数学总复习之数学思想《分类讨论》
中学数学中重要的数学思想――分类讨论的思想
中学数学中重要的数学思想――分类讨论的思想依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做分类的思想。
“物以类聚,人以群分”。
将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做分类讨论的方法。
分类的思想是自然科学乃至社会科学研究中经常用到的,又叫做逻辑划分。
不论从宏观上还是从微观上对研究对象进行分类,都是深化研究对象、发展科学必不可少的思想。
因此分类讨论既是一种逻辑方法,也是一种数学思想。
需要运用分类讨论的思想解决的数学问题,就其引起分类的原因,可归结为:①涉及的数学概念是分类定义的;②运用的数学定理、公式或运算性质、法则是分类给出的;③求解的数学问题的结论有多种情况或多种可能;④数学问题中含有参变量,这些参变量的取值会导致不同结果的。
应用分类讨论思想解决问题,必须保证分类科学、统一,不重复,不遗漏,并力求最简。
运用分类的思想,通过正确的分类,可以使复杂的问题得到清晰、完整、严密的解答。
回顾总结中学数学教材中分类讨论的知识点,大致有:绝对值概念的定义;根式的性质;一元二次方程根的判别式与根的情况;二次函数二次项系数正负与抛物线开口方向;反比例函数k/x的反比例系数k,正比例函数的比例系数k,一次函数kx+b的斜率k 与图象位置及函数单调性关系;幂函数xn的幂指数n的正、负与定义域、单调性、奇偶性的关系;指数函数y=ax及其反函数y=logax中底数a的a>1及0<1对函数单调性的影响;等比数列前n项和公式中q=l与q≠1的区别;复数概念的分类;不等式性质中两边同乘(除)时正数与负数对不等号方向的影响;排列组合中的分类计数原理;圆锥曲线中离心率e的取值与椭圆、抛物线、双曲线的对应关系;直线与圆锥曲线位置关系的讨论;运用点斜式、斜截式直线方程时斜率k是否存在;曲线系方程中的参数与曲线类型;角终边所在象限与三角函数符号;……当你对以上各种情况“心中有数”时,分类讨论便不再令人望而生畏。
初中数学思想方法之分类讨论
初中数学思想方法之分类讨论数学是一门既抽象又具体的学科,它需要学生具备一定的思维方法和思想能力。
在初中数学中,分类讨论是一种常用的思想方法,它可以帮助学生分析问题、归纳规律并解决问题。
本文将详细介绍初中数学中分类讨论的基本思想和具体步骤,并通过例题来说明如何运用这种方法。
一、分类讨论的基本思想分类讨论是指将问题进行细化,将其分解成几个易于分析和解决的小问题,并分别进行讨论和解决。
通过这种方法可以更好地理解问题的本质,找到解题的关键点,并最终得到问题的解决办法。
分类讨论的基本思想包括以下几点:1.具体问题具体分析。
将问题进行细化后,每个小问题都有其独特的特点和解决思路,需要根据具体情况展开分析。
2.归纳总结。
在分析过程中,要总结出各个小问题之间的共同点和规律,以便更好地理解问题,并找到解决办法。
3.统一思考。
将各个小问题的解决办法进行归纳和整合,形成对大问题的解决思路。
二、分类讨论的具体步骤分类讨论的具体步骤可以简单概括为以下几点:1.理解问题。
仔细阅读题目,了解问题的背景和要求,确定需要解决的具体问题。
2.分析问题。
将大问题分解成几个小问题,每个小问题都有明确的目标和限制条件。
在分析过程中,可以通过画图、列举数据等方式进行辅助分析。
3.解决小问题。
按照特定的思路和方法,分别解决各个小问题。
在解决过程中,可以运用已经学过的数学知识、规律和公式。
4.总结归纳。
在解决小问题的过程中,要总结各个小问题之间的共同点和规律,归纳出解决大问题的关键思路和方法。
5.整合答案。
将各个小问题的解答整合成对大问题的解答。
在整合过程中,要仔细检查各个小问题的解答是否符合大问题的要求,并进行必要的修正和调整。
三、分类讨论的具体例题下面以一些常见的初中数学题目为例,说明如何运用分类讨论的方法解决问题。
例题1:现有一些白球和红球,共18个。
白球的个数不超过红球的个数。
问,最少有多少个红球?解题思路:根据题目要求和条件,可以将问题进行分类讨论。
初中数学专题复习分类讨论(含答案)
专题复习二 分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. Ⅱ、典型例题剖析【例1】(2005,南充,11分)如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式. 解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0). 设一次函数解析式为y =kx +b . 点A ,B 在一次函数图象上, ∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k则一次函数解析式是 .121--=x y点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为my x=. 点C 在反比例函数图象上,则41-=m ,m =-4.故反比例函数解析式是:xy 4-=.点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。
【例2】(2005,武汉实验,12分)如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。
以点O 2(13,5)为圆心的圆与x 轴相切于点D. (1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度; (3)将⊙O 2沿x 轴向右平移,在平移的过程中与x 轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。
分类讨论思想
分类讨论思想参考资料:百度百科1定义每个数学结论都有其成立的条件,每一种数学方法的使用也往往有其适用范围,在我们所遇到的数学问题中,有些问题的结论不是唯一确定的,有些问题的结论在解题中不能以统一的形式进行研究,还有些问题的已知量是用字母表示数的形式给出的,这样字母的取值不同也会影响问题的解决,由上述几类问题可知,就其解题方法及转化手段而言都是一致的,即把所有研究的问题根据题目的特点和要求,分成若干类,转化成若干个小问题来解决,这种按不同情况分类,然后再逐一研究解决的数学思想,称之为分类讨论思想。
2分类时间当数学问题中的条件,结论不明确或题意中含参数或图形不确定时,就应分类讨论。
分类讨论思想是指在解决一个问题时,无法用同一种方法去解决,而需要一个标准将问题划分成几个能用不同形式去解决的小问题,将这些小问题——加以解决,从而使问题得到解决,这就是分类讨论思想。
当我们所研究的各种对象之间过于复杂或涉及范围比较广泛时,我们大多采取分类讨论的方法进行解决,即对问题中的各种情况进行分类,或对所涉及的范围进行分割,然后分别研究和求解。
分类讨论解题的实质,是将整体问题化为部分问题来解决,以增加题设条件。
分类讨论的原则是不重复、不遗漏。
讨论的方法是逐类进行,还必须要注意综合讨论的结果,以使解题步骤完整。
3分类讨论一方面可将复杂的问题分解成若干个简单的问题,另一方面恰当的分类可避免丢值漏解,从而提高全面考虑问题的能力,提高周密严谨的数学教养。
4常见题目近年来,在各地中考试题中涉及“分类讨论”的问题十分常见,因为这类试题不仅考查我们的数学基本知识与方法,而且考查了我们思维的深刻性。
在解决此类问题时,因考虑不周全导致失分的较多,究其原因主要是平时的学习中,尤其是在中考复习时,对“分类讨论”的数学思想渗透不够.个人水平太低。
5思想运用“数无形,少直观,形无数,难入微”,利用“数形结合”可使所要研究的问题化难为易,化繁为简。
第63课 第二轮总复习(2)分类讨论思想
1 2
,现有 a(a>0)桶水,可以清洗一次。也可以把水平均分 2 份后清洗两
次,试问哪种方;案上残留的农药比较少?说明理由
3.田忌赛马是一个为人熟知的故事,传说战国时期,齐王与田忌个有等级为上、中、下 的三匹马,同等级的马中,齐王的马比田忌的马强,有一天,齐王要与田忌塞马,双 方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌 似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、 下等马要强………… (1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能 取胜? (2)如果齐王将马按上、中、下的顺序出阵,而田忌的马随即出阵比赛,田忌获胜的 概率是多少?(要求写双方对阵的所有情况)
见学案
4
(2)已知矩形的长大于宽的 2 倍,周长为 12,从它的一个顶点,作一条射线,将矩形 分成一个三角形和一个梯形,且这条射线与矩形一边所成的角的正切值等于
1 , 2
设梯形的面积为 S,梯形中较短的底的长为 x,试写出梯形面积 S 关于 x 的函数关 系式,并指出自变量 x 的取值范围.
布置作业 教后记
(4)一次函数 y=kx+b 的自变量取值范围是-3 小于等于 x 小于等于 6,相应函数值的取 值范围是-5 小于等于 y 小于等于 2。则这个一次函数的解析式为____ 5.选择: (1)若 x2+4(m-2)x+16 是完全平方式,则 m 等于( ) A.6 B. 4 C. 0 D. 4 或 0 (2)若圆 O 所在平面内的一点 P 到圆 O 上的点的最大距离为 a,最小距离为 b(a>b), 则此圆的半径为( ) A.
