电工技术:第2章 电路的分析方法

合集下载

电工电子技术基础第二章直流电路分析 ppt课件

电工电子技术基础第二章直流电路分析  ppt课件

结点数 N=4 支路数 B=6
(取其中三个方程)
PPT课件
6
b
列电压方程
I2
abda :
I1
I6
E4 I6R6 I4 R4 I1R1
a I3 I4
R6
c
I5 bcdb :
0 I2R2 I5R5 I6R6
+E3
d R3
adca : I4R4 I5R5 E3 E4 I3R3
对每个结点有
I 0
3. 列写B-(N-1)个KVL电压
方程 对每个回路有
E U
4. 解联立方程组
PPT课件
5
I1 a
b I2
I6
R6
I3 I4
d
+E3
R3
列电流方程
结点a: I3 I4 I1
c 结点b: I1 I6 I2
I5
结点c: I2 I5 I3
结点d: I4 I6 I5
基本思路
对于包含B条支路N个节点的电路,若假 设任一节点作为参考节点,则其余N-1个节点 对于参考节点的电压称为节点电压。节点电压 是一组独立完备的电压变量。以节点电压作为 未知变量并按一定规则列写电路方程的方法称 为节点电压法。一旦解得各节点电压,根据 KVL可解出电路中所有的支路电压,再由电路 各元件的VCR关系可进一步求得各支路电流。
3、会用叠加定理、戴维宁定理求解复杂电路中的电压、电流、功率等。
PPT课件
1
对于简单电路,通过串、并联关系即可 求解。如:
R
R
R
+ E 2R 2R 2R 2R
-
PPT课件
+

电工技术第2章 电路的分析方法

电工技术第2章  电路的分析方法
应如何处理?
• 解:原电流表最大量程只有100μA ,用它直接测量 1100μA的电流显然是不行的,必须并联一个电阻进行分 流以扩大量程,如图2-4所示。
Ig
rg
If
Rf
I
+
U
_
• 3.电阻混联电路的等效变换
• 实际应用的电路大多包含串联电路和并联电路,既有电阻 的串联又有电阻的并联的电路叫电阻的混联电路,如图25 a)所示。
U2
U
R
R3
U3
b
b
• (2)串联电路的分压作用 • 在图2-1 a)的电阻串联电路中,流过各电阻的电流
相等,因此各电阻上的电压分别为
(3)串联电路的应用 1)利用小电阻的串联来获得较大阻值的电阻。 2)利用串联电阻构成分压器,可使一个电源供给几种不同的 电压,或从信号源中取出一定数值的信号电压。 3)利用串联电阻的方法,限制和调节电路中电流的大小。 4)利用串联电阻来扩大电压表的量程,以便测量较高的电压 等。


b
b
2.2.2 电压源与电流源的等效变换
• 电源是向电路提供电能或电信号的装置,常见的 电源有发电机、蓄电池、稳压电源和各种信号源 等。
• 电源的电路模型有两种表示形式:一种是以电压 的形式来表示,称为电压源;另一种是以电流的 形式来表示,称为电流源。
• 1.电压源
• 电压源就是能向外电路提供电压的电源装置,图2-1线
框内电路表示一直流电压源的模型。假如用U表示电
源端电压,I表示负载电流,则由图2-1电路可得出如
下关系 •
U = US - RSI
(2-1)
• 此方程称为电压源的外特性方程。
• 由此方程可作出电压源的外特性曲线,如图2-2所示

电工电子技术第二章线性电路分析的基本方法

电工电子技术第二章线性电路分析的基本方法
回路1:I1R1+I3R3=E1 回路2:-I2R2-I3R3=-E2
(4) 把独立结点电流方程与独立回路的电压方程联立起来,对于三个未
知量I1,I2和I3,以下三个方程刚好可以求解出。
I1+I2-I3=0
I1R1+I3R3=E1
-I2R2-I3R3=-E2

