后再进餐,以免影响消化吸收机能。
能量连续统一体理论 在体育实践中的应用
1、着重发展起主要作用的供能系统 2、制定合理的训练计划
肌肉活动时影响能量代谢 的因素分析
乳酸的清除
有 氧 氧 化
运动生理学教案_第一章_运动的能量代谢
③小肠内消化 方式:机械消化(紧张性收缩、分节运动、小肠蠕动)和 化学消化 消化液:胰液(由胰腺分泌,显碱性)、胆汁液(由肝脏 分泌,成分复杂,其中主要是胆盐,能乳化脂肪, 加速脂肪分解)、小肠液(显弱碱性,可降低渗透 压,促进吸收的进行)、肽酶(将多肽分解为氨基 酸)和麦芽糖酶等等, 时间:3~8小时 ④大肠内消化 方式:没有复杂的消化活动,只有机械性运动(分节运动 和蠕动) 消化液:大肠液(主要是黏液蛋白),具有保护肠粘膜 和润滑粪便的作用 作用:12~24小时
糖、脂肪、蛋白质之间的关系
(三)ATP分解与再合成的关系
能量的释放、转移和利用
二、供ATP再合成的三个供能系统
1.磷酸原系统 (ATP—CP系统) 定义:——指ATP和磷酸肌酸(CP)组成的系统。 燃烧物质:ATP和CP 最大输出功率:56J/Kg· s 持续时间:7.5秒左右 特点:供能总量少、持续时间短、功率输出最快是、不需 氧、不产生乳酸类等代谢中间产物。 意义:是一切高功率输出运动项目的物质基础 项目代表:短跑、投掷、跳跃、举重 2.酵解能系统(底物:肌糖原、葡萄糖) 定义:糖原和葡萄糖在细胞浆内无氧分解生成乳酸过程中, 再合成ATP的能量系统。
第一章 运动的能量代谢
主要讲解内容:
一、能量的直接来源——ATP 二、供ATP再合成的三个供能系统 三、能量的间接来源——糖、脂肪、蛋白 质
一、能量的直接来源—ATP
能量的直接来源——ATP
1、一切生命活动来源都来自于ATP
2、ATP(三磷酸腺苷):是一种存在于细胞内(胞浆和核
浆内)、由自身合成并能迅速分解被直接利用的一种自
持续时间:理论上讲是无阻的! 特点:供能总量最大,持续时间很长,功率输出很低, 需要氧的参与,终产物是水和二氧化碳。 意义:是长时间耐力活动的物质基础 项目代表:长跑,越野赛等!
邓树勋《运动生理学》(第2版)配套题库课后习题
第1篇运动生理学基础第1章运动的能量代谢第2章肌肉活动一、概念题1.兴奋答:兴奋是指机体代谢、功能从相对静止状态转变为活动状态,或是从弱的活动状态转变为强的活动状态,是产生动作电位本身或动作电位的同义语。
2.兴奋性答:兴奋性是指组织细胞接受刺激具有产生动作电位的能力,是肌肉在刺激作用下具有产生兴奋的特性。
兴奋性是一切生命体所具有的生理特性,不同组织细胞的兴奋性不同。
3.动作电位答:动作电位是指可兴奋细胞兴奋时,细胞内产生的可扩布的电位变化。
动作电位的成因首先是细胞在有效刺激作用下膜的逐步去极化,当膜去极化达到阈电位水平时,膜对Na+的通透性迅速提高(快钠通道开放),Na+迅速大量地由膜外向膜内移动,钠的内流形成了动作电位的除极相,动作电位相当于钠的平衡电位。
4.肌小节答:肌小节是指在肌原纤维上相邻两Z线之间的一段肌原纤维。
它包括中间的暗带和两侧各1/2的明带。
肌小节又是由更微细的平行排列的粗肌丝和细肌丝组成的。
5.肌肉的兴奋一收缩耦联答:兴奋-收缩耦联是指把以肌细胞膜的电变化为特征的兴奋过程与肌丝滑行为基础的收缩过程联系在一起的中介过程。
目前研究认为,肌肉的兴奋-收缩耦联至少包括三个主要步骤:①电兴奋通过横管系统传向肌细胞深处;②三联管结构处的信息传递;③肌浆网中Ca2+释放入胞浆以及Ca2+由胞浆向肌浆网的再聚积。
6.缩短收缩答:缩短收缩是指当肌肉收缩产生的张力大于外加的阻力时,肌肉收缩,长度缩短的收缩形式。
缩短收缩时肌肉起止点互相靠近,又称向心收缩。
7.拉长收缩答:拉长收缩是指当肌肉收缩产生的张力小于外加的阻力时,肌肉积极收缩,被拉长的收缩形式。
拉长收缩时肌肉起止点相离,又称离心收缩。
8.等长收缩答:等长收缩是指当肌肉收缩产生的张力等于外加的阻力时,肌肉积极收缩,长度不变的收缩形式。
等长收缩时负荷未发生位移,从物理学角度认识,肌肉没有做外功,但仍消耗很多能量。
9.肌电图答:肌电图是指通过肌肉电图仪的引导和放大,把肌肉兴奋时产生的动作电位描记下来所得到的图形。
运动生理学答案
第一章运动的能量代谢一、名词解释ATP稳态、糖的有氧分解、糖的无氧酵解、基础代谢、基础代谢率、基础状态ATP稳态:集体在能量转换过程中维持其ATP恒定含量的现象称为ATP稳态。