B C
8.依法纳税是每个公民应尽的义务,从 2006 年 1 月 1 日起,个所得税的起征点从 800 元提到 1600 元。 月工资个人所得税税率表(与修改前一样): (1)某同学父亲 2006 年 10 月工资是 全月应纳税所得额 税率(%) 3000 元(未纳税) ,问他要纳税多 不超过 500 元的部分 5 少? 超过 500 元至 2000 元的部分 10 (2)某人 2006 年 8 月纳税 150.1 元,那 超过 2000 元至 5000 元的部分 15 么此人本月的工资(未纳税)是多 …… …… 少元?此所得税法修改前少纳税多 少元? (3)已知某人 2006 年 9 月激纳个人所得税 a(0<a<200)元,求此人本月工资(未纳税) 是多少元?
高考数学复习 分类讨论思想、转化与化归思想
第2讲 分类讨论思想、转化与化归思想数学思想解读1.分类讨论的思想是当问题的对象不能进行统一研究时,就需要对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.2.转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.热点一 分类讨论思想的应用应用1 由概念、法则、公式、性质引起的分类讨论【例1】 (1)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________; (2)在等比数列{a n }中,已知a 3=32,S 3=92,则a 1=________. 解析 (1)若a >1,有a 2=4,a -1=m ,解得a =2,m =12. 此时g (x )=-x 为减函数,不合题意. 若0<a <1,有a -1=4,a 2=m , 故a =14,m =116,检验知符合题意.(2)当q =1时,a 1=a 2=a 3=32,S 3=3a 1=92,显然成立.当q ≠1时,由a 3=32,S 3=92,∴⎩⎪⎨⎪⎧a 1q 2=32, ①a 1(1+q +q 2)=92, ②由①②,得1+q +q 2q 2=3,即2q 2-q -1=0, 所以q =-12或q =1(舍去).当q =-12时,a 1=a 3q 2=6, 综上可知,a 1=32或a 1=6. 答案 (1)14 (2)32或6探究提高 1.指数函数、对数函数的单调性取决于底数a ,因此,当底数a 的大小不确定时,应分0<a <1,a >1两种情况讨论.2.利用等比数列的前n 项和公式时,若公比q 的大小不确定,应分q =1和q ≠1两种情况进行讨论,这是由等比数列的前n 项和公式决定的.【训练1】 (1)(2017·长沙一中质检)已知S n 为数列{a n }的前n 项和且S n =2a n -2,则S 5-S 4的值为( ) A.8 B.10 C.16D.32(2)函数f (x )=⎩⎨⎧sin (πx 2),-1<x <0,e x -1,x ≥0.若f (1)+f (a )=2,则a 的所有可能取值的集合是________.解析 (1)当n =1时,a 1=S 1=2a 1-2,解得a 1=2. 因为S n =2a n -2,当n ≥2时,S n -1=2a n -1-2,两式相减得,a n =2a n -2a n -1,即a n =2a n -1,则数列{a n }为首项为2,公比为2的等比数列, 则S 5-S 4=a 5=25=32. (2)f (1)=e 0=1,即f (1)=1. 由f (1)+f (a )=2,得f (a )=1.当a ≥0时,f (a )=1=e a -1,所以a =1. 当-1<a <0时,f (a )=sin(πa 2)=1, 所以πa 2=2k π+π2(k ∈Z ).所以a 2=2k +12(k ∈Z ),k 只能取0,此时a 2=12, 因为-1<a <0,所以a =-22. 则实数a取值的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-22,1.答案 (1)D(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-22,1 应用2 由图形位置或形状引起的分类讨论【例2】 (1)(2017·昆明一中质检)已知双曲线的离心率为233,则其渐近线方程为________;(2)设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于________. 解析 (1)由于e =c a =233,∴c 2a 2=a 2+b 2a 2=43,则a 2=3b 2, 若双曲线焦点在x 轴上,渐近线方程y =±33x . 若双曲线焦点在y 轴上,渐近线方程y =±3x .(2)不妨设|PF 1|=4t ,|F 1F 2|=3t ,|PF 2|=2t ,其中t ≠0. 若该曲线为椭圆,则有|PF 1|+|PF 2|=6t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 6t =12;若该曲线为双曲线,则有|PF 1|-|PF 2|=2t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 2t =32. 答案 (1)y =±3x ,或y =±33x (2)12或32探究提高 1.圆锥曲线形状不确定时,常按椭圆、双曲线来分类讨论,求圆锥曲线的方程时,常按焦点的位置不同来分类讨论.2.相关计算中,涉及图形问题时,也常按图形的位置不同、大小差异等来分类讨论.【训练2】 设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________.解析 若∠PF 2F 1=90°.则|PF 1|2=|PF 2|2+|F 1F 2|2, 又因为|PF 1|+|PF 2|=6,|F 1F 2|=25, 解得|PF 1|=143,|PF 2|=43,所以|PF 1||PF 2|=72.若∠F 1PF 2=90°,则|F 1F 2|2=|PF 1|2+|PF 2|2, 所以|PF 1|2+(6-|PF 1|)2=20, 所以|PF 1|=4,|PF 2|=2,所以|PF 1||PF 2|=2.综上知,|PF 1||PF 2|=72或2.答案 72或2应用3由变量或参数引起的分类讨论【例3】已知f(x)=x-a e x(a∈R,e为自然对数的底).(1)讨论函数f(x)的单调性;(2)若f(x)≤e2x对x∈R恒成立,求实数a的取值范围.解(1)f′(x)=1-a e x,当a≤0时,f′(x)>0,函数f(x)是(-∞,+∞)上的单调递增函数;当a>0时,由f′(x)=0得x=-ln a,所以函数f(x)在(-∞,-ln a)上的单调递增,在(-ln a,+∞)上的单调递减.(2)f(x)≤e2x⇔a≥xe x-ex,设g(x)=xe x-ex,则g′(x)=1-e2x-xe x.当x<0时,1-e2x>0,g′(x)>0,∴g(x)在(-∞,0)上单调递增.当x>0时,1-e2x<0,g′(x)<0,∴g(x)在(0,+∞)上单调递减.所以g(x)max=g(0)=-1,所以a≥-1.故a的取值范围是[-1,+∞).探究提高 1.(1)参数的变化取值导致不同的结果,需对参数进行讨论,如含参数的方程、不等式、函数等.本题中参数a与自变量x的取值影响导数的符号应进行讨论.(2)解析几何中直线点斜式、斜截式方程要考虑斜率k存在或不存在,涉及直线与圆锥曲线位置关系要进行讨论.2.分类讨论要标准明确、统一,层次分明,分类要做到“不重不漏”.【训练3】(2015·全国Ⅱ卷)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解(1)f(x)的定义域为(0,+∞),f′(x)=1x-a.若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a-1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1). 热点二 转化与化归思想 应用1 特殊与一般的转化【例4】 (1)过抛物线y =ax 2(a >0)的焦点F ,作一直线交抛物线于P ,Q 两点.若线段PF 与FQ 的长度分别为p ,q ,则1p +1q 等于( ) A.2a B.12a C.4aD.4a(2)(2017·浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.解析 (1)抛物线y =ax 2(a >0)的标准方程为x 2=1a y (a >0),焦点F ⎝ ⎛⎭⎪⎫0,14a .过焦点F 作直线垂直于y 轴,则|PF |=|QF |=12a ,∴1p +1q =4a .(2)由题意,不妨设b =(2,0),a =(cos θ,sin θ), 则a +b =(2+cos θ,sin θ),a -b =(cos θ-2,sin θ). 令y =|a +b |+|a -b | =(2+cos θ)2+sin 2θ+(cos θ-2)2+sin 2θ=5+4cos θ+5-4cos θ,令y =5+4cos θ+5-4cos θ,则y 2=10+225-16cos 2θ∈[16,20].由此可得(|a +b |+|a -b |)max =20=25, (|a +b |+|a -b |)min =16=4,即|a +b |+|a -b |的最小值是4,最大值是2 5. 答案 (1)C (2)4 2 5探究提高 1.一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.2.对于某些选择题、填空题,如果结论唯一或题目提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.【训练4】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C1+cos A cos C=________.解析 令a =b =c ,则△ABC 为等边三角形,且cos A =cos C =12,代入所求式子,得cos A +cos C 1+cos A cos C =12+121+12×12=45.答案 45应用2 函数、方程、不等式之间的转化【例5】 已知函数f (x )=3e |x |,若存在实数t ∈[-1,+∞),使得对任意的x ∈[1,m ],m ∈Z 且m >1,都有f (x +t )≤3e x ,试求m 的最大值. 解 ∵当t ∈[-1,+∞)且x ∈[1,m ]时,x +t ≥0, ∴f (x +t )≤3e x ⇔e x +t ≤e x ⇔t ≤1+ln x -x .