高三数学人教版A版数学(理)高考一轮复习教案:用样本估计总体 Word版含答案
备战2024年高考数学大一轮老教材人教A版理第十一章用样本估计总体
第
二 部 分
探究核心题型
题型一 样本的数字特征
例1 (1)某工厂10名工人某天生产同一类型零件,生产的件数分别是
10,12,14,14,15,15,16,17,17,17.记这组数据的中位数为a,平均数为b,众数
为c,则
A.a>b>c
√C.c>a>b
B.b>c>a D.c>b>a
这10个数据已经从小到大进行了排序, ∴中位数 a=15+2 15=15,众数 c=17, 平均数 b=10+12+14+14+151+015+16+17+17+17=14.7, ∴c>a>b.
为众数的估计值.( √ )
教材改编题
1.若数据x1,x2,…,x9的方差为2,则数据2x1,2x2,…,2x9的方差为
A.2
B.4
C.6
√D.8
根据方差的性质可知,数据x1,x2,…,x9的方差s2=2,那么数据 2x1,2x2,…,2x9的方差为22s2=8.
教材改编题
2.已知一组数据a,0,1,2,3,若该组数据的平均数为1,则a等于
平均数、中位数、众数与方差、标准差都是重要的数字特征, 是对总体的一种简明的描述,它们所反映的情况有着重要的 实际意义,平均数、中位数、众数描述其集中趋势,方差和 标准差描述其离散程度.
跟踪训练1 (1)已知甲、乙、丙、丁、戊五位同学高一入学时年龄的平 均数、中位数、众数均为16,方差为0.8,则三年后,下列判断错误的是 A.这五位同学年龄的平均数变为19
(2)已知某 7 个数的平均数为 4,方差为 2,现加入一个新数据 4,此时这
8=4,s2<2
B. x =4,s2=2
高考数学一轮复习 第十一章 概率与统计11.8用样本估计总体教学案 理 新人教A版
11.8 用样本估计总体考纲要求1.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.1.用样本的频率分布估计总体分布(1)频率分布表与频率分布直方图频率分布表和频率分布直方图,是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布规律,它可以使我们看到整个样本数据的频率分布情况.绘制频率分布直方图的步骤为:①________;②___________;③____________;④____________;⑤____________.(2)频率分布折线图连接频率分布直方图中______________,就得到频率分布折线图.(3)总体密度曲线总体密度曲线反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.(4)茎叶图统计中还有一种被用来表示数据的图叫做茎叶图.茎是指____的一列数,叶是从茎的____生长出来的数.2.用样本的数字特征估计总体的数字特征(1)众数:一组数据中出现次数最多的数.(2)中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.(3)平均数:x=__________,反映了一组数据的平均水平.(4)标准差:s=______________________________,反映了样本数据的离散程度.(5)方差:s2=________________,反映了样本数据的离散程度.1.某部门计划对某路段进行限速,为调查限速60 km/h是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按[40,50),[50,60),[60,70),[70,80]分组,绘制成如图所示的频率分布直方图,则这300辆汽车中车速低于限速的汽车有( ).A.75辆B.120辆C.180辆D.270辆2.一个样本数据按从小到大的顺序排列为:13,14,19,x,23,27,28,31,其中,中位数为22,则x等于( ).A.21 B.22 C.23 D.203.如图是某学校举行的运动会上,七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( ).A.84,4.84 B.84,1.6C.85,1.6 D.85,44.甲、乙两人比赛射击,两人所得的平均环数相同,其中甲所得环数的方差为5,乙所得环数如下:5,6,9,10,5,那么这两人中成绩较稳定的是__________.5.某个容量为100的样本的频率分布直方图如下,则在区间[4,5)上的数据的频数为__________.一、用样本的频率分布估计总体分布【例1-1】为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则报考飞行员的学生人数是__________.【例1-2】从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[60,90)分的学生比例.方法提炼频率分布直方图是从各个小组数据在样本容量中所占比例大小的角度,表示数据分布的规律.图中各小长方形的面积等于相应各组的频率,它直观反映了数据在各个小组的频率的大小.请做演练巩固提升2,4二、用样本的数字特征估计总体【例2】从甲、乙两种玉米苗中各抽取10株,分别测得它们的株高如下:(单位:cm) 甲:25,41,40,37,22,14,19,39,21,42;乙:27,16,44,27,44,16,40,40,16,40.问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?方法提炼1.用样本的平均数、方差可以估计总体的平均数和方差.平均数可反映总体取值的平均水平,方差可以反映总体的稳定性,方差越大,稳定性越差,方差越小,稳定性越好.2.茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.但是茎叶图不能直接反映总体的分布情况,往往要根据茎叶图所给数据求出其数字特征,进一步估计总体情况.请做演练巩固提升1,3巧用中点值来估算【典例】 (12分)(2012广东高考)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之(2a+0.02+0.03+0.04)×10=1,解得a=0.005.(3分)(2)平均分约为55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73.(7分)(3)易得数学成绩在[50,90)内的人数为5+20+40+25=90,(10分)∴数学成绩在[50,90)之外的人数为100-90=10.(12分)答题指导:1.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布,难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.2.若取值x1,x2,…,x n的频率分别为p1,p2,…,p n,则其平均值为x1p1+x2p2+…+x n p n;若x1,x2,…,x n的平均数为x,方差为s2,则ax1+b,ax2+b,…,ax n+b的平均数为a x+b,方差为a2s2.1.(2012陕西高考) 对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( ).A.46,45,56 B. 46,45,53 C.47,45,56 D.45,47,532.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m o,平均值为x,则( ).A.m e=m o=x B.m e=m o<xC.m e<m o<x D.m o<m e<x3.甲、乙两个体能康复训练小组各有10名组员,经过一段时间训练后,某项体能测试结果的茎叶图如图所示,则这两个小组中体能测试平均成绩较高的是__________组.4.(2012山东高考)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为__________.参考答案基础梳理自测知识梳理1.(1)①求极差 ②决定组距与组数 ③将数据分组 ④列频率分布表 ⑤画频率分布直方图(2)各小长方形上端的中点 (4)中间 旁边2.(3)x 1+x 2+…+x n n(4)1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] (5)1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] 基础自测1.C 解析:据直方图可得300辆中车速低于限速的汽车所占的频率为10×0.025+10×0.035=0.6,故其频数为300×0.6=180. 2.A 解析:因为样本数据个数为偶数,中位数为x +232=22,故x =21. 3.C 解析:去掉最高分93,最低分79.平均分为15(84+84+86+84+87)=85, 方差s 2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=1.6. 4.乙 解析:x 乙=5+6+9+10+55=7,2s 乙=15[(5-7)2+(6-7)2+(9-7)2+(10-7)2+(5-7)2]=4.4,∵s 甲2>s 乙2,∴乙的成绩较稳定.5.30 解析:样本数据在[1,4)和[5,6]上的频率为(0.05+0.10+0.15+0.40)×1=0.7,故样本数据在[4,5)上的频率为1-0.7=0.3,其频数为100×0.3=30.考点探究突破【例1-1】 48 解析:据图可得第4小组及第5小组的频率之和为5×(0.037+0.013)=0.25,故前3个小组的频率之和为1-0.25=0.75,即第2小组的频率为0.75×26=0. 25.又第2小组的频数为12,故样本容量为120.25=48. 【例1-2】 解:(2)(3)成绩在[60,90)的学生比例即为学生成绩在[60,90)的频率,即估计成绩在[60,90)分的学生比例为(0.20+0.30+0.24)×100%=74%.【例2】 解:(1)x 甲=110(25+41+40+37+22+14+19+39+21+42)=30, x 乙=110(27+16+44+27+44+16+40+40+16+40)=31, ∴x 甲<x 乙.(2)2s 甲=110[ (25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=104.2, 同理2s 乙=128.8,∴2s 甲<2s 乙.∴乙种玉米的苗长得高,甲种玉米的苗长得整齐.演练巩固提升1.A 解析:由茎叶图可知中位数为46,众数为45,极差为68-12=56.故选A.2.D 解析:由题目所给的统计图示可知,30个得分中,按大小顺序排好后,中间的两个得分为5,6,故中位数m e =6+52=5.5, 又众数m o =5,平均值 x =3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×230=17930,∴m o <m e <x . 3.甲 解析:由茎叶图所给数据依次确定两组体能测试的平均成绩分别为x 甲=63+65+66+71+77+77+79+81+84+9210=75.5, x 乙=58+68+69+74+75+78+79+80+82+9110=75.4, 故平均成绩较高的是甲组.4.9 解析:由于组距为1,则样本中平均气温低于22.5 ℃的城市频率为 0.10+0.12=0.22.平均气温低于22.5 ℃的城市个数为11,所以样本容量为110.22=50. 而平均气温高于25.5 ℃的城市频率为0.18,所以,样本中平均气温不低于25.5 ℃的城市个数为50×0.18=9.。
高考数学理一轮复习 9.4 用样本估计总体精品课件 新人教A版
4.某校甲、乙两个班各有5名编号为1,2,3,4,下表:
学生 甲班 1号 6 2号 7 3号 7 4号 8 5号 7
乙班
6
7
6
7
9
则以上两组数据的方差中较小的一个为s2=________.
6+7+7+8+7 解析:甲:平均数: =7, 5 6-72+37-72+8-72 2 方差为: = . 5 5 6+7+6+7+9 乙:平均数: =7, 5 26-72+27-72+9-72 6 方差为: = . 5 5 2 ∴方差较小的为 . 5 2 答案:5
C.60 D.45
解析: 样本中产品净重小于 100 克的频率为(0.050+0.100)×2=0.3, 频数为 36. 36 样本总数为0.3=120. ∵样本中净重大于或等于 98 克并且小于 104 克的产品的频率为 (0.100+0.150+0.125)×2=0.75, ∴样本中净重大于或等于 98 克并且小于 104 克的产品的个数为 120×0.75=90.
第四节 用样本估计总体
1.了解分布的意义和作用,会列频率分布表,会画频 率分布直方图、频率折线图、茎叶图,理解它们各自的特 点. 2 . 理解样本数据标准差的意义和作用,会计算数据 标准差. 3.能从样本数据中提取基本的数字特征 (如平均数、 标准差),并给出合理的解释. 4 .会用样本的频率分布估计总体分布,会用样本的 基本数字特征估计总体的基本数字特征,理解用样本估计 总体的思想. 5 .会用随机抽样的基本方法和样本估计总体的思想 解决一些简单的实际问题.
