高中物理-求极值的六种方法

合集下载

物理中求极值的常用方法

物理中求极值的常用方法

物理解题中求极值的常用方法运用数学工具处理物理问题的能力是高考重点考查的五种能力之一,其中极值的计算在教学中频繁出现;因为极值问题范围广、习题多,会考、高考又经常考查,应该得到足够重视;另外很多学生数、理结合能力差,这里正是加强数理结合的“切人点”;学生求极值,方法较少,教师应该在高考专题复习中提供多种求极值的方法;求解物理极值问题可以从物理过程的分析着手,也可以从数学方法角度思考,下面重点对数学方法求解物理极值问题作些说明;1、利用顶点坐标法求极值对于典型的一元二次函数y=ax 2+bx+c,若a>0,则当x=-a b2时,y 有极小值,为y min =a b ac 442-;若a<0,则当x=-ab2时,y 有极大值,为y max =a b ac 442-;2、利用一元二次函数判别式求极值 对于二次函数y=ax 2+bx+c,用判别式法 利用Δ=b 2-4ac ≥0;式中含y 若y ≥A,则y min =A; 若y ≤A,则y max =A;3、利用配方法求极值对于二次函数y=ax 2+bx+c,函数解析式经配方可变为y=x-A 2+常数:1当x =A 时,常数为极小值;或者函数解析式经配方可变为y = - x -A 2+常数;2当x =A 时,常数为极大值;4、利用均值定理法求极值均值定理可表述为≥+2ba ab ,式中a 、b 可以是单个变量,也可以是多项式; 当a =b 时, a+b min =2ab ;当a =b 时, a+b max =2)(2b a +;5、利用三角函数求极值如果所求物理量表达式中含有三角函数,可利用三角函数的极值求解;若所求物理量表达式可化为“y=Asin ααcos ”的形式,则y=21Asin2α,在α=45o 时,y 有极值2A ; 对于复杂的三角函数,例如y=asin θ+bcos θ,要求极值时先需要把不同名的三角函数sin θ和cos θ,变成同名的三角函数,比如sin θ+ф ;这个工作叫做“化一”;首先应作辅助角如所示;考虑asin θ+bcos θ=θθcos sin 2222ba b ba a +++=22b a + cos фsin θ+sin фcos θ=22b a +sin θ+ф 其最大值为22b a +; 6、用图象法求极值通过分析物理过程遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象可求得极值;7、用分析法求极值分析物理过程,根据物理规律确定临界条件求解极值;下面针对上述7种方法φ ab图1做举例说明;例1:如图2所示的电路中;电源的电动势ε=12伏,内阻r =欧,外电阻R 1=2欧,R 2=3欧,滑动变阻器R 3=5欧;求滑动变阻器的滑动头P 滑到什么位置,电路中的伏特计的示数有最大值最大值是多少分析:设aP 间电阻为x,外电路总电阻为R.则:先求出外电阻的最大值R max 再求出伏特计示数的最大值U max ;本题的关键是求R max ,下面用四种方R max ;方法一 用顶点坐标法求解抛物线方程可表示为y =ax 2+bx+c;考虑R =10)8)(2(x x -+=101662++-x x ,设y =-x 2+6x+16,当x =ab2-= —)1(26-=3时,R max 3=101636)3(2+⨯+- =Ω;方法二 用配方法求解考虑R =10)8)(2(x x -+ =101662++-x x =1025)3(2+--x ;即x =3Ω时,R max =5.21025=Ω; 方法三 用判别式法求解考虑R =101662++-x x ,则有-x 2+6x+16-10R =0,Δ=b2-4ac=36-4-116-10R>0,即:100-40R≥0,R≤Ω,即Rmax=Ω;方法四用均值定理法求解考虑R=10)8)(2(xx-+,设a=2+x;b=8-x; 当a=b时,即2+x=8-x,即x=3Ω时,Rmax 3=10)38)(32(-+=Ω;也可以用上面公式a+bmax =2)]8)(2[(2xx-+=25,Rmax =10)(maxba+=1025=Ω;以上用四种方法求出Rmax=Ω,下边求伏特计的最大读数;I min =rR+m axε=5.05.212+=4A;Umax=ε- Iminr=⨯=10V;即变阻器的滑动头P滑到R3的中点Ω处,伏特计有最大值,最大值为10伏;例2:如图3所示;光滑轨道竖直放置,半圆部分的半径为R,在水平轨道上停着一个质量为M=的木块,一颗质量为m=的子弹,以V=400m/s的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,试分析:当圆半径R多大时,平抛的水平位移是最大且最大值为多少解析子弹与木块发生碰撞的过程,动量守恒,设共同速度为V1,则:mV0=m+MV1,所以:V1=VMmm+=smsm/4/40099.001.001.0=⨯+图3设在轨道最高点平抛时物块的速度为V 2,由于轨道光滑,故机械能守恒:所以:V 2=)/(])(4)[(21M m gR m M V M m ++-+=R R Rg V 401610444221-=⨯-=-则平抛后的位移可以表示为:s =V 2t =V 2104)4016(4RR g R ⨯-=⨯=4R R 4.02+-;因为a=-1<0,所以水平位移S 应该存在最大值;当R=)1(24.02-⨯-=-a b =时, S max =例3:在一平直较窄的公路上,一辆汽车正以22m/s 的速度匀速行驶,正前方有一辆自行车以4m/s 的速度同向匀速行驶,汽车刹车的最大加速度为6m /s 2,试分析两车不相撞的条件;解析要使二者不相撞,则二者在任一时间内的位移关系应满足 V 0t-S Vt at +<221式中S 为汽车刹车时与自行车间距 代入数据整理得:3t 2-18t+S>0, 显然,当满足∆=b 2-4ac ≥0,即∆=182-4⨯3S ≥0得:S ≤27m,S min =27m;当汽车刹车时与自行车间距为27米时是汽车不与自行车相撞的条件;例4:如图4所示;一辆四分之一圆弧小车停在不光滑水平地面上,质量为m 的小球从静止开始由车顶无摩擦滑下,且小车始终保持静止状态,试分析:当小球运动到什么位置时,地面对小车的摩擦力最大最大值是多少解析:设圆弧半径为R,当小球运动到重力mg 与半径夹角为θ时,速度为V,根据机械能守恒定律和牛顿第二定律有:解得小球对小车的压力为:N=3mgcos θ,其水平分量为:N x =3mgsin θcos θ=θ2sin 23mg根据平衡条件,地面对小车的静摩擦力水平向右,大小为:f= N x =θ2sin 23mg可以看出:当sin2θ=1,即θ=45o 时,地面对小车的静摩擦力最大,其值为:f max =mg 23;例5:如图5所示;质量为m 的物体由力F 牵引而在地面上匀速直线运动;物体与地面间的滑动摩擦系数为μ,求力F 最小时的牵引角θ;F 的方向是随θ变化的;解析:因物体匀速直线运动,所以有: Fcos θ-f =①f =μN =μmg-Fsin θ ②②代人①得:Fcos θ-μmg+μFsin θ=0 即:F =θμθμsin cos +mg;分母为两项不同名的三角函数,需要转化成同名的三角函数,也就是需要“化一”;由前面的“化一”结论得:a sin θ+b cos θ=22b a +sin θ+ф考虑本题分母:μsin θ+cos θ与a sin θ+b cos θ用比较法,得:a =μ;b =1; 于是tg ф=μ1=a b ,则ф=arc tg μ1;所以,μsin θ+cos θ=12+μsin θ+arc 图4tgμ1; 要使F 最小,则分母μsin θ+cos θ需最大,因此,θ+arc tgμ1=2π; 所以有:θ=2π-arc tg μ1=2π-arc ctg μ=arc tg μ;即:θ=arc tg μ时,F 最小;作为教师,运用“求导数”对本题验算非常简便;F =θμθμsin cos +mg ;考虑0=θd dF,则有μcos θ-sin θ=0则θ=arc tg μ,即当F 最小时,牵引角θ=arc tg μ;例6:甲、乙两物体同时、同地、同向由静止出发,甲做匀加速直线运动,加速度为4米/秒2,4秒后改为匀速直线运动;乙做匀加速直线运动,加速度为2米/秒2,10秒后改为匀速直线运动,求乙追上甲之前它们之间的最大距离;分析:运用物理规律和图形相结合求极值.是常用的一种比较直观的方法;由题意可知,4秒后甲做匀速直线运动的速度为:V 甲=a 甲t 甲=4⨯4=16m /s; 乙10秒后做匀速运动的速度为:V 乙=a 乙t 乙=2⨯10=20m /s;可画出v —t 如上图6所示;点相交,这表明在t =8秒时,两物体的速度相等,因此.在t =8秒时,两者间的距离最大;此时两图线所围观积之差,就是两者间的最大距离;即S max =21⨯4⨯16 + 4⨯16 — 21⨯8⨯16=32m;用分析法求极值在物理计算中较常见;经过对物理状态或过程分析后求极值,不一定要用繁难的数学,关键是确定临界状态和过程的最值;例7:如图7所示;AB、CD是两条足够长的固定平行金属导轨,两条导轨间的距离为L,导轨平面与平面的夹角是θ,在整个导轨平面内部有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B;在导轨的AC端连接一个阻值为R的电阻,一根垂直于导轨放置的金属棒ab,质量为m,从静止开始沿导轨下滑;已知ab与导轨间的滑动摩擦系数为μ,导轨和金属棒的电阻不计;求ab棒的最大速度;即分析物理过程;确定极值状态;运用物理规律求解;所示;在下滑过程中,ab受重力mg,支持力N=mgcosθ,摩擦力f=μmgcosθ,安培力F=RVLB22;沿导轨平面有:mgsinθ-μmgcosθ-RVLB22=ma ①ab由静止加速下滑会导致:当a=0时,ab速度到达最大,即:V=Vmax所以①式变为mgsinθ—μmgcosθ—RVLBmax22=0 ②②解式得:Vmax=22)cos(sinLBmgθμθ-;综上所述,求解极值习题常用的方法列举了七种、即均值定理法、顶点坐标法、配方法、判别式法、三角函数中“化一”法、图解法、分析法;针对有些习题所给的条件的“有界性”,运用求极值的方法时要特别注意,求出的极值不能“出界”,a图7B要注意定义域和值域的对应关系;例8:如图8所示;已知电流表内阻忽略不计;ε=10V,r =1Ω,Ro =R =4Ω,其中R 为滑动变阻器的最大值;当滑动片P 从最左端滑到最右端的过程中,电流表的最小值是多少最大值是多少电流表的示数将怎样变化解:设滑动变阻器滑片P 左端的电阻为R 左,通过电流表的电流为I A ,通过R o 的电流为I o ,由并联电路可知A I I 0=0R R 左① 由欧姆定律得:I =rR +总ε即:I=144410+-++=+-+左左左左并)(R R R rR R R ε②I=I 0+I A = I A)(左10+R R ③ 把③代入②式整理得I A =205402++-左左R R ④用配方法对④式求极值;I A =205402++-左左R R =25.2625402+--)(左R 当R =Ω时,I A 有极小值I Amin ==5.2640A; 当求电流表的最大值时,就需考虑R 的取值范围是“有界”的;这时的极值要与“界”的定义域对应,不能“出界”;当R 左=0时,即由④式得I A p 在a =2040=2A; 当R 左=R =4Ω时,由④式得I A P 在b =67.120454402=+⨯+-A; 由此可得,电流表先从2A 减小到,然后再增加到;所以电流表的最大值是2A,图8其变化是先减小后增大;综上所述,求极值的七种方法是解高中物理题的常用方法;在使用中,还要注意题目中的条件及“界”的范围;。