∴原命题等价转化为:存在实数t ∈[-1,+∞),使得不等式t ≤1+ln x -x 对任意x ∈[1,m ]恒成立.令h (x )=1+ln x -x (1≤x ≤m ). ∵h ′(x )=1x -1≤0,∴函数h (x )在[1,+∞)上为减函数, 又x ∈[1,m ],∴h (x )min =h (m )=1+ln m -m . ∴要使得对任意x ∈[1,m ],t 值恒存在, 只需1+ln m -m ≥-1.∵h (3)=ln 3-2=ln ⎝ ⎛⎭⎪⎫1e ·3e >ln 1e =-1, h (4)=ln 4-3=ln ⎝ ⎛⎭⎪⎫1e ·4e 2<ln 1e =-1,又函数h (x )在[1,+∞)上为减函数, ∴满足条件的最大整数m 的值为3.探究提高 1.函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助.2.解决函数的问题需要方程、不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围.【训练5】 (2017·江苏卷)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若P A → ·PB → ≤20,则点P 的横坐标的取值范围是________.解析 设点P (x ,y ),且A (-12,0),B (0,6).则P A → ·PB → =(-12-x ,-y )·(-x ,6-y )=x (12+x )+y (y -6)≤20, 又x 2+y 2=50, ∴2x -y +5≤0,则点P 在直线2x -y +5=0上方的圆弧上(含交点). 联立⎩⎪⎨⎪⎧y =2x +5,x 2+y 2=50,解得x =-5或x =1,结合图形知,-52≤x ≤1.故点P 横坐标的取值范围是[-52,1]. 答案 [-52,1]应用3 正与反、主与次的转化【例6】 (1)若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t ,3)上总不为单调函数,则实数m 的取值范围是________;(2)对于满足0≤p ≤4的所有实数p ,不等式x 2+px >4x +p -3恒成立,则x 的取值范围是________.解析 (1)g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t ,3)上总为单调函数, 则①g ′(x )≥0在(t ,3)上恒成立,或②g ′(x )≤0在(t ,3)上恒成立. 由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x .当x ∈(t ,3)时恒成立,∴m +4≥2t -3t 恒成立, 则m +4≥-1,即m ≥-5;由②得m +4≤2x -3x ,当x ∈(t ,3)时恒成立,则m +4≤23-9,即m ≤-373. ∴使函数g (x )在区间(t ,3)上总不为单调函数的m 的取值范围为-373<m <-5. (2)设f (p )=(x -1)p +x 2-4x +3, 则当x =1时,f (p )=0.所以x ≠1.f (p )在0≤p ≤4上恒正,等价于⎩⎪⎨⎪⎧f (0)>0,f (4)>0,即⎩⎪⎨⎪⎧(x -3)(x -1)>0,x 2-1>0,解得x >3或x <-1.答案 ⎝ ⎛⎭⎪⎫-373,-5 (2)(-∞,-1)∪(3,+∞)探究提高 1.第(1)题是正与反的转化,由于不为单调函数有多种情况,先求出其反面,体现“正难则反”的原则.题目若出现多种成立的情形,则不成立的情形相对很少,从后面考虑较简单,因此,间接法多用于含有“至多”“至少”及否定性命题情形的问题中.2.第(2)题是把关于x 的函数转化为在[0,4]内关于p 的一次函数大于0恒成立的问题.在处理多变元的数学问题时,我们可以选取其中的参数,将其看作是“主元”,而把其它变元看作是参数.【训练6】 已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________.解析 由题意,知g (x )=3x 2-ax +3a -5,令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1.对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧φ(1)<0,φ(-1)<0,即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0,解得-23<x <1.故当x ∈⎝ ⎛⎭⎪⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0. 答案 ⎝ ⎛⎭⎪⎫-23,11.分类讨论思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思想,降低问题难度.常见的分类讨论问题:(1)集合:注意集合中空集∅讨论.(2)函数:对数函数或指数函数中的底数a ,一般应分a >1和0<a <1的讨论,函数y =ax 2+bx +c 有时候分a =0和a ≠0的讨论,对称轴位置的讨论,判别式的讨论.(3)数列:由S n 求a n 分n =1和n >1的讨论;等比数列中分公比q =1和q ≠1的讨论.(4)三角函数:角的象限及函数值范围的讨论.(5)不等式:解不等式时含参数的讨论,基本不等式相等条件是否满足的讨论.(6)立体几何:点线面及图形位置关系的不确定性引起的讨论.(7)平面解析几何:直线点斜式中k 分存在和不存在,直线截距式中分b =0和b ≠0的讨论;轨迹方程中含参数时曲线类型及形状的讨论.(8)去绝对值时的讨论及分段函数的讨论等.2.转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而解决问题的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.。
高考数学总复习学案:数学思想专项训练(三)《分类讨论思想》(北师大版)
数学思想专项训练(三) 分类讨论思想一、选择题1.已知集合A ={a ,b,2},B ={2,b 2,2a },且A ∩B =A ∪B ,则a =( ) A .0 B.14 C .0,14D .-14,02.函数f (x )=⎩⎪⎨⎪⎧sin (πx 2),-1<x <0,e x -1, x ≥0,若f (1)+f (a )=2,则a 的所有可能值为( )A .1B .-22 C .1,-22D .1,223.若直线l 过点P (-3,-32)且被圆x 2+y 2=25截得的弦长是8,则直线l 的方程为( )A .3x +4y +15=0B .x =-3或y =-32C .x =-3D .x =-3或3x +4y +15=04.三棱柱底面内的一条直线与棱柱的另一底面的三边及三条侧棱所在的6条直线中,能构成异面直线的条数的集合是( )A .{4,5}B .{3,4,5}C .{3,4,6}D .{3,4,5,6}5.若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是( ) A .a >1B .0<a <1C .0<a ≤12D .0<a <36.已知集合A ={x |x 2-4x +3<0},集合B ={x |x 2-ax +a -1<0},命题p :x ∈A ,命题q :x ∈B ,若綈q 是綈p 的必要不充分条件,则实数a 的取值范围是( )A .0<a ≤2B .0<a ≤1C .2≤a ≤4D .2<a <4二、填空题7.函数y =a x (a >0且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若函数f (x )=a |x -b |+2在[0,+∞)上为增函数,则实数a ,b 的取值范围是________. 9.若数列{a n }满足a 1a 2a 3…a n =n 2+3n +2,则数列{a n }的通项公式为________. 10.非负整数a ,b ,满足|a -b |+ab =1,记集合M ={(a ,b )},则集合M 中元素的个数为________.三、解答题11.在等差数列{a n }中,a 1+a 3=-8,a 2+a 4=-14. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为c 的等比数列,求数列{b n }的前n 项和S n .12.已知函数f (x )和g (x )的图像关于原点对称,且f (x )=x 2+2x . (1)求函数g (x )的解析式; (2)解不等式g (x )≥f (x )-|x -1|;(3)若h (x )=g (x )-λf (x )+1在[-1,1]上是增函数,求实数λ的取值范围.13.已知焦点在y 轴上的椭圆C 1:y 2a 2+x 2b 2=1(a >b >0)经过点A (1,0),且离心率为32.(1)求椭圆C 1的方程;(2)过抛物线C 2:y =x 2+h (h ∈R )上P 点的切线与椭圆C 1交于不同的两点M ,N ,记线段MN 与P A 的中点分别为G ,H ,当直线GH 与y 轴平行时,求h 的最小值.答 案1.选C 由A ∩B =A ∪B 知A =B ,又根据集合元素的互异性,有⎩⎪⎨⎪⎧a =2a ,b =b 2,a ≠b ,或⎩⎪⎨⎪⎧a =b 2,b =2a ,a ≠b ,解得⎩⎪⎨⎪⎧a =0,b =1,或⎩⎨⎧a =14,b =12,故a =0或14.2.选C ∵f (1)=e 1-1=1,∴f (a )=1, 若a ∈(-1,0),则sin(πa 2)=1,∴a =-22. 若a∈[0,+∞),则e a -1=1,∴a =1. 因此a =1或a =-22. 3.选D 若直线l 的斜率不存在,则该直线的方程为x =-3,代入圆的方程解得y =±4,故直线l 被圆截得的弦长为8,满足条件;若直线l 的斜率存在,不妨设直线l 的方程为y +32=k (x +3),即kx -y +3k -32=0,因为直线l 被圆截得的弦长为8,故半弦长为4,又圆的半径为5,则圆心(0,0)到直线l 的距离为52-42=23321k k -+,解得k =-34,此时直线l 的方程为3x +4y +15=0.4.选D 如图所示,当直线l 在图(1)、(2)、(3)、(4)中所示的位置时,与l 异面的直线分别有3条、4条、5条、6条,故能构成异面直线的条数的集合是{3,4,5,6}.5.选A 设函数y =a x (a >0且a ≠1)和函数y =x +a ,则函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,就是函数y =a x (a >0且a ≠1)的图象与函数y =x +a 的图象有两个交点.