热点之一
用样本的频率分布估计总体的频率分布
频率分布直方图反映样本的频率分布: 频率 1.频率分布直方图中横坐标表示组距,纵坐标表示 ,频率= 组距 频率 组距× . 组距
2021高考理科数学(人教A版)一轮复习课时规范练53用样本估计总体 Word版含解析
姓名,年级:时间:课时规范练53用样本估计总体基础巩固组1。
(2019湖南娄底一模,5)学校医务室对本校高一1 000名新生的视力情况进行跟踪调查,随机抽取了100名学生的体检表,得到的频率分布直方图如下,若直方图的后四组的频率成等差数列,则估计高一新生中视力在4.8以下的人数为()A。
600 B。
390 C。
610 D.5102。
(2019江苏徐州模拟,6)甲、乙两人在相同条件下,射击5次,命中环数如下:根据以上数据估计()A.甲比乙的射击技术稳定B.乙比甲的射击技术稳定C.两人没有区别D.两人区别不大3.(2019四川德阳高三一诊,7)将甲、乙两个篮球队10场比赛的得分数据整理成如图所示的茎叶图,由图可知()A。
甲队得分的众数是3B.甲、乙两队得分在[30,39)分数段频率相等C.甲、乙两队得分的极差相等D。
乙队得分的中位数是38。
54.当5个正整数从小到大排列时,其中位数为4,若这5个数的唯一众数为6,则这5个数的均值不可能为()A.3.6B.3.8C.4D.4。
25.如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全.已知该班学生投篮成绩的中位数是5,则根据统计图,无法确定下列哪一选项中的数值()A.3球以下(含3球)的人数B.4球以下(含4球)的人数C。
5球以下(含5球)的人数D。
6球以下(含6球)的人数6.(2019吉林长春质检,4)某市气象部门根据2018年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是()A。
各月最高气温平均值与最低气温平均值总体呈正相关B。
全年中,2月份的最高气温平均值与最低气温平均值的差值最大C.全年中各月最低气温平均值不高于10 ℃的月份有5个D.从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势7.已知数据x1,x2,…,x10,2的平均值为2,方差为1,则数据x1,x2,…,x10相对于原数据()A。
(人教A版)高考数学一轮复习精品学案:用样本估计总体及线性相关关系
2019年高考数学一轮复习精品学案(人教版A 版)用样本估计总体及线性相关关系一.【课标要求】1.用样本估计总体①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会他们各自的特点;②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差; ③能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;④在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性;⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异;⑥形成对数据处理过程进行初步评价的意识. 2.变量的相关性①通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;②经历用不同估算方法描述两个变量线性相关的过程。
知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 二.【命题走向】“统计”是在初中“统计初步”基础上的深化和扩展,本讲主要会用样本的频率分布估计总体的分布,并会用样本的特征来估计总体的分布.预测2019年高考对本讲的考察是:1.以基本题目(中、低档题)为主,多以选择题、填空题的形式出现,以实际问题为背景,综合考察学生学习基础知识、应用基础知识、解决实际问题的能力;2.热点问题是频率分布直方图和用样本的数字特征估计总体的数字特征。
三.【要点精讲】1.用样本的数字特征估计总体的数字特征 (1)众数、中位数在一组数据中出现次数最多的数据叫做这组数据的众数;将一组数据按照从大到小(或从小到大)排列,处在中间位置上的一个数据(或中间两位数据的平均数)叫做这组数据的中位数;(2)平均数与方差如果这n 个数据是n x x x ,,.........,21,那么∑==ni i x n x 11叫做这n 个数据平均数;如果这n 个数据是n x x x ,,.........,21,那么)(112∑=-=n i i x x n S 叫做这n 个数据方差;同时=s )(11∑=-ni i x x n 叫做这n 个数据的标准差。
2022届高三数学大一轮复习11.2用样本估计总体教案理新人教A版
§用样本预计整体2022 高考会这样考 1 考察样本的频次散布散布表、直方图、茎叶图中的相关计算,样本特征数众数、中位数、均匀数、标准差的计算.主要以选择题、填空题为主; 2 考察以样本的散布预计整体的散布以样本的频次预计整体的频次、以样本的特色数预计整体的特色数.复习备考要这样做 1 理解统计中的常用术语:整体、个体、样本、均匀数、方差、中位数、众数; 2 会利用频次散布直方图、茎叶图对整体进行预计,特别是频次散布直方图的应用更是高考考察的热门.1.频次散布直方图1往常我们对整体作出的预计一般分红两种,一种是用样本的频次散布预计整体的频次散布,另一种是用样本的数字特色预计整体的数字特色.2在频次散布直方图中,纵轴表示错误 ! ,数据落在各小组内的频次用各小长方形的面积表示,各小长方形的面积总和等于13连结频次散布直方图中各小长方形上端的中点,就获取频次散布折线图.跟着样本容量的增添,作图时所分的组数增添,组距减小,相应的频次散布折线图就会愈来愈靠近于一条圆滑的曲线,统计中称之为整体密度曲线,它能够更为精美的反应出整体在各个范围内取值的百分比.4当样本数据较少时,用茎叶图表示数据的成效较好,它不只能够保存全部信息,并且能够随时记录,给数据的记录和表示都带来方便.2.用样本的数字特色预计整体的数字特色1众数、中位数、均匀数众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.中位数:将一组数据按大小挨次摆列,把处在最中间地点的一个数据或最中间两个数据的均匀数叫做这组数据的中位数.均匀数:样本数据的算术均匀数,即\to =错误 ! 1+2++n.在频次散布直方图中,中位数左侧和右侧的直方图的面积应当相等.2样本方差、标准差标准差=错误 ! ,此中 n 是样本数据的第n 项, n 是样本容量,\to是均匀数.标准差是反应整体颠簸大小的特色数,样本方差是标准差的平方.往常用样本方差预计整体方差,当样本容量靠近整体容量时,样本方差很靠近整体方差.[ 难点正本疑点清源]1.作频次散布直方图的步骤1 求极差;2 确立组距和组数;3 将数据分组;4 列频次散布表;5 画频次散布直方图.频次散布直方图能很简单地表示大批数据,特别直观地表示散布的形状.2.众数、中位数与均匀数的异同1众数、中位数及均匀数都是描绘一组数据集中趋向的量,均匀数是最重要的量.2因为均匀数与每一个样本数据相关,所以,任何一个样本数据的改变都会惹起均匀数的改变,这是中位数、众数都不拥有的性质.3众数考察各数据出现的频次,其大小只与这组数据中的部分数据相关.当一组数据中有许多量据多次重复出现时,其众数常常更能反应问题.4某些数据的改动对中位数可能没有影响.中位数可能出此刻所给数据中,也可能不在所给数据中.当一组数据中的个别数据改动较大时,可用中位数描绘其集中趋向.3.利用频次散布直方图预计样本的数字特色1中位数:在频次散布直方图中,中位数左侧和右侧的直方图的面积相等,由此能够预计中位数值.2均匀数:均匀数的预计值等于每个小矩形的面积乘以矩形底边中点横坐标之和.3众数:最高的矩形的中点的横坐标.1. 2022·江苏某老师从礼拜一到礼拜五收到的信函数分别为10,6,8,5,6,则该组数据的方差2= ________答案分析\to=错误! =7,222222∴=错误 ! [10-7 +6-7 +8-7 +5-7+6- 7]=错误!=2. 2022·浙江某中学为认识学生数学课程的学习状况,在 3 000 名学生中随机抽取200 名,并统计这 200 名学生的某次数学考试成绩,获取了样本的频次散布直方图如图.依据频率散布直方图推断,这 3 000名学生在该次数学考试中成绩小于60 分的学生数是________ .答案600分析由直方图易得数学考试中成绩小于60 分的频次为++× 10=,所以所求分数小于60 分的学生数为 3 000 ×= 6003. 2022·湖南以下图是某学校一名篮球运动员在五场竞赛中所得分数的茎叶图,则该运动员在这五场竞赛中得分的方差为________.注:方差2=错误 ! [ 1-错误 !2+2-错误!2++ n-错误!2],此中错误!为 1, 2,, n 的均匀数答案分析依题意知,运动员在 5次竞赛中的分数挨次为8,9,10,13,15 ,其均匀数为错误 ! =11由方差公式得2=错误 ! [8 - 112+ 9- 112+ 10- 112+ 13- 112+ 15- 112] =错误 ! 9+ 4+ 1+4+ 16=4.一个容量为20 的样本,数据的分组及各组的频数以下:[10,20 ,2; [20,30 ,3;[30,40 ,;[40,50 ,5;[50,60 , 4;[60,70 ,2;则= ________;依据样本的频次散布预计,数据落在[10,50的概率约为________.答案4分析= 20- 2+ 3+5+ 4+ 2=4,P=错误!=或P=1-错误!=5.某雷达测速区规定:凡车速大于或等于70 km/h 的汽车视为“超速”,并将受各处分,如图是某路段的一个检测点对200 辆汽车的车速进行检测所得结果的频次散布直方图,则从图中能够看出被处分的汽车大概有A.30 辆B. 40 辆C.60 辆D.80 辆答案B分析由题图可知,车速大于或等于70 km/h的汽车的频次为×10=,则将被处分的汽车大概有200×= 40 辆题型一频次散布直方图的绘制与应用例 1某校从参加高一年级期中考试的学生中随机抽出60 名学生,将其物理成绩均为整数分红六段[40,50 , [50,60 ,,[90,100]后获取以下图的频次散布直方图,察看图形的信息,回答以下问题:1 求分数在 [70,80内的频次,并补全这个频次散布直方图;2统计方法中,同一组数据常用该组区间的中点值作为代表,据此预计本次考试中的均匀分.思想启示:利用各小长方形的面积和等于1 求分数在 [70,80 内的频次,再补齐频次散布直方图.解 1 设分数在 [70,80 内的频次为,依据频次散布直方图,有+× 2++× 10+= 1,可得=,所以频次散布直方图以下图.2 均匀分为= 45×+ 55×+ 65×+ 75×+ 85×+ 95×=71 分.研究提高频次散布直方图直观形象地表示了样本的频次散布,从这个直方图上能够求出样本数据在各个组的频次散布.依据频次散布直方图预计样本或许整体的均匀值时,一般是采纳组中值乘以各组的频次的方法.某种袋装产品的标准质量为每袋100 克,但工人在包装过程中一般有偏差,规定偏差在 2 克之内的产品均合格.因为操作娴熟,某工人在包装过程中不称重直接包装,现对其包装的产品进行随机抽查,抽查30 袋产品获取的数据以下:质量单位:克数目单位:袋[90,942[94,986[98,10212[102,1068[106,110]21依据表格中的数据绘制产质量量的频次散布直方图;2预计该工人包装的产品的均匀质量的预计值是多少.解 1 频次散布直方图以下:2错误 ! ×92+错误 ! ×96+错误 ! ×100+错误 ! ×104+错误 ! ×108≈克.题型二茎叶图的应用例 2进行比较试验.两种小麦各样植了25 亩,所得亩产数据单位:千克以下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407, 410,412,415,416,422,4301作出数据的茎叶图;2用茎叶图办理现有的数据,有什么长处3经过察看茎叶图,对品种A与B 的亩产量及其稳固性进行比较,写出统计结论.思想启示:作茎叶图时,将高位十位与百位作为茎,低位个位作为叶,逐一统计;依据茎叶图剖析两组数据的特色,能够得出结论.解 1以以下图2 因为每个品种的数据都只有25 个,样本不大,画茎叶图很方便;此时茎叶图不单清楚了然地展现了数据的散布状况,便于比较,没有任何信息损失,并且还能够随时记录新的数据.3 经过察看茎叶图能够看出:①品种 A 的亩产均匀数或均值比品种 B 高;②品种 A 的亩产标准差或方差比品种 B 大,故品种A的亩产稳固性较差.研究提高 1 茎叶图的长处是保存了原始数据,便于记录及表示,能反应数据在各段上的散布状况.2茎叶图不可以直接反应整体的散布状况,这就需要经过茎叶图给出的数据求出数据的数字特色,进一步预计整体状况.1如图是某赛季甲、乙两名篮球运动员每场竞赛得分的茎叶图,则甲、乙两人竞赛得分的中位数之和是 ________.2 甲、乙两个体能痊愈训练小组各有10 名组员,经过一段时间训练后,某项体能测试结果的茎叶图以下图,则这两个小组中体能测试均匀成绩较高的是________组.答案164 2甲分析1∵甲的中位数为28,乙的中位数为36,∴甲、乙得分中位数之和为28+ 36= 642∵\to甲=错误 !=,\to 乙=错误!=,∴\to 甲>\to 乙.题型三用样本的数字特色预计整体的数字特色例 3甲、乙两名战士在同样条件下各射靶10 次,每次命中的环数分别是甲: 8,6,7,8,6,5,9,10,4,7;乙: 6,7,7,8,6,7,8,7,9,51分别计算两组数据的均匀数;2分别计算两组数据的方差;3依据计算结果,预计一下两名战士的射击水平谁更好一些.思想启示:依据公式计算均匀数和方差,而后利用均匀数和方差的意义进行预计.解 1\to 甲=错误 ! 8+ 6+7+ 8+ 6+ 5+ 9+ 10+ 4+ 7= 7 环,\to 乙=错误 ! 6+ 7+ 7+ 8+ 6+ 7+ 8+ 7+9+ 5= 7 环.2 由方差公式22222=错误![ -错误!+-错误 ! ++-错误 !]可求得错误!=环,错误!12n=环2.3 由 \to 甲=\to 乙,说明甲、乙两战士的均匀水平相当;又∵ 错误 ! >错误 ! ,说明甲战士射击状况颠簸大,所以乙战士比甲战士射击状况稳固.研究提高均匀数与方差都是重要的数字特色,是对整体的一种简洁的描绘,它们所反应的状况有侧重要的实质意义,均匀数、中位数、众数描绘其集中趋向,方差和标准差描绘其颠簸大小.1 如右图是某电视台综艺节目举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的均匀数和方差分别为A. 84,B. 84,C. 85,4D. 85,22022·山东在某次丈量中获取的 A 样本数据以下:82,84,84,86,86,86,88,88,88,样本数据每个都加 2 后所得数据,则,B 两样本的以下数字特色对应同样的是AA.众数B.均匀数C.中位数D.标准差答案1D2D分析1由茎叶图可知评委打出的最低分为79,最高分为93,其他得分为84,84,86,84,87,故均匀分为错误 ! = 85,方差为错误 ! [3 ×84- 852+ 86-852+ 87- 852] =2 对样本中每个数据都加上一个非零常数时不改变样本的方差和标准差,众数、中位数、均匀数都发生改变.统计图表识图禁止致误典例: 4 分从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频次散布直方图以下图:若某高校A专业对视力的要求在以上,则该班学生中能报 A 专业的人数为________.易错剖析解题中易出现审题不认真,又对所给图形没有真实理解清楚,将矩形的高误以为频次或许对“以上”的含义理解有误.分析该班学生视力在以上的频次为++×=,故能报答案20A 专业的人数为×50=20温馨提示频次散布条形图的纵轴矩形的高表示频次;频次散布直方图的纵轴矩形的高表示频次与组距的比值,其各小组的频次等于该小组上的矩形的面积.方法与技巧1.用样本频次散布来预计整体散布的要点是频次散布表和频次散布直方图的绘制及用样本频次散布预计整体散布;难点是频次散布表和频次散布直方图的理解及应用.