过上面的求解过程可以总结出支路电流法的解题步骤如下。
(1)假定各支路电流的参考方向,如果电路具有n个节点,根据基尔霍
夫电流定律
列出(n-1)个独立的结点电流方程。
(2)如果电路有b条支路,根据基尔霍夫电压定律列出(b-n+1)个独
立的回路电压
方程。通常选择网孔作为回路。
(3)解方程组,求出n个支路的电流。
当电路中含有电流源时,将电流源的端电压作为待求量计入回路电压方
2.2.3 结点电压法的解题步骤
应用结点电压法求解电路的步骤可归纳如下。 (1)选定参考结点,标出各独立结点的序号,将独立结点电压作为未 知量,其参考方向由独立结点指向参考结点。
(2)按一般公式,列出 n 1个独立结点的结点方程。自电导恒为正,
互电导恒为负。 (3)联立求解结点方程,求出各结点电压。 (4)指定支路电压和支路电流的参考方向,由结点电压计算各支路电 压和支路电流。 (5)若电路中存在电压源与电阻串联的支路,则将其等效变换为电流 源与电阻的并联。
u u u 0.5 12.5 12V
例2-3 用叠加定理求图2-7(a)所示电路中的 I1 和 U 。
对图2-5(a),选取节点o为参考点,根据弥尔曼定理可求得节点a 的电位为
图2-5 叠加定理举例
、 、
Va
IS1 1
US2 R2

大学电工电子技术电路的分析方法

大学电工电子技术电路的分析方法

I + _E U R0
U=E-IR0 I U
U 伏安特性
E
I E/R0
10
2.3.2 电流源
1. 理想电流源 :
定义:通过的电流与两端的电压大小无关的 理想元件。
特点 (1)元件中的电流是固定的,不会因为 外电路的不同而不同。
(2)电源两端的电压由外电路决定。
电路模型:
Ia
Is
Uab
b
11
恒流源:若理想电流源的电流恒等于常数
I3
I1
I2
R1
R2
R3 U ab
若结点电压Uab已知, 则各支路电流:
b
I1= (Uab–E1)/R1
列KCL方程: 代入
I2= (Uab–E2)/R2 I3= Uab/R3
I1+I2+I3 =0
Uab E1 Uab E2 Uab 0
R1
R2
R3
结点电压:
Uab
E1 1
R1 E2 1
R2 1
4
2.3 电源的两种模型及其等效变换 2.3.1电压源 1.理想电压源 : 定义:电压总是保持某个给定的时间函数,
与通过它的电流无关。 特点:(1)输出电 压是固定的,不会因为外电路的
不同而不同。
(2)电源中的电流由外电路决定。
5
电路模型:
Ia
Ia
+
E_
Uab
或者
E
+ _
Uab
b
b
恒压源:如果理想电压源的电压u(t)恒等于常 数U(u(t)=U),则称为恒压源。
是否能少列 一个方程?
例8
支路电流未知数少一个:

电工学 第二章 电路的分析方法

电工学  第二章 电路的分析方法
返回
例4、用叠加原理求图示电路中的I。 1mA 4kΩ + 10V - 2kΩ I 2kΩ
2kΩ
解:
电流源单独作用时 电压源单独作用时: 10 2 44 mA 1 257mA II 1 mA .0.25mA 4 2 [2+4//2] 4 4 2 [(2+2)//2] 2 I=I′+I″= 1.507mA
返回
第三节 电压源与电流源的等 效变换
等效变换的概念 二端电阻电路的等效变换 独立电源的等效变换 电源的等效变换 无源二端网络的输入电阻 和等效电阻
返回
一、等效变换的概念
1、等效电路
两个端口特性相同,即端口对外的 电压电流关系相同的电路,互为等效电 路。
返回
2、等效变换的条件 对外电路来说,保证输出电压U和 输出电流I不变的条件下电压源和电流 源之间、电阻可以等效互换。
1 1 2 2 S
-US+R2I2+R3I3+R4I4 =0
返回
第二节 叠加原理
叠加原理
原理验证
几点说明
返回
一、叠加原理
在由多个 独立电 源共同 作用的 线性 电路中,任一支路的电流(或电压)等于各 个独立电源分别单独作用在该支路中产 生的电流(或电压)的叠加(代数和) 。
不作用的恒压源短路,不作用的恒流 源开路。
US2单独作用
= 4/3A
返回
三、几点说明
叠加原理只适用于线性电路。
电路的结构不要改变。将不作用的恒压
源短路,不作用的恒流源开路。
最后叠加时要注意电流或电压的方向:
若各分电流或电压与原电路中电流或
电压的参考方向一致取正,否则取负。 功率不能用叠加原理计算。