由图象可知,当0<a <1时,两函数只有一个交点,不符合;当a >1时,因为函数y =a x (a >1)的图象过点(0,1),而直线y =x +a 的图象与y 轴的交点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是a >1.6.选C 由x 2-4x +3<0得,1<x <3,即A ={x |1<x <3},由x 2-ax +a -1<0得,[x -(a -1)](x -1)<0,由綈q 是綈p 的必要不充分条件可知p 是q 的必要不充分条件,即p 不能推出q ,但q 能推出p ,∴B A .若B =∅,则a =2,若B ≠∅,则1<a -1≤3,即2<a ≤4,综上可知,a 的取值范围是[2,4].7.解:当a >1时,y =a x 在[1,2]上递增,故a 2-a =a 2,得a =32;当0<a <1时,y =a x 在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或a =32.答案:12或328.解析:①当a >0时,需x -b 恒为非负数,即a >0,b ≤0. ②当a <0时,需x -b 恒为非正数.又∵x ∈[0,+∞), ∴不成立.综上所述,由①②得a >0且b ≤0. 答案:a >0且b ≤09.解析:∵a 1a 2a 3…a n =n 2+3n +2,①∴当n ≥2时,a 1a 2a 3…a n -1=(n -1)2+3(n -1)+2=n (n +1).② ①÷②得,a n =n 2+3n +2n (n +1)=n +2n =1+2n (n ≥2),又a 1=12+3×1+2=6,不满足a n =1+2n,∴数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧6, n =1,1+2n , n ≥2.答案:a n =⎩⎪⎨⎪⎧6 ,n =1,1+2n,n ≥210.解析:由非负整数a ,b 满足|a -b |+ab =1,得⎩⎪⎨⎪⎧ |a -b |=0,ab =1,或⎩⎪⎨⎪⎧|a -b |=1,ab =0,即⎩⎪⎨⎪⎧ a =1,b =1,⎩⎪⎨⎪⎧a =0,b =1,或⎩⎪⎨⎪⎧a =1,b =0,即M ={(1,1),(1,0),(0,1)},所以集合M 中元素的个数为3.答案:311.解:(1)设数列{a n }的公差为d ,∵a 1+a 3=-8,a 2+a 4=-14,∴⎩⎪⎨⎪⎧2a 1+2d =-8,2a 1+4d =-14,解得a 1=-1,d =-3. ∴数列{a n }的通项公式为a n =a 1+(n -1)d =-1-3(n -1)=-3n +2. (2)由数列{a n +b n }是首项为1,公比为c 的等比数列, 得a n +b n =c n -1,即-3n +2+b n =c n -1,∴b n =3n -2+c n -1, ∴S n =[1+4+7+…+(3n -2)]+(1+c +c 2+…+c n -1)=n (3n -1)2+(1+c +c 2+…+c n -1). ∴当c =1时,S n =n (3n -1)2+n =3n 2+n 2;当c ≠1时,S n =n (3n -1)2+1-c n 1-c =n (3n -1)2+c n -1c -1.综上,数列{b n}的前n 项和S n=⎩⎪⎨⎪⎧3n 2+n2, c =1,n (3n -1)2+c n-1c -1,c ≠1.12.解:(1)设函数y =f (x )的图象上任一点Q (x 0,y 0)关于原点的对称点为P (x ,y ), 则⎩⎪⎨⎪⎧x 0+x 2=0,y 0+y 2=0,即⎩⎪⎨⎪⎧x 0=-x ,y 0=-y .又∵点Q (x 0,y 0)在函数y =f (x )的图象上, ∴-y =x 2-2x ,∴y =-x 2+2x . 即g (x )=-x 2+2x .(2)由g (x )≥f (x )-|x -1|,可得 2x 2-|x -1|≤0.当x ≥1时,2x 2-x +1≤0,此时不等式无解; 当x <1时,2x 2+x -1≤0,∴-1≤x ≤12.因此,原不等式的解集为[-1,12].(3)h (x )=-(1+λ)x 2+2(1-λ)x +1.①当λ=-1时,h (x )=4x +1在[-1,1]上是增函数,故λ=-1适合题意. ②当λ≠-1时,对称轴的方程为x =1-λ1+λ.当λ<-1时,1-λ1+λ≤-1,解得λ<-1;当λ>-1时,1-λ1+λ≥1,解得-1<λ≤0.综上所述,λ≤0.故实数λ的取值范围为(-∞,0].13.解:(1)由题意知⎩⎪⎨⎪⎧1b 2=1,c a =32,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =1,c =3,所以椭圆C 1的方程为y 24+x 2=1.(2)设P (t ,t 2+h ),由y ′=2x ,得抛物线C 2在点P 处的切线的斜率为k =y ′|x =t =2t , 所以直线MN 的方程为y =2tx -t 2+h , 代入椭圆方程得4x 2+(2tx -t 2+h )2-4=0, 化简得4(1+t 2)x 2-4t (t 2-h )x +(t 2-h )2-4=0,又直线MN 与椭圆C 1有两个不同的交点,故 Δ=16[-t 4+2(h +2)t 2-h 2+4]>0, ①设M (x 1,y 1),N (x 2,y 2),线段MN 中点的横坐标为x 0,则x 0=x 1+x 22=t (t 2-h )2(1+t 2),设线段P A 中点的横坐标为x 3,则x 3=1+t2,由已知得x0=x3,即t(t2-h)2(1+t2)=1+t2,显然t≠0,h=-(t+1t+1),当t>0时,t+1t≥2,当且仅当t=1时取得等号,此时h≤-3,不符合①式,故舍去;当t<0时,(-t)+(-1t)≥2,当且仅当t=-1时取得等号,此时h≥1,满足①式.综上,h的最小值为1.。
分类讨论数学思想
(3)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()
A.1或3B.1或4C.2或3D.2或4
解析设6位同学分别用a,b,c,d,e,f表示.
(6)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________.(用数字作答)
解析分三类:①选1名骨科医生,则有C (C C +C C +C C )=360(种).
②选2名骨科医生,则有C (C C +C C )=210(种);
当a≤-1时,f(x)在(0,+∞)上单调递减;
当-1<a<0时,f(x)在 上单调递增,
解∵A={0,-4},B⊆A,于是可分为以下几种情况.
(1)当A=B时,B={0,-4},
∴由根与系数的关系,得 解得a=1.
(2)当B A时,又可分为两种情况.
①当B≠∅时,即B={0}或B={-4},
当x=0时,有a=±1;
当x=-4时,有a=7或a=1.
又由Δ=4(a+1)2-4(a2-1)=0,
(8)排列、组合、概率中的分类计数问题.
(9)去绝对值时的讨论及分段函数的讨论等.
分类讨论的原则
(1)不重不漏.(2)标准要统一,层次要分明.
(3)能不分类的要尽量避免或尽量推迟,决不无原则地讨论.
热点一 由数学概念、性质、运算引起的分类讨论
例1 (1)(2014·浙江)设函数f(x)= 若f(f(a))≤2,则实数a的取值范围是________.
数学总复习之数学思想第2讲《分类讨论》
数学总复习之数学思想第2讲《分类讨论》题型一 根据数学概念分类讨论【例题1】在△ABC 中,已知sin B =154,a =6,b =8,求边c 的长..题型二 根据公式、定理、性质的条件分类讨论【例题2】数列{}n a 的前n 项和为221n S n n =+-,则其通项n a = .题型三 根据变量或参数的取值情况分类讨论【例题3】解关于x 的不等式01)1(2<++-x a ax .题型四 根据图形位置或形状变化分类讨论【例题4】在△ABC 中,AB =(2,3),AC =(1,k ),若△ABC 是Rt △,求k 的值.1. 等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值是( ) A .1 B .-12 C .1或-12 D .-1或122.设集合A ={x |x 2+x -12=0},集合B ={x |kx +1=0},如果A ∪B =A ,则由实数k 组成的集合中所有元素的和与积分别为 ( )A .-112,0 B.112,-112 C.112,0 D.14,-1123.一条直线过点(5,2),且在x 轴,y 轴上截距相等,则这直线方程为( )A. x y +-=70B. 250x y -=C. x y x y +-=-=70250或D. x y y x ++=-=70250或4.不等式2(2)2(2)40a x a x -+--<对一切x ∈R 恒成立,则a 的取值范围是 ( )A .(-∞,2]B .[-2,2]C .(-2,2]D .(-∞,-2) 5.若圆柱的侧面展开图是边长为4和2的矩形,则圆柱的体积是 .6.函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是 .7.已知a ∈R ,若关于x 的方程2104x x a a ++-+=有实根,求a 的取值范围.8. 已知等差数列{a n }的前3项和为6,前8项和为-4.(1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1 (q ≠0,n ∈N *),求数列{b n }的前n 项和S n .。
高考数学文(二轮复习)课件《分类讨论思想》
由图形或图象引发的分类讨论
[试题调研] x+y-2≥0, (2014· 北京高考)若x,y满足kx-y+2≥0, y≥0, )
[例2]
且z=y-x的最小值为-4,则k的值为( A.2 B.-2 1 C.2
1 D.-2
[思路方法]
线性约束条件中含有参数,k的取值会对可行
域产生影响,因此解题时要注意对k的分类讨论.可将k分为 k>0,k<-1,k=-1与-1<k<0等情况讨论求解.
或0<x≤4,即不等式f(x)≥-2的解集为
1 -∞,- ∪(0,4],故选率、指数 函数、对数函数等.与这样的数学概念有关的问题往往需要根 据数学概念进行分类,从而全面完整地解决问题. (1)分段函数在自变量不同取值范围内,对应关系不同,必 须进行讨论.由数学定义引发的分类讨论一般由概念内涵所决 定,解决这类问题要求熟练掌握并理解概念的内涵与外延.