在计数和计算时必定要正确,在绘制小矩形时,宽窄要一致.经过频次散布表和频次散布直方图能够对整体作出预计.2.茎叶图、频次散布表和频次散布直方图都是用来描绘样本数据的散布状况的.茎叶图由全部样本数据构成,没有损失任何样本信息,能够随时记录;而频次散布表和频次散布直方图则损失了样本的一些信息,一定在达成抽样后才能制作.3.若取值1,2,,n的频次分别为1,2,, n,则其均匀值为11+ 22++ nn;若 1,2,,n 的均匀数为\to,方差为2,则a 1+, 2+,, n+b的均匀数为a\to +,方差为b a b a ba22失误与防备频次散布直方图的纵坐标为频次 / 组距,每一个小矩形的面积表示样本个体落在该区间内的频次;条形图的纵坐标为频数或频次,把直方图视为条形图是常有的错误.A 组专项基础训练时间: 35 分钟,满分:57 分一、选择题每题5分,共 20 分1. 2022·四川有一个容量为66 的样本,数据的分组及各组的频数以下:[,2[,4[,9[,18[,11[,12[,7[,3依据样本的频次散布预计,数据落在[, 的概率约是答案B分析由条件可知,落在[, 的数占有12+ 7+ 3= 22 个,故所求概率约为错误!=错误! 2.为了认识高三学生的数学成绩,抽取了某班60 名学生,将所得数据整理后,画出其频次散布直方图如图,已知从左到右各长方形高的比为2∶3∶5∶6∶3∶1,则该班学生数学成绩在 80,100 之间的学生人数是A. 32B. 27C. 24D. 33答案D分析80~100 之间两个长方形高占整体的比率为错误 ! =错误 ! ,即为频数之比,∴错误 !=错误 !,∴= 333.在某项体育竞赛中,七位裁判为一选手打出的分数以下:90899095939493去掉一个最高分和一个最低分后,所剩数据的均匀值和方差分别为A. 92,2 B . 92,2.8 C. 93,2 D. 93,答案B分析去掉最高分 95和最低分 89后,节余数据的均匀数为\to =错误 ! = 92,方差为2=错误 ! [90 - 922+ 90-922+ 93- 922+ 94- 922+93- 922] =错误 ! 4+ 4+1+ 4+ 1=4.如图,样本 A 和 B 分别取自两个不一样的整体,它们的样本均匀数分别为\to A和\to B,样本标准差分别为A和B,则A>\to B , A >BAB\toB, ABA>二、填空题每题5分,共 15 分5. 2022·广东由正整数构成的一组数据1,2, 3, 4,其均匀数和中位数都是2,且标准差等于 1,则这组数据为 ________________ .从小到大摆列答案1,1,3,3分析假定这组数据按从小到大的次序摆列为1, 2,3 ,4,则错误 !∴错误 !又=错误!=错误!错误!=错误 ! 错误 ! =1,∴ 1- 22+ 2- 22=2同理可求得 3- 22+ 4- 22=2由 , , , 均为正整数,且, , ,22= 2 上的点,剖析知, , ,11均为圆- 2 +- 21423423423应为 1,1,3,36. 2022·山东如图是依据部分城市某年6 月份的均匀气温单位:℃数据获取的样本频次分布直方图, 此中均匀气温的范围是 [,] ,样本数据的分组为 [, ,[ ,,[, ,[, ,[, ,[ ,] .已知样本中均匀气温低于 22.5 ℃的城市个数为 11,则样本中均匀气温不低于25.5 ℃的城市个数为 ________.答案9分析最左侧两个矩形面积之和为× 1+× 1=, 总城市数为 11÷= 50,最右边矩形面积为× 1=, 50×= 97. 将容量为 n 的样本中的数据分红6 组,绘制频次散布直方图,若第一组至第六组数据的频次之比为 2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于 27,则 n = ________答案60分析∵第一组至第六组数据的频次之比为2∶3∶4∶6∶4∶1,∴前三组频数和为 错误 ! · n = 27,故 n =60三、解答题共22 分8. 10 分甲乙二人参加某体育项目训练,近期的五次测试成绩得分状况如图.1分别求出两人得分的均匀数与方差;2依据图和上边算得的结果,对两人的训练成绩作出评论.解 1 由图象可得甲、乙两人五次测试的成绩分别为甲: 10 分, 13 分, 12 分, 14 分, 16 分;乙: 13 分, 14 分, 12 分, 12 分, 14 分.\to 甲=错误 ! = 13,\to 乙=错误 ! = 13,错误 ! =错误 ! [10 - 132+ 13- 132+ 12- 132+ 14-132+ 16- 132] = 4,错误 ! =错误 ! [13 - 132+ 14- 132+ 12- 132+ 12-132+ 14- 132] =2 由错误 ! >错误 ! 可知乙的成绩较稳固.从折线图看,甲的成绩基本奉上涨状态,而乙的成绩上下颠簸,可知甲的成绩在不停提高,而乙的成绩则无显然提高.9.12分 2022·广东某校100 名学生期中考试语文成绩的频次散布直方图以下图,此中成绩分组区间是[50,60, [60,70, [70,80, [80,90, [90,100].1 求图中a的值;2 依据频次散布直方图,预计这100 名学生语文成绩的均匀分;3 若这 100 名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数之比方下表所示,求数学成绩在[50,90以外的人数分数段[50,60[60,70[70,80[80,90∶1∶12∶13∶44∶5解 1 由频次散布直方图知2a+++× 10= 1,解得a=2 由频次散布直方图知这100 名学生语文成绩的均匀分为55×× 10+65×× 10+75×× 10+85×× 10+95×× 10=73 分.3 由频次散布直方图知语文成绩在[50,60 , [60,70 , [70,80 , [80,90各分数段的人数依次为× 10×100=5, ×10×100=40, ×10×100=30, ×10×100=20由题中给出的比率关系知数学成绩在上述各分数段的人数挨次为5,40×错误!=20,30 ×错误 ! =40,20 ×错误 ! = 25故数学成绩在[50,90以外的人数为 100- 5+ 20+ 40+ 25= 10B 组专项能力提高时间: 25 分钟,满分: 43 分一、选择题每题 5 分,共 15分1.2 022·重庆从一堆苹果中任取10 只,称得它们的质量以下单位:克:125 120122 105 13011411695120134则样本数据落在[,]内的频次为A.B.C.D.答案C分析落在 [,]内的样本数据为120,122,116,120,共4个,故所求频次为错误!=2.为了认识某校高三学生的视力状况,随机地抽查了该校100 名高三学生的视力状况,得到频次散布直方图,以下图.因为不慎将部分数据丢掉,但知道前 4 组的频数成等比数列,后 6 组的频数成等差数列,设最大频次为a,视力在到之间的学生数为b,则a,b的值分别为A. ,78B. ,83C. ,78D. ,83答案A分析由题意,到之间的频次为, 到之间的频次为,后6 组的频数成等差数列,设公差为d,则有6×+ 15d=1---,解得 d 而后可求得各组频次也可用清除法.3.一个样本a, 3,5,7的均匀数是b,且a、 b是方程2-5+4=0的两根,则这个样本的方差是A. 3B. 4C. 5D. 6答案C分析2-5+4=0的两根是1,4当 a=1时, a, 3,5,7的均匀数是4,当 a=4时, a, 3,5,7的均匀数不是1∴ a=1, b=2=错误!×[1-42+3-42+5-42+7-42]=5,应选C二、填空题每题5分,共 15 分4.从某小学随机抽取100 名学生,将他们的身高单位:厘米数据绘制成频次散布直方图如图.由图中数据可知a=120,130,[130,140,[140,150]三组内的学生中,用分层抽样的方法选用 18人参加一项活动,则从身高在[140,150]内的学生中选用的人数应为________ .答案3分析∵小矩形的面积等于频次,∴除 [120,130 外的频次和为,∴a=错误 ! =由题意知,身高在 [120,130,[130,140,[140,150]的学生疏别为 30 人, 20 人, 10 人,∴由分层抽样可知抽样比为错误 !=错误 !,∴在 [140,150]中选用的学生应为 3 人.5.某人 5 次上班途中所花的时间单位:分钟分别为, , 10,11,9已知这组数据的均匀数为10,方差为 2,则 | - | 的值为 ________.答案4分析由题意可得:+= 20,- 102+- 102= 8,设= 10+t,= 10-t, | - | =2| t | = 4 6.已知整体的各个体的值由小到大挨次为2,3,3,7 ,a,b, 12,,,20 ,且整体的中位数为,若要使该整体的方差最小,则、b 的取值分别是 ________、 ________a答案分析∵中位数为,∴错误!=,+= 21,a b∵\to =错误 ! = 10,∴2=错误 ! [2 - 102+ 3- 102+ 3- 102+ 7- 102+a- 102+b- 102+ 12- 102+- 102+- 102+20- 102] .令= 10-a2+ 10-b2= 2a2- 42a+ 221=2错误 ! 2+错误 ! ,当 a=时,取最小值,方差2也取最小值.∴ a=, b=三、解答题7. 13 分某地域100 位居民的人均月用水量单位:t 的分组及各组的频数以下:[0, , 4; [,1, 8; [1, , 15;[,2 , 22; [2, , 25; [,3 , 14; [3, ,6; [,4 , 4; [4,,2 1列出样本的频次散布表;2画出频次散布直方图,并依据直方图预计这组数据的均匀数、中位数、众数;3 当地政府拟订了人均月用水量为3t 的标准,若高出标准加倍收费,当地政府说,85%以上的居民不超出这个标准,这个解说对吗为何解 1 频次散布表分组频数频次[0,4[,18[1,15[,222[2,25[,314[3,6[,44[4,2共计10012频次散布直方图如图:众数:,中位数:,均匀数:3 人均月用水量在3t以上的居民所占的比率为6%+4%+ 2%=12%,即大概有12%的居民月用水量在3t以上, 88%的居民月用水量在3t以下,所以政府的解说是正确的.。
人教A版2020版新一线高考理科数学一轮复习教学案:第9章第3节用样本估计总体含答案
第三节 用样本估计总体[考纲传真] 1.了解分布的意义与作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.1.频率分布直方图(1)画频率分布直方图的步骤:(2)频率分布直方图:反映样本频率分布的直方图.横轴表示样本数据,纵轴表示频率组距,每个小矩形的面积表示样本落在该组内的频率.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. (2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 3.茎叶图统计中一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶是从茎的旁边生长出来的数. 4.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数. (3)平均数:把x =x 1+x 2+…+x nn称为x 1,x 2,…,x n 这n 个数的平均数. (4)标准差与方差:设一组数据x 1,x 2,x 3,…,x n 的平均数为x ,则这组数据的标准差和方差分别是ss2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].[常用结论]1.频率分布直方图中各小矩形的面积之和为1.2.频率分布直方图与众数、中位数与平均数的关系(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.3.若数据x1,x2,…,x n的平均数为x,方差为s2,则数据mx1+a,mx2+a,mx3+a,…,mx n +a的平均数是m x+a,方差为m2s2.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.()(2)一组数据的方差越大,说明这组数据越集中. ()(3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.()(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.()[答案](1)√(2)×(3)√(4)×2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数B[标准差反映样本数据的离散波动大小,故选B.]3.数据1,3,4,8的平均数与方差分别是()A.2,2.5B.2,10.5C.4,2 D.4,6.5D[平均数为1+3+4+84=4,方差为(1-4)2+(3-4)2+(4-4)2+(8-4)24=6.5.]4.某学生在一门功课的22次考试中,所得分数茎叶图如图所示,则此学生该门功课考试分数的极差与中位数之和为()A.117 B.118C.118.5 D.119.5B[22次考试中,所得分数最高的为98,最低的为56,所以极差为98-56=42,将分数从小到大排列,中间两数为76,76,所以中位数为76,所以此学生该门功课考试分数的极差与中位数之和为42+76=118.]5.(教材改编)某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60],由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.48[由频率分布直方图可知45岁以下的教师的频率为5×(0.040+0.080)=0.6,所以共有80×0.6=48(人). ]样本的数字特征的计算与应用1.在某次测量中,得到的A样本数据为81,82,82,84,84,85,86,86,86,若B样本数据恰好是A样本数据分别加2后所得的数据,则A,B两个样本的下列数字特征对应相同的是()A.众数B.平均数C.标准差D.中位数C[由题意可得A,B两组数据的众数分别是86和88,排除A;B组数据的平均数比A组数据的平均数大2,排除B;B组数据的中位数比A组数据的中位数大2,排除D;A,B两组数据的标准差相同,C正确,故选C.]2.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()甲 乙A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差C [根据条形统计图可知甲的中靶情况为4环、5环、6环、7环、8环;乙的中靶情况为5环、5环、5环、6环、9环.x 甲=15(4+5+6+7+8)=6,x 乙=15(5×3+6+9)=6,甲的成绩的方差为(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)25=2,乙的成绩的方差为(5-6)2×3+(6-6)2+(9-6)25=2.4;甲的成绩的极差为4环,乙的成绩的极差为4环;甲的成绩的中位数为6环,乙的成绩的中位数为5环,综上可知C 正确,故选C .]3.某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为( ) A .1 B .2 C .3D .4D [由题意可知⎩⎪⎨⎪⎧15(x +y +10+11+9)=10,15[(x -10)2+(y -10)2+1+1]=2,∴⎩⎨⎧x +y =20,x 2+y 2=208.∴(x +y )2=x 2+y 2+2xy ,即208+2xy =400,∴xy =96. ∴(x -y )2=x 2+y 2-2xy =16,∴|x -y |=4,故选D .]茎叶图【例1】 某良种培育基地正在培育一小麦新品种A ,将其与原有的一个优良品种B 进行对照试验,两种小麦各种植了25亩,所得亩产量的数据(单位:千克)如下: 品种A :357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454.