高中物理中的极值问题

高中物理中的极值问题

物理中的极值问题武穴育才高中 刘敬随着高考新课程改革的深入及素质教育的全面推广,物理极值问题成为中学物理教学的一个重要内容,作为对理解、推理及运算能力都有很高要求的物理学科,如何提高提高学生思维水平,运用数学知识解决物理问题的能力,加强各学科之间的联系,本文筛选出典型范例剖析,从中进行归纳总结。

极值问题常出现如至少、最大、最短、最长等关键词,通常涉及到数学知识有:二次函数配方法,判别式法,不等式法,三角函数法,求导法,几何作图法如点到直线的垂线距离最短,圆的知识等等。

1.配方法:a b ac a b x a c bx ax 44)2(222-++=++ 当a >0时,当2b x a =-时,y min =ab ac 442- 当a <0时当2b x a =-时,y max =ab ac 442- 2.判别式法:二次函数令0≥∆,方程有解求极值.3.利用均值不等式法:ab 2b a ≥+ a=b 时, y min =2ab4.三角函数法:θθcos sin b a y +==)sin(22θϕ++b a当090=+θϕ,22max b a y += 此时,ba arctan =θ 也可用求导法:ba b a y arctan 0sin cos ==-='θθθ,得令 5.求导法:对于数学中的连续函数,我们可以通过求导数的方式求函数的最大值或最小值.由二阶导数判断极值的方法.某点一阶导数为0,二阶导数大于0,说明一阶导数为增函数,判断为最小值;反之,某点一阶导数为0,二阶导数小于0,说明一阶导数为单调减函数,判断此点为最大值.6.用图象法求极值通过分析物理过程所遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象求极值。

7.几何作图法研究复合场中的运动,可将重力和电场力合成后,建立直角坐标系,按等效重力场处理问题。

研究力和运动合成和分解中,可选择合适参考系,将速度及加速度合成,结合矢量三角形处理问题。

高考复习专题四—求极值的六种方法

高考复习专题四—求极值的六种方法

高考复习专题四—求极值的六种方法高中学生可以体会
1.极值的定义
极值(extremum)是指函数在其中一区间的最大值或最小值。

也就是说,当函数在一定范围内取得最大(或最小)值时,该值称为該函数在该范围上的极值。

2.求极值的六种方法
(1)最值法
即直接从函数的图形上来确定函数最大值和最小值,只要找到这样的定义域点,使它是图的最高点或最低点,那么该点就是函数的极大值或极小值点。

(2)十字法
即使用十字观测的方法,通过求解相邻两点的切线的斜率,搭配图形定义域,确定函数的极值点,进而确定函数的最大值和最小值。

(3)观察法
即对函数进行全面性的观察,然后根据函数的规律,用数值验证的方法,确定该函数的最大值和最小值。

(4)求导数法
即通过求解函数的导数,然后观察函数的单调性,从而求得函数的极值点,进而确定函数的最大值和最小值。

(5)二分法
即把定义域分成二份,根据函数的单调性,确定极值点,从而确定函数的最大值和最小值。

(6)逐段求和法
即把定义域分成多份,根据函数的单调性,对每一点分段求解,确定极值点,从而确定函数的最大值和最小值。

高考物理中数学方法

高考物理中数学方法

处理物理问题的数学方法一、极值法1、 利用二次函数求极值:y =ax 2+bx +c =a (x 2+b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 24a(其中a 、b 、c 为实常数),当x =-b2a 时,有极值y m =4ac -b 24a (若二次项系数a >0,y 有极小值;若a <0,y 有极大值).2、 利用三角函数求极值:y =a cos θ+b sin θ=a 2+b 2(a a 2+b 2cos θ+ba 2+b 2sin θ) 令sin φ=a a 2+b 2,cos φ=ba 2+b 2则有:y =a 2+b 2(sin φcos θ+cos φsin θ)=a 2+b 2sin (φ+θ)3、 利用均值不等式求极值:对于两个大于零的变量a 、b ,若其和a +b 为一定值p ,则当a =b 时,其积ab 取得极大值 p 24例题:[2013山东理综 22(15分)]如图所示,一质量m =0.4kg 的小物块,以v 0=2m/s 的初速度,在与斜面成某的角度的拉力F 作用下,沿斜面向上做匀加速运动,经t =2s 的时间物块由A 点运动到B 点,AB 两点间的距离L =10m.已知斜面倾角30=θ,物块与斜面之间的动摩擦因数33=μ,重力加速度g 取10m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小。

(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少? 答:(1)物块加速度的大小为3m/s 2,到达B 点的速度为8m/s ; (2)拉力F 与斜面的夹角30°时,拉力F 最小,最小值是N 53 13=F min解析:(1)物体做匀加速直线运动,根据运动学公式,有:221at L =①, v=at ②联立解得; a=3m/s 2,v=8m/s (2)对物体受力分析 根据牛顿第二定律,有:水平方向:Fcosα-mgsinα-F f =ma 竖直方向:Fsinα+F N -mgcosα=0 其中:F f =μF N 联立解得:α)+sin(60 3 32ma +μcosα)+mg(sin α= sin cos ma +μcosα)+mg(sin α=F ︒+αμα故当α=30°时,拉力F 有最小值,为N 53 13=F min ; 二、几何法利用几何方法求解物理问题时,常用到的有“对称点的性质”、“两点间直线距离最短”、“直角三角形中斜边大于直角边”以及“全等、相似三角形的特性”等相关知识,如:带电粒子在有界磁场中的运动类问题,物体的变力分析时经常要用到相似三角形法、作图法等.与圆有关的几何知识在力学部分和电学部分的解题中均有应用,尤其在带电粒子在匀强磁场中做圆周运动类问题中应用最多,此类问题的难点往往在圆心与半径的确定上常见的几何关系:1.依切线的性质确定.从已给的圆弧上找两条不平行的切线和对应的切点,过切点作切线的垂线,两条垂线的交点为圆心,圆心与切点的连线为半径.2.依垂径定理(垂直于弦的直径平分该弦,且平分弦所对的弧)和相交弦定理(如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项)确定.如图1所示.图1由勾股定理得:R 2=(R -CE )2+EB 2解得:R =EB 22CE +CE2.例题:[2014山东理综 24(20分)]如图-2甲所示,间距为、垂直于纸面的两平行板间存在匀强磁场。

