误差理论与测量平差基础武汉大学
误差理论与测量平差基础CH01
平差分划
1
观测数据中只带有偶然误差的情况——经典测量平差;
平差学科研究的基础内容,应用最广和理论研究中最重要的 基础,也是本课程学习的主要内容。
2
还包含有系统误差和/或粗差的情况——近代测量平差。
测量平差理论与方法,是测绘学科中测量数据处理和质量控 制方面的重要组成部分; 在现代3S及其集成的高新测量技术以及高精度自动化数字 化数据采集和处理中得到广泛应用。
误差理论与测量平差基础 第一章 绪论 1-2 测量平差学科研究的对象
多余观测
思考问题: ˜ = 10.000m, 测量一段距离,真实值为L
A
1 2
L
B
ˆ如何取值? 若观测一次,数据为L1 = 10.003,最终结果L 若观测三次,数据为L1 = 10.003, L2 = 9.998, L3 = 10.001, 如何处理?
误差理论与测量平差基础
可以解决什么问题?
思考题: C点为线段AB上一点,为确定各段距离长度,经过测量测得,
A
L1
B L
L2
C
AB的距离L,AC的距离L1 ,CB的距离L2 ,且L1 + L2 = L, 最终的结果应该如何取值?
误差理论与测量平差基础
可以解决什么问题?
误差理论与测量平差基础
可以解决什么问题?
2
还包含有系统误差和/或粗差的情况——近代测量平差。
误差理论与测量平差基础 第一章 绪论 1-2 测量平差学科研究的对象
平差分划
1
观测数据中只带有偶然误差的情况——经典测量平差;
平差学科研究的基础内容,应用最广和理论研究中最重要的 基础,也是本课程学习的主要内容。
2
还包含有系统误差和/或粗差的情况——近代测量平差。
测量平差课件武汉大学出版第十章
(2)条件平差法计算
Q yk x1
2 P
02(Qxx
Qyy)
02(
1 Px
1 )
Py
P 0
Qxx Qyy 0
11 Px Py
Qx1 y1
Qx1 x2
Qx1 y2
Qx1 xk
Q x1
yk
Q y1 y1 Qx2 y1 Q y2 y1
Q y1 x2 Qx2 x2 Q y2 x2
Q y1 y2 Qx2 y2 Q y2 y2
9
§10-2 点位任意方向的位差
二、位差的极大值 E 和极小值 F
1.极值方向的确定
cos2
0
1
cos 20
2
,
sin2
0
1
cos 20
2
或
Q
(Qxx
1 cos 20 2
Qyy
1 cos 20 2
Qxy sin20 )
1 2
(Qxx
Qyy ) (Qxx
Qyy )cos 20
2Qxy sin20
y
~y P
yˆ
P
2P 2x 2y
P 称为P点的点位真误差,简称真位差
2.点位真误差的随机性
xˆ P yˆ P
xA yA
L 0 L 0
不同的L,对应不同的 P ,因此, P 是随机变量
2020/5/30
第十章 误 差 椭 圆
2
§10-1 点位中误差
3.点位方差定义
xˆP xA L 0
1 2
(Qxx
Qyy
2Qxy tg20
cos 20
2Qxy
sin20
)
1 2
《误差理论与测量平差基础》word资料40页
《误差理论与测量平差基础》授课教案2019~2019第一学期测绘工程系2019年9月课程名称:误差理论与测量平差基础英文名称:课程编号:??适用专业:测绘工程总学时数: 56学时其中理论课教学56学时,实验教学学时总学分:4学分◆内容简介《测量平差》是测绘工程等专业的技术基础课,测量平差的任务是利用含有观测误差的观测值求得观测量及其函数的平差值,并评定其精度。
本课程的主要内容包括误差理论﹑误差分布与精度指标﹑协方差传播律及权﹑平差数学模型与最小二乘原理﹑条件平差﹑附有参数的条件平差﹑间接平差﹑附有限制条件的间接平差﹑线性方程组解算方法﹑误差椭圆﹑平差系统的统计假设检验和近代平差概论等。
◆教学目的、课程性质任务,与其他课程的关系,所需先修课程本课程的教学目的是使学生掌握误差理论和测量平差的基本知识、基本方法和基本技能,为后续专业课程的学习和毕业后从事测绘生产打下专业基础。