电工电子技术第2章 线性电路分析的基本方法

电工电子技术第2章 线性电路分析的基本方法

第2章 线性电阻电路的分析内容:网络方程法:支路电流法、节点电压法、回路电流法。

线性电路定理:替代定理、戴维宁定理、诺顿定理。

2.1 电阻的串联、并联和混联电路分析线性电阻电路的方法很多,但基本依据是KCL 、KVL 及元件的伏安关系()VAR 。

根据这些基本依据可推导出三种不同的分析电路的方法:等效法、方程法、定理法。

本章首先介绍等效变换,然后讨论支路电流法、网孔分析法及节点电位法,最后介绍常用定理,包括叠加定理和齐次定理、戴维南定理和诺顿定理等。

2.1.1 电路等效的一般概念1.等效电路的概念:在分析电路时,可以用简单的等效电路代替结构较复杂的电路,从而简化电路的分析计算,它是电路分析中常用的分析方法。

但值得注意的是,等效电路只是它们对外的作用等效,一般两个电路内部具有不同的结构,工作情况也不相同,因此,等效电路的等效只对外不对内。

2.等效电路的应用:简化电路。

2.1.2 电阻的串联、并联与混联1. 电阻的串联电阻串联的概念:两个或两个以上电阻首尾相联,中间没有分支,各电阻流过同一电流的连接方式,称为电阻的串联。

串联电阻值: 123R R R R =++ 电阻串联时电流相等,各电阻上的电压:1 11122223333RUU IR R UR RRUU IR R UR RRUU IR R UR R⎫===⎪⎪⎪===⎬⎪⎪===⎪⎭2. 电阻的并联电阻的并联概念:两个或两个以上电阻的首尾两端分别连接在两个节点上,每个电阻两端的电压都相同的连接方式,称为电阻的并联并联电阻电流值:123123123111U U UI I I I UR R R R R R⎧⎫=++=++=++⎨⎬⎩⎭并联电阻值:1231111R R R R=++电阻并联电路的等效电阻的倒数等于各个电阻的倒数之和。

电阻并联时电压相等,各电阻上的电流:111122223333GU RII IR R GGU RII IR R GGU RII IR R G⎫===⎪⎪⎪⎪===⎬⎪⎪===⎪⎪⎭3. 电阻的混联既有电阻串联又有电阻并联的电路叫混联电路。

电工技术第2章

电工技术第2章

跳转到第一页
第2章 电路分析方法
假设有电压源 U S 2 单独 作用,则 U S 1 0 即把电压源 U S1 短路,则电路 变成了图2-17c,由此电路图可得
I '' US 2 R1 R1 * U R1R R1 R R1 R2 R1 R R2 R S 2 R1 R1 R
A和C节点间的互导 :G13 G31 0 将上述分析结果代入3个独立节点的节点电压方程的一般 形式,则有如下方程组
U S1 1 1 1 ( R R )U a R U b R I S 2 2 1 1 U b U S 2 1 1 1 U b ( )U c I S R3 R4 R3
电压源与电流源对外电路等效的条件为:
U s I s Ro

Us Is Ro
跳转到第一页
且两种电源模型的内阻相等。
第2章 电路分析方法
在进行电源的等效变换时要注意: (1)电源的等效变换只是对外电路而言的,至于对 电源内部,则是不等效的。例如当外电路开路时,电压 源I=0,内电阻R0 不损耗功率,而电流源内部仍有电流 , 内 阻 R0 有 功 率 损 耗 。 当 外 电 路 短 路 时 , 电 压 源 I=ISC=US/R0,内电阻R0损耗功率,而电流源内部,内阻 R0上无电流通过,不损耗功率。 (2)在进行等效变换时,两种电路模型的极性必须 一致,即电流源流出电流的一端与电压源的正极性端相 对应。 (3)理想电压源和理想电流源之间不能进行等效 变换。因为对理想电压源(R0=0),其短路电流IS为无 穷大,对理想电流源(R0=∞),其空载电压UOC为无 穷大,这都是不可能的。
跳转到第一页
第2章 电路分析方法

《电路与电工技术》第2章 电阻电路的基本分析方法和定理

《电路与电工技术》第2章  电阻电路的基本分析方法和定理

2.1 电阻电路的等效变换
2.1.1 电阻的串联、并联及其等效变换
3、电阻的混联
解 图中,可见R4与R5并联(记R4∥R5),可得
R45=R4∥R5=1Ω
为串联电路简化后如图2.5(b)所示,可见R2 与R45为串
联 R245 R2 R45 (11) 2
电路再简化后如图2.5(c)所示,可见R3 与R245 并联
2.1.1 电阻的串联、并联及其等效变换
2、电阻的串联
应用特点:
(1)分压原理:串联电阻上的电压与电阻阻值的大 小成正比。 (2)限流原理:当负载变化(或电源电压变化)时 ,为了防止电路中的电流过大,可以在电路中串联电 阻来限制电流。
2.1 电阻电路的等效变换
2.1.1 电阻的串联、并联及其等效变换
因此a、b之间ห้องสมุดไป่ตู้等效电阻 Rab为:
Rab
1[(1101)//1211] 2
4
有关等电位点的图 图2-118
2.1 电阻电路的等效变换
2.1.3 电阻的(Y形)/(Δ形)等效变换
电阻之间的联接既不是串联也不是并联,可以运用KCL、 KVL、欧姆定律及电路等效的概念,对它们作彼此之间的互 换,使变换后的电阻联接方式与电路其它部分的电阻构成串 联或并联。这里介绍常见的电阻的Y—Δ变换和Δ—Y变换。
流过的电流之和。
2.1 电阻电路的等效变换
2.1.1 电阻的串联、并联及其等效变换
3、电阻的混联
特点: 电路中有电阻的串联,又有电阻的并联,这种连接方
式称电阻的串并联,又称为电阻的混联。 混联电路可以通过电阻的串联、并联来逐步变换,最
终可简化为一个等效电阻R。
例2.2 如图所示电路是一个电阻混联电 路,试求a、b两端的等效电阻。