品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,41 5,416,422,430(1)作出品种A与B亩产量数据的茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.[解](1)画出茎叶图如图所示.(2)由于每个品种的数据都只有25个,样本容量不大,画茎叶图很方便;此时茎叶图不仅清晰明了地展示了数据的分布情况,便于比较,没有任何信息损失,而且可以随时记录新的数据.(3)通过观察茎叶图可以看出:①品种A的亩产量的平均数(或均值)比品种B高;②品种A的亩产量的标准差(或方差)比品种B大,故品种A的亩产量的稳定性较差.(1)空气质量指数(Air Qualit y Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.从某地一环保人士某年的AQI记录数据中,随机抽取10个,用茎叶图记录如图.根据该统计数据,估计此地该年AQI大于100的天数约为________.(该年为365天)(2)如图所示的茎叶图是甲、乙两位选手在某次比赛中的比赛得分,则下列说法正确的是()A.甲的平均数大于乙的平均数B.甲的中位数大于乙的中位数C.甲的方差大于乙的方差D.甲的平均数等于乙的中位数(1)146(2)C[(1)该样本中AQI大于100的频数是4,频率为2 5,由此估计该地全年AQI大于100的频率为2 5,估计此地该年AQI大于100的天数约为365×25=146.(2)由茎叶图可知,x甲=19×(59+45+32+38+24+26+11+12+14)=29,x乙=19×(51+43+30+34+20+25+27+28+12)=30,s2甲=19×(302+162+32+92+52+32+182+172+152)≈235.3,s2乙=19×(212+132+02+42+102+52+32+22+182)≈120.9,甲的中位数为26,乙的中位数为28.所以甲的方差大于乙的方差.故选C.]频率分布直方图【例2】某城市100户居民的月平均用电量(单位:千瓦时),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值.(2)求月平均用电量的众数和中位数.(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240]的用户中应抽取多少户?[解](1)(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,解得x=0.007 5.即直方图中x的值为0.007 5.(2)月平均用电量的众数是220+2402=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5,∴月平均用电量的中位数在[220,240)内.设中位数为a,则0.45+0.012 5×(a-220)=0.5,解得a=224,即中位数为224.(3)月平均用电量在[220,240]的用户有0.012 5×20×100=25(户).同理可得月平均用电量在[240,260)的用户有15户,月平均用电量在[260,280)的用户有10户,月平均用电量在[280,300]的用户有5户,故抽取比例为1125+15+10+5=15.∴月平均用电量在[220,240)的用户中应抽取25×15=5(户).得如下频数分布表:(1)(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?[解](1)如图所示:(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.1.(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳A[对于选项A,由图易知月接待游客量每年7,8月份明显高于12月份,故A错;对于选项B,观察折线图的变化趋势可知年接待游客量逐年增加,故B正确;对于选项C,D,由图可知显然正确.故选A.]2.(2018·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半A[设新农村建设前经济收入的总量为x,则新农村建设后经济收入的总量为2x.建设前种植收入为0.6x,建设后种植收入为0.74x,故A不正确;建设前其他收入为0.04x,建设后其他收入为0.1x,故B正确;建设前养殖收入为0.3x,建设后养殖收入为0.6x,故C正确;建设后养殖收入与第三产业收入的总和占建设后经济收入总量的58%,故D正确.]。
高考数学一轮复习第九章 第三讲用样本估计总体学案含解析新人教版
第三讲 用样本估计总体知识梳理·双基自测知识梳理知识点一 用样本的频率分布估计总体分布 (1)频率分布表与频率分布直方图频率分布表和频率分布直方图,是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布规律,从中可以看到整个样本数据的频率分布情况.绘制频率分布直方图的步骤为:①__求极差__;②__决定组距与组数__;③__将数据分组__;④__列频率分布表__;⑤__画频率分布直方图__.(2)频率分布折线图顺次连接频率分布直方图中__各小长方形上端的中点__,就得到频率分布折线图. (3)总体密度曲线总体密度曲线反映了总体在各个范围内取值的百分比,它能提供更加精细的信息. 知识点二 茎叶图(1)茎叶图中茎是指__中间__的一列数,叶是从茎的__旁边__生长出来的数.(2)茎叶图的优点是可以__保留__原始数据,而且可以__随时__记录,这对数据的记录和表示都能带来方便.知识点三 样本的数字特征(1)众数:一组数据中出现次数最多的数.(2)中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.(3)平均数:x =__x 1+x 2+…+x n n __,反映了一组数据的平均水平.(4)标准差: s =__1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]__,反映了样本数据的离散程度. (5)方差:s 2=__1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]__,反映了样本数据的离散程度.归纳拓展(1)若一组数据x i (i =1,2,…,n )的平均数为x -,方差为s 2,则数据组ax i +b (i =1,2,…,n ,a ,b 为常数)的平均数为a x -+b ,方差为a 2·s 2.(2)频率分布直方图与众数、中位数与平均数的关系 ①最高的小长方形底边中点的横坐标即是众数.②中位数左边和右边的小长方形的面积和是相等的,均为12.③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √ ) (2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( × ) (3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( √ )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( × )(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √ ) (6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( × ) 题组二 走进教材2.(P 81A 组T1改编)已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( B )A .95,94B .92,86C .99,86D .95,91[解析]由茎叶图可知,此组数据由小到大排列依次76,79,81,83,86,86,87,91,92,94,95,96,98,99,101,103,114,共17个,故92为中位数,出现次数最多的为众数,故众数为86,故选B .3.(P 7T1)如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)范围内的居民有__25__人.[解析]100×(0.5×0.5)=25(人).题组三走向高考4.(2020·新课标Ⅲ)设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为(C)A.0.01 B.0.1C.1 D.10[解析]∵样本数据x1,x2,…,x n的方差为0.01,∴根据任何一组数据同时扩大几倍方差将变为平方倍增长,∴数据10x1,10x2,…,10x n的方差为:100×0.01=1,故选C.5.(2020·天津)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为(B)A.10 B.18C.20 D.36[解析]直径落在区间[5.43,5.47)的频率为(6.25+5)×0.02=0.225,则被抽取的零件中,直径落在区间[5.43,5.47)内的个数为0.225×80 =18个,故选B.考点突破·互动探究考点一频率分布直方图——自主练透例1 (1)(2021·江西赣州十四县联考)中央电视台播出《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如下所示:组号分组频数频率第1组[160,165)0.100笫2组[165,170)①第3组[170,175)20②第4组[175,180)200.200第5组[180,185)100.100合计100 1.00 (ⅰ)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示).(ⅱ)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3,4,5组中用分层抽样抽取5名选手进入第二轮面试,则第3,4,5组每组各抽取多少名选手进入第二轮面试?(ⅲ)在(ⅱ)的前提下,组委会决定在5名选手中随机抽取2名选手接受考官A面试,求第4组至少有一名选手被考官A面试的概率.(2)(2021·湖北恩施州质检)为了解人们对环保知识的认知情况,某调查机构对A地区随机选取n个居民进行了环保知识问卷调查(满分为100分),并根据问卷成绩(不低于60分记为及格)绘制成如图所示的频率分布直方图(分为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]六组),若问卷成绩最后三组频数之和为360,则下列结论正确的是__②③④__.①n=480②问卷成绩在[70,80)内的频率为0.3③a=0.030④以样本估计总体,若对A 地区5 000人进行问卷调查,则约有1 250人不及格 [解析] (1)(ⅰ)第1组的频数为100×0.100=10, 所以①处应填的数为100-(10+20+20+10)=40, 从而第2组的频率为40100=0.400.②处应填的数为1-(0.1+0.4+0.2+0.1)=0.200. 频率分布直方图如图所示.(ⅱ)因为第3,4,5组共有50名选手,所以利用分层抽样在50名选手中抽取5名选手进入第二轮面试时,每组抽取的人数分别为:第3组:2050×5=2,第4组:2050×5=2,第5组:1050×5=1,所以第3,4,5组分别抽取2人,2人,1人进入第二轮面试. (ⅲ)(理)记“第4组至少有一名选手被考官A 面试”为事件A ,则P (A )=C 12C 13+C 22C 25=710. ⎝⎛⎭⎫或P (A )=1-P (A -)=1-C 23C 25=710(文)设第3组的2位选手为A 1,A 2,第4组的2位选手为B 1,B 2,第5组的1位选手为C 1,则从这五位选手中抽取两位选手有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 2,B 1),(A 2,B 2),(A 2,C 1),(B 1,B 2),(B 1,C 1),(B 2,C 1),共10种情况.其中第4组的2位选手B 1,B 2,中至少有一位入选的有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(B 1,B 2),(B 1,C 1),(B 2,C 1),共有7种情况,所以第4组至少有一名选手被考官A 面试的概率为710.(2)由(0.010+0.015+0.015+a+0.025+0.005)×10=1,得a=0.030,n=360=600.故①不正确,③正确;成绩在[70,80)内的频率为10a=0.3,故②10(a+0.025+0.005)正确;若对A地区5 000人进行问卷调查,则约有5 000×(0.1+0.15)=1 250人不及格,故④正确.名师点拨应用频率分布直方图时的注意事项用频率分布直方图解决相关问题时,应正确理解图表中各个量的意义,识图掌握信息是解决该类问题的关键.频率分布直方图有以下几个要点:(1)纵轴表示频率/组距;(2)频率分布直方图中各长方形高的比也就是其频率之比;(3)频率分布直方图中每一个矩形的面积是样本数据落在这个区间上的频率,所有的小矩形的面积之和等于1,即频率之和为1.〔变式训练1〕(1)(2021·安徽“皖南八校”摸底)某校高三年级有400名学生,在一次数学测试中,成绩都在[80,130](单位:分)内,其频率分布直方图如图,则这次测试数学成绩不低于100分的人数为__220__.(2)(2021·山西适应性考试)某病毒引起的肺炎的潜伏期平均为7天左右,短的约2~3天,长的约10~14天,甚至有20余天.某医疗机构对400名确诊患者的潜伏期进行统计,整理得到以下频率分布直方图.根据该直方图估计:要使90%的患者显现出明显病状,需隔离观察的天数至少是(C)A .12B .13C .14D .15[解析] (1)根据频率分布直方图知:(2a +0.04+0.03+0.02)×10=1⇒a =0.005; 计算出数学成绩不低于100分的频率为: (0.03+0.02+0.005)×10=0.55;所以这次测试数学成绩不低于100分的人数为0.55×400=220人.(2)由题可知,第一,二,三,四,五组的频率分别为0.16,0.4,0.32,0.08,0.04. 因为前三组的频率和为0.88, 故要使90%的患者显现出明显病状,则需隔离观察的天数至少是:13+0.9-0.880.02=14,故选C .考点二 茎叶图——师生共研例2 (2021·四川省乐山市调研)胡萝卜中含有大量的β-胡萝卜素,摄入人体消化器官后,可以转化为维生素A ,现从a ,b 两个品种的胡萝卜所含的β-胡萝卜素(单位mg)得到茎叶图如图所示,则下列说法不正确...的是( C ) a b 6 4 4 23 8 64 143.1 3.2 3.3 3.42 3 7 1 1 1 1 2 5 7A .x a <x bB .a 的方差大于b 的方差C .b 品种的众数为3.31D .a 品种的中位数为3.27 [解析] 由茎叶图得:b 品种所含β-胡萝卜素普遍高于a 品种, ∴x a <x b ,故A 正确;a 品种的数据波动比b 品种的数据波动大, ∴a 的方差大于b 的方差,故B 正确;b品种的众数为3.31与3.41,故C错误;a品种的数据的中位数为:3.23+3.312=3.27,故D正确.名师点拨茎叶图的绘制及应用(1)茎叶图的绘制需注意:①“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;②重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.(2)茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.〔变式训练2〕(2019·山东)如图所示的茎叶图记录了甲,乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x与y的值分别为(A)甲组乙组62 5x4567917y8A.3,5C.3,7 D.5,7[解析]甲组数据的中位数为65,由甲、乙两组数据的中位数相等,得y=5.又甲、乙两组数据的平均值相等,∴15×(56+65+62+74+70+x)=15×(59+61+67+65+78),∴x=3.故选A.