课程性质为必修课、考试课。
本课程的内容将在测绘工程和地理信息系统专业的专业课程的测量数据处理内容讲授中得到应用,所需先修课程为《高等数学》、《概率与数理统计》、《线性代数》和《测量学》等。
◆主要内容重点及深度考虑到专业基础理论课教学应掌握“必须和够用”的原则,结合测绘专业建设的指导思想,教学内容以最小二乘理论为基础,误差理论及其应用、平差基本方法与计算方法,以及平差程序设计及其应用为主线。
测量误差理论,以分析解决工程测量中精度分析和工程设计的技术问题为着眼点,在掌握适当深度的前提下,有针对性的加强基本理论,并与实践结合,突出知识的应用。
平差方法,以条件平差和参数平差的介绍为主,以适应电算平差的参数平差为重点。
计算方法,以介绍适应电子计算机计算的理论、方法为主,建立新的手工计算与计算机求解线性方程组过程相对照的计算方法和计算格式。
平差程序设计及其应用,通过课程设计要求学生利用所学程序设计的知识和平差数学模型编制简单的平差程序,熟练掌握已有平差程序的使用方法。
误差理论与测量平差基础
1
e
2 2 2
2
-0.8-0.6-0.4 0 0.4 0.6 0.8
闭合差
23
2.2正态分布
当偶然误差的个数n 时,偶然误差出现的频率就
趋于稳定。此时,若把偶然误差区间的间隔无限缩小,则直
方图将分别变为如图所示的两条光滑的曲线。
频数/d
f ()
1
e
2 2 2
2
n
i
i 1
0
知,随机误差 的数学期望等于零。
由正态分布知,正态分布曲线具有两个拐点,这两个
拐点在横轴上的坐标为 拐
方差的几何意义是:方差是正态分布曲线的拐点横坐
标。
29
2.3精度及其衡量精度指标
观测值的质量取决于观测误差(偶然误差、系统误
差、粗差)的大小。
1、精度:指误差分布的密集或离散程度,可利用方差
7
课程结构
参见目录
章节 Ch1 Ch2- Ch3 Ch4 Ch5- Ch8 Ch9 Ch10 Ch11 Ch12
Ch1 绪论
主要内容 绪论
平差基础知识 平差基本原则 四种经典平差方法 平差方法总结 点位精度讨论 统计假设检验 近代平差简介
8
Ch1 绪论
基本概念 • 误差
对未知量进行测量的过程称为观测,测量所得的结果 称为观测值。观测值与其真实值(真值)之间的差异称为 测量误差或观测误差,通常称真误差,简称误差。
采用测量平差的方法
系统误差 Systematic
error
误差在大小和符号上表 现出系统性,或按一定 规律变化,或为常数
采用适当的观测方法 校正仪器 计算加改正
粗差 Gross error
误差理论与测量平差基础习题
《误差理论与测量平差基础》课程试卷《误差理论与测量平差基础》课程试卷答案武 汉 大 学2007年攻读硕士学位研究生入学考试试题考试科目:测量平差 科目代码: 844注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
可使用计算器。
一、填空题(本题共40分,共8个空格,每个空格5分)1.在图1所示水准路线中,A 、B 为已知点,为求C 点高程,观测了高差1h 、2h ,其观测中误差分别为1σ、2σ。
已知1212σσ=,取单位权中误差02σσ=。
要求平差后P 点高程中误差2C mm σ≤, 则应要求1σ≤ ① 、2σ≤ ② 。
2.已知观测值向量1,13,12,1X Z Y ⎡⎤⎢⎥=⎢⎥⎣⎦的协方差阵310121013ZZD -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,12,12Y Y Y ⎡⎤=⎢⎥⎣⎦,若设权11Y P =,则权阵XX P = ③ ,YY P = ④ ,协因数阵12Y Y Q = ⑤ ,1Y X Q = ⑥ 。
3.已知平差后某待定点P 的坐标的协因数和互协因数为PX Q ˆ、PY Q ˆ和PP Y X Q ˆˆ,则当PPY X Q Q ˆˆ=,0ˆˆ<PP Y X Q 时,P 点位差的极大方向值=E ϕ ⑦ ,极小方向值=F ϕ ⑧ 。