电工技术 第二章电路的分析方法

电工技术 第二章电路的分析方法

戴维南定理和诺顿定理
总结词
戴维南定理和诺顿定理是两种等效电源定理,它们可 以将复杂电路简化为一个等效的电源和一个电阻的串 联或并联形式,从而简化电路分析。
详细描述
戴维南定理将一个线性有源二端网络等效为一个电压 源和一个电阻的串联形式,其中电压源的电压等于二 端网络的开路电压,电阻等于网络内部所有独立源为 零时的等效电阻。诺顿定理则将有源二端网络等效为 一个电流源和一个电阻的并联形式,其中电流源的电 流等于网络的短路电流,电阻与戴维南定理中的电阻 相同。这两种定理在电路分析中有着广泛的应用。
最大功率传输定理
总结词
最大功率传输定理是关于电路中最大功率传输的条件和规律的定理。它表明在一定的电源内阻和负载 电阻条件下,负载电阻可以吸收的最大功率是一定的,且该最大功率发生在负载电阻等于电源内阻时 。
详细描述
最大功率传输定理是分析功率传输问题的基础,它可以帮助我们了解在给定电源内阻和负载电阻的情 况下,如何选择合适的负载电阻以获得最大的功率传输效率。这对于电子设备和系统的设计具有重要 的指导意义。
非线性电容和电感电路的分析
总结词
非线性电容和电感电路是指电容和电感值随电压或电流变 化的电路,其分析方法主要包括等效法和状态变量法。
详细描述
等效法是通过简化电路来分析非线性电容和电感电路的方 法,而状态变量法则通过建立状态方程来求解非线性电容 和电感电路的解。
总结词
在分析非线性电容和电感电路时,需要注意非线性元件的 特性变化和电路的稳定性,以确定电路的工作状态和性能 。
电路的基本物理量
电流
单位时间内通过导体横截面的电荷量, 用符号“I”表示,单位为安培(A)。
电阻
表示导体对电流阻碍作用的物理量, 用符号“R”表示,单位为欧姆 (Ω)。

电工技术--第二章 电路的分析方法

电工技术--第二章  电路的分析方法
I1
A
R1 Us1 R2
I2
R3 Us2 B
I3
A
I1 '
A
I2' I1"
R1 Us1
R2
R1
R2
I2"
R3
I3'
+
R3 Us2
I3 "
B
B
A
I1
R1 R2
A
I2
R3
A
I2'
R3
I1' I3
R1
R2
I1" I3'
R1
R2
I2"
R3
Us1 Us2
=
Us1
+
Us2
I3"
B
B
B
解: I1
U S1 R 2R 3 R1 + R2 + R3
例1 :
I1 R1 I3
a
I2 R2 R3 2 +
对结点 a: I1+I2–I3=0 对网孔1: I1 R1 +I3 R3=E1 E2 对网孔2: I2 R2+I3 R3=E2
+ E1
-
1
-
b
联立求解各支路电流
例:试求各支路电流。
a
c
支路中含有恒流源 I3 注意:当支路中含有恒流源 时,若在列KVL方程时,所选 回路中不包含恒流源支路
+
U -
I RL
Ro Uo
+
+ _
I RL
网络
U B
B 有源二端网络
戴维南等效电路
任意一个线性有源二端网络对外都可等 效为等效电压源。