考点三,样本数字特征——多维探究角度1样本数字特征与频率分布直方图例3 (1)如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是(B)A .12.5,12.5B .12.5,13C .13,12.5D .13,13[解析] 由频率分布直方图可知,众数为10+152=12.5,因为0.04×5=0.2,0.1×5=0.5,在频率分布直方图中,中位数左边和右边的面积相等,所以中位数在区间[10,15)内.设中位数为x ,则(x -10)×0.1=0.5-0.2,解得x =13.角度2 样本数字特征与茎叶图(2)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:⎪⎪⎪897 74 0 1 0 x 9 1则7个剩余分数的方差为__367__. [解析] 由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4,∴s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.角度3 样本数字特征的计算(3)(2021·湖北武汉、襄阳、荆门、宜昌四地六校考试联盟联考)已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差s 2为( C )A .52B .3C .72D .4[解析] 设某7个数据分别为a 1,a 2,…,a 7, 则由题意得a 1+a 2+…+a 7=5×7=35, (a 1-5)2+(a 2-5)2+…+(a 7-5)2=4×7=28, 加入新数据5后的平均数x -=35+58=5,方差s 2=(a 1-5)2+(a 2-5)2+…+(a 7-5)2+(5-5)28=288=72.故选C .名师点拨平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数,中位数,众数描述其集中趋势,方差和标准差描述其波动大小.〔变式训练3〕(1)(角度1)某小区共有1 000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量的中位数为__155__,平均数为__156.8__.(2)(角度2)(2021·陕西西安八校联考)在一次技能比赛中,共有12人参加,他们的得分(百分制)茎叶图如图,则他们得分的中位数和方差分别为( B )7 8 9 8 4 6 7 7 91 4 8 8 9 9A .89 54.5B .89 53.5C .87 53.5D .89 54(3)高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为x 1,x 2,x 3,…,x 100,它们的平均数为x -,方差为s 2:其中扫码支付使用的人数分别为3x 1+2,3x 2+2,3x 3+2,…,3x 100+2,它们的平均数为x -′,方差为s ′2,则x -′,s ′2分别为( C )A .3x -+2,3s 2+2 B .3x -,3s 2 C .3x -+2,9s 2D .3x -+2,9s 2+2[解析] (1)中位数为:150+(170-150)×0.10.02×20=155.该组数据的平均数为x =0.005×20×120+0.015×20×140+0.020×20×160+0.005×20×180+0.003×20×200+0.002×20×220=156.8.(2)由题可知,中位数为:87+912=89,先求平均数:x -=78+79+84+86+87+87+91+94+98+98+99+9912=90,S 2=112[(-12)2+(-11)2+(-6)2+(-4)2+(-3)2+(-3)2+12+42+82+82+92+92]=53.5,故中位数为:89,方差为53.5,故选:B .(3)显然x -′=3x -+2,而每个数据上都加上或减去相同数不影响方差,但每个数据都乘以a ,则方差变为原方差的a 2倍,故选C .考点四,折线图——师生共研例4 (2021·河南顶级名校模拟改编)如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是( A )A .连续三天日平均温度的方差最大的是7日,8日,9日三天B .这15天日平均温度的极差为15 ℃C .由折线图能预测16日温度要低于19 ℃D .由折线图能预测本月温度小于25 ℃的天数少于温度大于25 ℃的天数[解析] A 选项,日平均温度的方差的大小取决于日平均温度的波动的大小,7,8,9三日的日平均温度的波动最大,故日平均温度的方差最大,正确;B 选项,这15天日平均温度的极差为18 ℃,B 错;C 选项,由折线图无法预测16日温度是否低于19 ℃,故C 错误;D 选项,由折线图无法预测本月温度小于25 ℃的天数是否少于温度大于25 ℃的天数,故D 错误.故选A .名师点拨折线图可以显示随时间(根据常用比例放置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势.〔变式训练4〕甲乙两名同学在本学期的六次考试成绩统计如图,甲乙两组数据的平均值分别为x -甲、x-乙,则下列结论正确的个数为( B )①每次考试甲的成绩都比乙的成绩高 ②甲的成绩比乙稳定 ③x -甲一定大于x -乙④甲的成绩的极差大于乙的成绩的极差 A .1 B .2 C .3D .4[解析] 第二次考试甲的成绩比乙低,①错;由图可知甲的成绩比乙的成绩波动小,②正确,④错;甲的平均成绩显然比乙的平均成绩高,③正确;故选B .名师讲坛·素养提升高考与频率分布直方图例5 (理)(2021·安徽省池州市期末)高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150].其中a ,b ,c 成等差数列且c =2a ,物理成绩统计如表.(说明:数学满分150分,物理满分100分)分组 [50,60) [60,70) [70,80) [80,90) [90,100] 频数6920105(2)根据物理成绩统计表,请估计物理成绩的中位数;(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人.记X 为抽到两个“优”的学生人数,求X 的分布列和期望值.(文)(2021·河南新乡模拟)甲、乙两人想参加某项竞赛,根据以往20次的测试,将样本数据分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,并整理得到如下频率分布直方图:已知甲测试成绩的中位数是75.(1)求x ,y 的值,并分别求出甲、乙两人测试成绩的平均数(假设同一组中的每个数据可用该组区间中点值代替);(2)从甲、乙两人测试成绩不足60分的试卷中随机抽取3份,求恰有2份来自乙的概率. [解析] (理)(1)根据频率分布直方图得, (a +b +2c +0.024+0.020+0.004)×10 =1, 又因a +c =2b ,c =2a ,解得a =0.008,b =0.012,c =0.016, 故数学成绩的平均分x -=85×0.04+95×0.12+105×0.16+115×0.2+125×0.24 +135×0.16+145×0.08=117.8(分),(2)总人数50分,由物理成绩统计表知,中位数在成绩区间[70,80), 所以物理成绩的中位数为75分.(3)数学成绩为“优”的同学有4人,物理成绩为“优”有5人,因为至少有一个“优”的同学总数为6名同学,故两科均为“优”的人数为3人,故X 的取值为0、1、2、3.P (X =0)=C 33C 36=120,P (X =1)=C 13C 23C 36=920,P (X =2)=C 23C 13C 36=920,P (X =3)=C 33C 36=120,所以分布列为: X123P 120920920120∴期望值为E(X)=0×120+1×920+2×920+3×120=32.(文)(1)∵甲测试成绩的中位数为75,∴0.01×10+y×10+0.04×(75-70)=0.5,解得y=0.02,∴0.01×10+y×10+0.04×10+x×10+0.005×10=1,解得x=0.025.同学甲的平均分为55×0.01×10+65×0.02×10+75×0.04×10+85×0.025×10+95×0.005×10=74.5.同学乙的平均分为55×0.015×10+65×0.025×10+75×0.03×10+85×0.02×10+95×0.01×10=73.5.(2)甲测试成绩不足60分的试卷数为20×0.01×10=2,设为A,B.乙测试成绩不足60分的试卷数为20×0.015×10=3,设为a,b,c.从中抽3份的情况有(A,B,a),(A,B,b),(A,B,c),(A,a,b),(A,a,c),(A,b,c),(B,a,b),(B,a,c),(B,b,c),(a,b,c),共10种情况.满足条件的有(A,a,b),(A,a,c),(A,b,c),(B,a,b),(B,a,c),(B,b,c),共6种情况,故恰有2份来自乙的概率为610=35.名师点拨](1)通过统计图可以很清楚地表示出各部分数量同总数之间的关系.(2)准确理解频率分布直方图的数据特点是解题关键.〔变式训练5〕(2019·高考全国Ⅲ卷)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).[解析](1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05,乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.。
高考数学一轮复习 第11章 统计与统计案例 2 第2讲 用样本估计总体教案 理-人教版高三全册数学教
第2讲 用样本估计总体1.统计图表(1)频率分布直方图的画法步骤①求极差(即一组数据中最大值与最小值的差); ②决定组距与组数; ③将数据分组; ④列频率分布表; ⑤画频率分布直方图.(2)频率分布折线图和总体密度曲线①频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.②总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. (3)茎叶图的画法步骤第一步:将每个数据分为茎(高位)和叶(低位)两部分; 第二步:将最小茎与最大茎之间的数按大小次序排成一列; 第三步:将各个数据的叶依次写在其茎的两侧. 2.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数. (3)平均数:把a 1+a 2+…+a nn称为a 1,a 2,…,a n 这n 个数的平均数.(4)标准差与方差:设一组数据x 1,x 2,x 3,…,x n 的平均数为x -,那么这组数据的标准差和方差分别是s =1n[〔x 1-x -〕2+〔x 2-x -〕2+…+〔x n -x -〕2] s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2]3.与平均数和方差有关的结论(1)假设x 1,x 2,…,x n 的平均数为x -,那么mx 1+a ,mx 2+a ,…,mx n +a 的平均数为m x -+a ;(2)数据x 1,x 2,…,x n 与数据x ′1=x 1+a ,x ′2=x 2+a ,…,x ′n =x n +a 的方差相等,即数据经过平移后方差不变;(3)假设x 1,x 2,…,x n 的方差为s 2,那么ax 1+b ,ax 2+b ,…,ax n +b 的方差为a 2s 2;(4)s 2=1n ∑i =1n (x i -x -)2=1n ∑i =1nx 2i -x -2,即各数平方的平均数减去平均数的平方.判断正误(正确的打“√〞,错误的打“×〞)(1)一组数据的方差越大,说明这组数据的波动越大.( )(2)在频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间内的频率越大.( )(3)茎叶图中的数据要按从小到大的顺序写,相同的数据可以只记一次.( )(4)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.( )(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数的估计值.( ) 答案:(1)√ (2)√ (3)× (4)√ (5)√(2017·高考全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,以下结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳解析:选A.根据折线图可知,2014年8月到9月、2014年10月到11月等月接待游客量都是减少,所以A错误.重庆市某年各月的平均气温(℃)数据的茎叶图如图,那么这组数据的中位数是( )A.19 B.20C.21.5 D.23解析:选B.由茎叶图可知这组数据由小到大依次为8,9,12,15,18,20,20,23,23,28,31,32,所以中位数为20+202=20.(2018·郑州第一次质量预测)我市某校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],假设低于60分的人数是15,那么该班的学生人数是________.解析:依题意得,成绩低于60分的相应的频率等于(0.005+0.01)×20=0.3,所以该班的学生人数是15÷0.3=50.答案:50甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,那么这10天甲、乙两人日加工零件的平均数分别为________和________.解析:由茎叶图可知甲的平均数为19+18+20+21+23+22+20+31+31+3510=24.乙的平均数为19+17+11+21+24+22+24+30+32+3010=23.答案:24 23茎叶图[典例引领](2017·高考山东卷)如下图的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).假设这两组数据的中位数相等,且平均值也相等,那么x 和y 的值分别为( )A .3,5B .5,5C .3,7D .5,7【解析】 根据两组数据的中位数相等可得65=60+y ,解得y =5,又它们的平均值相等, 所以56+62+65+74+〔70+x 〕5=59+61+67+〔60+y 〕+785,解得x =3.应选A .【答案】 A茎叶图中的三个关注点(1)“叶〞的位置只有一个数字,而“茎〞的位置的数字位数一般不需要统一. (2)重复出现的数据要重复记录,不能遗漏.(3)给定两组数据的茎叶图,估计数字特征,茎上的数字由小到大排列,一般“重心〞下移者平均数较大,数据集中者方差较小.[通关练习]1.(2018·贵州遵义航天高中模拟)某学生在一门功课的22次考试中,所得分数茎叶图如下图,那么此学生该门功课考试分数的极差与中位数之和为( )A.117 B.118C.118.5 D.119.5解析:选B.22次考试中,所得分数最高的为98,最低的为56,所以极差为98-56=42,将分数从小到大排列,中间两数为76,76,所以中位数为76,所以此学生该门功课考试分数的极差与中位数之和为42+76=118.2.为了了解某校教师使用多媒体进行教学的情况,现采用简单随机抽样的方法,从该校400名授课教师中抽取20名,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示,如下图.据此可估计上学期该校400名教师中,使用多媒体进行教学的次数在[16,30)内的人数为( )A.100 B.160C.200 D.280解析:选B.由茎叶图可知在20名教师中,上学期使用多媒体进行教学的次数在[16,30)内的人数为8,据此可以估计400名教师中,使用多媒体进行教学的次数在[16,30)内的人数为400×820=160.频率分布直方图(高频考点)频率分布直方图是高考的热点,选择题、填空题、解答题都有可能出现.难度一般较小.高考对频率分布直方图的考查主要有以下三个命题角度:(1)求样本的频率、频数;(2)求样本的数字特征;(3)与概率结合的问题.