[回访名题] (1)(2013· 辽宁高考)已知点O(0,0),A(0,b),B(a,a3).若△ OAB为直角三角形,则必有( A.b=a3 1 B.b=a +a
两式相减,得 (q-1)Sn=nqn-1-q1-q2-„-qn-1
n n+1 n q - 1 nq - n + 1 q +1 n =nq - = . q-1 q-1
nqn+1-n+1qn+1 于是,Sn= . q-12 nn+1 若q=1,则Sn=1+2+3+„+n= 2 . nn+1 q=1, 2 所以Sn= n+1 n nq -n+1q +1 q≠1. 2 q - 1
(3)由性质、定理、公式的限制而引起的分类讨论:如函数 的单调性、基本不等式等. (4)由图形的不确定性而引起的分类讨论:如二次函数图 象、指数函数图象、对数函数图象等. (5)由参数的变化而引起的分类讨论:如某些含有参数的问 题,由于参数的取值不同会导致所得的结果不同,或者由于对 不同的参数值要运用不同的求解或证明方法等.
高中数学内容复习14—分类讨论思想 必修1 试题
卜人入州八九几市潮王学校高中数学必修内容复习(14)—分类讨论思想一、选择题〔此题每一小题5分,一共60分〕1.用0,1,2,3四个数字组成没有重复数字的自然数,把这些自然数从小到大排成一数列,那么1230是这个数列的 〔〕 A .第30项B .第32项C .第33项D .第34项2.函数f (x )=3-2|x |,g (x )=x 2-2x ,构造函数F (x ),定义如下:当f (x )≥g (x )时,F (x )=g (x );当f (x )<g (x )时,F (x )=f (x ),那么F (x )〔〕A .有最大值3,最小值-1B .有最大值3,无最小值C .有最大值7-2,无最小值D .无最大值,也无最小值3.从长度分别为1,2,3,4的四条线段中,任取三条的不同取法一共有n 种,在这些取法中,以取出的三条线段为边可组成的三角形的个数为m ,那么mn等于〔〕A .0B .C .D .164.记二项式〔1+2x 〕n展开式的各项系数和为a n ,其二项式系数和为b n ,那么lim n nn n nb a b a →∞-+等于 〔〕A .1B .-1C .0D .不存在5.过点)2,1(C作直线,使其在坐标轴上的截距相等,那么满足条件的直线的斜率为〔〕A .1-B .1±C .21或-D .21或±6.设函数,那么的值是〔〕A .aB .bC .a 、b 中较小的数D .a 、b 中较大的数7.点P 在定圆O 的圆内或者圆周上,圆C 经过点P 且与定圆O 相切,那么动圆C 的圆心轨迹是 〔〕A .圆或者椭圆或者双曲线B .两条射线或者圆或者抛物线C .两条射线或者圆或者椭圆D .椭圆或者双曲线和抛物线8.假设集合A 1、A 2满足A 1∪A 2=A ,那么称〔A 1,A 2〕为集合A 的一个分拆,并规定:当且仅当A 1=A 2时,〔A 1,A 2〕与〔A 2,A 1〕为集合A 的同一种分拆,那么集合A ={a 1,a 2,a 3}的不同分拆种数是〔〕A.27B.26C.9D.89.函数⎪⎩⎪⎨⎧-=)()()(22为偶数时当为奇数时当,,n n n n n f 且)1()(++=n f n f a n ,那么+++321a a a 100a + 等于 〔〕A .0B .100C .-100D .1020010.四面体的顶点和各棱的中点一共10个点,在其中取4个点,那么这四个点不一共面的概率为〔〕A .75 B .107 C .3524 D .7047 11.设双曲线的左、右焦点为1F 、2F ,左、右顶点为M 、N ,假设12PF F 的一个顶点P 在双曲线上,那么12PF F 的内切圆与边1F 2F 的切点的位置是〔〕A .在线段MN 的内部B .在线段1F M 的内部或者N 2F 内部C .点N 或者点MD .以上三种情况都有可能12.从5位男老师和4位女老师中选出3位老师,派到3个班担任班主任〔每班1位班主任〕,要求这3位班主任中男、女老师都要有,那么不同的选派方案一共有 〔〕A .210种B .420种C .630种D .840种二、填空题〔此题每一小题4分,一共16分〕13.定义符号函数=x sgn 101⎧⎪⎨⎪-⎩000<=>x x x ,那么不等式:xx x sgn )12(2->+的解集是.14.正ABC ∆的边长为32,那么到三个顶点的间隔都为1的平面有_________个.15.从装有1+n 个球〔其中n 个白球,1个黑球〕的口袋中取出m 个球()N n m n m ∈≤<,,0,一共有mn C 1+种取法。
中考数学专题复习一分类讨论思想PPT课件
AC
∴AD=AC×sin 45°, 在Rt△ABD中,∠B=30°,
∴AB=2AD=2AC×sin 45°=750 2 m.
答案:750 2 m
【知识归纳】解直角三角形实际应用的两点技能 1.转化:利用直角三角形或构造直角三角形解决实际问题,一 般先把实际问题转化为数学问题,若题目中无直角三角形,需 要添加辅助线(如作三角形的高等)构造直角三角形,再利用解 直角三角形的知识求解. 2.前提:解直角三角形时结合图形分清图形中哪个三角形是直 角三角形,哪条边是角的对边、斜边、邻边,此外正确理解俯 角、仰角、坡度、坡角等名词术语是解答此类题目的前提条件.
5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函 数与一次函数交点个数,常分一、三象限或二、四象限两种情 况讨论. 6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情 况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两 旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种 情况讨论.
4.在几何中的应用:对于几何问题,我们常通过图形,找出边、 角的数量关系,通过边、角的数量关系,得出图形的性质等.
【例2】(2013·兰州中考)已知反比例函数y1= k 的图象与
x
一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2). (1)求这两个函数的解析式. (2)视察图象,当x>0时,直接 写出y1>y2时自变量x的取值范围. (3)如果点C与点A关于x轴对称, 求△ABC的面积.
5.(2013·十堰中考)如图,在小山的东侧A点有一个热气球,由
高三数学复习学案:第3讲 分类讨论思想
1.分类讨论的思想是一种重要的数学思想方法.其基本思路是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思路,降低问题难度.2.分类讨论的常见类型(1)由数学概念引起的分类讨论:有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等.(2)由性质、定理、公式的限制引起的分类讨论:有的数学定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n 项和公式、函数的单调性等.(3)由数学运算要求引起的分类讨论:如除法运算中除数不为零,偶次方根为非负,对数真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.(4)由图形的不确定性引起的分类讨论:有的图形类型、位置需要分类:如角的终边所在的象限;点、线、面的位置关系等.(5)由参数的变化引起的分类讨论:某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法.(6)由实际意义引起的讨论:此类问题在应用题中,特别是在解决排列、组合中的计数问题时常用.3.分类讨论的原则(1)不重不漏.(2)标准要统一,层次要分明.(3)能不分类的要尽量避免或尽量推迟,决不无原则地讨论.变式训练1 设0<x <1,a >0且a ≠1,比较|log a (1-x )|与|log a (1+x )|的大小.题型二 根据公式、定理、性质的条件分类讨论例2 设等比数列{a n }的公比为q ,前n 项和S n >0 (n =1,2,3,…).(1)求q 的取值范围;(2)设b n =a n +2-32a n +1,记{b n }的前n 项和为T n ,试比较S n 与T n 的大小.变式训练2 在等比数列{a n }中,设前n 项和为S n ,x =S 2n +S 22n ,y =S n (S 2n +S 3n ),求证:x =y .题型三 根据变量式参数的取值情况分类讨论例3 已知m ∈R ,求函数f (x )=(4-3m )x 2-2x +m 在区间[0,1]上的最大值.变式训练3已知函数f (x )=ax 3-32x 2+1(x ∈R),其中a >0. (1)若a =1,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)若在区间[-12,12]上,f (x )>0恒成立,求a 的取值范围.第3讲 分类讨论思想(推荐时间:60分钟)一、填空题1.不等式(a -2)x 2+2(a -2)x -4<0对于x ∈R 恒成立,那么a 的取值范围是____________.2.过双曲线2x 2-y 2=2的右焦点作直线l 交双曲线于A 、B 两点,若AB =4,则这样的直线有________条.3.设集合A ={x |x 2+x -12=0},集合B ={x |kx +1=0},如果A ∪B =A ,则由实数k 组成的集合中所有元素的和与积分别为____________.4.在△ABC 中,已知A =30°,a =8,b =83,则S △ABC =__________.5.设一双曲线的两条渐近线方程为2x -y =0,2x +y =0,则双曲线的离心率是________.6.正三棱柱的侧面展开图是边长分别为6和4的矩形,则它的体积为____________.7.设常数a >0,椭圆x 2-a 2+a 2y 2=0的长轴长是短轴长的2倍,则a =________.8.已知等比数列{a n }的前n 项和为S n ,若a 3=32,S 3=92,则a 1的值为__________.14.已知函数f (x )=2a sin 2x -2 3a sin x cos x +a +b (a ≠0)的定义域是⎣⎡⎦⎤0,π2,值域是[-5,1],求常数a ,b 的值.15.已知函数f (x )=-2x 2-x ,求m 、n 的值,使f (x )在区间[m ,n ]上值域为[2m,2n ] (m <n ).。
2020年九年级数学中考复习——常用数学思想方法之【分类讨论思想】
2.几何类:几何有各种图形的位置关系,未明确对应关系的全等或相似的可能对应情 况等.