《电工电子技术》全套课件第2章电路的暂态分析

《电工电子技术》全套课件第2章电路的暂态分析

04
电路暂态的实验研究
实验目的和实验原理
实验目的
通过实验研究电路暂态过程,加深对电路暂态分析的理解,掌握暂态分析的基本 方法。
实验原理
电路暂态分析是研究电路中非线性元件的动态特性和电路暂态过程的学科。通过 实验,可以观察电路中电压、电流的变化过程,了解暂态分析的基本原理和方法 。
实验步骤和实验结果分析
电机控制
在电机控制中,暂态分析可以帮助理 解电机的启动、停止和调速过程,从 而优化电机的控制策略。
在电机控制中的应用
伺服控制
伺服控制系统需要对电机的位置和速度进行精确控制,通过暂态分析可以更好 地理解和优化控制算法。
变频器
在变频器中,暂态分析可以帮助理解电机的频率变化过程,从而优化变频器的 控制效果。
《电工电子技术》全套课件第 2章电路的暂态分析

CONTENCT

• 电路暂态的基本概念 • 电路暂态的分析方法 • 电路暂态的应用 • 电路暂态的实验研究 • 电路暂态的工程实例
01
电路暂态的基本概念
电路暂态的定义
电路暂态
在电路中,当开关动作或输入信号发生变化时,电路从一个稳定 状态过渡到另一个稳定状态的过程,这个过程称为电路的暂态。
80%
5. 数据分析
对采集到的数据进行处理和分析 ,绘制图表,得出结论。
实验步骤和实验结果分析
1. 电压、电流波形分析
01
根据采集到的电压、电流波形,分析暂态过程中电压、电流的
变化规律。
2. 参数影响分析
02
改变元件参数,观察暂态过程的变化,分析元件参数对暂态过
程的影响。
3. 近似计算分析
03
利用近似计算方法,如三要素法等,对实验数据进行处理和分

电工技术(第三版席时达)教学指导、习题解答第二章.docx

电工技术(第三版席时达)教学指导、习题解答第二章.docx

第二章电路分析方法【引言】①电路分析是指在已知电路结构和元件参数的条件下,确定各部分电压与电流之间的关系。

②电路按结构形式分简单电路——单回路电路。

用欧姆定律即可解决。

复杂电路——不能用串并联的方法将多个回路化简为单回路的电路③ 分析和计算电路原则上可以应用欧姆定律和基尔霍夫定律解决,但往往由于电路复杂,计算手续十分繁琐,还需用到一些其他方法,以简化计算。

本章介绍三种最常用的电路分析方法:支路电流法、叠加定理和戴维宁定理。

学习目的和要求1.掌握用支路电流法分析电路的方法。

2.掌握用叠加定理分析电路的方法3.掌握用戴维南定理分析电路的方法。

2-1支路电流法【讲授】计算复杂电路的各种方法中,最基本的方法是支路电流法。

一、内容:以支路电流为待求量,利用基尔霍夫两条定律,列出电路的方程式,从而解出支路电流。

【说明】因基尔霍夫定律适用于任何电路,故支路电流法是分析复杂电路的一种最基本方法,可以在不改变电路结构的情况下求解任何电路。

〔例 2-1-1 〕试用支路电流法求例1-2-3 的两台直流发电机并联电路中的负载电流I 及每台发电机的输出电流I1和 I2。

〔解〕( 1)假定各支路电流的参考方向如图2-1-1所示。

根据基尔霍夫电流定律列出结点电流方程。

对于结点 A 有12- I=0( 1)I +I对于结点 B 有-I 12- I +I=0【说明】①这两个方程中只有一个是独立的。

另一个可由图 2-1-1②一个独立的电流方程中至少应包含一个在其它方程中没有出现过的新支路电流。

一般情况下,如果电路有 n 个结点,则按基尔霍夫电流定律列出的独立方程数为n-1。

至于选那几个结点列方程,则是任意的。

③本例中选结点 A 的电流方程作为独立方程,把它记作式( 1 )。

(2)根据基尔霍夫电压定律,列出回路的电压方程。

对于回路Ⅰ有I1R1- I2R2+U S2- U S1=0( 2)对于回路Ⅱ有I 2 2S2( 3)R +IR- U =0本例中共有三条支路,也就是有三个待求电流I1、I 2和I,因而有三个方程即可求解。

《电工电子技术基础》第2章 电路的基本分析方法

《电工电子技术基础》第2章 电路的基本分析方法
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——电源等效变换
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——电源等效变换
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——电源等效变换
如图2.2.11所示,计算电路中流过2 Ω电阻的电流I。
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——叠加定理
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——叠加定理
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——叠加定理
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法——戴维宁定理
2.5 戴维宁定理
复杂电路中有时只需要计算其中某一条支路的响应,此时可 以将这条支路划出,而把其余部分看作一个有源二端网络。 有源二端网络 具有两个出线端的内含独立电源的电路 无源二端网络 不含独立电源的二端网络
回路,网孔的数目就等于总的独立回路数。
I1
I3
I2 I II
III
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——支路电流法
4.选取独立结点电流方程和独立回路电压方程组成联列方程组。
I1
I3
I1+I2 - I3=0 R1I1 - R2I2=US1 - US2
I2 I II
R2I2+R3I3=US2
III
5.方程总数等于支路总数,也就是所要求的变量数,方程组
有唯一的解。解方程组,可得到各支路电流I1、I2和I3。
I1
US1(R2 R3 ) R1R2 R2 R3
US2 R3 R3R1