[典例引领]角度一求样本的频率、频数(2016·高考山东卷)某高校调查了200名学生每周的自习时间(单位:小时),制成了如下图的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .120D .140【解析】 由频率分布直方图可知,这200名学生每周的自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,故这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.应选D. 【答案】 D角度二 求样本的数字特征(2018·云南省11校跨区调研)为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分为5组,其频率分布直方图如下图.(1)求图中a 的值;(2)估计这种植物果实重量的平均数x -和方差s 2(同一组中的数据用该组区间的中点值作代表).【解】 (1)组距d =5,由5×(0.02+0.04+0.075+a +0.015)=1得a =0.05. (2)各组中点值和相应的频率依次为中点值3035404550频率0.1 0.2 0.375 0.25 0.075x-=30×0.1+35×0.2+40×0.375+45×0.25+50×0.075=40,s2=(-10)2×0.1+(-5)2×0.2+02×0.375+52×0.25+102×0.075=28.75.角度三与概率结合的问题(2018·东北四市高考模拟)某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:女性用户分值区间[50,60) [60,70) [70,80) [80,90) 频数20 40 80 50男性用户分值区间[50,60) [60,70) [70,80) [80,90) 频数45 75 90 60(1)完成以下频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(2)根据评分的不同,运用分层抽样的方法从男性用户中抽取20名用户,再从这20名用户中满足评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数X 的分布列和数学期望.【解】(1)女性用户和男性用户的频率分布直方图如图.由图可知女性用户评分的波动小,男性用户评分的波动大.(2)运用分层抽样的方法从男性用户中抽取20名用户,评分不低于80分的用户有6人,其中评分小于90分的有4人,从6人中任取3人,那么X的可能取值为1,2,3,P (X =1)=C 14C 22C 36=420=15,P (X =2)=C 24C 12C 36=1220=35,P (X =3)=C 34C 36=420=15.所以X 的分布列为X 1 2 3 P153515E (X )=15+65+35=2.频率、频数、样本容量的计算方法(1)频率组距×组距=频率. (2)频数样本容量=频率,频数频率=样本容量,样本容量×频率=频数. [提醒] 制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确.[通关练习]1.在样本频率分布直方图中,共有9个小长方形,假设中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,那么中间一组的频数为( )A .28B .40C .56D .60解析:选B .设中间一组的频数为x ,因为中间一个小长方形的面积等于其他8个长方形的面积和的25,所以其他8组的频数和为52x ,由x +52x =140,解得x =40.2.(2018·武汉市武昌区调研考试)我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x (吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如下图的频率分布直方图.(1)求频率分布直方图中a的值;(2)该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)假设该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.解:(1)由频率分布直方图,可得(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5=1,解得a=0.30.(2)由频率分布直方图知,100位居民每人月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12.由以上样本频率分布,可以估计全市80万居民中月均用水量不低于3吨的人数为800 000×0.12=96 000.(3)因为前6组的频率之和为(0.08+0.16+0.30+0.40+0.52+0.30)×0.5=0.88>0.85,前5组的频率之和为(0.08+0.16+0.30+0.40+0.52)×0.5=0.73<0.85,所以2.5≤x<3.由0.3×(x-2.5)=0.85-0.73,解得x=2.9.因此,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.样本数字特征的求解与应用[典例引领](1)在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10天,每天新增疑似病例不超过7人〞.根据过去10天甲、乙、丙、丁四地新增疑似病例的数据,一定符合该标志的是( )A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为3(2)(2018·南昌模拟)假设1,2,3,4,m这五个数的平均数为3,那么这五个数的方差为________.(3)(2018·石家庄市教学质量检测(二))设样本数据x1,x2,…,x2 017的方差是4,假设y i =2x i-1(i=1,2,…,2 017),那么y1,y2,…,y2 017的方差为________.【解析】 (1)根据标志,要求数据中每个个体不超过7.中位数与众数不能表达个体数据,无法确定.方差表达数据中个体的波动程度,假设大于0,那么无法确定.假设均值为2,方差为3,假设∃x i ≥8,那么s 2≥〔x i -x -〕210=6210>3,故假设不成立.(2)由1+2+3+4+m 5=3得m =5,所以这五个数的方差为15[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2.(3)设样本数据的平均数为x -,那么y i =2x i -1的平均数为2x --1,那么y 1,y 2,…,y 2 017的方差为12 017[(2x 1-1-2x -+1)2+(2x 2-1-2x -+1)2+…+(2x 2 017-1-2x -+1)2]=4×12 017[(x 1-x -)2+(x 2-x -)2+…+(x 2 017-x -)2]=4×4=16. 【答案】 (1)D (2)2 (3)16(1)众数、中位数、平均数及方差的意义①平均数与方差都是重要的数字特征,是对总体的一种简明地描述. ②平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小. (2)在计算平均数、方差时可利用平均数、方差的有关结论.[通关练习]1.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如下图,那么( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差 解析:选C. x -甲=15(4+5+6+7+8)=6,x -乙=15(5×3+6+9)=6,甲的成绩的方差为15(22×2+12×2)=2,乙的成绩的方差为15(12×3+32×1)=2.4.2.(2018·合肥市第二次教学质量检测)某同学在高三学年的五次阶段性考试中,数学成绩依次为110,114,121,119,126,那么这组数据的方差是________.解析:因为对一组数据同时加上或减去同一个常数,方差不变,所以此题中可以先对这5个数据同时减去110,得到新的数据分别为0,4,11,9,16,其平均数为8,根据方差公式可得s 2=〔0-8〕2+〔4-8〕2+〔11-8〕2+〔9-8〕2+〔16-8〕25=30.8.答案:30.83.(2018·贵阳市监测考试)在某校科普知识竞赛前的模拟测试中,得到甲、乙两名学生的6次模拟测试成绩(百分制)的茎叶图(如图).假设从甲、乙两名学生中选择一人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由.解:学生甲的平均成绩x -甲=68+76+79+86+88+956=82,学生乙的平均成绩x -乙=71+75+82+84+86+946=82,又s 2甲=16×[(68-82)2+(76-82)2+(79-82)2+(86-82)2+(88-82)2+(95-82)2]=77,s 2乙=16×[(71-82)2+(75-82)2+(82-82)2+(84-82)2+(86-82)2+(94-82)2]=1673,那么x -甲=x -乙,s 2甲>s 2乙,说明甲、乙的平均水平一样,但乙的方差小,即乙发挥更稳定,故可选择学生乙参加知识竞赛.众数、中位数和平均数的异同众 数中位数平均数相同点都是描述一组数据集中趋势的量不同点与这组数据中的部分数据有关,出现在这些数据中不一定在这些数据中出现.奇数个时,在这组数据中出现;偶数个时,为中间两数的平均值不一定在这些数据中出现标准差和方差的异同相同点:标准差和方差描述了一组数据围绕平均数波动的大小.不同点:方差与原始数据的单位不同,且平方后可能夸大了偏差程度,标准差那么不然. 易错防范(1)易忽视频率分布直方图中纵轴表示的应为频率组距.(2)在绘制茎叶图时,易遗漏重复出现的数据,重复出现的数据要重复记录,同时不要混淆茎叶图中茎与叶的含义.1.把样本容量为20的数据分组,分组区间与频数如下:[10,20),2;[20,30),3;[30,40),4;[40,50),5;[50,60),4;[60,70],2,那么在区间[10,50)上的数据的频率是( )A .0.05B .0.25C .0.5D .0.7解析:选D.由题知,在区间[10,50)上的数据的频数是2+3+4+5=14,故其频率为1420=0.7.2.(2018·广西三市第一次联考)在如下图一组数据的茎叶图中,有一个数字被污染后模糊不清,但曾计算得该组数据的极差与中位数之和为61,那么被污染的数字为( )C .3D .4解析:选B.由题图可知该组数据的极差为48-20=28,那么该组数据的中位数为61-28=33,易得被污染的数字为2.3.(2018·岳阳模拟)某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如下图,9时至10时的销售额为2.5万元,那么11时到12时的销售额为( )A .6万元B .8万元C .10万元D .12万元解析:选C.设11时到12时的销售额为x 万元,依题意有2.5x =0.100.40,解得x =10.4.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如下图,以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )解析:选A.由分组可知C ,D 一定不对;由茎叶图可知[0,5)有1人,[5,10)有1人,所以第一、二小组频率相同,频率分布直方图中矩形的高应相等,可排除B.5.某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.这组数据的平均数为10,方差为2,那么|x -y |的值为( )C.3 D.4解析:选D.由题意这组数据的平均数为10,方差为2,可得:x+y=20,(x-10)2+(y-10)2=8,设x=10+t,y=10-t,由(x-10)2+(y-10)2=8,得t2=4,所以|x-y|=2|t|=4. 6.(2018·湖南省五市十校联考)某中学奥数培训班共有14人,分为两个小组,在一次阶段测试中两个小组成绩的茎叶图如下图,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,那么n-m的值是________.解析:由甲组学生成绩的平均数是88,可得70+80×3+90×3+〔8+4+6+8+2+m+5〕7=88,解得m=3.由乙组学生成绩的中位数是89,可得n=9,所以n-m=6.答案:67.为了普及环保知识,增强环保意识,某大学有300名员工参加环保知识测试,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如下图.现在要从第1,3,4组中用分层抽样的方法抽取16人,那么在第4组中抽取的人数为________.解析:根据频率分布直方图得,第1,3,4组的频率之比为1∶4∶3,所以用分层抽样的方法抽取16人时,在第4组中应抽取的人数为16×31+4+3=6.答案:68.(2018·成都市第二次诊断性检测)在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未被污损,即9,10,11,1 ,那么这组数据的方差s 2可能的最大值是________.解析:由题意可设两个被污损的数据分别为10+a ,b ,(a ,b ∈Z ,0≤a ≤9),那么10+a +b +9+10+11=50,即a +b =10,b =10-a ,所以s 2=15[(9-10)2+(10-10)2+(11-10)2+(10+a -10)2+(b -10)2]=15[2+a 2+(b -10)2]=25(1+a 2)≤25×(1+92)=32.8.答案:32.89.某校1 200名高三年级学生参加了一次数学测验(总分值为100分),为了分析这次数学测验的成绩,从这1 200人的数学成绩中随机抽取200人的成绩绘制成如下的统计表,请根据表中提供的信息解决以下问题:(1)求a 、b 、c (2)如果从这 1 200名学生中随机抽取一人,试估计这名学生该次数学测验及格的概率P (注:60分及60分以上为及格);(3)试估计这次数学测验的年级平均分.解:(1)由题意可得,b =1-(0.015+0.125+0.5+0.31)=0.05,a =200×0.05=10,c =200×0.5=100.(2)根据,在抽出的200人的数学成绩中,及格的有162人.所以P =162200=81100=0.81.(3)这次数学测验样本的平均分为x -=16×3+32.1×10+55×25+74×100+88×62200=73,所以这次数学测验的年级平均分大约为73分.10.(2017·高考北京卷)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (3)样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.解:(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4. (2)根据题意,样本中分数不小于50的频率为 (0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5. 所以总体中分数在区间[40,50)内的人数估计为400×5100=20. (3)由题意可知,样本中分数不小于70的学生人数为 (0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×12=30.所以样本中的男生人数为30×2=60,女生人数为100-60=40,男生和女生人数的比例为60∶40=3∶2.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3∶2.1.(2018·长春模拟)某销售公司为了解员工的月工资水平,从 1 000位员工中随机抽取100位员工进行调查,得到如下的频率分布直方图:(1)试由此图估计该公司员工的月平均工资;(2)该公司的工资发放是以员工的营销水平为重要依据来确定的,一般认为,工资低于 4 500元的员工属于学徒阶段,没有营销经验,假设进行营销将会失败;高于4 500元的员工属于成熟员工,进行营销将会成功.