糖的有氧分解:葡萄糖或糖原在有氧条件下,氧化成CO2和H2O,并再合成ATP的过程称为糖的有氧氧化。
糖的无氧酵解:葡萄糖或糖原在不需要氧的情况下分解生成乳酸,并释放能量生成ATP的过程,称糖的无氧分解或酵解基础代谢:指人体在基础状态下的能量代谢。
(65%)基础代谢率:单位时间内的基础代谢。
基础状态:指室温20℃~25℃、清晨、空腹、清醒而又极其安静的状态。
二、选择题1、磷酸原系统和乳酸能系统供能的共同特点是 A 。
A.都不需要氧B.都产生乳酸C.都能维持较长时间D.都可以产生大量ATP2、在较剧烈运动时,肌肉中高能磷酸化物的变化情况是 B 。
A.CP含量变化不大B.ATP含量变化不大C.CP生成较多D.ATP含量大幅度下降3、从机体能量代谢的整个过程来看,其关键的环节是 D 。
A.糖酵解B.糖类有氧氧化C.糖异生D.ATP的合成与分解4、评定乳酸能系统能力的常用指标是 B 。
A.肌红蛋白的含量B.血乳酸水平C.30米冲刺跑D.无氧阈值5、三种物质在胃内排空由快到慢的顺序是 B 。
A.蛋白质、糖类、脂肪B.糖类、蛋白质、脂肪C.糖类、脂肪、蛋白质D.蛋白质、脂肪、糖类6、剧烈运动时,肌肉中含量明显上升的物质是B 。
A.CPB. 乳酸C. 水D. CO27、剧烈运动时,肌肉中含量首先减少的物质是 C 。
A.ATPB.CPC. 葡萄糖D.脂肪酸8、酮体是脂肪代谢不彻底的产物,是在C 部位形成。
A. 肾脏B.心脏C.肝脏D.骨骼肌9、进行一段时间训练,60米跑速提高了,而跑后血乳酸含量却比训练前减少,这说明D 。
A.糖类的有氧供能比例增大B.肌红蛋白含量增多C.脂肪供能比例增大D.ATP-CP供能比例增大10、马拉松跑的后期,能源利用情况是 D 。
运动生理学
绪论运动生理学:是从人体运动的角度研究人体在体育运动的影响下机能活动变化的科学。
第一章运动的能量代谢1、生命活动能量的来源:糖类、脂肪、蛋白质。
2、机内活动时能量供应的三个系统及各自的特点:(1)、磷酸原系统:供能总量少,持续时间短,功率输出最快,不需要氧,不产生乳酸之类的中介产物。
主要供高功率的运动项目如:短跑、投掷、跳跃、举重等项目;(2)、乳酸能系统:功能总量教磷酸原系统多、短功率输出次之、不需要氧,物质—乳酸,主要供应的运动项目1分钟高输出项目如:400米、100米游泳等;(3)、有氧氧化系统:ATP生成总量很大,但速率很低需要氧的参与。
3、基础代谢:是指人体在基础状态下得能量代谢。
单位时间内的基础代谢称为基础代谢率。
4、对急性运动种能量代谢的一个误区是认为有氧代谢系统对运2动能量需求的反应相对较慢,因而在短时大强度运动运动时并不扮演重要的角色。
(判断)第二章肌肉活动1、肌肉的物理特性:伸展性、弹性、黏滞性。
2、准备活动的意义:肌肉的物理特性受温度的影响。
当肌肉温度升高时,肌肉的黏滞性下降,伸展性和弹性增强。
反之~~~,做好充分的准备活动使肌肉的温度升高能降低肌肉的黏滞性,提高肌肉的伸展性和弹性,从而有利于提高运动成绩。
3、骨骼肌的生理特性及兴奋条件:(1)、兴奋性和收缩性;(2)、a、一定的刺激强度;b、持续一定的时间;c、一定强度时间的变化率。
4、动作电位:当细胞膜受到有效刺激时,膜两侧电位极性即暂时迅速的倒转称为动作电位。
5、神经纤维传导兴奋的特点:(1)、生理完整性;(2)、双向传导性;(3)、不衰减性和相对疲劳性;(4)、绝缘性。
6、肌小节:两相邻Z线间的一段肌原纤维称为肌小节。
是肌肉细胞收缩的基本结构和功能单位。
肌小节=1/2明带+暗带+1/2明带。
7、肌肉的兴奋—收缩偶联:把以肌膜的电变化特征的兴奋过程和以肌纤维的机械变化为基础的收缩过程之间联系起来,这一中介过程称为肌肉的兴奋—收缩偶联。
第四讲运动状态下的能量代谢
第四讲运动状态下的能量代谢第二节运动状态下的能量代谢一、人体急性运动时的能量代谢1、无氧代谢时的能量供应特点无氧练习分类以无氧供能占优势的练习,根据练习中无氧供能占的比例,又分为三类:1.极量强度的无氧练习在这类练习中无氧供能占总能需量的90—100%,其中主要是磷酸原系统供能,能量输出功率可达480kJ/min,最长运动时间仅几秒钟呼吸和循环系统功能达不到极限水平,包括100m跑、短距离赛场自行车赛,50m游泳和50m潜泳等。