物理解题方法 极值法0

物理解题方法 极值法0

三、 用不等式法求极值 如果所求物理量表达式可化为“Y=Kab”的形式,其中均为a、b变量,但a+b=恒量(a>0、b>0),则可根据不等式性质ab≤(a+b)2/2求极值。(“定和求积法”) [例4]一个下端封闭,上端开口的粗细均匀的玻璃管,竖直放置,管全长90厘米,管中有一段长20厘米的水银柱,在温度270C时,水银柱下面空气柱长为60厘米,若外界大气压P0=76cmHg,要使管中水银全部溢出,温度至少应升到多少?
MOMODA POWERPOINT
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce id urna blandit, eleifend nulla ac, fringilla purus. Nulla iaculis tempor felis ut cursus.
二、利用三角函数法求极值 如果所求物理量表达式中含有三角函数, 可利用三角函数求极值。 1.若所求物理量表达式可化为“y=A sinθ cosθ”形式(即y= sin2θ),则在θ=45o时,y有极 值A/2。
[例2]如图,n个倾角不同的光滑斜面具有共同的底边AB,当物体沿不同的倾角无初速从顶端滑到底端,下列哪种说法正确( ) (A)倾角为30o时,所需时间最短。 (B)倾角为45o时,所需时间最短。 (C)倾角为75o时,所需时间最短。 (D)所需时间均相等。
六、用假设推理法求极值 通过假设法使研究对象处于临界状态,然后再利用物理规律求得极值。(“临界”法)
[例7]如图,能承受最大拉力为10N的细OA与竖直方向成450,能承受最大拉力为5N的细线OB水平,细线OC能承受足够大的拉力,为使OA和OB均不被拉断,OC下端所悬y=asinθ +bcosθ ”,则将该式化为“y=a2+b2 sin(θ +Φ )”从而得出y的极值a2+b2 。(即“和差化积”法) [例3]质量为10千克的木箱置于水平地面上,它与地面间滑动摩擦因数µ= ,受到一个与水平方向成角θ斜 向上的拉力F,为使木箱作匀速直线运动,拉力F最小值为多大?

专题极值法-高中物理八大解题方法含解析

专题极值法-高中物理八大解题方法含解析

高中物理解题方法之极值法高中物理中的极值问题,是物理教学研究中的活跃话题。

本文通过例题归纳综合出极值问题的四种主要解法。

一、 二次函数求极值二次函数a ac b a b x a c bx ax y 44)2(222--+=++=,当ab x 2-=时,y 有极值ab ac y m 442-=,若a>0,为极小值,若a<0,为极大值。

例1试证明在非弹性碰撞中,完全非弹性碰撞(碰撞后两物体粘合在一起)动能损失最大。

设第一个物体的质量为1m ,速度为1V 。

第二个物体的质量为2m ,速度为2V 。

碰撞以后的速度分别为'1V 和'2V 。

假使这四个速度都在一条直线上。

根据动量守恒定律有:'+'=+22112211V m V m V m V m (1)如果是完全非弹性碰撞,两物体粘合在一起,(1)则变为V m m V m V m '+=+)(212211,即212211m m V m V m V ++=' (2)现在就是要证明,在满足(1)式的碰撞中,动能损失最大的情况是(2)式。

碰撞中动能损失为ΔE k =()22()22222211222211'+'-+vm v m v m v m (3) 转变为数学问题:ΔE k 为v 的二次函数:由(1)得:v 2ˊ=2112211)(m v m v m v m '-+ (4)将(4)代入(3)得:k =++++-'12221112'1211)(2)(v m v m v m m v m m m m [2222112222112)(22m v m v m v m v m +-+] 二次函数求极值,当v 1ˊ=)()(212211m m v m v m ++ (5) 时∆E k 有极大值。

回到物理问题,将(5)代入(4)得v 2ˊ=)()(212211m m v m v m ++此两式表明,m 1和m 2碰后速度相等,即粘合在一起,此时动能损失(ΔE k )最大。

高考复习专题四—求极值的六种方法(解析版)

高考复习专题四—求极值的六种方法(解析版)