二、问答题(本题共45分,共3小题,每小题15分)1.在图2所示三角形中,A 、B 为已知点,C 为待定点,同精度观测了1234,,,L L L L测量平差 共3页 第1页共4个方位角,1S 和2S 为边长观测值,若按条件平差法平差:(1)应列多少个条件方程;(2)试列出全部条件方程(不必线性化)。
2.在上题中,若设BAC ∠、ABC ∠和ACB ∠为 参数1X 、2X 、3X ,(1)应采用何种函数模型平差;(2)列出平差所需的全部方程(不必线性化)。
3. 对某控制网进行了两期观测。
由第一期观测值得到的法方程为111111ˆT T B PB X B PL =,由第二期观测值得到的法方程为222222ˆT T B P B X B P L =。
误差理论与测量平差基础
0
令
N bb
BT
N
1 aa
B
误差理论与测量平差基础
则
xˆ
N
1 bb
(C
T
K
S
We )
(5)
将(5)式代入(1)式的第二式,得
CN bb1C T K S
CN
W 1
bb e
Wx
0
因为
Ncc
CN
C 1
bb
T
为满秩方阵,所以
KS
N
1 cc
(Wx
CN
W 1
bb e
)
将(6)式代入(5)式,得
(6)
xˆ
(
N
1 bb
N bb1C T
N
cc1CN
1 bb
)We
N bb1C T
N
W 1
cc x
(7)
按(7)式求出参数估值后,将(4)式代入(2)式,得
V
P
1
AT
N
1 aa
(W
Bxˆ)
误差理论与测量平差基础
三、精度评定
LL
ˆ
2 0
V T PV r
V T PV cus
N
cc1CN
1 bb
B
T
N
1 aa
A
QLL
AT
N
cc1CN
1 bb
B
T
QKS Xˆ
N
cc1CN
1 bb
BT
N
1 aa
AQLL
误差理论与测量平差基础
误差理论与测量平差基础
错误理论是测量平差中的重要理论,主要作用是分析测量数据的误差特性,确定数据
的可信性以及求解测量平差参数。
测量平差把原始测量数据通过数学模型进行优化,以消
除测量数据中的误差,得到更靠近实际状况的测量结果,了解测量数据中误差特性,对测
量平差有利也是非常有必要的。
误差理论的研究可以分为两个主要方面:一是潜在误差分析,即测量误差的性质及其
影响;二是测量误差的匹配,即推算出影响测量结果的误差幅度,同时考虑测量误差和设
计误差的叠加效应。
若测量误差在某种程度上已知,为了有效地求解平差过程,相应的应
该选择平差方法,也就是要精确解算测量误差。
因此,利用错误理论,可以分解原始的测量数据,以及测量误差的不同影响因素。
为
复杂的测量问题提出更适当的解法,从而减少测量平差中可能引起的误差,提高测量精度。
此外,错误理论还研究多参数的优化方案,及其偏差的估计,以便于设计更具拟合力的测
量数据优化方案。
误差理论是测量平差基础技术中不可缺少的一环,测量前对误差作出足够重视,测量
过程也应精确,意义重大。
正确掌握误差理论及其应用,对测量精度有非常重要的意义。
测量平差题目及答案
《误差理论与测量平差基础》课程试卷A2010-06-27 11:30:49 来源:《误差理论与测量平差基础》课程网站浏览:4次武汉大学测绘学院2007-2008学年度第二学期期末考试《误差理论与测量平差基础》课程试卷A出题者课程小组审核人班级学号姓名成绩一、填空题(本题共20个空格,每个空格1.5分,共30分)1、引起观测误差的主要原因有(1)、(2)、(3)三个方面的因素,我们称这些因素为(4)。
2、根据对观测结果的影响性质,观测误差分为(5)、(6)、(7)三类,观测误差通过由于(8)引起的闭合差反映出来。
3、观测值的精度是指观测误差分布的(9)。
若已知正态分布的观测误差落在区间的概率为95.5%,则误差的方差为(10),中误差为(11)。