2、近极量强度的无氧(混合的无氧强度)练习在这类练习中无氧供能占总能需量的75—85%,其中一部分靠磷酸原系统,大部分靠乳酸能系统供应,能量输出功率为200—400kJ./min。
最长运动时间为20—30s。
另外,完成这类练习时,氧运输系统活动明显加强,练习到达终点时,心率可达最高值的80一90%,肺通气量可达最高值的50—60%,吸氧量可达V02max,:70—80%,乳酸浓度可升高到15mmol/L。
属于这类练习的项目有200—400m跑,lOOm游泳和500m速滑等。
3、亚极量强度的无氧(无氧有氧强度)练习在这类练习中,无氧供能占总能需量的60一70%,主要靠乳酸能系统供能,能量输出功率为160kJ/min,最长运动时间为1—2min。
运动后血乳酸高达20—25mm0l/L。
该练习到达终点时,氧运输系统功能可以接近或达到最大值。
属于这类练习的项目有800m跑,200m游泳,1000m和1500m速滑和lkm赛场自行车赛。
肌肉细胞首先在大约3秒钟内耗尽细胞周围浮游的ATP。
然后磷酸肌酸系统参与进来,供能8-10秒钟。
这是百米短跑选手或举重者所用的主要能量系统,这两种运动者需要迅速加速,运动所持续的时间很短。
如果运动持续更长时间,糖原-乳酸系统就参与进来。
短距离运动比如200米或400米以及100米游泳就是如此。
2、肌细胞中肌酸和CP的工作特点:磷酸肌酸在运动中的应用磷酸肌酸在运动中首先是作为能量供应的重要环节 ,其一是因为其分子中有一高能磷酸键也就是磷酸肌酸可作为高能磷酸基团的储存库,在必要时此高能磷酸基团可以转移。
运动时能量代谢(第一章)
4.有氧代谢供能是运动后机能恢复的基本 代谢方式
目录
二、不同活动状态下供能系统的相互关系
• (一)安静时
肌细胞内以游离脂肪酸和葡萄糖的有氧代谢 供能。 • (二)短时间剧烈运动 在接近或超过最大摄氧量强度运动时,骨骼肌 以无氧代谢供能。在极量运动时,肌内以ATP、 CP供能为主。超过10秒钟的运动,糖酵解的 供能比例增大。血乳酸的水平一直上升,直到 运动终止。
目录
7 轮循环产物:8分子乙酰CoA 7分子NADH+H+
7分子FADH2
能量计算: 生成ATP 8×12 + 7×3 + 7×2 = 131 净生成ATP 131 – 2 = 129
目录
运动时有氧代谢的供能
• 大强度运动1~2个小时,肌糖原才接近耗尽。 • 脂肪供能随运动强度的增大而降低,随时间的 延长而增大。 • 蛋白质在长于30分钟的激烈运动中参与供能, 但最多不超过总耗能的18%。 • 该系统不能维持高强度、高功率的运动。
目录
(三)供能系统的相互关系
1.运动中基本不在一种能量物质单独供能的情况。
2.最大输出功率的顺序 磷酸原系统>糖酵解>糖的有氧氧化>脂肪酸有 氧氧化
目录பைடு நூலகம்
• 3.当以最大输出功率运动时,各系统维 持的运动时间
磷酸原系统 6~ 8秒 糖酵解 30~90秒 有氧代谢途径 3分钟以上 蛋白质 30分钟以上 运动时间越长,强度愈小,脂肪氧化供能的比 例愈大。
三、糖酵解的生理意义
1. 是机体在缺氧情况下获取能量的有效方式。 2. 是某些细胞在氧供应正常情况下的重要供能 途径。 ① 无线粒体的细胞,如:红细胞 ② 代谢活跃的细胞,如:白细胞、骨髓细胞
运动生理学复习重点
运动⽣理学复习重点第⼀章运动的能量代谢名词解释;1、能量代谢;⽣物体内物质代谢过程中所伴随的能量储存、释放、转移和利⽤,称为能量代谢。
2、⽣物能量学;3、磷酸原供能系统;对于各种⽣命活动⽽⾔,正常条件下组织细胞仅维持较低浓度的⾼能化合物。
这些⾼能化合物多数⼜以CP的形式存在。
CP释放的能量并不能为细胞⽣命活动直接利⽤,必须先转换给ATP。
ADP+CP——磷酸激酶ATP+C这种能量瞬时供应系统称为磷酸原供能系统或ATP-CP功能系统。
4、糖酵解供能系统;在三⼤营养物质中,只有糖能够直接在相对缺氧的条件下合成ATP,这⼀过程中葡萄糖不完全分解为乳酸,称为糖酵解。
5、有氧氧化供能系统;7、能量代谢的整合;8最⼤摄氧量;指在⼈体进⾏最⼤强度的运动,当机体出现⽆⼒继续⽀撑接下来的运动时,所能摄⼊的氧⽓含量。
9、运动节省化;系统训练后,完成相同强度的⼯作,需氧量及能源消耗量均减少,能量利⽤效率提⾼,即“能量节省化”10、消化;是指事物中所含的营养物质在消化道内被分解为可吸收的⼩分⼦物质的过程。