微讲座(四)——求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法.一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.某高速公路同一直线车道上有同向匀速行驶的轿车和货车,其速度大小分别为v 1=30 m/s ,v 2=10 m/s ,轿车在与货车距离x 0=25 m 时才发现前方有货车,此时轿车只是立即刹车,两车可视为质点.试通过计算分析回答下列问题:(1)若轿车刹车时货车以v 2匀速行驶,要使两车不相撞,轿车刹车的加速度大小至少为多少?(2)若该轿车刹车的最大加速度为a 1=6 m/s 2,轿车在刹车的同时给货车发信号,货车司机经t 0=2 s 收到信号并立即以加速度大小a 2=2 m/s 2加速前进,两车会不会相撞?[解析] (1)两车恰好不相撞的条件是轿车追上货车时两车速度相等,即 v 1-at 1=v 2①v 1t 1-12at 21=v 2t 1+x 0②联立①②代入数据解得:a =8 m/s 2. (2)假设经过时间t 后,两车的速度相等 即v 1-a 1t =v 2+a 2(t -t 0)此时轿车前进的距离x 1=v 1t -12a 1t 2货车前进的距离x 2=v 2t 0+v 2(t -t 0)+12a 2(t -t 0)2代入数据解得:x 1=63 m ,x 2=31 m 因为:x 1-x 2=32 m>x 0,两车会相撞. [答案] (1)8 m/s 2 (2)会相撞 二、二次函数极值法 对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a,当a <0时,y 有最大值y max =4ac -b 24a.也可以采取配方法求解.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以a =3 m/s 2的加速度开始行驶,恰在这一时刻一辆自行车以v 自=6 m/s 的速度匀速驶来,从旁边超过汽车.试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?[解析] 设汽车在追上自行车之前经过时间t 两车相距最远,则 自行车的位移:x 自=v 自t汽车的位移:x 汽=12at 2则t 时刻两车的距离Δx =v 自t -12at 2代入数据得:Δx =-32t 2+6t当t =-62×⎝⎛⎭⎫-32 s =2 s 时,Δx 有最大值Δx max =0-624×⎝⎛⎭⎫-32 m =6 m对Δx =-32t 2+6t 也可以用配方法求解:Δx =6-32(t -2)2显然,当t =2 s 时,Δx 最大为6 m. (说明:此题也可用临界法求解) [答案] 见解析 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得:L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为:F min =1335N. [答案] (1)3 m/s 2 8 m/s(2)夹角为30°时,拉力最小,为1335N四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值.质量为m 的物体与水平地面间的动摩擦因数为μ,用图解法求维持物体做匀速运动的最小拉力.[解析] 由F fF N =μ知,不论F f 、F N 为何值,其比值恒定由图知F fF N=μ=tan α,即F ′的方向是确定的.由平衡条件推论可知:mg 、F ′、F 构成闭合三角形.显然,当F ⊥F ′时,F 最小.F min =mg sin α=mg tan α1+tan 2 α=μmg1+μ2.(说明:此题也可用三角函数法求解.) 物体受力分析如图. 由平衡条件得:F ·cos θ=F f ①F ·sin θ+F N =mg ② 又F f =μF N ③联立①②③得:F =μmgcos θ+μsin θ令sin α=11+μ2,cos α=μ1+μ2 则F =μmg1+μ2 sin (α+θ)当sin(α+θ)=1时,F min =μmg1+μ2.[答案] μmg1+μ2五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小.在一次国际城市运动会中,要求运动员从高为H 的平台上A 点由静止出发,沿着动摩擦因数为μ的滑道向下运动到B 点后水平滑出,最后落在水池中.设滑道的水平距离为L ,B 点的高度h 可由运动员自由调节(取g =10 m/s 2).(1)求运动员到达B 点的速度与高度h 的关系.(2)运动员要达到最大水平运动距离,B 点的高度h 应调为多大?对应的最大水平距离x max 为多少?(3)若图中H =4 m ,L =5 m ,动摩擦因数μ=0.2,则水平运动距离要达到7 m ,h 值应为多少?[解析] (1)设斜面长度为L 1,斜面倾角为α,根据动能定理得mg (H -h )-μmgL 1cos α=12m v 20①即mg (H -h )=μmgL +12m v 20②v 0=2g (H -h -μL ).③ (2)根据平抛运动公式 x =v 0t ④ h =12gt 2⑤ 由③④⑤式得x =2(H -μL -h )h ⑥由⑥式可得,当h =12(H -μL )时水平距离最大x max =L +H -μL .(3)在⑥式中令x =2 m ,H =4 m ,L =5 m ,μ=0.2 则可得到-h 2+3 h -1=0 求得h 1=3+52m =2.62 m ;h 2=3-52m =0.38 m.[答案] 见解析 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.(原创题)如图所示,顶角为2θ的光滑绝缘圆锥,置于竖直向上的匀强磁场中,磁感应强度为B ,现有质量为m ,带电量为-q 的小球,沿圆锥面在水平面内做圆周运动,求小球做圆周运动的最小半径.[解析] 小球受力如图,设小球做圆周运动的速率为v ,轨道半径为R . 由牛顿第二定律得:水平方向:q v B -F N cos θ=m v 2R竖直方向:F N sin θ-mg =0 两式联立得:m v 2R-q v B +mg cot θ=0 因为速率v 为实数,故Δ≥0 即(qB )2-4⎝⎛⎭⎫m R mg cot θ≥0 解得:R ≥4m 2g cot θq 2B 2故最小半径为:R min =4m 2g cot θq 2B 2.[答案] 4m 2g cot θq 2B 21.(单选)(2016·广州模拟)如图所示,船在A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4 m/s ,则船从A 点开出的最小速度为( )A .2 m/sB .2.4 m/sC .3 m/sD .3.5 m/s 解析:选B.AB 方向为合速度方向,由图可知,当v 船⊥AB 时最小,即v 船=v 水·sin 37°=2.4 m/s ,B 正确.2.(单选)如图所示,在倾角为θ的斜面上方的A 点处放置一光滑的木板AB ,B 端刚好在斜面上.木板与竖直方向AC 所成角度为α,一小物块自A 端沿木板由静止滑下,要使物块滑到斜面的时间最短,则α与θ角的大小关系应为( )A .α=θB .α=θ2C .α=θ3D .α=2θ解析:选B.如图所示,在竖直线AC 上选取一点O ,以适当的长度为半径画圆,使该圆过A 点,且与斜面相切于D 点.由等时圆知识可知,由A 沿木板滑到D 所用时间比由A 到达斜面上其他各点所用时间都短.将木板下端与D 点重合即可,而∠COD =θ,则α=θ2.3.(2016·宝鸡检测)如图所示,质量为m 的物体,放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 的水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.解析:(1)斜面倾角为30°时,物体恰能匀速下滑,满足 mg sin 30°=μmg cos 30° 解得μ=33.(2)设斜面倾角为α,受力情况如图,由匀速直线运动的条件: F cos α=mg sin α+F f F N =mg cos α+F sin α F f =μF N解得:F =mg sin α+μmg cos αcos α-μsin α当cos α-μsin α=0,即cot α=μ时,F →∞ 即“不论水平恒力F 多大”,都不能使物体沿斜面向上滑行,此时,临界角θ0=α=60°. 答案:(1)33(2)60°4.如图所示,质量为m =0.1 kg 的小球C 和两根细绳相连,两绳分别固定在细杆的A 、B 两点,其中AC 绳长l A =2 m ,当两绳都拉直时,AC 、BC 两绳和细杆的夹角分别为θ1=30°、θ2=45°,g =10 m/s 2.问:细杆转动的角速度大小在什么范围内,AC 、BC 两绳始终张紧?解析:设两细绳都拉直时,AC 、BC 绳的拉力分别为F TA 、F TB ,由牛顿第二定律可知: 当BC 绳中恰无拉力时,F T A sin θ1=mω21l A sin θ1① F TA cos θ1=mg ②由①②解得ω1=1033rad/s. 当AC 绳中恰无拉力时,F TB sin θ2=mω22l A sin θ1③ F TB cos θ2=mg ④ 由③④解得ω2=10 rad/s.所以,两绳始终有张力时细杆转动的角速度的范围是 1033rad/s <ω<10 rad/s. 答案: 1033rad/s <ω<10 rad/s 5.(原创题)一人在距公路垂直距离为h 的B 点(垂足为A ),公路上有一辆以速度v 1匀速行驶的汽车向A 点行驶,当汽车距A 点距离为L 时,人立即匀速跑向公路拦截汽车,求人能拦截住汽车的最小速度.解析:法一:设人以速度v 2沿图示方向恰好在C 点拦住汽车,用时为t .则L +h tan α=v 1t ① hcos α=v 2t ② 联立①②两式得:v 2=h v 1L cos α+h sin α=h v 1L 2+h 2⎝ ⎛⎭⎪⎫L L 2+h 2cos α+h L 2+h 2sin α由数学知识知:v 2min =h v 1L 2+h 2 .法二:选取汽车为参照物.人正对汽车运动即可拦住汽车,即人的合速度方向指向汽车.其中一分速度大小为v 1,另一分速度为v 2,当v 2与合速度v 垂直时,v 2最小,由相似三角形知识可得:v 2v 1=h L 2+h2 v 2=h v 1L 2+h 2 .答案:h v 1L 2+h 26.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?解析:(1)设绳断后球飞行时间为t ,由平抛运动规律,有竖直方向14d =12gt 2,水平方向d =v 1t解得v 1=2gd .由机械能守恒定律有12m v 22=12m v 21+mg ⎝⎛⎭⎫d -34d 得v 2=52gd . (2)设绳能承受的最大拉力大小为F T ,这也是球受到绳的最大拉力大小,即球运动到最低点时球所受到的拉力.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F T -mg =m v 21R得F T =113mg .(3)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F T -mg =m v 23l 得v 3=83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1,竖直方向有d -l =12gt 21,水平方向x =v 3t 1 得x =4l (d -l )3当l =d 2时,x 有最大值,x max =233d .答案:见解析 7.(原创题)如图所示,电动势为E 、内阻为r 的电源给一可变电阻供电,已知可变电阻变化范围为0~R m ,且R m >r .当R 为何值时功率最大,最大功率为多少?解析:设可变电阻为R ,则I =ER +rP =I 2R =E 2(R +r )2·R ①法一:(配方法)P =E 2(R -r )2R +4r显然,当R =r 时,功率最大,P max =E 24r.法二:(判别式法)将①式整理成关于R 的二次方程 PR 2+(2Pr -E 2)R +Pr 2=0 由于R 为实数,故Δ≥0 即(2Pr -E 2)2-4P 2r 2≥0 解得:P ≤E 24r最大值为P max =E 24r ,代入①式得R =r .答案:见解析 8.质量分别为M 、m 的斜面体A 、B 叠放在光滑水平面上,斜面体倾角为α,两者之间的动摩擦因数为μ(μ<tan α),今用水平外力F 推B ,使两者不发生滑动,假设最大静摩擦力等于滑动摩擦力,求F 的取值范围.(已知:m =3 kg ,M =8 kg ,μ=0.5,α=37°.)解析:B 恰好不向下滑动时,所需F 最小,此时B 受到最大静摩擦力沿斜面向上.如图甲所示.设两者共同的加速度为a 1,对整体有: F min =(M +m )a 1 对B 有:F min +F f1cos α-F N1sin α=ma 1 F f1sin α+F N1cos α=mg F f1=μ·F N1联立以上各式解得:F min =m (M +m )(sin α-μcos α)M (cos α+μsin α)g =7.5 N甲乙B恰好不上滑时所需F最大,此时B受最大静摩擦力沿斜面向下.如图乙所示.设共同加速度为a2,对整体有:F max=(M+m)a2对B有:F max-F f2cos α-F N2sin α=ma2F N2cos α=mg+F f2sin αF f2=μF N2联立以上各式解得:F max=m(M+m)(sin α+μcos α)M(cos α-μsin α)g=82.5 N故取值范围为7.5 N≤F≤82.5 N.答案:7.5 N≤F≤82.5 N。