电工电子技术基础与应用第2章 电路的分析方法

电工电子技术基础与应用第2章   电路的分析方法

72
I=
A = 4A
6 + 12
2.2 支路电流法
1.支路电流法 支路电流法就是以支路电流为变量,根据
基尔霍夫电流定律和基尔霍夫电压定律, 列出节点电流方程和回路电压方程,求解 支路电流的方法。支路电流法是分析电路 最基本的方法之一。 2.支路电流法的解题步骤
2.支路电流法的解题步骤
o
IS
I
31.2 电压源与电流源的等效变换
1.等效变换方法 因为对外接负载来说这两个电源提供的电
压和电流完全相同,所以
因此,一个恒压源US与内阻R0串联的电路 可以等效为一个恒流源IS与内阻RS并联的电
路。如图所示。
I
+
RS
+
U
R
U_S
_
IS
R'S
I +
U
R
_
在电压源和电流源等效过程中,两种电路模 型的极性必须一致,即电流源流出电流的一 端与电压源正极性端对应。
=
6.5V
4、使用叠加定理时的注意事项:
1)只能用来计算线性电路的电流和电压, 对非线性电路,叠加定理不适用。
2)叠加时要注意电流和电压的参考方向, 求其代数和。
3)不能用叠加定理直接计算功率。因为
功率 P I 2 R (I 2 I 2 )R I 2 R I 2 R
理想电流源所在 处开路。
有源二端网络变换为电压源模型后,一个复杂的 电路就变为一个简单的电路,就可以直接用全电 路的欧姆定律,来求取该电路的电流和端电压。
2)当电流源单独作用时,电压源不作用,在该电 压源处用短路代替。
+ US _

02电工学(电工技术)第二版魏佩瑜第二章电路的分析方法答案

02电工学(电工技术)第二版魏佩瑜第二章电路的分析方法答案

02电工学(电工技术)第二版魏佩瑜第二章电路的分析方法答案第二章 电路的分析方法P39 习题二 2-1题2-1图 题2-1等效图 解:334424144I R R I R I R R I ⋅=⋅+⎪⎪⎭⎫⎝⎛+⋅ ①33341445I R E I I R R I R ⋅-=⎥⎦⎤⎢⎣⎡++ ② 344443363I I I I =+⎪⎭⎫⎝⎛+,344215I I = 34815I I =①3R 2R4R 5R 3I1I5I4IE + -1R2I33444621I I I I -=⎪⎭⎫⎝⎛++,345623I I -=3410123I I -=,34506015I I -=,A 2930,302933==I I 代入 ①A 2916,293081544=⨯=⨯I I 另外,戴维南等效图A 29549296I 5==回归原图 3355I R I R E ⋅=⋅-,所以 A 293042954163=⨯-=I 2-2答 由并联输出功率400w 所以每个R获得功率RU P 2,W 1004400==)(484,2201002Ω==R R改串联后:W 25422220P P 222=⨯===总消耗输出R U 2-36V + - Ω1 Ω920 5I题2-4 △-Y 变换(二)图题2-4 △-Y 变换(三)图题2-4 等效星型图2-5 解:bcR 92R 92R 92aR 31 R 31R 31 bacR 95 R 95 R 95+-10V Ω2Ω25A题2-5 (a)图2-6 用两种电源等效互换的方法,求电路中5Ω电阻上消耗的功率。

10AΩ2+-20V Ω2题2-5 (b )图+ -5V Ω23+-5V Ω2Ω22.题2-5 Ω25A5AΩ2Ω3+ - 10Ω2题2-5习题2-6图解:由两源互换,原图可变为下图A 194215=--,所以:W 551252=⨯=⋅=R I P 2-7题2-7 图Ω22 Ω515V + - 12V + +--4V 1I解:① II I I II I 44.01164.0120102121=-=-=++II I I I I I 102905150102121=-=-=++ I I I 15)(44021=+-,I 16450=A 8225A 16450==I 1622501501=-I 所以 :A 875A 1615016225024001==-=I164500292=-I A 435161401645004640164500401162==-=-⨯=I② isg iR I R E U 12∑∑+∑=V 2225418.0310290150414.018.01104.01168.0120=+++=++++=U所以:A 8225414450=⨯==R U IW 31641622548225222R ≈=⨯⎪⎭⎫⎝⎛==R I P 2-8 试用支路电流法和节点电压法求如图所示各支路的电流。