11、脂肪和类脂总称为脂类12、蛋⽩质主要由氨基酸组成。
13、物质分解释放能量的最终去路包括;细胞合成代谢中储存的化学能,肌⾁收缩完成机械外功,转变为热能。
14、基础代谢是指⼈体在基础状态下的代谢。
6、基础代谢率;基础代谢是指⼈体在基础状态下的能量代谢。
单位时间内的基础代谢称为基础代谢率。
15、基础状态是指室温在20—25、清晨、空腹、清醒⽽⼜及其安静的状态,排出了肌⾁活动、环境温度、⾷物的特殊动⼒作⽤和精神紧张等因素的影响。
16、甲状腺功能的改变总是伴有基础代谢率的变化。
简答⼀简述能量的来源与去路1、能量的来源糖;能量的主要来源,葡萄糖为主(70%以上)脂肪;能源物质主要的储存形式(30%),在短期饥饿时是机体的主要供能物质蛋⽩质;正常情况下很少作为能源物质,长期饥饿或极度消耗时才成为主要能量来源。
2、去路50%转化为热能维持体温,以⾃由能形式储存于ATP中,肌⾁组织中还可以合成磷酸肌酸,当细胞耗能增加时还可以合成ATP。
第一章 运动的能量代谢
葡萄糖(糖原) 缺氧
反应部位:细胞浆内
2ATP+乳酸
2、ATP的有氧生成(氧化磷酸化) :
糖 脂肪 蛋白质 能量+ADP+Pi+O2 CO2+H2O +ATP
反应部位:线粒体内
(三)ATP分解与再合成的关系
ATP 满电
ADP 放电
高能键(A-P~P~P)的断裂与再连接在活细胞中是不停止 的。 生物体内的能量代谢(能量的释放、转移和利用等过程)是 以ATP为中心进行的。 运动中ATP再合成的速率下降时,表明能量供应受阻,意味 着疲劳开始出现。
二、能量的间接来源—糖、脂肪、蛋白质
食物中的七类营养物质:糖、脂肪、蛋白质、无机盐、 维生素、水、膳食纤维。 能源物质:糖、脂肪、蛋白质。 这些物质经过消化吸收后,通过血液来运输到各组织 细胞内参与其中间代谢过程。
(一)食物的消化与吸收
机械性消化
消化道平滑肌 的机械收缩
消化
碳水化合物
消化腺分泌 化学性消化 消化酶
唾液的性质和成分 pH: 6.6~7.1(无色无味近于中性的液体)。 成分:水(占99%),有机物(唾液淀粉酶、粘蛋白、 球蛋白、溶菌酶等),无机物(Na+、k+、HCO3-、Cl-等)。
唾液腺: 腮腺
颌下腺 舌下腺 散在小唾液腺
唾液的作用:
1.消化作用:唾液可湿润食物利于咀嚼和吞咽;溶于水的 食物→味觉;唾液淀粉酶将淀粉分解为麦芽糖。 2.清洁作用:大量唾液能中和、清洗和清除有害物质;溶 菌酶还有杀菌作用。 3.排泄作用:铅、汞、碘等异物及狂犬病、脊髓灰质炎的 病毒可随唾液排出。 4.免疫作用:唾液中的免疫球蛋白可直接对抗细菌,若缺 乏时易患龋齿。
生理学 第一章 第二节(运动状态下的能量代谢)
三、不同体力活动项目的能量代谢特点 、
四、与运动相关的能量代谢检测与评价
1、ATP--CP供能 、 供能
通过单位时间内完成总功 与血乳酸增值的比值来反 系统能力。 映ATP-CP系统能力。 系统能力
2、乳酸能供能:Wingate实验 、乳酸能供能: 实验 3、有氧供能:最大摄氧量是公认的反映 、有氧பைடு நூலகம்能: 有氧运动能力的指标。 有氧运动能力的指标。
(二)急性运动时的有氧代谢
有氧运动的代谢供能特点: 有氧运动的代谢供能特点: 如果运动持续时间特别长, 如果运动持续时间特别长,有氧代谢就 会取代上述系统进行供能。 会取代上述系统进行供能。在 800米、 米 马拉松、划船、 马拉松、划船、越野滑雪和长距离轮滑 等耐力运动中,会发生有氧代谢。 等耐力运动中,会发生有氧代谢。
(三)急性运动中能量代谢的整合
二、能量代谢对慢性运动的适 、 应
慢性运动可上调其主要能量代谢供能系 统的酶活性,使急性运动对神经、 统的酶活性,使急性运动对神经、激素 的调节更加敏感, 的调节更加敏感,内化境变化时各器官 系统的功能更加协调, 系统的功能更加协调,同时加速能源物 质以及各代谢调节系统的恢复, 质以及各代谢调节系统的恢复,促进疲 劳的消除。 劳的消除。
思考题
名词解释:能量代谢、磷酸原供能系统、 名词解释:能量代谢、磷酸原供能系统、 乳酸能系统(糖酵解供能系统) 乳酸能系统(糖酵解供能系统)、有氧 氧化供能系统、 氧化供能系统、基础代谢率 三大供能系统各自的特点? 三大供能系统各自的特点?