3.综合类:代数与几何类分类情况的综合运用.
在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这 种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.
分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想 方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决 问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.
e
故答案为:5;
m
1 2
m s;
11. 24或 6 或 8
解:已知三角形的周长为 3 e 4 e m 12, 设另一个与它相似的三角形的周长为 x,
2 与 3 是对应边时, 两三角形相似,
m 2,
12 3
解得 m h; 与 4 是对应边时,
两三角形相似,
12
m
2,
4
解得 m ;
2 与 5 是对应边时,
A. 34
B. 30
C. 30 或 34
D. 30 或 36
【解】: 当 m 4 时, t h, 、b 是关于 x 的一元二次方程 2
4 e m 12, m h 不符合;
同理, m 4 时,不符合题意; 当 m 时, 、b 是关于 x 的一元二次方程 2
12 e s e 2 m 0 的两根, 12 e s e 2 m 0 的两根,
m
1 2
e 3 与坐标轴分别交于点 A、B,与直线
m
交于点 C,
线段 OA 上的点 Q 以每秒 1 个长度单位的速度从点 O 出发向点 A 作匀速运动,运动时
数学分类讨论思想
在有关动点的几何问题中,由于图形的不确定性,我们常常需要针对各种可能出现的图形对每一种可能的情形都分别进行研究和求解.换句话说,分类思想在动态问题中运用最为广泛.
C
A
D
B
例12、如图,在矩形ABCD中,AB=20厘米,BC=4厘米,点P从点A开始沿折线A—B—C—D以4厘米/秒的速度移动,点Q从点C开始沿CD以1厘米/秒的速度移动,如果点P和Q分别从点A、C同时出发,当其中一个点到达D点时,另一点也随之停止运动.设运动时间为t(秒).
C
B
D
A
E
F
如图,当EA=EF=10时,DE=7, DF= = , S△AEF= ×10× = 5 (cm2)
1
2
C
B
D
A
17
16
E
F
C
B
D
A
E
F
C
B
D
A
E
F
∴三角形面积是50cm2 、 40 cm2 、 cm2
【简解】本题分方程是一元二次方程和一元 一次方程两种情况讨论,答案:k>-1;
3)在同一坐标系中,正比例函数y=-3x与反比例 函数 的图象的交点的个数是( )
A.0个或2个 B.l个 C.2个 D.3个
A
4)、若直线 y=-x+b 与两坐标轴围成的三角形的面积是2,则b的值为 ;
A
C
B
B
A
C
C
B
A
分析(1)圆C与斜边AB相切时, R=2.4 (2)圆C与斜边AB相交时,一个交点在线段AB上,另一个交点在延长线上。 3﹤R≦4
例9、半径为R的两个等圆外切,则半径为2R且和这两个圆都相切的圆有几个?
初三数学专题复习五 分类讨论思想
专题复习四:分类讨论思想一。
基本分类方法:1.由点的不确定性引起的分类讨论。
2.由图形的对应关系的不确定性引起的分类讨论。
3.由图形的不确定性引起的分类讨论。
4.由图形位置的不确定性引起的分类讨论。
5.对求解过程不便统一表述的问题进行分类讨论。
6.分类讨论思想在方程、不等式中的应用。
二.典型例题:【例题1】1.若点P(x,y)到x轴的距离是3,到y轴距离是2,则P点坐标是___________;2.直角三角形的两边长分别是6和8,那么这个三角形的外接圆半径等于_________;3.已知⊙O的半径为1,AB=1,AC=2,则∠CAB的大小为_________;4.相交两圆的公共弦长为16cm,若两圆的半径长分别为10cm和17cm,则这两圆的圆心距为.5.若关于x的方程mx22m-4-2x2+2x-1=0是一元二次方程,则m=___________; 6.若a-a-1=0,b-b-1=0,则【例题2】已知反比例函数y=kx2ba+ab=____________; 和一次函数y=mx+n的图像有一个交点是A(-3,4),且一次函数的图像与x轴的交点到原点的距离是5,分别确定反比例函数和一次函数的解析式;【例题3】在平面直角坐标系内有一点P,且点P在直线y = -2x+3上;(1)若点P在第一象限,且到两坐标轴的距离相等,求点P的坐标;(2)若点P在第三象限,是否存在它到两坐标轴的距离相等?若存在,请求出点P坐标;(3)点P到两坐标轴的距离相等,求点P的坐标;0【例题4】在Rt△ABC中,∠ACB=90,AB=5,AC=3,D是AB上的一点,AE⊥CD,垂足为E,AE交直线BC于点F.求:(1)当tan∠BCD=12时,则BF的值.(2)点F在BC边上时,AD=x,BF=y,求y与x的函数解析式及定义域.(3)当BF=54ADB时,则AD的值.【例题5】如图:已知直线L1的解析式是y=3x+6,直线L1与x轴、y轴分别相交于点A、B,直线L2经过BC两点,点C的坐标为(8,0),又知点P在x轴上从点A向点C 移动,点Q在直线L2上从点C向点B移动.点P、Q同时出发,且移动的速度都是每秒1个单位长度,设移动时间为t秒(0<t<10). (1)求直线L2的解析式. (2)设△PCQ的面积为S,求出S与t的函数关系式.(3)当t为何值时,△PCQ是等腰三角形?答案: (1)y=-34x+6 (2)S=-310t2+3t (3) t=5或5013或8013秒.三.强化训练:1.已知抛物线y=x-(a+2)x+9的顶点在坐标轴上,则a的值为 _______________;2.一次函数y=kx+b的x的取值范围是 -3≤x≤6,相应的函数值的取值范围是 -5≤y≤-2,则这个函数的解析式是__________________________;3.已知圆O1与圆O2相切,圆O1的半径长为3cm,O1O2=7cm,那么圆O2的半径长是cm.4.已知正方形ABCD的边长是6,点E在直线AD上,DE=2,联结BE与对角线AC 相交于点F,则CF:FA的值是________________.5.如果直角梯形的一条底边长为7厘米,两腰长分别为8厘米和10厘米,那么这个梯形的面积是平方厘米.6.已知A、B两点二次函数y=ax的图像上,这两点的横坐标分别是-2和1,△AOB 是直角三角形(点O是坐标原点),求a的值;7.在△ABC中,AB=23,AC=2,BC边上的高为AD=3,求BC的长和∠B的度数;8.如图:在△ABC中,∠C=90,BC=6,AC=8,点M、N在△ABC并上,将△ABC沿直线MN对折后,它的一个顶点正好落在对边上,且折痕MN截△ABC 所成的小三角形(即对折后的重叠部分)与△ABC相似,请分别画出折痕MN各种可能的位置,并分别说明画法及求出折痕的长;022AB9.在平面直角坐标系xOy中,将抛物线y=2x沿y轴向上平移1个单位,再沿x轴向右平移两个单位,平移后抛物线的顶点坐标记作A,直线x=3与平移后的抛物线相交于B,与直线OA相交于C.(1)求△ABC面积;(2)点P在平移后抛物线的对称轴上,如果△ABP△ABC相似,求所有满足条件的P点坐标.10.如图8,在∆ABC中,∠C=90︒,AC=6,tanB=342,D是BC边的中点,E为AB边上的一个动点,作∠DEF=90︒,EF交射线BC于点F.设BE=x,∆BED的面积为y.(1)求y关于x的函数关系式,并写出自变量x的取值范围;(2)如果以B、E、F为顶点的三角形与∆BED相似,求∆BED的面积.CD 图8 B C D 备用图 B11.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=∠B=45︒.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C 点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t 秒.试探究:t为何值时,△MNC为等腰三角形.C12.如图,AB⊥BD,CD⊥BD,B、D分别为垂足。
数学分类讨论思想总结范文
数学分类讨论思想总结范文数学分类讨论思想是指将数学问题的解决方法分为不同的类别,并对每个类别进行详细的讨论和分析。
这种思想可以帮助我们更好地理解和解决数学问题,在数学研究和应用中发挥着重要的作用。
数学分类讨论思想的核心是将问题分解,将复杂的问题拆解为简单的子问题,并对每个子问题进行独立的分析。
通过将问题分解为不同的类别,我们可以更好地理解问题的本质以及不同类别之间的联系和差异。
这种思想不仅适用于解决具体的数学问题,也适用于数学理论的研究和应用。
在实际应用中,数学分类讨论思想可以帮助我们选择合适的方法和工具来解决问题。
通过对问题进行分类,我们可以更清晰地认识到问题所属的领域和类型,从而选择合适的数学理论、模型、算法等来解决问题。
这有助于提高问题的解决效率和准确度。
另外,数学分类讨论思想还可以帮助我们发现问题之间的联系和规律。
通过对问题进行分类分析,我们可以找到不同类别之间的共同特征和相互关系。