高考物理解题方法指导之极值问题

高考物理解题方法指导之极值问题

高考物理解题方法指导之极值问题综述求解极值问题的方法可分为物理方法和数学方法.物理方法包括:(1)利用临界条件求极值;(2)利用问题的边界条件求极值;(3)利用矢量图求极值;(4)用图像法求极值.数学方法包括:(1)用三角函数求极值;(2)用二次方程的判别式求极值;(3)用不等式的性质求极值;(4)利用二次函数极值公式求极值.一般而言,物理方法直观、形象,对构建模型及动态分析等能力要求较高,而用数学方法求极值思路严谨,对数学能力要求较高.多数极值问题,并不直接了当地把极值或临界值作为题设条件给出,而是隐含在题目中,要求学生在对物理概念、规律全面理解的基础上,仔细审题,深入细致地分析问题,将隐含的题设条件——极值挖掘出来,把极值问题变成解题的中间环节.互动探究例1、如图所示,重为G的物体放在水平面上,物体与水平面间的动摩擦因数为μ=3/3,物体做匀速直线运动.求牵引力F的最小值和方向角θ.例1例2、从车站开出的汽车作匀加速运动,它开出一段时间后,突然发现有乘客未上车,于是立即制动做匀减速运动,结果汽车从开动到停下来共用时20,前进了50m,求这过程中汽车达到的最大速度.例3、已知直角三角形底边长恒为b,当斜边与底边所成夹角θ为多大时,物体沿此光滑斜边由静止从顶端滑到底端所用时间最短例4、如图所示,一个质量为m的小物块以初速度v0=10m/沿光滑地面滑行,然后沿光滑曲面上升到顶部水平的高台上,并由高台上飞出.当高台的高度h为多大时,小物块飞行的水平距离最大?这个距离是多少?(g取10m/2)例4例5、一轻绳一端固定在O点,另一端拴一小球,拉起小球使轻绳水平伸直,然后无初速度的释放,从小球开始运动直到轻绳到达竖直位置的过程中,小球所受重力的瞬时功率在何处取得最大值?-1-Er例6、如图所示,已知定值电阻R1,电源内阻r,滑动变阻器的最大阻值为R(R>R1+r),当滑动变阻器连入电路的电阻R某多大时,在变阻器上消耗的功率最大?R1R例6例7、如图所示,均匀导线制成金属圆环,垂直磁场方向放在磁感应强度为B的匀强磁场中,圆环总电阻为R.另有一直导线OP长为L,其电阻为QROP,一端处于圆环圆心,一端与圆环相连接,金属转柄OQ的电阻为ROQ,它以nB的转速沿圆环匀速转动,问OP中电流强度的最小值是多少?PO例7例8、如图所示是显像管中电子束运动的示意图,设加速电场B两极间的电势差为U,匀强磁场区域的宽度为L,要使电子束从磁场飞出时,在图中所示不超过120°范围内发生偏转(即上下各偏转不120°超过60°),求磁感应强度B的变化范围(设磁场方向垂直于纸面向里时,磁感应强度为正值)?UL例8例9、如图所示,宽为L的金属导轨置于磁感应强度为B的匀强P磁场中,磁场方向竖直向下.电源电动势为E,内阻为r,不计其他电阻和一切摩擦,求开关K闭合后,金属棒PQ速度多大时,安培力的功率最大?Er最大值是多少?vKQB例9例10、一个质量为m的电子与一个静止的质量为M的原子发生正碰,碰后原子获得一定速度,并有一定的能量E被贮存在这个原子内部.求电子必须具有的最小初动能是多少?课堂反馈反馈1、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/的加速度开始行驶,恰在这时一辆自行车以6m/的速度匀速驶来,从后边赶过汽车.汽车从路口开动后,在追上自行R1车之前过多长时间两车相距最远?此时距离是多少?aPR3R2b反馈2、如图所示的电路中,电源的电动势E=12V,内阻r=0.5Ω,外阻R1=2Ω,VR2=3Ω,滑动变阻器R3=5Ω.求滑动变阻器的滑动头P滑到什么位置,电路中的伏特计的示数有最大值最大值是多少Er反馈2达标测试1、某物体从静止开始沿直线运动,当停止运动时,位移为L,若运动中加速度大小只能是a或是零,那么此过程的最大速度是多大?最短时间为多少?-2-22、某中学举办了一次别开生面的―物理体育比赛‖,比赛中有个项目:运动员从如图所示的A点起跑,到MN槽线上抱起一个实心球,然后跑到B点.比赛时,谁用的时间最少谁胜.试问运动员比赛时,应沿着什么路线跑最好?达标23、一条宽为L的河流通,水流速度为u,船在静水划行速度为v,若vO4、如图所示,一辆四分之一圆弧小车停在粗糙水平地面上,质量为m的小球从静止开始由车顶无摩擦滑下,若小车始终保持静止状态,试分析:当小球运动到什么位置时,地面对小车的摩擦力最大?最大值是多少达标45、如图所示,光滑轨道竖直放置,半圆部分半径为R,在水平轨道上停着一个质量为M=0.99kg的木块,一颗质量为m=0.01Kg的子弹,以v0=400m/的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,试分析:当圆半径R多大时,平抛的水平位移是最大?且最大值为多少?ROmv0M达标56、一架升飞机,从地面上匀加速垂直飞行到高度H的天空,如果加速度a和每秒消耗的油量y之间的关系是y=ka+n(k>0,n>0),应当选择怎样的加速度,才能使这飞机上升到高度H时耗油量最低.7、如图所示,已知电流表内阻忽略不计,电源电动势E=10V,内阻r=1Ω,ErRo=R=4Ω,其中R为滑动变阻器的最大值.当滑动片P从最左端滑到最右端R0的过程中,电流表的最小值是多少最大值是多少电流表的示数将怎样变化PAaRb8、如图所示,AB、CD是两条足够长的固定平行金属导轨,两条导达标7轨间的距离为L,导轨平面与水平面的夹角是θ,在整个导轨平面内部有RCA垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B.在导轨的AC端连接一个阻值为R的电阻,一根垂直于导轨放置的金属棒ab,质量为m,ba从静止开始沿导轨下滑.已知ab与导轨间的滑动摩擦系数为μ,导轨和金属棒的电阻不计,求ab棒的最大速度.θBD达标8θθ9、如图所示,顶角为2θ的光滑圆锥,置于磁感应强度大小为B,方向竖直向下的匀强磁场中,现有一个质量为m,带电量为+q的小球,沿圆锥面在水平面作匀速圆周运动,求小球作圆周运动的轨道半径.-3-B达标910、如图所示,一束宽为d的平行光,由红、蓝两种色光组成,入射到一块上、下表面平行的玻璃砖,其入射角为i,玻璃对红、蓝光的折射率分别为n1和n2,则要想从下底面得到两束单色光,玻璃砖的厚度L至少为多大?达标1011、如图所示,水平传送带水平段长l=6m,两皮带轮直径D均为0.2m,距地面高H=5m,与传送带等高的光滑水平台上有一小物块以v0=5m/的初速度滑上传送带,物块与传送带之间的动摩擦因数μ=0.2.求:(1)若传送带静止,物块滑到右端后做平抛运动的水平距离0等于多少(2)当皮带轮匀速转动,且角速度为ω时,物体做平抛运动的水平位移为,以不同角速度ω做上述实验,得到一组对应的ω和值.设皮带轮顺时针转动时ω>0,逆时针转动时ω<0,试画出平抛距离随ω变化的曲线.专题十一,课时2解析例1解析:物体的受力图如图.建立坐标系,有:Fcoθ-μN=0①Finθ+N-G=0②得F=μG/(coθ+μinθ)2令tanφ=μ,则coθ+μinθ=1co(θ-φ)∴F=当θ=φ时,co(θ-φ)取极大值1,F有最小值.Fmin==G/2,tanφ=μ=1/3,φ=30o,∴θ=30o解法二、将四力平衡转化为三力平衡,用图象法求解.将N与f合成为一全反力R.tanΦ=f/N=μ.可见,N变化会一个起f变、R变,但R的方向是不变的.物体处于平衡状态,R、F、G的合力必为0,三力构成一封闭三角形.由图可知,当F垂直于R时,F最小.-4-此时,θ=Φ=arctan(1/√3)=30o,Fmin=GinΦ=G/2例2解析:设最大速度为vm,即加速阶段的末速度为vm,画出其速度时间图象如右图所示,图线与t轴围成的面积等于位移.即:v/m·-1vm11tvm,5020vm,vm=5m/.22O20t/例3解析:设斜面倾角为θ时,斜面长为,物体受力如图所示,由图知b……①co12at……②2N由匀变速运动规律得:由牛顿第二定律得:mginθ=ma……③联立①②③式解得:tmg4bgin22Sa2bgincoθb可见,在90°≥θ≥0°内,当2θ=90°,θ=45°时,in2θ有最大值,t有最小值.例4解析:设小物块从曲面顶部的高台飞出的瞬间的速度为v,由机械能守恒定律,1212mv0mvmgh⑴2212hgt小物块做平抛运动,⑵2vt22v0v02h2将⑴⑵联立,hv02gh2h,g4g4g22v0v0当h2.5m时,最大飞行距离:ma某5m.4g2g22例5解析:当小球运动到绳与竖直方向成θ角的C时,重力的功率为:P=mgvcoα=mgvinθ…………①小球从水平位置到图中C位置时,机械能守恒有:mgLco12mv……………②2OθLA2解①②可得:Pmg2gLcoin2令y=coθinθC21ycoin(2co2in4)21(2co2in2in2)2αθBvmg又2co2in2in22(in2co2)2根据基本不等式abc3abc,定和求积知:22当且仅当2coin,y有最大值由2co21co2得:co33-5-。

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结(一)利用分式的性质求极值[例1] 物体A放在水平面上,作用在A上的推力F与水平方向成30º角,如图示。

使A作匀速直线运动。

试问,当物体A与水平面之间的摩擦系数μ为多大时,不管F增大到多大,都可以使A在水平面上,作匀速直线运动?解:A受力如图所示,由已知,A处于平衡状态,有:Fcosα=fFcos30º=μ(G+Fsin30º),得F=由已知当公式的分母为零,即F→∞的匀速运动时sin30º-μcos30º=0时得μ=tg30º=0.58,则F→∞,此时都可以使A在水平面上作匀速直线运动。