现将该样本按照“学徒阶段工资〞“成熟员工工资〞分成两层,进行分层抽样,从中抽出5人,在这5人中任选2人进行营销活动.活动中,每位员工假设营销成功,将为公司赚得3万元,否那么公司将损失1万元.试问在此次比赛中公司收入多少万元的可能性最大?解:(1)估计该公司员工的月平均工资为0.000 1×1 000×2 000+0.000 1×1 000×3 000+0.000 2×1 000×4 000+0.000 3×1 000×5 000+0.000 2×1 000×6 000+0.000 1×1 000×7 000=4 700(元). (2)抽取比为5100=120,从工资在[1 500,4 500)内的员工中抽出100×(0.1+0.1+0.2)×120=2人,设这两位员工分别为1,2;从工资在[4 500,7 500]内的员工中抽出100×(0.3+0.2+0.1)×120=3人,设这三位员工分别为A ,B ,C .从中任选2人,共有以下10种不同的等可能结果:(1,2),(1,A ),(1,B ),(1,C ),(2,A ),(2,B ),(2,C ),(A ,B ),(A ,C ),(B ,C ).两人营销都成功,公司收入6万元,有以下3种不同的等可能结果:(A ,B ),(A ,C ),(B ,C ),概率为310;其中一人营销成功,一人营销失败,公司收入2万元,有以下6种不同的等可能结果:(1,A ),(1,B ),(1,C ),(2,A ),(2,B ),(2,C ),概率为610=35;两人营销都失败,公司收入-2万元,即损失2万元,有1种结果:(1,2),概率为110.因为110<310<35,所以公司收入2万元的可能性最大.2.(2018·河北三市第二次联考)某高三毕业班甲、乙两名同学在连续的8次数学周练中,统计解答题失分的茎叶图如图:(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些;(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X 的分布列和均值.解:(1) x -甲 =18(7+9+11+13+13+16+23+28)=15,x -乙=18(7+8+10+15+17+19+21+23)=15,s 2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s 2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12,两人失分均超过15分的概率为P 1P 2=316,X 的所有可能取值为0,1,2.依题意,X ~B (2,316),P (X =k )=C k 2(316)k (1316)2-k,k =0,1,2, 那么X 的分布列为X 0 1 2 P169256391289256X 的均值E (X )=2×16=8.。
2018版高考数学(人教A版理)一轮复习教师用书 第9章 第3节 用样本估计总体 Word版含解析
第三节用样本估计总体[考纲传真] 1.了解分布的意义与作用,能根据概率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.1.频率分布直方图(1)频率分布表的画法:第一步:求极差,决定组数和组距,组距=极差组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;第三步:登记频数,计算频率,列出频率分布表.(2)频率分布直方图:反映样本频率分布的直方图(如图9-3-1).图9-3-1横轴表示样本数据,纵轴表示频率组距,每个小矩形的面积表示样本落在该组内的频率.2.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶是从茎的旁边生长出来的数.3.样本的数字特征数字特征定义众数在一组数据中,出现次数最多的数据叫做这组数据的众数中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.在频率分布直方图中,中位数左边和右边的直方图的面积相等平均数样本数据的算术平均数,即x=x1+x2+…+x nn方差s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],其中s为标准差1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.()(2)一组数据的方差越大,说明这组数据越集中. ()(3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.()(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.()[解析](1)正确.平均数、众数与中位数都在一定程度上反映了数据的集中趋势.(2)错误.方差越大,这组数据越离散.(3)正确.小矩形的面积=组距×频率组距=频率.(4)错误.茎相同的数据,叶可不用按从小到大的顺序写,相同的数据叶要重复记录,故(4)错误.[答案] (1)√ (2)× (3)√ (4)×2.(教材改编)若某校高一年级8个班参加合唱比赛的得分如茎叶图9-3-2所示,则这组数据的中位数和平均数分别是( )图9-3-2A .91.5和91.5B.91.5和92 C .91和91.5 D.92和92A [这组数据由小到大排列为87,89,90,91,92,93,94,96. ∴中位数是91+922=91.5,平均数x =87+89+90+91+92+93+94+968=91.5.] 3.(2017·南昌二模)如图9-3-3所示是一样本的频率分布直方图.若样本容量为100,则样本数据在[15,20)内的频数是( )图9-3-3A .50B.40 C .30 D.14C [因为[15,20]对应的小矩形的面积为1-0.04×5-0.1×5=0.3,所以样本落在[15,20]的频数为0.3×100=30,故选C.]4.(2016·江苏高考)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.0.1 [5个数的平均数x =4.7+4.8+5.1+5.4+5.55=5.1, 所以它们的方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.]5.(2017·山东淄博模拟)某校女子篮球队7名运动员身高(单位:cm)分布的茎叶图如图9-3-4,已知记录的平均身高为175 cm ,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x ,那么x 的值为________.图9-3-42 [170+17×(1+2+x +4+5+10+11)=175, 则17×(33+x )=5,即33+x =35,解得x =2.]样本的数字特征(1)(2015·广东高考)已知样本数据x 1,x 2,…,x n 的均值x =5,则样本数据2x 1+1,2x 2+1,…,2x n +1的均值为________.(2)某企业有甲、乙两个研发小组.为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ).其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.①若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差.并比较甲、乙两组的研发水平;②若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.(1)11 [由条件知x =x 1+x 2+…+x n n=5,则所求均值x 0=2x 1+1+2x 2+1+…+2x n +1n =2(x 1+x 2+…+x n )+n n=2x +1=2×5+1=11.] (2)①甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x 甲=1015=23.3分方差s 2甲=115⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-232×10+⎝ ⎛⎭⎪⎫0-232×5=29. 乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为x 乙=915=35.方差s 2乙=115⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-352×9+⎝ ⎛⎭⎪⎫0-352×6=625. 因为x 甲>x 乙,s 2甲<s 2乙,所以甲组的研发水平优于乙组.6分②记E ={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个.因此事件E 发生的概率为715.用频率估计概率,即得所求概率为P (E )=715.12分[规律方法] 1.平均数反映了数据的中心,是平均水平,而方差和标准差反映的是数据围绕平均数的波动大小.进行均值与方差的计算,关键是正确运用公式.2.可以通过比较甲、乙两组样本数据的平均数和方差的差异,对甲、乙两品种做出评价或选择.[变式训练1](2017·郑州模拟)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图9-3-5所示的茎叶图.考虑以下结论:图9-3-5①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的序号为()A.①③ B.①④C.②③D.②④B[甲地5天的气温为:26,28,29,31,31,其平均数为x甲=26+28+29+31+315=29;方差为s2甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3.6;标准差为s甲= 3.6.乙地5天的气温为:28,29,30,31,32,其平均数为x乙=28+29+30+31+325=30;方差为s2乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2;标准差为s乙= 2.∴x甲<x乙,s甲>s乙.]茎叶图及其应用了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.[解] (1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.3分50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.5分(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.8分(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.12分[规律方法] 1.茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.2.(1)作样本的茎叶图时,先要根据数据特点确定茎、叶,再作茎叶图;作“叶”时,要做到不重不漏,一般由内向外,从小到大排列,便于数据的处理.(2)根据茎叶图中数据的数字特征进行分析判断,考查识图能力、判断推理能力和创新应用意识;解题的关键是抓住“叶”的分布特征,准确提炼信息.[变式训练2] (2017·雅礼中学质检)已知甲、乙两组数据如茎叶图9-3-6所示,若两组数据的中位数相同,平均数也相同,那么m +n =________.【导学号:01772364】图9-3-611 [∵两组数据的中位数相同,∴m =2+42=3.又∵两组数据的平均数也相同,∴27+33+393=20+n +32+34+384,∴n =8, 因此m +n =11.]频率分布直方图☞角度1利用分布直方图求频率、频数(2016·山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图9-3-7所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()图9-3-7A.56 B.60C.120 D.140D[由直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140.故选D.]☞角度2用频率分布直方图估计总体(2016·四川高考)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图9-3-8所示的频率分布直方图.图9-3-8(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.[解](1)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.3分由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1,解得a=0.30.5分(2)由(1),知100位居民每人的月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.8分(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,所以2.5≤x<3.由0.30×(x-2.5)=0.85-0.73,解得x=2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.12分[规律方法] 1.准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,易误认为纵轴上的数据是各组的频率.2.(1)例3-2中抓住频率分布直方图中各小长方形的面积之和为1,这是解题的关键.(2)利用样本的频率分布估计总体分布.[思想与方法]1.用样本估计总体是统计的基本思想.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.2.(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.(2)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大.(3)茎叶图、频率分布表和频率分布直方图都是用图表直观描述样本数据的分布规律的.[易错与防范]1.使用茎叶图时,要弄清茎叶图的数字特点,切莫混淆茎与叶的含义.2.利用频率分布直方图求众数、中位数与平均数时,应注意这三者的区分:(1)最高的矩形的中点即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.直方图与条形图不要搞混.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.。
2024届新高考一轮复习人教A版 第九章 第2节 用样本估计总体 课件(36张)
于或等于这个值.
(2)四分位数:25%,50%,75%这三个分位数把一组由小到大排列后的数据分成四
等份,因此称为 四分位数 ,其中第25百分位数也称为 第一四分位数
或
下四分位数 ,第75百分位数也称为 第三四分位数 或 上四分位数
方差是
.
解析:由已知,得 4+2a+3-a+5+6=20,
所以 a=2.
s2= ×[(4-4)2+(4-4)2+(1-4)2+(5-4)2+(6-4)2]= .
答案:2
,该组数据的
总体百分位数的估计
离散型数字的百分位数
[例1]按从小到大顺序排列的9个数据:10,16,25,33,39,43,m,65,70,若这组数
D )
法正确的是(
A.平均数为74
B.众数为60或70
C.中位数为75
D.该校数学月考成绩在80分以上的学生约占25%
解析:对于 A,=0.005×10×55+0.04×10×65+0.03×10×75+0.02×10×85+0.005×10×95=
73,故 A 不正确;
对于 B,由频率分布直方图可知众数为 65,故 B 不正确;
σ,t,因为 c≠0,所以 C,D 正确.