电工技术(第二版)常晓玲章 (2)

电工技术(第二版)常晓玲章 (2)
将回路Ⅰ和回路Ⅱ的电压方程分别记作(2)式和(3)式。 本例中共有三条支路, 相应的有三个待求电流I1、I2和I3,
为了使待求的支路电流能够求解, 需要三个独立的方程。 联立(1)式、 (2)式和(3)式, 代入数据, 解方程组, 求出支路电流。
I1+I3-I2=0 20I1-10I3=70 10I3+10I2=-40
第 2 章 电路的分析方法
[例2-3] 路电流。
电路如图2-4所示, 应用网孔电流法求各支
图2-4 例2-3的电路
第 2 章 电路的分析方法
[解] 指定网孔电流I1、 I2、 I3的参考方向如图2-4所 示。 列出网孔电流方程
(2+3)I1-3I2=12 -3I1+(3+3+5)I2-5I3=-8 -5I2+(5+1.5)I3=8 解方程可得
第 2 章 电路的分析方法
2.2 网孔电流法 2.2.1
网孔电流实际上是一种假想电流, 所谓网孔是指平面电路 (画在平面上不出现支路交叉的电路)中的一个回路, 在它所 包围的范围内不存在其他支路, 如图2-3所示: 有三 个网孔, 沿着网孔内流动的电流Ia、 Ib、 Ic就是假想的网孔 电流。 网孔电流只在各自的网孔内流动, 彼此各自独立无关。
第 2 章 电路的分析方法
2.3 节点电压法 支路电流法直接利用支路电流作为未知量, 有m条支路就 需要列出m个方程, 网孔电流法虽然可以减少n-1个方程, 但是当电路的节点较少, 网孔较多时也会比较烦琐, 节点电压法就是针对这种情况提出的一种改进分析法。
第 2 章 电路的分析方法
如图2-6所示的电路有3个节点和4个网孔支路。 若用网孔电 流法需要列出4个方程,比较繁琐。 选0为参考节点, 设V0=0 V, 根据图示参考方向, 由KCL和欧姆定律可得如下
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
电阻Y形联结
RO
D
B
Ia
a
Ib
RRbacbRca
Ic b
C
电阻形联结
章目录 上一页 下一页 返回 退出
2.2 电阻星形联结与三角形联结的等效变换
Ia a
Ia
a
Ra Ib Ic b Rb
Rc Y-等效变换
C
Ib Ic
RRbacbRca
b
C
电阻Y形联结
电阻形联结
等效变换的条件:
对应端流入或流出的电流(Ia、Ib、Ic)一一相等, 对应端间的电压(Uab、Ubc、Uca)也一一相等。
据此可推出两者的关系
章目录 上一页 下一页 返回 退出
2.2 电阻星形联结与三角形联结的等效变换
Ia a
Ia
a
Ra Ib Ic b Rb
Rc Y-等效变换
C
Ib Ic
RRbacbRca
b
C
Y
Y
Rab
Ra Rb
Rb Rc Rc Ra Rc
Rbc
Ra Rb
Rb Rc Ra
Rc Ra
Rca
Ra Rb
d, e 四点时, 负载和变阻器各段所通过的电流及负载
电压,并就流过变阻器的电流与其额定电流比较说明
使用时的安全问题。
解: (1) 在 a 点:
+e
UL = 0 V IL = 0 A
U 220
I ea
Rea
100
A 2.2 A
d Uc
b
–a
IL
+ UL RL –
章目录 上一页 下一页 返回 退出
两电阻并联时的分流公式:
R
应I用1 :R1
R2
R2
I
I2
R1 R1 R2
I
分流、调节电流等。
章目录 上一页 下一页 返回 退出
2.1.3 电阻混联电路的计算
例: 电路如图, 求U =?
解:
R'
=
—11 15
2
R"=—43 U1=2—+RR—'' ×41
+ –41V1
+ U– 1
= 11V
U2 = —2R+—R" "×U1 = 3V 得 U = —21+—1 ×U2 = 1V
解: (2)在 c 点:
等效电阻 R 为Rca与RL并联, 再与 Rec串联,即
+e d
R
RR ca L
R
50 50 50
U
R R
ca
L
ec 50 50
75