第二节 运动状态下的能量代谢
一、能量代谢对急性运动的反应 (一)急性运动时的能量代谢 急性运动刚开始的能量主要来源于ATP、 急性运动刚开始的能量主要来源于 、 CP的分解。 的分解。 的分解
运动中的能量代谢
运动中的能量代谢
运动时,人体的能量代谢主要依靠三种代谢途径:ATP-PC系统、乳酸系统和氧化系统。
1. ATP-PC系统:运动强度很高,时间很短时,肌肉依靠体内储存的肌酸磷酸和三磷酸腺苷(ATP)来提供能量,这种代谢途径被称为ATP-PC系统。
这个过程只能维持一段很短的时间,大约只能持续10秒钟左右。
2. 乳酸系统:当运动开始后,肌肉组织会利用氧气分解酸类并和糖去供能,当氧气缺乏时,肌肉将糖分解产生乳酸来为继续运动提供能量,这个过程被称为乳酸系统,它可以为低至中等强度的运动提供能量,但只能持续短期。
3. 氧化系统:当我们进行中至高强度的长时间运动时,肌肉会逐渐转向氧化系统来供能,这个过程需要带氧气在身体中的多个系统之间运输,最后完成氧化糖类的过程,产生能量(ATP)。
这种代谢途径可以维持更长时间,但需要氧气作为能源,需要保持适当的有氧运动强度。
总的来说,不同类型的运动所依赖的能量代谢途径是不同的,而人体的能量供应和代谢过程与运动的强度、时间和类型密切相关。
基础知识—运动的能量代谢(人体运动学课件)
2
运动与脂肪代谢
在心肌和骨骼肌等组织中,脂肪酸可经氧化生成CO2和H2O,这是供 能的主要形式。
在肝脏,脂肪酸氧化不完全,产生中间产物乙酰乙酸、β-羟丁酸 和丙酮,合称为酮体。酮体是长时间持续运动时的重要补充能源物质。
在肝肾细胞中,甘油作为非糖类物质经过糖异生途径转变为葡萄 糖,对维持血糖水平起重要作用。
2
运动与糖代谢
运动与糖的补充
• 在运动中,一次性补糖与多次性补糖相比,多次分量饮糖水效果 较好,使糖入血后引起的各种激素反应小,运动结束时血糖浓度 高,能量来源相对稳定。
• 运动后补充糖最好在运动结束后的2小时以内,至多6小时以内, 因为在6小时以内可使存入肌的糖达到最大量。
氧化供能 构建细胞的组成成分 促进脂溶性维生素的吸收和利用 保护作用
进行1-2小时长时间运动之疲劳时,肌糖原大量排空,骨骼肌利用血糖速率显著增 加,肝糖原也大量排空,血糖水平即使处在正常范围,也属于低限区。
进行2-3小时长时间运动之疲劳时,如果没有外源性葡萄糖补充 ,会出现低血糖。
2
运动与糖代谢
运动对乳酸的影响
运动时骨骼肌是产生乳酸的主要 场所,乳酸的生成量与运动强度、 持续时间及肌纤维类型有关。
肥胖症康复 例如,1位体重60kg的女士,零食吃了 1包苏打饼干(100g,408Kcal),如 果她以快走的方式(6.5km/h,5.6 METs )消耗掉这包饼干的能量,需要 快走多少分钟? 408×200÷60÷3.5÷5.6=69mins
构成和修补机体组织 氧化供能
调节机体生理功能
1
体内代谢过程
3
代谢当量的应用
2.判断心功能及相应的活动水平:METs越高,心功能分级越好 3.区分残疾程度:一般将最大METs<5作为残疾标准 4.指导日常生活活动与职业活动:确定患者最大METs后,确定患者安全 运动强度,职业活动(每天8小时)的平均能量消耗水平不应该超过该患 者峰值METs的40%,活动峰值强度,不应该超过该患者峰值METs的 80%。
运动生理学第一章运动的能量代谢
(1)糖原
• 人体各种组织中大多含有糖原,但其含量的差异 很大。例如,脑组织中糖原含量甚少,而肝脏和 肌肉中以糖原方式贮存的糖类约有350-400克,运 动员糖原储量可达400-550克。
2、不同性质运动中的能量代谢规律 及应用。
第一节 生物能量学概要
一、ATP与ATP稳态 生物体从单细胞的低等生物到多细胞的高等生
物以及人体,其体内的一切生命活动的能量来源 都直接来源于ATP。肌肉的收缩活动也是如此。
三磷酸腺苷:ATP是一种存 在于细胞内(胞浆和核浆内)、 由自身合成并迅速分解被直接 利用的一种自由存在的化学能形 式。
(三)ATP分解与再合成的关系
ATP→ADP+Pi+E 每克分子ATP可释放29.26-50.16KJ(712Kcal) ATP一旦被分解,便迅速补充
CP+ADP→C+ATP 肌肉中CP的再合成则要靠三大能源物质的 分解供能。
三、生命活动的能量来源——糖、脂肪、 蛋白质
七大营养素
• 糖(碳水化合物) • 脂肪 • 蛋白质 •水 • 无机盐 • 维生素 • 纤维素
第一章 运动的能量代谢
教学目标:
1、掌握肌肉活动时直接能量与间接 能量来源及相互关系。 2、学会分析不同性质运动中的代谢 规律及应用。 3、掌握运动中能量代谢变化的特点 4、掌握三个供能系统各自的特征以及 运动强度、时间的对应关系。