这有助于我们发现问题的本质规律和更深层次的数学问题。
例如,在代数学中,通过对方程的分类讨论,我们可以发现方程的根与系数之间的关系。
在数学研究中,数学分类讨论思想也发挥着重要的作用。
通过对问题进行分类和分析,我们可以更好地理解和把握各个数学领域的基本概念、定理和方法。
这有助于加深对数学理论的理解,发展新的数学概念和方法,并推动数学的发展和应用。
总的来说,数学分类讨论思想是一种重要的数学思想,它可以帮助我们更好地理解和解决数学问题,选择合适的方法和工具,发现问题之间的联系和规律,推动数学的研究和应用。
在数学学习中,我们应该注重培养和运用这种思想,提高数学解决问题的能力和水平。
数学思想之分类讨论
数学思想之分类讨论分类讨论是在题目部分条件缺失或不明确的情况下,按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法.掌握分类的方法,领会其实质,对于加深基础知识的理解,提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.一、代数 (一)数、式1、若x 的相反数为3,y =5,则x +y 的值为( ).(D ) (A )-8 (B )2 (C )8或-2 (D )-8或22、若||3,||2,,( )a b a b a b ==>+=且则(C )A .5或-1B .-5或1;C .5或1D .-5或-1 3、已知│x│=4,│y│=12,且xy<0,则xy=_______.(-8) 4、已知||3,||2,0,x y xy x y ==<+=且则_______.(±1)5、若a 、b 在互为倒数,b 、c 互为相反数,m 的绝对值为 1,则2()abb c m m m++-的值是______.(0或-2)6、已知11||1,||a a a a-=+则的值为( )(B ). .5 3 .51A C ±7、化简|1|x -(10-2x 或8或2x -10)8、已知:数3、6、x ,三个数中的一个数是另两个数的比例中项,求x .(23,12,±23)(二)函数、方程1、在同一坐标系中,正比例函数-3y x =与反比例函数ky x=的图象的交点的个数是( )(A ) A .0个或2个 B .l 个 C .2个 D .3个2、一次函数y=kx+b ,当-3≤x ≤l 时,对应的y 值为l ≤y ≤9, 则kb 值为( )(D ) A .14 B .-6 C .-4或21 D .-6或143、已知关于x 的方程m 2x 2+(2m +1)x +1=0有实数根,求m 的取值范围.(m≥-41)二、几何(一)锐角与钝角1、已知:△ABC 中,∠A=40°,AB 、AC 边上的高所在直线相交于H ,求∠BHC .(140°或40°)2、等腰三角形面积是2,腰长是5,求底角的正切值.(2或21) 3、在△ABC 中,AB=AC ,AB 的中垂线与直线AC 相交所得的锐角为50°,•则底角∠B 的大小为__________.(20°或70°)4、△ABC 中,AB =AC =2,BD 为AC 边上的高,BD =3,∠ACB 的度数是__ _____.(300或600)5、△ABC 中,AB=AC ,CH 是AB 上高,CH=53AB ,BC=10,求(1)tgB ;(2)若正方形DEFG 内接于△ABC ,使D 在AB 上,G 在AC 上,E 、F 在BC 上,求正方形边长.(tgB=3或tgB=31;1053或710) 6、在梯形ABCD 中,AD ∥BC ,AB=15,AD=8,CD=13,sinB=54,求BC .(22或12)(二)等腰三角形1、等腰三角形的两条边分别为5cm ,6cm ,则周长为 cm .(16或17)2、等腰三角形的一边长为3cm ,周长是13cm ,那么这个等腰三角形的腰长是( )(A ) A .5cm B .3cm C .5cm 或3cm D .不确定3、若等腰三角形的一个内角为50°,则其他两个内角为( ) (D ) A .50°,80° B .65°, 65°C .50°,65°D .50°,80°或 65°,65° 4、等腰三角形的一个内角为70°,则其顶角为______.(70°或40°) 5、已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为_______.(6,8或9,5)6、已知:在平面直角坐标系中有两点A (-1,1),B (3,2),在x 轴上找出点C ,使△ABC 为等腰三角形.((3,0)(-5,0)(±13+3,0)(811,0)) 7、直线y=33x+1与x 轴交于点A ,与y 轴交于B ,求(1)∠BAO 的余弦值;(2)是否存在点C ,使△ABC 是底角为30°的等腰三角形,若存在,求出所有符合条件的点C 坐标;若不存在,请说明理由.((1)cos ∠BAO=23;(2)(-33,0)或(0,3)) 8、在等腰三角形中,如果有两条中线的长分别为3厘米和32厘米,那么这个等腰三角形的周长为 厘米.(8+27或22+45)9、为了美化环境,计划在某小区内用30m 2•的草皮铺设一块边长为10m 的等腰三角形绿地,请你求出等腰三角形绿地的另两边.(①当10;②当10为腰且三角形为锐角三角形时,另两边为10,当10为腰且三角形为钝角三角形时,另两边为10,10、在△ABC 中,正方形DEFG 的顶点D 、E 在BC 边上,顶点F 、G 分别在AC 、AB 边上,如果△ABC 是等腰三角形,且腰长为10cm ,底边长为12cm ,求正方形DEFG 的边长.(524或49240)(三)直角三角形1、已知Rt △ABC 中,a=3,b=4,求c .(5或7)2________.(23、Rt △ABC 中,sinA=54,c=10,求b .(6或350)(四)相似1、要做甲、乙两个形状相同(相似)的三角形框架,•已有三角形框架甲,它的三边长分别为50cm ,60cm ,80cm ,三角形框架乙的一边长为20cm ,•那么符合条件的三角形框架乙共有( )(C )A .1种B .2种C .3种D .4种 2、两个相似三角形的对应中线的比为2∶3,其中一个三角形的周长是20cm ,则另一个三角形的周长为 cm .(30或340) 3、在△ABC 中,AB =8厘米,AC =6厘米,点D 、E 分别在边AB 、AC 边上,且以点A 、D 、E 为顶点的三角形和以点A 、B 、C 为顶点的三角形相似.如果AD =2厘米,那么AE = 厘米.(23或38) 4、RtΔABC 中,∠C=90º ,BC=8,AC=6,则其内接正方形的边长为 .(340或37120) 5、已知等腰梯形ABCD ,AB ∥CD ,AD=BC=10,DC=13,tgA=0.75,E 是AB 上一点,如果△AED 相似△BCE ,求BE 的长.(229,25或4) 6、Rt △ABC 中,∠ACB=90°,AC=4,BC=2,以C 为圆心,BC 为半径作圆交AB 于D ,如果点E 在CB 的延长线上,且△ABE 与△ACD 相似,求BE .(310或6) 7、已知二次函数y=92x 2+322x+2的图像与x 轴、y 轴交于点A 、B ,一次函数y=-2x+b 图像经过B 点,并与x 轴交于点C ,若D 在x 轴上,且∠BCD=∠ABD ,求图像经过B 、D 两点的一次函数解析式.(y=-522x+2或y=42x+2)(五)圆1、已知⊙O的半径为5cm,AB、CD是⊙O的弦,且AB=8cm,CD=6cm,AB∥CD,则AB与CD 之间的距离为__________.(1cm或7cm)2、已知⊙O1和⊙O2相切于点P,半径分别为1cm和3cm.则⊙O1和⊙O2的圆心距为________.(2cm 或4cm)3、若半径为3,5的两个圆相切,则它们的圆心距为()(C)A.2 B.8 C.2或8 D.1或44、已知两圆内切,一个圆的半径是3,圆心距是2,那么另一个圆的半径是________.(1或5)5、若半径为1cm和2cm的两圆相外切,•那么与这两个圆相切、且半径为3cm的圆的个数为()A.5个B.4个C.3个D.2个(A)6、⊙O1与⊙O2相交于AB,且AB=24,两圆的半径分别为r1=15,r2=13,求两圆的圆心距.(14或4)7、已知AB是⊙O的直径,AC、AD是弦,AB=2,AC=2,AD=1,求∠CAD的度数.(105°或15°)8、已知O是△ABC的外心,∠A为最大角,∠BOC的度数为y°,∠BAC的度数为x°,求y与x的函数关系式.(y=2x(0<x<90)或y=360°-2x(90<x<180))9、已知半径为3,5的两圆的两条公切线相互垂直,求圆心距.(82或22)10、已知半径为2和3的两圆相交于点A、B,且AB=22,求A、B与两圆心组成的四边形面积.(2±2)11、已知⊙O的直径AB=6cm,P为⊙O外一点,PA、PC切⊙O于A、C,C为弧AB的三等分点,求PC.(3或33)(六)位置1、点A在x轴上,且点A到原点的距离为4,则点A的坐标为.((4,0)或(-4,0))2、线段AB=7cm,在直线AB上画线段BC=3cm,则线段AC= .(10cm或4cm)3、已知点C是线段AB的黄金分割点,且AC= 15 ,则AB的长为.(3+5或4+25)4、平面上A、B两点到直线k距离分别是2-3与2+3,则线段中点C到直线k的距离是.