c
b a
IL + U RL L–
U 220 I 2.93 A ec R 75
2.93
I I 1.47 A
L
ca
2
UL RLIL 501.47 73.5 V
注意,这时滑动触点虽在变阻器的中点,但是
输出电压不等于电源电压的一半,而是 73.5 V。
章目录 上一页 下一页 返回 退出
解: (3)在 d 点:
R
Rda RL Rda RL
Red
75 50 25 75 50
55
U 220 I 4A ed R 55
2.1.1 电阻的串联
I
特点:
++
(1)各电阻一个接一个地顺序相联;
U –
U1 –
R1
(2)各电阻中通过同一电流;
+ U2 –
(3)等效电阻等于各电阻之和;
R2
R =R1+R2
(4)串联电阻上电压的分配与电阻成正比。
I
+ U –
两电阻串联时的分压公式:
R
应U1用:R1
R1 R2
U
U2
R2 R1 R2
经等效变换后,不影响其它部分的电压和电流。
章目录 上一页 下一页 返回 退出
2.2 电阻星形联结与三角形联结的等效变换
Ia a
Ia
a
Ra Ib Ic b Rb
Rc Y-等效变换
C
Ib Ic
RRbacbRca
b
C
电阻Y形联结
电阻形联结
条 Ra Rb Rab //( Rca Rbc )
件 Rb Rc Rbc //( Rab Rca ) Ra Rc Rca //( Rab Rbc )
R' 2
2 +
1 U–2
1
+ U

R"
章目录 上一页 下一页 返回 退出
例1:图示为变阻器调节负载电阻RL两端电压的 分压电路。 RL = 50 ,U = 220 V 。中间环节是变 阻器,其规格是 100 、3 A。今把它平分为四段,
在图上用a, b, c, d, e 点标出。求滑动点分别在 a, c,
第2章 电路的分析方法
本章要求: 1. 掌握支路电流法、叠加原理和戴维宁定理等
电路的基本分析方法; 2. 了解实际电源的两种模型及其等效变换; 3. 了解非线性电阻元件的伏安特性及静态电阻、
动态电阻的概念,以及简单非线性电阻电路 的图解分析法。
章目录 上一页 下一页 返回 退出
2.1 电阻串并联连接的等效变换
C
Ib Ic
RRbacbRca
b
C
电阻Y形联结
电阻形联结
将Y形联接等效变换为形联结时
若 Ra=Rb=Rc=RY 时,有Rab=Rbc=Rca= R = 3RY;
目录
第2章 电路的分析方法
2.1 电阻串并联连接的等效变换 2.2 电阻星型联结与三角型联结的等效变换 2.3 电源的两种模型及其等效变换 2.4 支路电流法 2.5 结点电压法 2.6 叠加原理 2.7 戴维宁定理与诺顿定理 2.8 受控源电路的分析 2.9 非线性电阻电路的分析
章目录 上一页 下一页 返回 退出
Rb Rc Rc Ra Rb
Ra
Rab Rca Rab Rbc Rca
Rb
Rbc Rab Rab Rbc Rca
Rc
Rca Rbc Rab Rbc
Rca
章目录 上一页 下一页 返回 退出
2.2 电阻星形联结与三角形联结的等效变换
Ia a
Ia
a
Ra Ib Ic b Rb
Rc Y-等效变换
U
降压、限流、调节电压等。
章目录 上一页 下一页 返回 退出
2.1.2 电阻的并联
I
特点:
+ I1 I2
(1)各电阻联接在两个公共的结点之间; (2)各电阻两端的电压相同;
U R1 R2 (3)等效电阻的倒数等于各电阻倒数之和;
11 1

(4)并联电阻R 上电R1流的R2分配与电阻成反比。
I
+ U –
IL
Rda Rda RL
Ied
75 4 A 75 50
+e
d Uc
b
–a
IL + U RL L–
2.4 A
Ida
RL Rda
RL
Ied
50 75 50
4
A
1.6
A
UL RL IL 50 2.4 120 V
注意:因 Ied = 4 A 3A, ed 段有被烧毁 的可能。
章目录 上一页 下一页 返回 退出
解: (4) 在 e 点:
a
U Rea
220 100
2.2
A
IL
U RL
220 50
4.4
A
UL U 220 V
+e
d Uc
b
–a
IL + U RL L–
章目录 上一页 下一页 返回 退出
2.2 电阻星形联结与三角形联结的等换
A
A
C
D
RO
C
B
Ia
a
Ra Ib Ic b Rb
Rc Y-等效变换
相关文档
最新文档