教学重点与难点:
1、三个供能系统各自特征以及运动 强度、时间的对应关系。
慢一倍。
4.运动对脂肪代谢的影响
邓树勋《运动生理学》(第2版)配套题库(章节题库1-2章)【圣才出品】
第1章运动的能量代谢一、名词解释1.物质代谢答:物质代谢是指物质在体内的消化、吸收、运转、分解等与生理有关的化学过程。
物质代谢包括同化作用和异化作用两个不同方向的代谢变化。
生物在生命活动中不断从外界环境中摄取营养物质,转化为机体的组织成分,称为同化作用;同时机体本身的物质也在不断分解成代谢产物,排出体外,称为异化作用。
2.能量代谢答:能量代谢是指伴随物质代谢发生的能量释放、转移和利用等过程,它是以ATP为中心进行的。
在物质代谢过程中,物质的变化与能量的代谢是紧密联系着的。
3.能量统一体答:能量统一体指运动生理学把完成不同类型的运动项目所需能量之间,以及各能量系统供应的途径之间相互联系所形成的整体。
它描述的是不同运动与能量系统不同途径之间相对应的整体关系。
4.物理性消化答:物理性消化是指食物经过口腔的咀嚼,牙齿的磨碎,舌的搅拌、吞咽,胃肠肌肉的活动,将大块的食物变成碎小的,使消化液充分与食物混合,并推动食团或食糜下移,从口腔推移到肛门的消化过程。
5.化学性消化答:化学性消化是指消化腺分泌的消化液对食物进行化学分解。
由消化腺所分泌各种消化酶,将复杂的各种营养物质分解为肠壁可以吸收的简单的化合物,如糖类分解为单糖,蛋白质分解为氨基酸,脂类分解为甘油及脂肪酸。
然后这些分解后的营养物质被小肠(主要是空肠)吸收进入体内,进入血液和淋巴液。
6.糖酵解答:糖酵解是指将葡萄糖或糖原分解为丙酮酸、ATP和NADH+H﹢的过程,此过程中伴有少量ATP的生成。
这一过程是在细胞质中进行,不需要氧气,每一反应步骤基本都由特异的酶催化。
7.氮的正平衡答:氮的正平衡是指摄入的氮量多于排出的氮量时的氮平衡状态。
这表明摄入的蛋白质,除用以补充分解了的组织蛋白外,还有新的合成组织蛋白出现,并被保留在机体中。
对于儿童少年、孕妇乳母以及恢复期的病人,因机体内大量组织蛋白的新生成,往往会出现正氮平衡状态。
8.氮的负平衡答:氮的负平衡是指摄入的氮量小于排出的氮量时的氮平衡状态。
第一章-运动的能量代谢
2、小肠吸收的特点
小肠吸收的有利条件: ①面积保证:长 5 ~ 6 米+皱 褶+绒毛+微绒毛→ 200m2 ; ②设备保证:酶多+转运工 具+运输途径; ③时间保证:停留时间长, 约3~8h; ④动力保证:绒毛伸缩具有 唧筒样作用。
3、三大能源物质的吸收
糖:分解成单糖,被小肠上 皮细胞吸收入血。 蛋白质分解成氨基酸,被小 肠上皮细胞吸收入血。 脂肪与胆盐结合形成水溶性 复合物,自小肠上皮吸收 入淋巴,然后再进入血液 循环
(三)ATP的分解释能
ATP的分解释能,实际上是被酶断开末端高能磷酸键,即:
ATP
ATP酶
ADP+Pi+能
肌肉收缩就是利用肌细胞内ATP分解释放的能量供肌 肉收缩克服阻力来做功,以实现化学能向机械能的转化。 目前肯定的是,这种能量转化的部位就在肌球蛋白横桥于
肌动蛋白的结合位点。
二、ATP 的生成过程
耐力运动可改善血脂异常
3)减少体脂积累。
(三) 蛋白质代谢
1、蛋白质的生理功能 1)构成和修补机体组织 2)调节机体生理功能 3)氧化供能 2、体内氨基酸的来源和去路
来源:1)食物消化分解产生
2)组织细胞蛋白质降解 3)其他物质中间代谢转化而来 去路: 1)再合成蛋白质,更新和修复组织
2)合成肽类激素、激酶及核酸碱基等
消化:食物在消化道内被分解为小分子的过程。
吸收:经过消化的食物,透过消化道粘膜,进入血液和淋巴 循环的过程。
(一)消化
消化的方式: 机械性消化或物理性消化:通过消化道肌肉的舒缩活动,将 食物磨碎,并使之与消化液充分混合,并将食物不断地向 消化道远端推送。 化学性消化:通过消化腺分泌的消化液来完成,消化液中所 含的各种消化酶能分别将糖类、脂肪及蛋白质等物质分解 成小分子颗粒。
邓树勋《运动生理学》(第2版)配套题库-章节题库-运动的能量代谢【圣才出品】
第1章运动的能量代谢一、名词解释1.物质代谢答:物质代谢是指物质在体内的消化、吸收、运转、分解等与生理有关的化学过程。
物质代谢包括同化作用和异化作用两个不同方向的代谢变化。
生物在生命活动中不断从外界环境中摄取营养物质,转化为机体的组织成分,称为同化作用;同时机体本身的物质也在不断分解成代谢产物,排出体外,称为异化作用。
2.能量代谢答:能量代谢是指伴随物质代谢发生的能量释放、转移和利用等过程,它是以ATP为中心进行的。