4、观测值的权的定义式为(12)。
若两条水准路线的长度为、,对应的权为2、1,则单位权观测高差为(13)。
5、某平差问题的必要观测数为,多余观测数为,独立的参数个数为。
若,则平差的函数模型为(14)。
若(15),则平差的函数模型为附有参数的条件平差。
6、观测值的权阵为,的方差为3,则的方差为(16)、的权为(17)。
7、某点的方差阵为,则的点位方差为(18)、误差曲线的最大值为(19)、误差椭圆的短半轴的方位角为(20)。
二、简答题(本题共2小题,每题5分,共10分)1、简述观测值的精度与精确度含义及指标。
在什么情况下二者相同?2、如图1所示,A、B、C、D为已知点,由A、C分别观测位于直线AC上的点。
观测边长、及角度、。
问此问题的多余观测数等于几?若采用条件平差法计算,试列出条件方程式(非线性方程不必线性化)。
图1三、(10分)其它条件如上题(简答题中第2小题)。
设方位角,观测边长,中误差均为,角度、的观测中误差为。
求平差后点横坐标的方差(取)。
四、(10分)采用间接平差法对某水准网进行平差,得到误差方程及权阵(取)(1)试画出该水准网的图形。
(2)若已知误差方程常数项,求每公里观测高差的中误差。
《误差理论与测量平差基础》教学大纲
误差理论与测量平差基础一、课程说明课程编号:010405Z10课程名称(中/英文):误差理论与测量平差基础/The Fundamental of Error Theory and Surveying Adjustment课程类别:必修学时/学分:56/3.5先修课程:测绘学概论、测量学基础适用专业:测绘工程、遥感科学与技术教材、教学参考书:1.朱建军,左廷英,宋迎春主编.误差理论与测量平差基础,北京:测绘出版社,2013.2.武汉大学测绘学院测量平差学科组编著.误差理论与测量平差基,武汉:武汉大学出版社,2003.3.武汉大学测绘学院测量平差学科组编著.误差理论与测量平差基础习题集,武汉:武汉大学出版社,2005.二、课程设置的目的意义“误差理论与测量平差基础”是测绘工程专业必修的主干课、特色课。
主要讲授测量数据处理的基本理论与方法,是理论与实践并重课程。
通过讨论误差来源、性质及其分布特征等,研究带有偶然误差的观测值的数据处理问题,完成测量平差两大任务,即求待定量的最佳估值,并评定测量成果的精度。
为后续专业课程的数据处理奠定扎实的理论基础。
三、课程的基本要求对应的专业培养要求1.4.1专业知识(3)熟悉误差的来源和性质,了解系统误差和粗差处理的方法(4)掌握偶然误差的统计特性、衡量精度的数字指标;(5)熟练各种基本平差方法的原理和方法、以及精度评定的方法;2.1.3能理解工程应用要求,掌握外业施测和内业数据处理方法,严格贯彻专业设计规范和专业设计流程,选用合适仪器、布设与施测方案、数据处理方法及软件。
2.2.1具有一定的测绘数据处理软件编制能力,对一些特殊的应用和新的仪器或技术方法,能够根据要求编写程序进行数据处理。
2.2.2具有较强的创新意识和技术改造与创新的初步能力。
针对测绘产品的质量要求和生产技术问题能提出技术改造、工艺设计或者技术创新初步方案。
3.1.1能够控制自我并了解、理解他人需求和意愿;既能独立工作,又具有团队合作精神,适应竞争学会合作。
误差理论与测量平差基础(优选.)
第一讲 绪论(续)
测量平差的诞生: 1)观测值中含有偶然误差; 2)消除由于多余观测而产生的观测值之间
⎟⎞ dt
2π −∞
⎝2 ⎠
∫ ∫ = σ
+∞
t exp
⎜⎛ −
1
t2
⎟⎞ dt
+
μ
+∞
exp
⎜⎛ −
1
t2
⎟⎞dt
2π −∞
⎝2 ⎠
2π −∞ ⎝ 2 ⎠
因
∫ ∫ +∞ t
exp⎜⎛ −
1
t
2
⎟⎞dt
=
0,
+∞exp⎜⎛ − 1 t 2 ⎟⎞dt = 2π
−∞
⎝2 ⎠
−∞ ⎝ 2 ⎠
第二讲 偶然误差(续)
第一讲 绪论(续)
问:对某量只作一次观测,该观测值是否不含误差?