(2或3)5、已知点O在直线AB上,且线段OA的长度为4cm,线段OB的长度为6cm,E、F分别为线段OA、OB的中点,则线段EF的长度为cm.(1cm或5cm)6、已知 y=kx +3与两坐标轴围成的三角形的面积为 24,求其函数解析式.(3163+=x y 或3163+-=x y ) 7、抛物线y =ax 2+c 与y 轴交点到原点的距离为3,且过点(1,5),求这个函数的解析式.(y =2x 2+3或y =8x 2-3)8、已知矩形的长大于宽的2倍,周长为12,从它的一个顶点作一条射线将矩形分成一个三角形和一个梯形,且这条射线与矩形的一边所成的角的正弦值是21,设梯形面积为y ,梯形中较短的底边长为x ,求y 与x 的函数关系.(y=-95x 2+38x+4(0<x<6)或y=-92x 2+32x+4(0<x<6))9、已知,等腰梯形ABCD 中,AB ∥CD ,AD=BC ,AB ∶CD=6∶5,∠C 、∠D 的平分线都与AB 交于N ,M 两点,且N ,M 把AB 三等分,若梯形周长为76,求梯形中位线的长.(22或15418)10、如图,路灯A 的高度为7米,在距离 路灯正下方B 点20米处有一墙壁CD ,CD ⊥BD , 如果身高为1.6米的学生EF 站立在线段BD 上 (EF ⊥BD ,垂足为F ,EF <CD ),他的影子的 总长度为3米, 求该学生到路灯正下方B 点的 距离BF 的长.(10.125米或18米)11、设方程023=--xx 的两根为x 1、x 2,且x 1<x 2,(1)求出x 1、x 2的值;(2)若A (x 1,0),B(x 2,0),C (0,x 2),D (-x 1,x 2+1),点O 为坐标原点,在△AOC 、△BOC 、△CDB 、△ACB 中是否有相似三角形.如果有,指出哪几对并证明;(3)若E 是y 轴上点,且满足它与A 、B 、C 三点组成的四边形面积,恰好等于四边形ABDC 的面积,求点E 的坐标.((1)x 1=-1,x 2=3;(2)△AOC ∽△DCB ;(3)(0,23-)或(0,215))12、已知直线y=-33x+334,与x 轴相交于点A ,并经过B 点,已知OB=2,(1)求A 、B 的坐标;(2)若点E 在线段OA 上,点F 在线段EA 上,EF=2,分别过E 、F 作OA 垂线EM 、FN ,点M 、N 在△OAB 的边上,设OE=x ,那么x 为何值时,在△OAB 内且夹在直线EM 与FN 之间的面积为△OAB 面积的一半.((1)A (4,0),B (1,3);(2)23(舍231±))(第24题图)三、综合题(说明:分类讨论思想是综合题中常见的数学思想,运用分类讨论思想的综合题比比皆是,因此在这里我们仅选取了部分常见的体现不同解题思路的综合题供老师们参考)(一)等腰三角形1、如图,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个 动点P ,PH ⊥OA ,垂足为H ,△OPH 的重心为G .(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持 不变的线段?如果有,请指出这样的线段,并求出相应的长度;(2)设PH=x, GP=y 求y 关于x 的函数解析式,并写出函数定义城; (3)如果△PGH 是等腰三角形,试求出线段PH 长.(答案:(1)GH=2;(2)y=233631x +(0<x<6);(3)6或2)2、已知,在ABC ∆中()A B ∠<∠,8,AB AC ==7cos 8A =. (1)求BC 的长(如图a );(2)P 、Q 分别是AB 、BC 上的点,且:2:1BP CQ =,连结PQ 并延长,交AC 的延长线于点E ,设,CQ x CE y ==(如图b ).①求y 关于x 的函数解析式,并写出x 的定义域;②当x 为何值时,PEA ∆是等腰三角形?27.(1)BC=4(2)①()2022x y x x∴=<<-②若AP AE =,8AP <,8AE >,矛盾∴AP AE =不存在. …1分 若AE PE =,则A APE ∠=∠,,APE B A B ∠>∠∠<∠ ,矛盾∴AE PE =不存在.………………………………………………… 1分 若AP EP =,过点P 作PM AE ⊥,垂足为点M .822AE yAM +∴==………………………………………………………1分 872cos 828y AM A AP x +∴===-………………………………………………1分整理得7212x y +=,又22x y x ∴=-,解得126,45x x ==(舍)……1分AB CQPABC 图a图b∴当65x =时,PEF ∆是等腰三角形. …………………………………1分3、如图5,在以O 为圆心的两个同心圆中,小圆的半径为1,AB 与小圆相切于点A ,与大圆相交于B ,大圆的弦BC ⊥AB ,过点C 作大圆的切线交AB 的延长线于D ,OC 交小圆于E .(1) 求证:△AOB ∽△BDC ;(2) 设大圆的半径为x ,CD 的长为y ,求y 与x 之间的函数解析式,并写出定义域.(3) △BCE 能否成为等腰三角形?如果可能,求出大圆半径;如果不可能,请说明理由.25.解:(1)略;(2)函数解析式为122-=x x y ,定义域为1>x .(3)当EB =EC 时,∠ECB =∠EBC ,而∠ECB =∠OBC ,∴EB ≠EC .当CE =CB 时,OC =CE +OE =CB+OE=2+1=3.………………………………(1分) 当BC =BE 时,∠BEC =∠ECB =∠OBC ,则△BCE ∽△OCB .………………(1分)则,OCBCBC CE =设OC = x ,则CE =1-x ,x x 221=-,2171±=x (负值舍去). ∴OC =2171+.…………………………………………………………………(1分)综上所述,△BCE 能成为等腰三角形,这时大圆半径为3或2171+.(二)直角三角形1、如图,在△ABC 中,AB=AC=5cm ,cosB=54,点P 为BC 边上一动点(不与点B 、C 重合),过点P 作射线PM 交AC 于点M ,使∠APM=∠B .(1)设BP=x ,CM=y .求 y 与x 的函数解析式,并写出 函数的定义域.(2)当△PCM 为直角三角形时, 求点P 、B 之间的距离.(答案:(1)y=582xx +-(0<x<8);(2)425或4)2、已知:如图,在梯形ABCD 中,AD ∥BC ,AB =CD =5,AD =6,BC =12,点E 在 AD 边上,且AE :ED =1:2,连接CE ,点P 是AB 边上的一个动点,(P 不与A ,B 重合) 过点P 作PQ ∥CE,交BC 于Q ,设BP =x ,CQ =y , (1)求CosB 的值;ABPCM(2)求 y 与x 的函数解析式,并写出函数的定义域;(3)连接EQ ,试探索△EQC 有无可能是直角三角形,若可能,试求出x 的值,若不能,请简要说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学总复习之数学思想《分类讨论》
【例题1】在△ABC 中,已知sin B =154,a =6,b =8,求边c 的长..
题型二 根据公式、定理、性质的条件分类讨论
【例题2】数列{}n a 的前n 项和为221n S n n =+-,则其通项n a = .
题型三 根据变量或参数的取值情况分类讨论
【例题3】解关于x 的不等式01)1(2<++-x a ax .
题型四 根据图形位置或形状变化分类讨论
【例题4】在△ABC 中,AB =(2,3),AC =(1,k ),若△ABC 是Rt △,求k 的值.
二、课后
1. 等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值是
( ) A .1 B .-12 C .1或-12 D .-1或12
2.设集合A ={x |x 2+x -12=0},集合B ={x |kx +1=0},如果A ∪B =A ,则由实数
k 组成的集合中所有元素的和与积分别为 ( )
A .-112,0 B.112,-112 C.112,0 D.14,-112
3.一条直线过点(5,2),且在x 轴,y 轴上截距相等,则这直线方程为( )
A. x y +-=70
B. 250x y -=
C. x y x y +-=-=70250或
D. x y y x ++=-=70250或
4.不等式2(2)2(2)40a x a x -+--<对一切x ∈R 恒成立,则a 的取值范围是 ( )
A .(-∞,2]
B .[-2,2]
C .(-2,2]
D .(-∞,-2)
5.若圆柱的侧面展开图是边长为4和2的矩形,则圆柱的体积是 .
6.函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是 .
7.已知a ∈R ,若关于x 的方程2104
x x a a ++-
+=有实根,求a 的取值范围.
8. 已知等差数列{a n }的前3项和为6,前8项和为-4.
(1)求数列{a n }的通项公式;
(2)设b n =(4-a n )q n -1 (q ≠0,n ∈N *),求数列{b n }的前n 项和S n .。