在物质代谢过程中,物质的变化与能量的代谢是紧密联系着的。
3.能量统一体答:能量统一体指运动生理学把完成不同类型的运动项目所需能量之间,以及各能量系统供应的途径之间相互联系所形成的整体。
它描述的是不同运动与能量系统不同途径之间相对应的整体关系。
4.物理性消化答:物理性消化是指食物经过口腔的咀嚼,牙齿的磨碎,舌的搅拌、吞咽,胃肠肌肉的活动,将大块的食物变成碎小的,使消化液充分与食物混合,并推动食团或食糜下移,从口腔推移到肛门的消化过程。
5.化学性消化答:化学性消化是指消化腺分泌的消化液对食物进行化学分解。
由消化腺所分泌各种消化酶,将复杂的各种营养物质分解为肠壁可以吸收的简单的化合物,如糖类分解为单糖,蛋白质分解为氨基酸,脂类分解为甘油及脂肪酸。
然后这些分解后的营养物质被小肠(主要是空肠)吸收进入体内,进入血液和淋巴液。
6.糖酵解答:糖酵解是指将葡萄糖或糖原分解为丙酮酸、ATP和NADH+H﹢的过程,此过程中伴有少量ATP的生成。
这一过程是在细胞质中进行,不需要氧气,每一反应步骤基本都由特异的酶催化。
7.氮的正平衡答:氮的正平衡是指摄入的氮量多于排出的氮量时的氮平衡状态。
这表明摄入的蛋白质,除用以补充分解了的组织蛋白外,还有新的合成组织蛋白出现,并被保留在机体中。
对于儿童少年、孕妇乳母以及恢复期的病人,因机体内大量组织蛋白的新生成,往往会出现正氮平衡状态。
8.氮的负平衡答:氮的负平衡是指摄入的氮量小于排出的氮量时的氮平衡状态。
生理学__第一章运动的能量代谢__第一节(生物能量学概要)
① 机体活动一开始,ATP迅速分解,由于ATP贮量 有限, CP便迅速分解补充ATP:
CP+ADP C+ATP
② CP贮量也有限, 三大能源物质的分解供能合成 ATP :
糖
脂肪 能量+ADP+Pi+O2 蛋白质
CO2+H2O +ATP
二、能量的间接来源-糖、脂肪和蛋白 质
(一)糖代谢 (二)脂肪代谢 (三)蛋白质代谢 (四) 营养物质的消化与吸收
出 项目,如400米跑、100米游泳等。
三、有氧氧化系统
❖ 概念:指糖、脂肪和蛋白质在细胞内彻底氧化成H2O 和CO2的过程中,再合成ATP的能量系统。
❖ 供能特点:ATP生成总量很大,但速率很低,持续 时间很长,需要氧的参与,终产物是H2O和CO2,不 产生乳酸类的副产品。
❖ 评定有氧工作能力的指标:最大摄氧量和无氧阈等。
组织氧化 CO2+H2O
肌糖原 乳酸
CO2+H2O 肌肉
血液 小 肠
葡萄糖80-
120mg/
肝
3.糖的分解代谢
(1)糖酵解 (2)有氧氧化
无 氧 酵 解 糖 的 分 解 代 谢
有 氧 氧 化
(1)糖的有氧分解:葡萄糖或糖原在有氧条件 下,最终氧化成CO2和H2O,并生成ATP的 过程称为有氧分解。1分子的糖原或葡萄糖可 生成39~38分子的ATP。
基础代谢率的相对数值
BMR=(实测值-正常值)/正常值×100% 正常范围: 10% ~ 15% BMR<-20%或BMR>+20%为异常
意义:辅助诊断甲状腺疾病
Go Ahead! Fly higher!
ATP
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《人体生理学》
返回
蛋白质的基本组成单位—氨基酸
氨基酸 是蛋白质的基本组成单位。从细 菌到人类,所有蛋白质都由20种标准氨基酸 (20 standard amino acids)组成。形成复杂的 氨基酸长链,中间靠肽键连接,形成多肽或 蛋白质。
《人体生理学》
返回
蛋白质代谢概况
蛋白质的代谢体现于体内氨基酸库的动态变化。
➢ 肌糖原贮量是运动员无氧耐力和有氧耐力素质 的物质基础。
➢ 经常从事体育锻炼,使体内糖原的贮备量增加 ,糖代谢的能力增强,运动能力提高。
《人体生理学》
血糖
正常人空腹时血糖浓度 80-120%mg,血糖相对稳 定是血糖来源和去路维持动态平衡的结果。 短时间剧烈运动,血糖浓度升高,是机体由安静 状态进入运动状态时,交感-肾上腺系统兴奋增 强的结果。 在长时间运动时,能量消耗很大,血糖浓度降低 ;肝脏中的糖原便转变为葡萄糖进入血液,供肌 肉活动利用。
《人体生理学》
超长运动中糖代谢向脂肪代谢的转化
《人体生理学》
(三)蛋白质的分子组成
1、元素组成 2、组成蛋白质的基本单位——氨基酸
《人体生理学》
蛋白质的分子组成
蛋白质的元素组成 蛋白质是一类含氮有机化合物,除含 有碳、氢、氧外,还有氮和少量的硫 。某些蛋白质还含有其他一些元素, 主要是磷、铁、碘、碘、锌和铜等。 这些元素在蛋白质中的组成百分比约 为:
《人体生理学》
横桥的运动引起肌丝的滑行-----肌肉收缩
《人体生理学》