测量误差与多余观测带来的问题:
由于观测结果不可避免地存在偶然误差的影响,因此,在实际工 作中,为了提高成果的质量,同时也为了检查和及时发现观测值 中有无错误存在,通常要使观测值的个数多于未知量的个数,也 就是要进行多余观测。由于偶然误差的存在,通过多余观测必然 会发现在观测结果之间不相一致,或不符合应有关系而产生不符
测量平差是测绘专业一门重要的技术基础课,主 要讲授测量数据处理的基本理论和方法,是理论与实 践并重的课程。通过学习测量平差,牢固地掌握测量 数据处理的理论和方法,为后续专业课程的学习打下 扎实的基础。
误差理论与测量平差基础第三章协方差传播律及权
参数估计可采用最小二乘法或加权最小二乘法。在选择方 法时,需根据实际问题的特点和需求进行权衡。
算法性能评估指标选取
精度指标
精度指标是衡量算法性能的重要指标之一。常用的精度指标包括均方误差、均方根误差、 中误差等,可用于评估算法的估计精度和稳定性。
可靠性指标
可靠性指标用于评估算法在复杂环境和噪声干扰下的性能表现。常用的可靠性指标包括失 败率、误警率、漏警率等。
误差传递规律探讨
误差传递概念
在测量过程中,由于各种因素的影响,观测值会存在一定 的误差。这些误差在传播过程中会遵循一定的规律,即误 差传递规律。
线性函数误差传递
对于线性函数Z=aX+bY(其中a、b为常数),其误差传 递公式为D(Z)=a^2D(X)+b^2D(Y)+2abcov(X,Y)。可以 看出,误差传递与观测值的方差和协方差有关。
的线性相关程度。
对称性
Cov(X,Y) = Cov(Y,X)
加法性
Cov(aX+b, cY+d) = acCov(X,Y)
独立性
若X与Y独立,则Cov(X,Y) = 0
传播律意义与作用
传播律意义
协方差传播律描述了随机变量经过线 性变换后,其协方差矩阵如何变化。 这对于理解和分析复杂系统的误差传 递机制具有重要意义。
权重因子的选择应根据实际情况和测量任务的要求进行,要综合考虑观测值的 精度、稳定性、可靠性等因素。
使用方法
在平差计算中,应根据所选权重因子对观测值进行加权处理,以充分利用观测 值的信息并提高平差结果的精度和可靠性。同时,要注意避免过度加权或欠加 权的情况,以免对结果产生不良影响。
04
基于协方差传播律和权的平差算法设
误差理论与测量平差基础精品课程的建设与实践
t n 1 xeln o re o s et r ic se u ha o sr cino u jc y tm,rfr 0 u — i a e cl t u s ,smeap csaedsu s ds c sc n tu t f bet se o e c o s s eom fc r
rc lm o tn s n o ai n o e c ig meh d ,a d S n,wh c sh l f lt k e tru e o e iu u c n e t ,i n v t ft a h n t o s n O o o ih i ep u o ma eb te s fr — s a c e u t n t ep o e so h o sr cin o a in le c le tc u s s n lo c n d e e u t e e rh r s lsi h r c s ft ec n tu to fn to a x eln o r e ,a das a e p n f rh r
t ed v l p e to u v yn n a pn ce c n e h o o y wek o t e i p ra c fc riu u h e eo m n fs r e i g a d m p ig s in e a d t c n lg n w h m o tn e o u rc lm rf r .A c o dn o t ea h e e n so e c i g a d s in i cr s a c n t e ce t n p o e so a eo m c r ig t h c iv me t fta h n n ce t i e e rh i h r a i r c s fan — f o
第 2 0卷第 1 期 2 1 年 2月 01
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
度及其相关性的随机模型; 4. 研究估计待求量的最优化准则; 5. 结合测量实践研究测量平差的各种方法。
第一章——绪论
§1-3 测量平差的简史和发展
18世纪--高斯(C. F Gauss) 19世纪--解决各类测量问题的经典平差方法 20世纪50年代以后
相关观测值平差理论、最小二乘滤波、 附有系统参数的平差法、秩亏网平差、 数据探测法和可靠性理论
第一章——绪论
§1-3 本课程的任务和内容:
1. 建立观测误差的统计理论(简称误差理论),研究误差 的估计与传播;
研究对象: 如何处理带有误差的观测值,找出待求量(未知量) 的最佳估值。
测量平差的含义: 依据某种最优化准则,由一系列带有观测误差的测量 数据,求定未知量的最佳估值及精度的理论和方法。
基本任务: 如何处理由于多余观测引起的观测值之间的不符值或 闭合差,求出未知量的最佳估值并评定结果的精度。
举例:某国际比赛,由7个裁判打分,评分原则为去掉1个 最高分和1个最低分,剩余5个取平均
误差来源:测量仪器、观测者、外界条件 观测条件
误差分类:偶然误差、系统误差、粗差
习题:1.1.04 1.1.05
第一章——绪论
误差的表现形式: 重复观测值之间存在差异:多次观测 实际观测值不满足应有的理论关系:例如测距(往返 测)、角度(盘左、盘右)、水准(环闭合差)
第一章——绪论
§1-2 测量平差学科的研究对象
第一章——绪论பைடு நூலகம்
第一章 绪论
§1-1 观测误差 §1-2 测量平差学科的研究对象 §1-3 测量平差的简史和发展 §1-4 本课程的任务和内容
第一章——绪论
§1-1 观测误差
测量或观测: 用一定的仪器、工具、传感器或其他手段采集、获取反 映地球或其他实体空间分布有关信息的过程和结果。
误差与测量误差: 任何观测数据总是包含信息和干扰两部分,采集数据的 目的就是为了获取有用的信息,干扰也称为误差,是指 除了信息以外的部分,要设法排除其影响。