(二)利用一元二次方程求根公式求极值有些问题,通过分析列关系式,最后整理出关于一个未知量的一元二次方程。

它的根就可能是要求的极值。

这种方法应用是很普遍的。

(三)利用一元二次方程判别式△=b2-4ac≥O求极值[例2] 一个质量为M的圆环,用细线悬挂着。

将两个质量为m的有孔的小珠套在环上,且可沿环无摩擦滑动,如图(a)所示。

今将两小珠从环的顶端由静止开始释放。

证明,当m>M 时,圆环能升起。

证明:取小球为研究对象,受力如图(a)。

由牛顿第二定律,得所mgcosθ+N=由机械能守恒定律,得mgR(1-cosθ)=由此二式得N=2mg-3mgcosθ(1)上式中,N>0,即cosθ<以环为研究对象,受力图如(b),在竖直方向,由牛顿第二定律,有T+2N’cosθ—Mg=Ma当环恰好能上升时,a=0,可得2N’cosθ=Mg (3)将(1)代入(3)式中,其中N’为(a)图中N的反作用力。

有2(2mg-3mgcosθ)cosθ=Mg 即6mcos2θ-4mcosθ+M=0 (4)(4)式是关于cosθ的一元二次方程。

cosθ为实数,则△≥0,即(4m)2-4(6m)M≥0,可得m≥M 当m=M时,T恰好为零,但不升起,所以取m>M为升起条件。

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结高中物理中,求极值是一个重要的数学应用问题。

很多物理问题都需要通过求极值来进行分析和解决,因此掌握求极值方法和常用结论是十分重要的。

下面将为你总结高中物理求极值的方法和常用结论。

一、求极值的方法1.寻找最值法:通过寻找物理问题的最大值或最小值来求出极值。

2.解析法:通过建立数学模型,对其求导或使用其他数学方法得出极值。

3.几何方法:通过几何图形的性质和分析来求出极值。

二、常用结论1.极大值与极小值:对于一元函数f(x),若在x=a处,f'(a)=0,并且在a点左侧由正变负,在a点右侧由负变正,则a称为f(x)的极大值点;若在x=b处,f'(b)=0,并且在b点左侧由负变正,在b点右侧由正变负,则b称为f(x)的极小值点。

2.拐点与拐点性质:对于函数f(x),若在x=c处f''(c)=0,并且在c点左侧由负变正,在c点右侧由正变负,则c称为f(x)的拐点。

拐点的性质为:由凹变凸的拐点称为极小值点,由凸变凹的拐点称为极大值点。

3.一元二次函数的最值结论:一元二次函数y=ax^2+bx+c(其中a≠0)的最值点可以通过如下结论求得:当a>0时,最小值为:y_min=c-b^2/(4a)当a<0时,最大值为:y_max=c-b^2/(4a)4.相对速度最小值结论:当两个运动着的物体相对于一些静止参考系运动时,它们的相对速度最小值出现在它们的运动方向夹角为0°或者180°时。

5.成千上万法:在解决物理问题中,当数据较多时,可以通过逐个数值代入进行计算。

6.速度为零但加速度不为零时的移动物体:当一个物体在其中一时刻速度为零(静止),但加速度不为零时,可以通过如下结论求出物体在这一时刻的位置:位移s = (1/2)at^2,其中a为加速度,t为时间。

7.物体自由落体的最高点:自由落体的物体在竖直上抛运动中,最高点时速度为零,也就是物体停止上升,准备掉下来。

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结高中物理中,求极值方法和常用结论是常见的问题类型,通过总结这些方法和结论,有助于高中物理学习者更好地理解和应用。

一、求极值方法:1.极值定理:对于一个连续函数f(x)在闭区间[a,b]上,必然存在至少一个极大值和极小值,即f(x)在[a,b]上必然取得极值。

2.导数法则:利用导数的相关概念和性质,可以简化极值的求解过程。

(1)极值的必要条件:函数f(x)在x=c处取得极值,必然满足f'(c)=0。

(2)极值的充分条件:若函数f'(x)在x=c的邻域内存在符号变化,且在c处f''(c)存在,则f(x)在x=c处取得极值。

3.端点法:闭区间[a,b]上的函数f(x),当x=a或x=b时,可以直接求解f(a)和f(b),作为极值的候选值。

4.区间内部法:闭区间[a,b]上的函数f(x),通过求解f'(x)=0,得到f(x)的驻点。

然后比较驻点和两个端点的函数值,选取最大和最小值作为极值。

5.辅助线法:即画出函数的图像,观察图像的整体形状,然后根据函数的性质和题目要求,确定极值所在的位置。

二、常用结论:1.函数的单调性:函数在给定的定义域内是递增的还是递减的。

(1)若f'(x)>0,则f(x)在区间上递增。

(2)若f'(x)<0,则f(x)在区间上递减。

2.极值判定:通过一、二阶导数的符号来判断函数的极值。

(1)若f''(x)>0,则f(x)在x处取得极小值。

(2)若f''(x)<0,则f(x)在x处取得极大值。

3.凹凸性:函数图像在其中一区间上是凹向上还是凹向下。

(1)若f''(x)>0,则f(x)在区间上是凹向上的。

(2)若f''(x)<0,则f(x)在区间上是凹向下的。

4.零点定理:对于一个连续函数f(x),若f(a)和f(b)异号,则在开区间(a,b)内至少存在一个实根。

自用教案:物理极值的几种数学求法

自用教案:物理极值的几种数学求法

物理极值的几种数学求法河南省汝阳县实验高中——师儆愈高中物理中有许多极值类问题,为使同学们能够全面了解极值类问题的求法,现做简单归纳如下:【典例解析】 一、利用三角函数求极值1、利用三角函数的有界性求极值如果所求物理量表达式中含有三角函数,可利用三角函数的有界性求极值。

若所求物理量表达式可化为“ααcos sin A y =”的形式,可变为α2sin 21A y =,当︒=45α时,y 有极值2A。

2、利用“化一”法求三角函数极值对于复杂的三角函数,例如θθcos sin b a y +=,要求极值时,先需要把不同名的三角函数θsin 和θcos ,变成同名的三角函数,这个工作叫做“化一”。

)cos sin (cos sin 222222θθθθbabba ab a b a y ++++=+=)cos sin sin (cos 22θφθφ++=b a ab b a =++=φφθtan )sin(22其中 故y 的极大值为22b a +。

【类型Ⅰ】三角函数()θθθθ2sin 2cos sin AA f ==(其中θ为锐角)。

当 45=θ时,三角函数()θf 取最大值()2max Af =θ。

【例1-1】如图所示,底边恒定为b,当斜面与底边所成夹角θ为多大时,物体沿此光滑斜面由静止从顶端滑到底端所用时间才最短?此题的关键是找出物体从斜面顶端滑至底端所用时间与夹角的关系式,这是一道运动学和动力学的综合题,应根据运动学和动力学的有关知识列出物理方程。

【解析】设斜面倾角为θ时,斜面长为S ,物体受力如图所示,由图知θcos bS =由匀变速运动规律得:221at S =由牛顿第二定律提:mgsin θ=ma …………③一.数学方法 几何法:切割线定理求极值函数法均值不等式法正弦定理法根的判别式法 三角函数法利用三角函数的有界性求极值利用三角函数 “化一”法求三角函数极值二次函数顶点法 二次函数法 配方法 求导数法联立解得:θθθ2sin 4cos sin 22g bg b aSt ===可见,在90°≥θ≥0°内,当2θ=90°时,sin2θ有最大值,t 有最小值。

高中物理中的极值问题及求解方法

高中物理中的极值问题及求解方法

高中物理中的极值问题及求解方法随着高考新课程改革的深入及素质教育的全面推广,物理极值问题成为中学物理教学的一个重要内容,它对培养学生的理解能力、逻辑推理能力、数学运算能力、综合分析能力都有很高要求,所以研究极值问题的规律和探究解决解决极值问题的方法,对于培养学生创造性思维能力和掌握科学研究的方法均有重要的意义。

一、 利用数学方法求极值1.配方法: 2224()24b ac b ax bx c a x a a-++=++当a >0时,当2bx a=-时,y 有最小值为:2min 44ac b y a -=当a <0时,当2bx a=- 时,y 有最大值为:2max 44ac b y a -=例1.如图所示摩托车做腾跃特技表演,以速度v 0=10m /s 冲上顶部水平的高台试分析:当台高h 多大时飞出,求跳板高度h 多大时,飞出的水平距离最远?且最大值是多少?(一切摩擦不计,取g=10 m /s 2)。

解析:设摩托车从高台飞出的水平速度为v ,根据机械能守恒定律有:2201122mv mgh mv =+ ① 摩托车飞出后做平抛运动,飞出的水平距离:2hs vt vg== ② 由①和②有:222002224h v s v gh h h g g=-=-g③ 因为40a =-<,所以s 有最大值的条件为:22002/ 2.522(4)4b v g v h m a g=-=-==⨯- ④且最大距离为; 2max 52v s m g== ⑤ 例2甲、乙两车同时从同一地点出发,向同一方向运动,其中甲以10 m/s 的速度匀速行驶,乙以2 m/s 2的加速度由静止启动,求:(1)经多长时间乙车追上甲车?此时甲、乙两车速度有何关系? (2)追上前经多长时间两者相距最远?此时二者的速度有何关系?【解析】(1)乙车追上甲车时,二者位移相同,设甲车位移为x 1,乙车位移为x 2,则x 1=x 2,即211a 2v t t 11=,解得12110 s 20 m /s t v at =,==,因此212v v =.(2)设追上前二者之间的距离为x ∆,则22221 2x x x v t at t t 12122Δ10=-=-=-由数学知识知:当10s 521t s =⨯2=时,两者相距最远,此时21v v '=. 例3、.(2017新课标II)如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直。