肌球蛋白 ATP 分解放能
《人体生理学》
ATP的再合成----吸能
ATP是肌肉活动唯一的一种直接能 量来源
ATP酶
ATP
ADP+Pi+能
《人体生理学》
ATP的生成过程
一是磷酸肌酸(CP)的分解放能 二是糖原酵解供能 三是糖和脂肪的氧化生能
-氧化; 3、两个限速酶:脂酰CoA合成酶、
肉碱脂酰转移酶I 4、一次 -氧化经历四步:脱氢、加水、
再脱氢、硫解; 5、 -氧化的部位:线粒体 6、能量计算
《人体生理学》
脂类的存在形式
脂肪: 1、分布在脂肪组织,主要包括皮下结缔组织、大网 膜、肠系膜、内脏周围等处。 2、又称为脂库,贮存脂,可变脂。
体内氨基酸的来源有: 氨基酸的去向有:
(1)内源性氨基酸
(1)合成蛋白质
(2)外源性氨基酸
(2)合成含氮的功能性物质
(3)分解代谢
氨基酸库
氨基酸的分解代 谢主要途径是经 脱氨基作用生成 氨和-酮酸。
《人体生理学》
三.生命活动的能量来源 -----------糖、脂肪、蛋白质
《人体生理学》
(一)糖类
糖的化学本质是多羟醛或多羟酮类及其衍生物或多聚 物。 糖广泛分布于所有生物体内。糖在生命活动中的主要 作用是提供能源和碳源,人体所需能量的50%-70%来自 于糖。 食物中的糖类主要是淀粉,淀粉被消化成其基本组成 单位葡萄糖后,以主动方式被吸收入血。
类脂: 1、分布在生物体的所有细胞中。 2、又称为组织脂,不可变脂。
《人体生理学》
脂类的生理功能
1、贮能与供能 2、提供必需的氨基酸(亚油酸、亚麻酸、花生四 烯酸) 3、保护机体组织 (1)固定内脏 (2)保护内脏(3)保温 4、构成生物膜 5、其他
《人体生理学》
不同强度运动中糖和脂肪供能的百分比
《人体生理学》
二. ATP与ATP稳态
ATP(三磷酸腺苷)是一种 含有高能磷酸键的化合物,从机 体能量代谢的过程看,ATP的合 成与分解是体内能量转化和利用 的关键环节。
《人体生理学》
能量转化
《人体生理学》
ATP的结构
《人体生理学》
《人体生理学》
ATP是肌肉活动唯一的一种直接能量 来源A源自P酶第一章 运动的能量代谢
新陈代谢
物质代谢 能量代谢 分解代谢 合成代谢
《人体生理学》
能量代谢
在生物体内物质代谢的过程 中,伴随着能量的储存、释放、 利用和转移的过程。
《人体生理学》
第一节 生物能量学概要
一、叶绿体和线粒体是高等生物细胞 主要的能量转换器
生物体不能直接利用光能,需要其细 胞通过叶绿体和线粒体装置,将太阳能 转换成自身可被利用的化学能。超过 50%以热能形式散发体外。
《人体生理学》
机体内糖类的存在形式有两种: • 以糖原形式贮存于组织细胞中,其
中以肝脏和肌肉中含量最多,分别 称为肝糖原和肌糖原。 • 以葡萄糖的形式存在于血液中,称 血糖。
《人体生理学》
糖原
➢ 短时间剧烈运动,机体吸氧量不能满足运动的 需要,所需能量主要依靠糖原的酵解提供。
➢ 长时间小强度运动中,肌糖原贮备充足,将更 有利于延缓疲劳的发生。
《人体生理学》
线粒体呼吸链
线粒体基质是呼吸底 物氧化的场所,底物在这 里 氧 化 所 产 生 的 NADH 和 FADH2 将 质 子 和 电 子 转移到内膜的载体上,经 过一系列氢载体和电子载 体的传递,最后传递给 O2 生 成 H2O。 这 种 由 载 体组成的电子传递系统称 电 子 传 递 链 ( eclctron transfer chain),因为其 功能和呼吸作用直接相关 ,亦称为呼吸链。
《人体生理学》
《人体生理学》
(二)脂肪
脂肪又称甘油三脂或三脂酰甘油 由1分子甘油和3分子脂肪酸组成 动物脂肪称脂,植物脂肪称油 含不饱和脂肪酸多的食物价值高
《人体生理学》
三脂酰甘油的分解代谢
三脂酰甘油
甘油
脂肪酸
乙酰CoA TCA循环
在肝脏中
酮体
《人体生理学》
脂肪酸氧化的特点:
1、氧化部位:细胞液与线粒体 2、氧化过程:脂肪酸的活化、脂酰基的转移、
ATP
ADP+Pi+能
《人体生理学》
ATP的分解放能
肌肉活动时,贮存在肌纤维中的 ATP分解放出能量,使肌纤维缩短, 以完成机械功。
肌肉中ATP的贮量甚少,仅为 5mmol·kg-1湿肌左右 ,必需边分解 边再合成,才能不断地供应肌肉的 需要。
《人体生理学》
《人体生理学》
肌小节
《人体生理学》
《人体生理学》
《人体生理学》
线粒体呼吸链
《人体生理学》
氧化磷酸化
代谢物在生物氧化过程中释放出的自由能用于 合成ATP(即ADP+Pi→ATP),这种氧化放能和ATP 生成(磷酸化)相偶联的过程称氧化磷酸化。
ADP + Pi
生物氧化过程中 释放出的自由能
ATP + H2O
类别: 底物水平磷酸化 电子传递水平磷酸化