2.(多选题)(2022·辽宁沈阳一模)某团队共有20人,他们的年龄分布如表所示,
年龄
人数
28
1
29
3
30
3
32
5
36
4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节用样本估计总体总体分布的估计(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.知识点一频率分布直方图1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.易误提醒 (1)易把直方图与条形图混淆:两者的区别在于条形图是离散随机变量,纵坐标刻度为频数或频率,直方图是连续随机变量,连续随机变量在某一点上是没有频率的.(2)易忽视频率分布直方图中纵轴表示的应为频率组距.必记结论 由频率分布直方图进行相关计算时,需掌握下列关系式: (1)频率组距×组距=频率. (2)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数. [自测练习]1.某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则图中a 的值为( )A .0.006B .0.005C .0.004 5D .0.002 5解析:由题意知,a =1-(0.02+0.03+0.04)×102×10=0.005.答案:B2.在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其他6个小长方形的面积的和的14,且样本容量为80,则中间一组的频数为( )A .0.25B .0.5C .20D .16解析:设中间一组的频数为x ,依题意有x 80=14⎝⎛⎭⎫1-x 80,解得x =16,应选D. 答案:D知识点二 茎叶图 茎叶图的优点茎叶图的优点是可以保留原始数据,而且可以随时记录,这对数据的记录和表示都能带来方便.易误提醒 在绘制茎叶图时,易遗漏重复出现的数据,重复出现的数据要重复记录,同时不要混淆茎叶图中茎与叶的含义.[自测练习]3.(2015·惠州模拟)某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别为( )A .19、13B .13、19C .20、18D .18、20解析:由茎叶图可知,甲的中位数为19,乙的中位数为13.故选A. 答案:A知识点三 样本的数字特征 1.众数、中位数、平均数 数字特征定义与求法优点与缺点众数一组数据中重复出现次数最多的数众数通常用于描述变量的值出现次数最多的数.但显然它对其他数据信息的忽视使得无法客观地反映总体特征中位数把一组数据按从小到大的顺序排列,处在中间位置的一个数据(或两个数据的平均数)中位数等分样本数据所占频率,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点平均数如果有n 个数据x 1,x 2,…,x n ,那么这n 个数的平均数x =x 1+x 2+…+x nn平均数与每一个样本数据有关,可以反映出更多的关于样本数据全体的信息,但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低2.标准差、方差(1)标准差:样本数据到平均数的一种平均距离,一般用s 表示,s = 1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]. (2)方差:标准差的平方s 2s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x i (i =1,2,3,…,n )是样本数据,n 是样本容量,x 是样本平均数.易误提醒 (1)众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.(2)平均数反映的是样本个体的平均水平,众数和中位数则反映样本中个体的“重心”.(3)实际问题中求得的平均数、众数和中位数应带上单位.必备方法 利用频率分布直方图求众数、中位数与平均数时易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标是众数. (2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.[自测练习]4.对于一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +C (i =1,2,3,…,n ),其中C ≠0,则下列结论正确的是( )A .平均数与方差均不变B .平均数变,方差保持不变C .平均数不变,方差变D .平均数与方差均发生变化解析:依题意,记原数据的平均数为x ,方差为s 2,则新数据的平均数为(x 1+C )+(x 2+C )+…+(x n +C )n =x +C ,即新数据的平均数改变;新数据的方差为1n {[(x 1+C )-(x +C )]2+[(x 2+C )-(x +C )]2+…+[(x n +C )-(x +C )]2}=s 2,即新数据的方差不变,故选B.答案:B5.(2015·高考陕西卷)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析:设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2 015=2×1 010,解得a 1=5.答案:5考点一频率分布直方图及应用|1.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x的值等于()A.0.12B.0.012C.0.18 D.0.018解析:依题意,0.054×10+10x+0.01×10+0.006×10×3=1,解得x=0.018,故选D.答案:D2.某市为了节约能源,拟出台“阶梯电价”制度,即制订住户月用电量的临界值a.若某住户某月用电量不超过a度,则按平价计费;若某月用电量超过a度,则超出部分按议价计费,未超出部分按平价计费.为确定a的值,随机调查了该市100户的月用电量,工作人员已将90户的月用电量填在了下面的频率分布表中,最后10户的月用电量(单位:度)为:18,63,43,119,65,77,29,97,52,100.(2)根据已有信息,试估计全市住户的平均月用电量(同一组数据用该区间的中点值作代表);(3)若该市计划让全市75%的住户在“阶梯电价”出台前后缴纳的电费不变,试求临界值a.解:(1)(2)由题意,用每小组的中点值代表该小组的平均月用电量,则100户住户组成的样本的平均月用电量为10×0.04+30×0.12+50×0.24+70×0.30+90×0.25+110×0.05=65(度).用样本估计总体,可知全市居民的平均月用电量约为65度.(3)计算累计频率,可得下表:的总面积(频率)为0.75,故有0.7+(a-80)×0.012 5=0.75,解得a=84,由样本估计总体,可得临界值a为84.绘制频率分布直方图时需注意(1)制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确;(2)频率分布直方图的纵坐标是频率组距,而不是频率.考点二 茎叶图|1.如图所示的茎叶图是甲、乙两位同学在期末考试中的六科成绩,已知甲同学的平均成绩为85,乙同学的六科成绩的众数为84,则x ,y 的值分别为( )A .2,4B .4,4C .5,6D .6,4解析:x 甲=75+82+84+(80+x )+90+936=85,解得x =6,由图可知y =4,故选D.答案:D2.(2016·长沙一模)右面的茎叶图是某班学生在一次数学测验时的成绩:根据茎叶图,得出该班男、女生数学成绩的四个统计结论,其中错误的一项是( )A .15名女生成绩的平均分为78B .17名男生成绩的平均分为77C.女生成绩和男生成绩的中位数分别为82,80D.男生中的高分段和低分段均比女生多,相比较男生两极分化比较严重解析:对于A,15名女生成绩的平均分为115×(90+93+80+80+82+82+83+83+85+70+71+73+75+66+57)=78,A正确;对于B,17名男生成绩的平均分为117×(93+93+96+80+82+83+86+86+88+71+74+75+62+62+68+53+57)=77,故B正确;对于D,观察茎叶图,对男生、女生成绩进行比较,可知男生两极分化比较严重,D正确;对于C,根据女生和男生成绩数据分析可得,两组数据的中位数均为80,C错误,故选C.答案:C使用茎叶图时,需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.考点三样本的数字特征|(2015·高考广东卷)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?[解] (1)依题意,20×(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)=1, 解得x =0.007 5.∴直方图中x 的值为0.007 5.(2)由图可知,最高矩形的数据组为[220,240), ∴众数为220+2402=230.∵[160,220)的频率之和为(0.002+0.009 5+0.011)×20=0.45,∴依题意,设中位数为y , ∴0.45+(y -220)×0.012 5=0.5. 解得y =224,∴中位数为224.(3)月平均用电量在[220,240)的用户在四组用户中所占比例为0.012 50.012 5+0.007 5+0.005+0.002 5=511,∴月平均用电量在[220,240)的用户中应抽取11×511=5(户).(1)平均数与方差都是重要的数字特征,是对总体的一种简明地描述,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(2)利用方差优化比较时方差越小,效果越好.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):.解析:x 甲=x 乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s2甲,故甲更稳定.答案:甲11.概率与统计的综合问题的答题模板【典例】(12分)(2015·高考全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图B地区用户满意度评分的频数分布表分的平均值及分散程度(不要求计算出具体值,给出结论即可);B地区用户满意度评分的频率分布直方图(2)根据用户满意度评分,将用户的满意度分为三个等级:[思路点拨](1)因为在频率分布直方图上,纵坐标表示的是频率与组距的比值,根据频数求出频率,进而求出频率与组距的比值,根据频率分布直方图可看出满意度评分的平均值的大小和分散程度,中间的矩形面积越高越集中,越不分散;(2)B地区可直接借助低于70分的频数10求出不满意的概率,A地区利用频率分布直方图中小矩形的面积即为频率,可求出不满意的概率,进而比较大小.[规范解答](1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(6分)(2)A地区用户的满意度等级为不满意的概率大.(7分)记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,(8分)P(C B)的估计值为(0.005+0.02)×10=0.25.(10分)所以A地区用户的满意度等级为不满意的概率大.(12分)[模板形成]分析图表、审核数据↓作出频率分布直方图↓由直方图数据分析相应问题↓利用直方图求概率,作出判断↓反思解题过程注意规范化A组考点能力演练1.(2016·邢台摸底)样本中共有五个个体,其值分别为0,1,2,3,m .若该样本的平均值为1,则其样本方差为( )A.105B.305C. 2 D .2解析:依题意得m =5×1-(0+1+2+3)=-1,样本方差s 2=15(12+02+12+22+22)=2,即所求的样本方差为2,选D.答案:D2.10名工人某天生产同一零件,生产的零件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a解析:依题意,这些数据由小到大依次是10,12,14,14,15,15,16,17,17,17,因此a <15,b =15,c =17,c >b >a ,选D.答案:D3.(2015·高考全国卷Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关解析:根据柱形图易得选项A ,B ,C 正确,2006年以来我国二氧化硫年排放量与年份负相关,选项D 错误.故选D.答案:D4.(2015·高考山东卷)为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:由题中茎叶图,知x 甲=26+28+29+31+315=29,s 甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2] =3105; x 乙=28+29+30+31+325=30,s 乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2] = 2.所以x 甲<x 乙,s 甲>s 乙,故选B. 答案:B5.(2016·内江模拟)某公司10个销售店某月销售某产品数量(单位:台)的茎叶图如下:分组成[11,20),[20,30),[30,40]时,所作的频率分布直方图是( )解析:本题考查统计.利用排除法求解.由直方图的纵坐标是频率/组距,排除C 和D ;又第一组的频率是0.2,直方图中第一组的纵坐标是0.02,排除A ,故选B.答案:B6.(2015·郑州二检)已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m 、n 的比值mn =________.解析:由茎叶图可知甲的数据为27、30+m 、39,乙的数据为20+n 、32、34、38.由此可知乙的中位数是33,所以甲的中位数也是33,所以m =3.由此可以得出甲的平均数为33,所以乙的平均数也为33,所以有20+n +32+34+384=33,所以n =8,所以m n =38.答案:387.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班67679解析:由数据表可得出乙班的数据波动性较大,则其方差较大,甲班的数据波动性较小,其方差较小,其平均值为7,方差s 2=15(1+0+0+1+0)=25.答案:258.(2015·高考湖北卷)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________. 解析:(1)0.1×1.5+0.1×2.5+0.1×a +0.1×2+0.1×0.8+0.1×0.2=1,解得a =3; (2)区间[0.5,0.9]内的频率为1-0.1×1.5-0.1×2.5=0.6,则该区间内购物者的人数为10 000×0.6=6 000.答案:(1)3 (2)6 0009.甲、乙两人参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,画出茎叶图如图.(1)指出学生乙成绩的中位数;(2)现要从中选派一人参加数学竞赛,你认为应该派哪位学生参加? 解:(1)依题意知,学生乙成绩的中位数为83+852=84.(2)派甲参加比较合适,理由如下:x 甲=18(70×2+80×4+90×2+9+8+8+4+2+1+5+3)=85,x 乙=18(70×1+80×4+90×3+5+3+5+2+5)=85,s 2甲=35.5,s 2乙=41,∵x 甲=x 乙,且s 2甲<s 2乙,∴甲的成绩比较稳定.10.(2016·唐山统考)为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m 名学生进行体育测试.根据体育测试得到了这m 名学生的各项平均成绩(满足100分),按照以下区间分为七组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],并得到频率分布直方图(如图).已知测试平均成绩在区间[30,60)内有20人.(1)求m 的值及中位数n ;(2)若该校学生测试平均成绩小于n ,则学校应适当增加体育活动时间.根据以上抽样调查数据,该校是否需要增加体育活动时间?解:(1)由频率分布直方图知第1组,第2组和第3组的频率分别是0.02,0.02和0.06, 则m ×(0.02+0.02+0.06)=20,解得m =200.由直方图可知,中位数n 位于[70,80)内,则0.02+0.02+0.06+0.22+0.04(n -70)=0.5,解得n =74.5.(2)设第i (i =1,2,3,4,5,6,7)组的频率和频数分别为p i 和x i ,由图知,p 1=0.02,p 2=0.02,p 3=0.06,p 4=0.22,p 5=0.40,p 6=0.18,p 7=0.10,则由x i =200×p i ,可得x 1=4,x 2=4,x 3=12,x 4=44,x 5=80,x 6=36,x 7=20, 故该校学生测试平均成绩是x=35x1+45x2+55x3+65x4+75x5+85x6+95x7200=74<74.5,所以学校应该适当增加体育活动时间.B组高考题型专练1.(2015·高考陕西卷)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123C.137 D.167解析:由扇形统计图可得,该校女教师人数为110×70%+150×(1-60%)=137.故选C.答案:C2.(2015·高考湖南卷)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解析:由题意可知,这35名运动员的分组情况为,第一组(130,130,133,134,135),第二组(136,136,138,138,138),第三组(139,141,141,141,142),第四组(142,142,143,143,144),第五组(144,145,145,145,146),第六组(146,147,148,150,151),第七组(152,152,153,153,153),故成绩在区间[139,151]上的运动员恰有4组,故运动员人数为4.答案:43.(2015·高考江苏卷)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 解析:由平均数公式可得这组数据的平均数为4+6+5+8+7+66=6.答案:64.(2015·高考全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2. P(C)=P(C B1C A1∪C B2C A2)=P(C B1C A1)+P(C B2C A2)=P(C B1)P(C A1)+P(C B2)P(C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820,P(C)=1020×1620+820×420=0.48.。