物理中求极值的常用方法

物理中求极值的常用方法
R≤Ω,即Rmax=Ω。
[方法四]用均值定理法求解
考虑R= ,设a=2+x;b=8-x。
当a=b时,即2+x=8-x,
即x=3Ω时,Rmax(3)= =Ω。
也可以用上面公式(a+b)max= =25,
Rmax= = =Ω。
以上用四种方法求出Rmax=Ω,下边求伏特计的最大读数。
Imin= = =4(A)。Umax=ε- Iminr= =10(V)。即变阻器的滑动头P滑到R3的中点Ω处,伏特计有最大值,最大值为10伏。
1、利用顶点坐标法求极值
对于典型的一元二次函数y=ax2+bx+c,
若a>0,则当x=- 时,y有极小值,为ymin= ;
若a<0,则当x=- 时,y有极大值,为ymax= ;
2、利用一元二次函数判别式求极值
对于二次函数y=ax2+bx+c,用判别式法
利用Δ=b2-4ac≥0。(式中含y)
若y≥A,则ymin=A。
考虑本题分母:μsinθ+cosθ与a sinθ+b cosθ用比较法,得:a=μ;b=1。
于是tgф= ,则ф=arc tg 。所以,μsinθ+cosθ= sin(θ+arctg )。
要使F最小,则分母μsinθ+cosθ需最大,因此,θ+arc tg = 。
所以有:θ= -arc tg = -arcctgμ=arctgμ。
mgsinθ—μmgcosθ— =0②
②解式得:Vmax= 。
综上所述,求解极值习题常用的方法列举了七种、即均值定理法、顶点坐标法、配方法、判别式法、三角函数中“化一”法、图解法、分析法。针对有些习题所给的条件的“有界性”,运用求极值的方法时要特别注意,求出的极值不能“出界”,要注意定义域和值域的对应关系。

高中物理-求极值的六种方法

高中物理-求极值的六种方法

高中物理-求极值的六种方法求极值是数学中的重要问题,解决这个问题不仅有助于我们理解函数的性质,还有助于应用于很多实际问题的求解。

下面介绍六种常用的方法求极值:导数法、辅助线法、割线法、牛顿法、拉格朗日乘数法和试探法。

一、导数法:导数法是最常见,也是最基本的求极值方法。

极值点处的导数为零或不存在。

1.求导数:设函数y=f(x),首先求出导数f'(x)。

2.导数为零:令f'(x)=0,得出x的值。

3.导数不存在:检查导数在f'(x)为零的点附近是否存在极值点。

二、辅助线法:辅助线法是通过构造一条辅助线,将函数转化为一个变量的方程,然后通过解方程来求解极值点。

1.构造辅助线:根据函数的特点,选取一个合适的辅助线方程(比如斜率为1或-1),将函数转化为一个变量的方程。

2.解方程:将辅助线方程和原函数方程联立,解得x的值。

3.求解极值点:将x的值代入原函数方程,求出对应的y值。

三、割线法:割线法是通过构造一条割线,通过不断迭代来逼近极值点。

1.选择初始值:选择一个合适的初始值x0。

2.构造割线:构造一条过(x0,f(x0))和(x1,f(x1))两点的割线,其中x1=x0-λf(x0),λ是一个合适的步长。

3.迭代求值:迭代求解极值点,即不断重复步骤2,直到割线趋近于极值点。

四、牛顿法:牛顿法利用函数的导数和二阶导数的信息来逼近极值点,是一种高效的求解极值的方法。

1.选择初始值:选择一个合适的初始值x0。

2.迭代求值:根据牛顿迭代公式x1=x0-f(x0)/f'(x0),不断迭代求解极值点,直到满足结束条件。

五、拉格朗日乘数法:拉格朗日乘数法是一种求解约束条件下极值问题的方法,适用于那些涉及多个变量和多个约束条件的问题。

1. 列出函数和约束条件:设函数为f(x1, x2, ..., xn),约束条件为g(x1, x2, ..., xn)=c。

2. 构造拉格朗日函数:构造拉格朗日函数L(x1, x2, ..., xn, λ) = f(x1, x2, ..., xn) + λ(g(x1, x2, ..., xn)-c),其中λ是拉格朗日乘数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理-求极值的六种方法一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.(2014·高考安徽卷)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s2.则ω的最大值是( )A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .0.5 rad/s[解析] 当物体转到最低点时,恰好不滑动的临界条件为:物体受到静摩擦力达到最大值,即F f =F fm ,此时转盘的角速度最大,受力如图所示(其中O 为对称轴位置).由沿斜面的合力提供向心力,有F fm -mg sin 30°=mω2R由题意知:F fm =F f =μmg cos 30° 解得:ω=g4R=1.0 rad/s ,C 正确. [答案] C二、二次函数极值法 对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a ,当a <0时,y 有最大值y max =4ac -b 24a.也可以采取配方法求解.(2016·临沂模拟)如图所示,在粗糙水平台阶上静止放置一质量m =0.5 kg 的小物块,它与水平台阶表面的动摩擦因数μ=0.5,且与台阶边缘O 点的距离s =5 m .在台阶右侧固定了一个1/4圆弧挡板,圆弧半径R =1 m ,圆弧的圆心也在O 点.今以O 点为坐标原点建立平面直角坐标系,现用F =5 N 的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板.(1)若小物块恰能击中挡板上的P 点(OP 与水平方向的夹角为37°),求其离开O 点时的速度大小;(2)为使小物块击中挡板,求拉力F 作用的最短时间;(3)改变拉力F 的作用时间,使小物块击中挡板的不同位置,求击中挡板时小物块动能的最小值. [解析] (1)小物块从O 点运动到P 点,做平抛运动 水平方向:R cos 37°=v 0t ,竖直方向:R sin 37°=12gt 2解得:v 0=433 m/s.(2)为使小物块击中挡板,小物块必须能运动到O 点 小物块在水平台阶表面上运动,由动能定理得:Fx 0-μmgs =ΔE k =0, 解得:x 0=2.5 m由牛顿第二定律得:F -μmg =ma ,解得:a =5 m/s 2 由运动学公式得:x 0=12at 2,解得:t =1 s.(3)设小物块击中挡板任意点的坐标为(x ,y ),则 x =vt ,y =12gt 2再由动能定理得:mgy =E k -12mv 2又1/4圆弧挡板方程为:x 2+y 2=R 2 化简得:E k =mgR 24y +3mgy4当mgR 24y =3mgy 4,即y =33R 时,动能E k 取最小值,E kmin =523 J. [答案] (1)43 3 m/s (2)1 s (3)52 3 J三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值.如图甲所示,一物体以一定的速度v 0沿足够长斜面向上运动,此物体在斜面上的最大位移与斜面倾角的关系如图乙中的曲线所示.运动过程中物体的动摩擦因数不变,g =10m/s 2.(1)求物体的初速度大小和物体与斜面之间的动摩擦因数;(2)若物体的质量为m ,初速度大小为v ,当斜面倾角为α时,物体上滑位移为s ,求物体上滑过程中克服摩擦力做的功;(3)θ为多大时,x 值最小,最小值为多少?[解析] (1)当斜面倾角θ为90°时,物体做竖直上抛运动,v 20=2gh ,由题图乙可知,上升的最大位移h =54 m解得:v 0=5 m/s ①当斜面倾角θ为0°时,物体沿水平面运动,运动的位移x 0=54 3 m ,则物体运动中必受到摩擦阻力的作用,设动摩擦因数为μ,此时摩擦力大小为f =μmg由牛顿第二定律得,f =ma 加速度大小为a =μg ②对物体在水平面的运动,由运动学方程:v 20=2ax 0③ 联立①②③,解得:μ=33. (2)当斜面倾角为α时,设物体上滑过程中克服摩擦力做的功为W f ,由动能定理得, -mgs sin α-W f =0-12mv 2解得:W f =12mv 2-mgs sin α.(3)对于斜面倾角θ为任意一角度,利用动能定理可得 -mgx sin θ-μmgx cos θ=0-12mv 20.解得:x =v 202g (sin θ+μcos θ)=h sin θ+μcos θ.设μ=tan φ,上式可化为:x =h1+μ2sin(θ+φ)当θ=90°-φ=90°-arctan 33=60°时,x 为最小值 最小值:x =h 1+μ2=32h =1.08 m. [答案] (1)5 m/s 33 (2)12mv 2-mgs sin α (3)60° 1.08 m四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题、运动的合成问题,都是应用点到直线的距离最短求最小值.质量为m 的物体与水平地面间的动摩擦因数为μ,用图解法求维持物体做匀速运动的最小拉力.[解析] 由F fF N =μ知,不论F f 、F N 为何值,其比值恒定由图知F fF N=μ=tan α,即F ′的方向是确定的.由平衡条件推论可知:mg 、F ′、F 构成闭合三角形. 显然,当F ⊥F ′时,F 最小.F min =mg sin α=mg tan α1+tan 2 α=μmg 1+μ2.(说明:此题也可用三角函数法求解.)物体受力分析如图. 由平衡条件得: F ·cos θ=F f ① F ·sin θ+F N =mg ② 又F f =μF N ③联立①②③得:F =μmgcos θ+μsin θ令sin α=11+μ2,cos α=μ1+μ2 则F =μmg1+μ2 sin(α+θ)当sin(α+θ)=1时,F min =μmg1+μ2.[答案] μmg1+μ2 五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积 a ·b 最大;若a ·b =恒量,当a =b 时,其和a+b 最小.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力. (1)求绳断时球的速度大小v 1和球落地时的速度大小v 2;(2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?[解析] (1)设绳断后球飞行时间为t ,由平抛运动规律,有竖直方向14d =12gt 2,水平方向d =v 1t解得v 1=2gd由机械能守恒定律有12mv 22=12mv 21+mg ⎝⎛⎭⎫d -34d 得v 2=52gd . (2)设绳能承受的最大拉力大小为F T ,这也是球受到绳的最大拉力大小 球做圆周运动的半径为R =34d由圆周运动向心力公式,有F T -mg =mv 21R得F T =113mg .(3)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F T -mg =m v 23l 得v 3=83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1有d -l =12gt 21,x =v 3t 1得x =4l (d -l )3当l=d 2时,x 有最大值,x max =233 d.[答案] 见解析六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.(原创题)如图所示,顶角为2θ的光滑绝缘圆锥,置于竖直向上的匀强磁场中,磁感应强度为B ,现有质量为m 、带电量为-q 的小球,沿圆锥面在水平面内做圆周运动,求小球做圆周运动的最小半径.[解析] 小球受力如图,设小球做圆周运动的速率为v ,轨道半径为R . 由牛顿第二定律得:水平方向:qvB -F N cos θ=mv 2R竖直方向:F N sin θ-mg =0 两式联立得: mv 2R-qvB +mg cot θ=0 因为速率v 为实数,故Δ≥0 即(qB )2-4⎝⎛⎭⎫m R mg cot θ≥0 解得:R ≥4m 2g cot θq 2B 2故最小半径为:R min =4m 2g cot θq 2B 2.[答案] 4m 2g cot θq 2B 21.(2016·广州模拟)如图所示,船在A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4 m/s ,则船从A 点开出的最小速度为( )A .2 m/sB .2.4 m/sC .3 m/sD .3.5 m/s解析:选B.AB 方向为合速度方向,由图可知,当v 船⊥AB 时最小,即v 船=v 水·sin 37°=2.4 m/s ,B 正确.2.(原创题)如图,有几个底边长度均为L 、倾角不同的光滑斜面,将一物体从斜面顶端由静止释放滑到底端,当倾角α为多少时用时最短?最短时间为多少?解析:斜面长度为s =Lcos α.物体的加速度为a =g sin α. 由s =12at 2得:t =2Lg sin αcos α=4Lg sin 2α当α=45°时,t 最小, t min =2L g. 答案:45° 2L g3.一质量为m 的小球在光滑的水平面上以速度v 0匀速运动,从t =0时刻开始小球受到恒力F 作用,F 与v 0之间的夹角如图所示.求:(1)小球速度的最小值;(2)小球速度最小时的位移的大小.解析:(1)如图,将v 0分解为平行于F 方向的v 0sin θ和垂直于F 方向的v 0cos θ,因小球在垂直于F 方向的速度不变,当平行于F 方向的分速度为0时v 最小,则v min =v 0cos θ.(2)小球从t =0时刻到速度达到最小值的过程可看做初速度为v 0cos θ的反方向的类平抛运动过程,则小球的加速度大小为a =Fm所用时间t =v 0sin θa小球在垂直于F 方向的位移为x =v 0cos θ·t 平行于F 方向的位移为y =12at 2故总位移为l =x 2+y 2解得l =mv 20sin θ3cos 2θ+12F.答案:见解析4.(原创题)一人在距公路垂直距离为h 的B 点(垂足为A ),公路上有一辆以速度v 1匀速行驶的汽车向A 点行驶,当汽车距A 点距离为L 时,人立即匀速跑向公路拦截汽车,求人能拦截住汽车的最小速度.解析:法一:设人以速度v 2沿图示方向恰好在C 点拦住汽车,用时为t .则L +h tan α=v 1t ① hcos α=v 2t ② 整理得:v 2=hv 1L cos α+h sin α=hv 1L 2+h 2⎝ ⎛⎭⎪⎫L L 2+h 2cos α+h L 2+h 2sin α由数学知识知:v 2min =hv 1L 2+h 2. 法二:选取汽车为参照物.人正对汽车运动即可拦住汽车,即人的合速度方向指向汽车.其中一分速度大小为v 1,另一分速度为v 2,当v 2与合速度v 垂直时,v 2最小,由相似三角形知识可得: v 2v 1=hL 2+h 2 v 2=hv 1L 2+h 2. 答案:hv 1L 2+h 25.甲、乙两车在平直公路上比赛,某一时刻,乙车在甲车前方L 1=11 m 处,乙车速度v 乙=60 m/s ,甲车速度v 甲=50 m/s ,此时乙车离终点线尚有L 2=600 m ,如图所示.若甲车加速运动,加速度a =2 m/s 2,乙车速度不变,不计车长.求:(1)经过多长时间甲、乙两车间距离最大,最大距离是多少? (2)到达终点时甲车能否超过乙车?解析:(1)当甲、乙两车速度相等时,两车间距离最大, 即v 甲+at 1=v 乙,得t 1=v 乙-v 甲a =60-502 s =5 s甲车位移x 甲=v 甲t 1+12at 21=275 m乙车位移x 乙=v 乙t 1=60×5 m =300 m 此时两车间距离Δx =x 乙+L 1-x 甲=36 m. (2)甲车追上乙车时,位移关系x ′甲=x ′乙+L 1 甲车位移x ′甲=v 甲t 2+12at 22,乙车位移x ′乙=v 乙t 2,将x ′甲、x ′乙代入位移关系, 得v 甲t 2+12at 22=v 乙t 2+L 1,代入数值并整理得t 22-10t 2-11=0, 解得t 2=-1 s(舍去)或t 2=11 s , 此时乙车位移x ′乙=v 乙t 2=660 m >L 2 故到达终点时甲车不能超过乙车. 答案:见解析6.(原创题)如图所示,电动势为E 、内阻为r 的电源给一可变电阻供电,已知可变电阻变化范围为0~R m ,且R m >r .当R 为何值时功率最大,最大功率为多少?解析:设可变电阻为R , 则I =ER +rP =I 2R =E 2(R +r )2·R ① 配方法:P =E 2(R -r )2R+4r显然,当R =r 时,功率最大,P max =E 24r .判别式法:将①式整理成关于R 的二次方程 PR 2+(2Pr -E 2)R +Pr 2=0 由于R 为实数,故Δ≥0 即(2Pr -E 2)2-4P 2r 2≥0 解得:P ≤E 24r最大值为P max =E 24r,代入①式得R =r .答案:见解析7.质量分别为M 、m 的斜面体A 、B 叠放在光滑水平面上,斜面体倾角为α,两者之间的动摩擦因数为μ(μ<tan α),今用水平外力F 推B ,使两者不发生滑动,求F 的取值范围,假设最大静摩擦力等于滑动摩擦力.(已知:m =3 kg ,M =8 kg ,μ=0.5,α=37°)解析:B 恰好不向下滑动时,所需F 最小,此时B 受到最大静摩擦力沿斜面向上.如图甲所示. 设两者共同的加速度为a 1,对整体有: F min =(M +m )a 1① 对B 有:⎩⎪⎨⎪⎧F min +F f1cos α-F N1sin α=ma 1F f1sin α+F N1cos α=mg F f1=μ·F N1②③④联立解得: F min =m (M +m )(sin α-μcos α)M (cos α+μsin α)g =7.5 NB 恰好不上滑时所需F 最大,此时B 受最大静摩擦力沿斜面向下.如图乙所示. 设共同加速度为a 2,对整体有: F max =(M +m )a 2⑤ 对B 有:⎩⎪⎨⎪⎧F max -F f2cos α-F N2sin α=ma 2F N2cos α=mg +F f2sin αF f2=μF N2⑥⑦⑧ 联立解得: F max =m (M +m )(sin α+μcos α)M (cos α-μsin α)g =82.5 N故取值范围为7.5 N ≤F ≤82.5 N. 答案:7.5 N ≤F ≤82.5 N。

相关文档
最新文档